Science.gov

Sample records for small-scale spatial variability

  1. Small-Scale Spatial Variability of Ozone in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Deanes, L. N.; Sadighi, K.; Casey, J. G.; Collier, A. M.; Hannigan, M.

    2015-12-01

    Surface ozone (O3) can pose several health risks to humans, such as an increased number of and intensity of asthma attacks. Considering this, it is important that ozone levels are monitored. While municipal air quality monitors are present in cities like Boulder, Colorado, these monitors often only consider regional analysis, neglecting the variability of compounds, such as ozone or carbon monoxide, over smaller distances. Small-scale (approximately 1 kilometer) spatial variability in ozone is important because humans experience these small scales on a daily basis. Using low-cost, next-generation air quality monitors ("pods") developed at the University of Colorado-Boulder, we assessed small-scale spatial variability of surface ozone in Boulder, Colorado. This was done by placing clusters of 4-5 pods within approximately 1 kilometer of each other at specific sites in the city of Boulder. We collected data at two sites: one on the University of Colorado-Boulder campus (i.e., an urban site) and one outside of the city (i.e., a rural site). Pods were left in their positions for one to two weeks allowing for observation of ozone trends. As expected the typical diurnal trend was observed; however, further analysis revealed differences between these daily trends. Data collected by the pods allows for better understanding of small-scale spatial variability of surface ozone and how this may be driven by nearby sources.

  2. Phytoplankton spatial distribution in south San Francisco Bay: mesoscale and small-scale variability

    USGS Publications Warehouse

    Powell, Thomas M.; Cloern, James E.; Walters, Roy A.; Wolfe, Douglas A.

    1986-01-01

    Horizontal transects of surface salinity and in-vivo fluorescence indicate the existence of three distinct spatial regimes in South San Francisco Bay. A mid-Bay region of low phytoplankton biomass with little small-scale variance is bounded to the north and south by water masses having higher in-vivo fluorescence and enhanced small-scale variability. Autocorrelation analyses demonstrate that the length scale of phytoplankton patchiness is longest in the mid-Bay region. The persistent discontinuities of in-vivo fluorescence and salinity are associated with topographic features—a large shoal to the north and a constriction to the south. The three spatial regimes are consistent with measured zooplankton distributions, existing current meter data, estimated longitudinal transports, and numerical simulations of residual circulations that show one (and perhaps two) large-scale gyre(s) bounded by the northern shoal and southern constriction. Topographic features are the most important physical factors controlling mesoscale (~ 10 km) variability of phytoplankton in South San Francisco Bay. We speculate that vertical current shear and salinity stratification (and their effects upon turbulence and diffusion) control small-scale patchiness, but quantitative estimates are needed to determine the influence of large-scale (and local) phytoplankton growth and loss processes.

  3. Small-Scale Spatial Variability of Ice Supersaturation and Cirrus in the TTL

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; Podolske, J. R.; Rana, M.; Slate, T. A.; Diskin, G. S.

    2014-12-01

    The processes controlling cloud formation and evolution represent a significant uncertainty in models of global climate change. High altitude cirrus clouds contribute a large portion of this uncertainty due to their altitude and abundance. The mechanism behind the formation of cirrus clouds depends on the characteristics and composition of ice supersaturation (ISS) regions, regions where the relative humidity with respect to ice (RHi) is greater than 100%. Small-scale dynamics have recently been shown to have a strong effect on the RHi of the UT/LS, and therefore on cirrus cloud formation. Until now, there has been insufficient data in the Tropical Tropopause Layer (TTL) to investigate these effects. The Airborne Tropical TRopopause EXperiment (ATTREX) was a series of campaigns focused on improving our understanding of humidity in the TTL. During this campaign, the NASA Langley/Ames Diode Laser Hygrometer was part of the payload on the NASA Global Hawk, resulting in measurements of humidity with as low as 1-2 m vertical resolution at altitudes up to 19 km. We will present observations from ATTREX describing the small scale spatial variability of water vapor along transects of ISSRs and cirrus clouds, as well as the dynamics driving the formation of ISS regions. These results will be discussed in context with results from prior UT/LS campaigns, such as DC3 and HIPPO.

  4. The Auroral Spatial Structures Probe: Exploring Small-Scale High-Latitude Electric Field Variability

    NASA Astrophysics Data System (ADS)

    Farr, D.; Weston, C.; Nelson, W.; Stromberg, E. M.; Byers, B.; Frazier, C.; Swenson, A.; Miller, J.; Carrick, B.; Neilsen, T. L.; Hidalgo, J. M.; Cox, W.; Evans, T.; Vangeison, V.; Perkins, C.; Fish, C. S.; Swenson, C.

    2013-12-01

    The Auroral Spatial Structures Probe (ASSP) is a NASA sounding rocket mission to be launched in the late January 2014 time frame that will be used to study both the spatial and temporal small scale variation of the electric and magnetic fields during active aurora and just before the onset of an auroral sub-storm. This will be accomplished through the use of a constellation of small payloads that separate relative to each other throughout a sounding rocket flight. The multiple baseline observations of the electric and magnetic fields will be used to observe variability of both the E-field and the Poynting flux. These observations will be placed in the context of available data, including winds, large scale E-fields, and proxy conductivity (airglow image) observations. In this way we will address the main scientific objective of this mission which is: What are the contributions of small spatial scale and rapid temporal scale fluctuations of electric fields relative to the larger-scale electrodynamic processes? The high altitude rocket will be launched along the magnetic field line and carry six sub-payloads to be ejected from the main payload at high velocity. The sub-payloads will be deployed both along the flight path and perpendicular to the flight path so that both spatial features and temporal-spatial ambiguities can be explored. The low-mass sub-payloads will achieve at least a 35 km separation by the end of the flight and are key to observational success. Each sub-payload will carry a crossed pair of double-probe sensors to measure in-situ electric fields, a three axis magnetometer, a Langmuir probe and a GPS receiver. In this poster we review the ASSP science, mission, and design, and present instrument calibration and testing results.

  5. Small-Scale Temporal and Spatial Variability in Regional-Scale CO2 Mixing Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Corbin, K. D.; Davis, K. J.; Denning, S.; Lokupitiya, E. Y.; Miles, N.; Richardson, S.

    2009-05-01

    The study of regional-scale CO2 concentrations and fluxes lies between the detailed understanding of ecological processes that can be gathered via intensive local field study, and the overarching but mechanistically poor understanding of the global carbon cycle that is gained by analyzing the atmospheric CO2 budget. In addition to the importance of regional studies toward the fundamental goal of understanding the carbon balance of the continent, regional-scale studies are becoming increasingly important as the necessity of tracking progress in CO2 emissions reduction arises. This work is part of the NACP's Midcontinental Intensive (MCI) study. Specifically it adds a regional network of five communications-tower based atmospheric CO2 observations ("Ring 2") from April 2007 through October 2008 to the long-term atmospheric CO2 observing network (tall towers, aircraft profiles, and well- calibrated CO2 measurements on Ameriflux towers) in the mid-continent intensive region. The Ring 2 measurements are based on relatively new technology for CO2 measurement, wavelength-scanned cavity ring down spectroscopy (Picarro, Inc.), and the locations are regional in scale (roughly a 500-km diameter ring). We present results concerning data quality of the new instruments, including water vapor correction and uncertainties, as well as small-scale temporal and spatial variations that can be seen with this unique network. For example, the daily daytime average throughout the 2007 and 2008 growing seasons indicated a 50-ppm seasonal drawdown, with significant synoptic variability. The drawdown in this largely agricultural region (heavily influenced by corn) is significantly larger than the 20-30 ppm typically seen in forested regions. Also during the 2007 and 2008 growing seasons, the CO2 mixing ratio at the sites nearly always differs by more than 5 ppm, while at times the inter-site difference is as large as 30-50 ppm. While variability in the regional spatial gradients is expected

  6. Small-scale temporal and spatial variability in the abundance of plastic pellets on sandy beaches: Methodological considerations for estimating the input of microplastics.

    PubMed

    Moreira, Fabiana Tavares; Prantoni, Alessandro Lívio; Martini, Bruno; de Abreu, Michelle Alves; Stoiev, Sérgio Biato; Turra, Alexander

    2016-01-15

    Microplastics such as pellets have been reported for many years on sandy beaches around the globe. Nevertheless, high variability is observed in their estimates and distribution patterns across the beach environment are still to be unravelled. Here, we investigate the small-scale temporal and spatial variability in the abundance of pellets in the intertidal zone of a sandy beach and evaluate factors that can increase the variability in data sets. The abundance of pellets was estimated during twelve consecutive tidal cycles, identifying the position of the high tide between cycles and sampling drift-lines across the intertidal zone. We demonstrate that beach dynamic processes such as the overlap of strandlines and artefacts of the methods can increase the small-scale variability. The results obtained are discussed in terms of the methodological considerations needed to understand the distribution of pellets in the beach environment, with special implications for studies focused on patterns of input.

  7. Small scale spatial variability of temperature and salinity in the Kara Sea basing on observations in September, 2011

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter

    2013-04-01

    The Kara Sea, the marginal sea in the Arctic Ocean, receives a large volume of freshwater (1290 km3/year on long term average) from the Ob, Yenisey and other rivers. In consequence, a large part of sea's area is influenced by fresh water discharge. Spreading in the surface layer of the sea, continental runoff largely modulates spatial variability of temperature and salinity. Depending on geographic location, atmospheric forcing conditions, water circulation etc., this variability is characterized by different scales. The objective of the study is the estimation of thermohaline variability scales in the surface layer and its connection with governing factors. The study is based on the results of the latest (September, 2011) survey of the Shirshov Institute to the Kara Sea (59th cruise of the RV Akademik Mstislav Keldysh). Data used in this study includes high-resolution (frequency 4 Hz) measurements of temperature and salinity at the surface of the Kara Sea conducted using a pump-through CTD system. These measurements were conducted along the vessel track, covering the whole area of the sea, during 24 days period and allowed for horizontal resolution as high as ~100 m. Additionally, the principal meteorological parameters such as temperature, pressure and wind velocity and direction were recorded by a shipboard automatic meteorological station. Basing on the obtained measurements, we determine the representative water types at the surface of the Kara Sea for the fall season. Processing of such a detailed data allows us to indentify regions of the sea, where the thermohaline characteristics have the most intense variability. We also investigate the dependence between wind conditions and magnitude and scales of the thermohaline variability. Finally, we find the typical spatial scales of the variability for different parts of the sea.

  8. Empirical spatial econometric modelling of small scale neighbourhood

    NASA Astrophysics Data System (ADS)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  9. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.

    2002-01-01

    Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  10. Small-scale spatial variability of sperm and sei whales in relation to oceanographic and topographic features along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Skov, H.; Gunnlaugsson, T.; Budgell, W. P.; Horne, J.; Nøttestad, L.; Olsen, E.; Søiland, H.; Víkingsson, G.; Waring, G.

    2008-01-01

    The 2004 Mid-Atlantic Ridge (MAR)-ECO expedition on the R.V. G.O. Sars provided the first opportunity to correlate oceanic distributions of cetaceans with synoptic acoustic (ADCP to 700 m depth, multi-beam echosounders) measurements of high-resolution, three-dimensional (3D) potential habitat (spatial scale<100 km). The identified habitat features were tested with independent observations from the Icelandic combined cetacean and redfish cruises in 2001 and 2003 using data from a 3D ocean general circulation model of the MAR region (Regional Oceans Modelling System (ROMS) model 5 km resolution). The spatial autocorrelation of sampled encounter rates of sperm Physeter macrocephalus and sei whales Balaenoptera borealis indicated scale-dependent variability in the distribution of both species. Despite the large area surveyed, the observations of both species exhibited a strong small-scale structure (range parameter 20-50 km), indicating affinities to cross-seamount or cross-frontal structures. Potential cross-seamount and cross-frontal habitat structures were derived from the acoustic transect data by analysing fine-scale gradients in the 3D flow patterns and bathymetry, including interactions between frontal and topographic parameters. PLS regression was used to determine the potential habitat drivers of sperm and sei whales, both during the G.O. Sars cruise and during the Icelandic cruises in 2001 and 2003. The selected parameters, which reflected flow gradients interacting with the steep topography, were finally applied for modelling the habitat suitability of both target species along the northern MAR using Ecological Niche Factor Analysis. The results suggest aggregations of sperm and sei whales along the MAR are primarily associated with fine-scale frontal processes interacting with the topography in the upper 100 m of the water column just north of the Sub-Polar Front (SPF) and the Charlie-Gibbs Fracture Zone (CGFZ). As moderate and high habitat suitabilities

  11. Small-Scale Variability in Warm Continental Cumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Austin, P. H.; Baker, M. B.; Blyth, A. M.; Jensen, J. B.

    1985-06-01

    We have analyzed small-scale fluctuations in microphysical, dynamical and thermodynamical parameters measured in two warm cumulus clouds during the Cooperative Convective Precipitation Experiment (CCOPE) project (1981) in light of predictions of several recent models. The measurements show the existence at all levels throughout the sampling period of two statistically distinct kinds of cloudy regions, termed `variable' and `steady,' often separated by transition zones of less than ten meters. There is some evidence for microphysical variability induced by local fluctuations in thermodynamic and dynamic parameters; however, the predominant variations are of a nature consistent with laboratory evidence suggesting that mixing is dominated by large structures. Entrainment appears to occur largely near cloud top but the data presented here do not permit identification of a mechanism for transport of the entrained air throughout the cloud.

  12. Small-Scale Variability of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  13. Small-Scale Variability of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  14. Small-scale variability in Saturn’s lower ionosphere

    NASA Astrophysics Data System (ADS)

    Matcheva, Katia I.; Barrow, Daniel J.

    2012-11-01

    We perform and present a wavelet analysis on all 31 Cassini electron density profiles published to date (Nagy, A.F. et al. [2006]. J. Geophys. Res. 111 (A6), CiteID A06310; Kliore, A.J. et al. [2009]. J. Geophys. Res. 114 (A4), CiteID A04315). We detect several discrete scales of variability present in the observations. Small-scale variability (S < 700 km) is observed in almost all data sets at different latitudes, both at dawn and dusk conditions. The most typical scale of variability is 300 km with scales between 200 km and 450 km being commonly present in the vast majority of the profiles. A low latitude dawn/dusk asymmetry is noted in the prevalent scales with the spectrum peaking sharply at the 300 km scale at dusk conditions and being broader at dawn conditions. Compared to dawn conditions the dusk ionosphere also shows more significant variability at the 100 km scale. The 300 km vertical scale is also present in the few available profiles from the northern hemisphere. Early observations from 2005 show a dominant scale at 350 km whereas later in 2007-2008 the spectrum shifts to the shorter scales with the most prominent scale being 300 km. The performed wavelet analysis and the obtained results are independent of assumptions about the nature of the layers and do not require a definition for a “background” electron density profile. In the second part of the paper we present a gravity wave propagation/dissipation model for Saturn’s upper atmosphere and compare the wave properties to the characteristics of the observed electron density variability at different scales. The general features observed in the data are consistent with gravity waves being present in the lower ionosphere and causing layering of the ions and the electrons. The wave-driving mechanism provides a simultaneous explanation for several of the properties of the observed variability: (i) lack of variability in the electron density above the predicted region of wave dissipation; (ii) in

  15. Seasonal variability shapes resilience of small-scale fisheries in Baja California Sur, Mexico

    PubMed Central

    Leslie, Heather M.

    2017-01-01

    Small-scale fisheries are an important source of food and livelihoods to coastal communities around the world. Understanding the seasonality of fisheries catch and composition is crucial to fisheries management, particularly in the context of changing environmental and socioeconomic conditions. While seasonal variability directly impacts the lives of fishers, most fisheries studies focus on longer-term change. Here we examine seasonal variability in the small-scale fisheries of Baja California Sur, Mexico based on 13 years of government fisheries data. We investigate how four fisheries indicators with direct relevance to ecological resilience–magnitude and variance of landed fish biomass, taxon richness and the proportion of top-trophic-level taxa in total catch–vary within and among years and at multiple spatial scales. We find that these resilience indicators vary both seasonally and spatially. These results highlight the value of finer-scale monitoring and management, particularly for data-poor fisheries. PMID:28783740

  16. Small scale variability of snow properties on Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael

    2016-04-01

    Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.

  17. Small-scale spatial structuring of interstitial invertebrates on three embayed beaches, Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Cooke, Belinda C.; Goodwin, Ian D.; Bishop, Melanie J.

    2014-10-01

    An understanding of ecological processes hinges upon an understanding of the spatial structuring of their key biotic components. Interstitial invertebrates are a ubiquitous and ecologically important component of sandy beach ecosystems. As many sandy beach taxa have limited dispersal, it may be expected that their populations exhibit a high degree of spatial structuring, yet the spatial scales across which they display baseline variability remain largely unknown. To assess (1) whether interstitial invertebrates display patchiness on embayed sandy beaches, (2) whether the size of patches they form is consistent across three geographically proximal beaches, (3) the key environmental correlates of this variation and (4) its taxonomic dependence, samples were collected at regular (0.5 m) intervals along 15 m long geomorphically similar stretches of three proximal intermediate beaches and analyses of spatial autocorrelation were conducted. On each of the three beaches, interstitial invertebrate communities formed patches of 2-4.5 m in diameter. Spatial structuring of invertebrate communities was driven by harpacticoid copepods and gastrotrichs, and corresponded to spatial structuring of sediments. Sediments, however, explained only 33% of spatial variation in faunal communities, indicating the importance of other abiotic and/or biotic factors. Our study highlights that even on seemingly homogeneous sandy beaches, faunal communities may display considerable small-scale spatial structuring. Examination of spatial structure may lead to a greater understanding of the ecological processes in this system.

  18. Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland

    NASA Astrophysics Data System (ADS)

    Horn, Sebastian; Hempel, Stefan; Ristow, Michael; Rillig, Matthias C.; Kowarik, Ingo; Caruso, Tancredi

    2015-02-01

    Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15 × 15, 12 × 12 and 12 × 12 m in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.

  19. Influence of Small-Scale Drop Size Variability on the Estimation of Cloud Optical Properties

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Marshak, A.; Wiscombe, W. J.; Martonchik, J. V.

    2004-05-01

    Most of the existing cloud radiation models and conventional techniques of data processing assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes acquired during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE), July 1987, and the Atmosphere Radiation Measurements (ARM) Cloud Intensive Operational Period (IOP), March, 2000, shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. The drop size dependent coefficient of proportionality, or a generalized drop concentration, and the exponent are determined solely by the smallest sampling volume; they are independent of the volume drops occupy and differentiate spatial distributions of drops with different sizes. For abundant small drops (r > 14 μm) present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops (r > 14 μm), the exponents fall below unity for scales between the smallest sampling volume and a "saturation" scale. At these scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at small scales than conventional models account for; their impact is consequently underestimated. The analysis presented here indicates that depending on cloud size, the neglect of small-scale drop size variability can result in a systematic underestimation of cloud horizontal optical path.

  20. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    PubMed

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  1. Small-scale spatial variation in population dynamics and fishermen response in a coastal marine fishery.

    PubMed

    Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.

  2. Small-Scale Spatial Variation in Population Dynamics and Fishermen Response in a Coastal Marine Fishery

    PubMed Central

    Wilson, Jono R.; Kay, Matthew C.; Colgate, John; Qi, Roy; Lenihan, Hunter S.

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales. PMID:23300793

  3. A spatial method to calculate small-scale fisheries effort in data poor scenarios.

    PubMed

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally.

  4. A spatial method to calculate small-scale fisheries effort in data poor scenarios

    PubMed Central

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally. PMID:28406918

  5. Multiple Views of Space: Continuous Visual Flow Enhances Small-Scale Spatial Learning

    ERIC Educational Resources Information Center

    Holmes, Corinne A.; Marchette, Steven A.; Newcombe, Nora S.

    2017-01-01

    In the real word, we perceive our environment as a series of static and dynamic views, with viewpoint transitions providing a natural link from one static view to the next. The current research examined if experiencing such transitions is fundamental to learning the spatial layout of small-scale displays. In Experiment 1, participants viewed a…

  6. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  7. Immediate and delayed recall of a small-scale spatial array.

    PubMed

    Tlauka, Michael; Donaldson, Phillip; Bonnar, Daniel

    2015-01-01

    The study examined people's spatial memory of a small-scale array of objects. Earlier work has primarily relied on short-retention intervals, and to date it is not known whether performance is affected by longer intervals between learning and recall. In the present investigation, university students studied seven target objects. Recall was tested immediately after learning and after an interval of seven days. Performance was found to be similar in the immediate and delayed conditions, and the results suggested that recall was facilitated by egocentric and intrinsic cues. The findings are discussed with reference to recent investigations that have shown task parameters can influence spatial recall.

  8. Retrievals on Tropical small scale humidity variability from multi-channel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhao; Zuidema, Paquita; Turner, David

    2016-04-01

    Small-scale atmospheric humidity structure is important to many atmospheric process studies. In the Tropics especially, convection is sensitive to small variations in humidity. High temporal-resolution humidity profiles and spatially-resolved humidity fields are valuable for understanding the relationship of convection to tropical humidity, such as at convectively-induced cold pools and as part of the shallow-to-deep cloud transition. Radiosondes can provide high resolution vertical profiles of temperature and humidity, but are relatively infrequent. Microwave radiometers (MWR) are able to profile and scan autonomously and output measurements frequently (~1 Hz). To date, few assessments of microwave humidity profiling in the Tropics have been undertaken. Löhnert et al. (2009) provide one evaluation for Darwin, Australia. We build on this using four months of data from the equatorial Indian Ocean, at Gan Island, collected from University of Miami's (UM) multi-channel radiometer during the Dynamics of Madden-Julian Oscillation (DYNAMO) field campaign. Liquid Water Path (LWP) and Water Vapor Path (WVP) are physically retrieved using the MWR RETrieval (MWRRET) algorithm (Turner et al., 2007b), and humidity profiles in the tropics are retrieved using the Integrated Profiling Technique (Löhnert et al., 2004). Tropical temperature variability is weak and a climatological temperature profile is assumed, with humidity information drawn from five channels between 22 to 30 GHz. Scanning measurements were coordinated with the scanning pattern of NCAR's S-Pol-Ka radar. An analysis of the humidity information content gathered from both the profiling and scanning measurements will be presented.

  9. A new in-situ technique for the determination of small scale spatial distribution of contact angles

    NASA Astrophysics Data System (ADS)

    Lamparter, Axel; Bachmann, Jörg; Woche, Susanne K.

    2010-05-01

    Water repellency is a common phenomenon in soils around the world. Its hydraulic impact reaches from decreased infiltration rates to preferential flow of water through the soil. The contact angle (CA), that forms at the three phase boundary solid-liquid-gas, has been established to quantify water repellency in soils. However, this CA is generally determined at a small amount of dry soil originating from homogenized samples. Thus, its spatial information is dependent on the size of the homogeneous sample. Information about the small scale spatial distribution of soil water repellency (SWR) cannot be obtained with this kind of sample preparation and thus the hydraulic relevance of the measured CA is questionable. Therefore we suggest a new sample preparation technique for measuring the spatial distribution of SWR of natural soils using the sessile drop method (SDM). Two horizontal and one vertical transects of about 1.2 m length have been measured on a sandy forest soil in northern Germany. The litter layer and vegetation, present at the site have been removed prior to the sampling. One side of a double sided adhesive tape has been pressed against the soil surface. This results in a mono-layer of sand grains attached to the tape that reflect the wetting properties in their original spatial surroundings. Using the Sessile Drop Method (SDM), CA have been measured on a straight line transect every 0.5 cm (Drop size 0.005 mL) in the laboratory with a contact angle microscope. Spatial differences in SWR can be measured at the research site. Results have been analyzed using spectral-analysis to reveal spatial correlations in SWR. Different spatial dependencies can be found in different depths of the soil. Results show that the new sampling technique is capable of detecting the spatial variability in natural soils. Thus, it might improve the hydraulic relevance of the small scale CA.

  10. Driving factors of small-scale variability in a savanna plant population after a fire

    NASA Astrophysics Data System (ADS)

    Dodonov, Pavel; Xavier, Rafael de Oliveira; Tiberio, Fernanda Cristina dos Santos; Lucena, Isabela Codolo de; Zanelli, Carolina Brandão; Silva Matos, Dalva Maria da

    2014-04-01

    The severity of fire impacts on fire-prone vegetation is often spatially heterogeneous, and may lead to small-scale patchiness in the structure of plant populations by affecting mortality, topkill, and reproduction. This patchiness, however, is not usually taken into account in fire ecology studies. We show that a dry-season fire may result in small-scale patchiness in the population structure of the common shrub Miconia albicans, mostly by differential topkill and resprouting. We related fire severity to population structure parameters of the study species and assessed the effects of fire on its soil seed bank. Basal area of non-woody live stems and of dead stems increased with fire severity, whereas that of woody live stems decreased, indicating topkill and resprouting. However, there was no relationship between fire severity and the total number of live or dead plants, showing that mortality in the fire was low. We found very few seedlings, indicating that resprouting, not germination from the soil seed bank, is the main recovery strategy of this species. The fire also affected the soil seed bank, as there were fewer seedlings emerging from soil collected in burned patches. Although this study was performed with a single species, it is likely that other species, especially those with basal resprouting, will show similar patterns of post-fire patchiness in population structure. This patchiness, in turn, may affect the spatial distribution of future fires, and should be taken into account in studies of fire ecology.

  11. Small-scale variability in solute transport processes in a homogeneous clay loam soil

    SciTech Connect

    Garrido, F.; Ghodrati, M.; Chendorain, M.; Campbell, C.G.

    1999-12-01

    Small-scale variations in transport parameters may have a profound influence on larger scale flow processes. Fiber-optic miniprobes (FOMPs) provide the opportunity to continuously measure solute resident concentration in small soil volumes. A 20-channel multi-plexed-FOMP system was used in repeated miscible displacements in a repacked clay loam soil column to examine small-scale, point-to-point variability in convective-dispersive transport processes. Transport parameters, measured 10 cm below the surface, were compared at two drip irrigation point densities and two fluxes. Irrigation densities of one irrigation drip point per 4 cm{sup 2} and 11 cm{sup 2} of column surface area produced similar results. The breakthrough curves measured at 0.10 cm h{sup {minus}1} had a larger immobile phase than at a flux of 1.07 cm h{sup {minus}1}. In the clay loam soil the mobile-immobile model fit the breakthrough curves better than the convective-dispersive equation (CDE), with r{sup 2} values of 99.6 and 97.1, respectively. This analysis demonstrated that dispersion and mass recovery were much more variable than pore water velocity in this repacked clay loam soil. However, even in the most variable transport conditions encountered, only 17 sampling points were necessary to describe the column average transport parameters within 20% of the mean.

  12. A Comparison of Different Approaches to Estimate Small-Scale Spatial Variation in Outdoor NO2 Concentrations

    PubMed Central

    Dijkema, Marieke B.; Gehring, Ulrike; van Strien, Rob T.; van der Zee, Saskia C.; Fischer, Paul; Hoek, Gerard; Brunekreef, Bert

    2011-01-01

    Background In epidemiological studies, small-scale spatial variation in air quality is estimated using land-use regression (LUR) and dispersion models. An important issue of exposure modeling is the predictive performance of the model at unmeasured locations. Objective In this study, we aimed to evaluate the performance of two LUR models (large area and city specific) and a dispersion model in estimating small-scale variations in nitrogen dioxide (NO2) concentrations. Methods Two LUR models were developed based on independent NO2 monitoring campaigns performed in Amsterdam and in a larger area including Amsterdam, the Netherlands, in 2006 and 2007, respectively. The measurement data of the other campaign were used to evaluate each model. Predictions from both LUR models and the calculation of air pollution from road traffic (CAR) dispersion model were compared against NO2 measurements obtained from Amsterdam. Results and conclusion The large-area and the city-specific LUR models provided good predictions of NO2 concentrations [percentage of explained variation (R2) = 87% and 72%, respectively]. The models explained less variability of the concentrations in the other sampling campaign, probably related to differences in site selection, and illustrated the need to select sampling sites representative of the locations to which the model will be applied. More complete traffic information contributed more to a better model fit than did detailed land-use data. Dispersion-model estimates for NO2 concentrations were within the range of both LUR estimates. PMID:21193385

  13. Assessment of small-scale integrated water vapour variability during HOPE

    NASA Astrophysics Data System (ADS)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2014-09-01

    The spatio-temporal variability of integrated water vapour (IWV) on small-scales of less than 10 km and hours is assessed with data from the two months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of standard deviation (≤ 1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON) which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities in the order of 4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient to capture the

  14. Assessment of small-scale integrated water vapour variability during HOPE

    NASA Astrophysics Data System (ADS)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  15. Effect of experimental small-scale spatial heterogeneity on resource use of a Mediterranean ground-ant community

    NASA Astrophysics Data System (ADS)

    M. Luque, Gloria; Reyes López, Joaquín

    2007-07-01

    Small-scale habitat complexity has been shown to influence interspecific competition and resource use in ant communities. Nevertheless, in Mediterranean communities, where temperature variations have a stronger effect on the foraging of subordinate species than competition by dominants, the effect of small-scale habitat complexity on resource use by ants is unknown. We investigated the influence of an experimental spatial mosaic of microhabitats (interior, edge and open) on the dynamics of resource use in a guild of ants of a Mediterranean grassland. We used baits containing one of three food resource types (honey, tuna and seeds) placed in the different microhabitats. Variation in resource use among microhabitats appears to result from differential responses among ant species to small-scale spatial heterogeneity. Analysis of frequency of occurrence, number of foragers and monopoly at baits of ant species indicated that the resource use and recruitment intensity was modified by microhabitat, once the effect of temperature was removed from the analysis. Thus, foraging activity and competitive interactions of ant species were influenced by the different microhabitats apart from temperature, which suggests an effect of small-scale structural complexity. Small-scale spatial variations in structural complexity have an effect in resource use by most ants in this system that is not wholly explained by differences in temperature. Finally, this suggests that microhabitat may be one factor influencing the outcome of the dominance hierarchies.

  16. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  17. Small-scale spatial distribution and oogenetic synchrony in brittlestars (Echinodermata: Ophiuroidea)

    NASA Astrophysics Data System (ADS)

    Doyle, Gina M.; Hamel, Jean-François; Mercier, Annie

    2014-01-01

    There is increasing evidence that spatial factors modulate reproductive processes over large (>150 km) and medium (10-100 km) scales in marine taxa, but few studies have explicitly determined the degree of inter-individual synchrony in gamete development at smaller scales within benthic populations. Using a ubiquitous broadcast-spawning species, the brittlestar Ophiopholis aculeata, we assessed variations in gametogenic activity over the annual reproductive cycle at various scales. Quantitative indices of oogenic maturity were compared in females collected: (1) in two substrata at a given site (distant ˜200-300 m), (2) among clusters of individuals living in relatively close proximity (˜10-50 m), and (3) within each cluster of individuals collected under/inside a given substratum (˜2-20 cm). Gametogenic maturity was also examined in females collected from distant sites (˜50-150 km). At the main study site, oogenic cohesion was greater within and among clusters of a given substratum than between substrata, and differences in reproductive output and spawning periods occurred between individuals from the two substrata studied. At the finest scale (within clusters of individuals) oogenic synchrony was maximal just before spawning. Comparing samples from distant geographic locations (>50 km) showed significant asynchrony outside the pre-spawning period. The present study shows that relatively high levels of asynchrony in gamete maturation may exist among conspecifics of a seemingly homogeneous population, except at the closest scale (within clusters) at the culmination of the reproductive cycle (near spawning). This emphasizes the likely interplay of inter-individual exchanges and small-scale distribution on the fine coordination of reproductive events.

  18. Combination of snowpack modelling and TLS observations to analyze small scale spatial varaiability of snowpack energy and mass balance

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Vionnet, Vincent; López-Moreno, Juan Ignacio; Lafaysse, Matthieu; Morin, Samuel

    2015-04-01

    Improving the comprehension on how the different energetic balance components affect the snowpack mass balance during the melting period is important from a hydrological point of view. An accurate Snow Water Equivalent (SWE) distribution is needed for this objective, but unfortunately SWE measurement over large areas is not feasible nowadays. This distribution can be provided by a snowpack model but simulations often differ from the real state, because some physical processes are not yet properly modelled. In this study, we take advantage of distributed snowpack simulations corrected throughout the snow season with several snow depth distributions measured with a Terrestrial Laser Scanner (TLS). This allows us to obtain a more realistic SWE evolution and analyse its relations with the snowpack surface energy balance during the melting period considering small scale spatial variability. For 2012, 2013 and 2014 snow seasons several intensive TLS snow depth data acquisitions were accomplished at Izas Experimental catchment; a 52ha study site located in central Spanish Pyrenees with an elevation that ranges between 2050 to 2350m above sea level. The detailed snowpack model Crocus has been used for simulating the snowpack evolution at 5m grid spacing during these three snow seasons, driven by downscaled meteorological fields from the SAFRAN reanalysis. Shadow effects on direct solar radiation are explicitly considered in the snowpack simulation. When a snow depth distribution map measured with the TLS was available, the simulation was stopped and the modelled snow depth distribution was adjusted to match observations. Afterwards the snow simulation was restarted, being subsequently simulated a more realistic snowpack distribution. Considering this improved simulation, the components of the surface energy balance simulated by Crocus were analysed in relation to the simulated mass balance dynamics during the melting period. In such a way a Principal Component Analysis

  19. Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task.

    PubMed

    Ragan, Eric D; Kopper, Regis; Schuchardt, Philip; Bowman, Doug A

    2013-05-01

    Spatial judgments are important for many real-world tasks in engineering and scientific visualization. While existing research provides evidence that higher levels of display and interaction fidelity in virtual reality systems offer advantages for spatial understanding, few investigations have focused on small-scale spatial judgments or employed experimental tasks similar to those used in real-world applications. After an earlier study that considered a broad analysis of various spatial understanding tasks, we present the results of a follow-up study focusing on small-scale spatial judgments. In this research, we independently controlled field of regard, stereoscopy, and head-tracked rendering to study their effects on the performance of a task involving precise spatial inspections of complex 3D structures. Measuring time and errors, we asked participants to distinguish between structural gaps and intersections between components of 3D models designed to be similar to real underground cave systems. The overall results suggest that the addition of the higher fidelity system features support performance improvements in making small-scale spatial judgments. Through analyses of the effects of individual system components, the experiment shows that participants made significantly fewer errors with either an increased field of regard or with the addition of head-tracked rendering. The results also indicate that participants performed significantly faster when the system provided the combination of stereo and head-tracked rendering.

  20. Enceladus' Geysers and Small-scale Thermal Hot Spots: Spatial Correlations and Implications

    NASA Astrophysics Data System (ADS)

    Porco, C.; Helfenstein, P.; Goguen, J.

    2016-12-01

    The geysering south polar terrain (SPT) of Enceladus has been a major focus of the Cassini mission ever since Cassini's first sighting of it in images taken in early 2005 (1). A high resolution imaging survey of the region conducted over the course of seven years resulted in the identification of 100 geysers erupting from the four main fractures crossing the SPT (2). The Cassini Visual and Infrared Mapping Spectrometer (VIMS) detected enhanced thermal emission arising from these fractures and taking the form of small-scale ( ≤ 10 meter) discrete spots (3,4). Four of these hot spot observations have already been spatially associated with four geysers on the Baghdad Sulcus fracture (2). The inferred spatial correlation and small size of each hot spot eliminated shear heating along the near-surface walls of the fractures as the source of the heat and erupting materials. Instead, it was concluded that condensation of vapor (and liquid), and the deposition of latent heat, on the near-surface vent walls, and the subsequent conduction of that heat to the surface, was the source of the observed thermal emission. This indicated that the hot spots are the secondary signature of a geyser eruption process deeply rooted in the moon's sub-surface liquid water reservoir (2). We extend the examination of these relationships to include seven additional VIMS observations of hot spots. At the present time, we have associated a total of 11 VIMS hot spot observations with 13 (maybe 14) geysers distributed over all four tiger stripe fractures. It's not uncommon for the locations of multiple (often two but sometimes three) surveyed geysers to overlap within estimated uncertainties. This can occur when they have different 3D orientations, making them identifiable in our 2014 survey as distinct features; However, the raw, thermally unmodeled VIMS maps, with their (relatively) coarse resolution, may register at that location only one corresponding hot spot. It is also possible that

  1. An Experimental Study of Small-Scale Variability of Raindrop Size Distribution

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.

    2010-01-01

    An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported5%more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm/h, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter

  2. An Experimental Study of Small-Scale Variability of Raindrop Size Distribution

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.

    2010-01-01

    An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported5%more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm/h, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter

  3. Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts.

    PubMed

    Birch, G F; Taylor, S E; Matthai, C

    2001-01-01

    Uncertainty associated with data derived by the analyses of heavy metals in aquatic sediment is due to variance produced in the laboratory (precision), plus 'natural', small-scale spatial variance, (or field variance) at the sampling site. Precision is easily determined and is usually reported in contaminant studies, but field variance is poorly understood and seldom documented. It is important to have an understanding of the field variance because if small-scale spatial variance in the concentration of heavy metals is excessive, regional trends may be limited value. Similarly, if temporal change is large, the results of single synoptic surveys may be questionable and the ability to demonstrate anthropogenic contributions over time will be difficult. However, it is evident from the literature that the information needed to address problems of spatial and temporal variance in the field is beyond the resources of most researchers. Analytical precision of about 5% relative standard deviation (RSD) for heavy metal analysis is typical of a well-managed laboratory. Many studies of small-scale spatial variability made during the current investigation indicate that field variance is related to ambient energy and to the type of sedimentological environment. Total variance (analytical plus field variance) is approximately 10% RSD (mean for a suite of nine trace elements) for depositional parts of estuaries and the marine environment, but increases to about 20-35% RSD for the more dynamic parts of the estuarine environment and the fluvial system. Repeated sampling over periods of up to 7 years undertaken during the present study, indicate a similar order of magnitude for temporal variability in these sedimentological environments. A proposed scheme to provide information on field variance is to undertake small-scale spatial and temporal studies in discrete sedimentological environments in the study area after sediment sampling and characterisation has been completed. The

  4. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  5. Hydrological impacts of the small scale rainfall variability in an urban catchment: CALAMAR vs. X-band radar data

    NASA Astrophysics Data System (ADS)

    Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Increasing urbanization and population density makes dealing with extreme weather events more difficult notably with regards to flood risks and more generally to storm water management. Such challenge requires the development and practical implementation of new technologies and methods. An example is weather radar which has been increasingly applied to hydrological modelling due to their unique ability to grasp both the spatial and temporal variability of rainfall fields. In this paper 6 radar rainfall products available over the Paris region are compared: CALAMAR and five different X-band radar data products. The first has a resolution of 1 km in space and 5 min in time and is a product provided by RHEA SAS using single polarimetric raw data of a local C-band radar operated by Météo-France and real time adjustment with a network of rain gauges..The latter are obtained from the radar operated by École des Ponts ParisTech currently providing data with a resolution of 250 m in space and 3.4 min in time. Rainfall fields are then inputted in the fully distributed model Multi-Hydro. It is done over a 6.2 km2 urban and peri-urban catchment located in Massy, south of Paris. Simulated outputs are then compared to actual water level measurement in storage basins. Three rainfall events that occurred in May and June 2016 are tested in this study. The comparison of the simulated hydrographs obtained with different inputs illustrates the benefits of a higher resolution for rainfall fields. The impact of the small-scale variability not measured by the CALAMAR data is quantified, as well as the hydrological consequences of the use of various radar algorithms over the same raw radar data. These results highlight the need to use the data available with the higher resolution such as the one operationally provided by X-band radars, as well as to use it better, i.e. notably with models able to take into account the newly observed small scale rainfall variability.

  6. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able

  7. Detecting small-scale spatial differences and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-04-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end

  8. Assessing the Impact of Small-Scale Magnetic Morphology on Solar Variability

    NASA Astrophysics Data System (ADS)

    Peck, Courtney; Rast, Mark; Criscuoli, Serena

    2017-08-01

    Spectral solar irradiance (SSI), the radiant energy flux per wavelength of the Sun received at Earth, is an important driver of chemical reactions in the Earth’s atmosphere. Accurate measurements of SSI are therefore necessary as an input for global climate models. While models and observations of the spectrally-integrated total solar irradiance (TSI) variations agree within ˜ 95%, they can disagree on the sign and magnitude of the SSI variations. In this work, we examine the contribution of currently-unresolved small-scale magnetic structures to SSI variations in the photosphere. We examine the emergent spectra of two atmospheres with differing imposed-field conditions — one with a small-scale dynamo and the other with a predominantly vertical magnetic field — with similar mean field strengths at wavelengths spanning from visible to infrared. Comparing the radiative output at various viewing angles of pixels of equal vertical magnetic field strength between the two simulations, we find that the small-scale dynamo simulations produce higher radiative output than those in the predominantly vertical field simulation. This implies that the radiative output of a small magnetic structure depends on the magnetic morphology of the environment in which it is embedded, which is currently not included in SSI models. We deduce the effect on inferred irradiance by comparing the disk-integrated irradiance of these two atmospheres with standard 1D model atmospheres used in SSI modeling.

  9. Small scale denitrification variability in riparian zones: Results from a high-resolution dataset

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Knöller, Kay; Musolff, Andreas; Popp, Felix; Lüders, Tillmann; Stumpp, Christine

    2017-04-01

    Riparian zones are important compartments at the interface between groundwater and surface water where biogeochemical processes like denitrification are often enhanced. Nitrate loads of either groundwater entering a stream through the riparian zone or streamwater infiltrating into the riparian zone can be substantially reduced. These processes are spatially and temporally highly variable, making it difficult to capture solute variabilities, estimate realistic turnover rates and thus to quantify integral mass removal. A crucial step towards a more detailed characterization is to monitor solutes on a scale which adequately resemble the highly heterogeneous distribution and on a scale where processes occur. We measured biogeochemical parameters in a spatial high resolution within a riparian corridor of a German lowland river system over the course of one year. Samples were taken from three newly developed high-resolution multi-level wells with a maximum vertical resolution of 5 cm and analyzed for major ions, DOC and N-O isotopes. Sediment derived during installation of the wells was analyzed for specific denitrifying enzymes. Results showed a distinct depth zonation of hydrochemistry within the shallow alluvial aquifer, with a 1 m thick zone just below the water table with lower nitrate concentrations and EC values similar to the nearby river. Conservative parameters were consistent inbetween the three wells, but nitrate was highly variable. In addition, spots with low nitrate concentrations showed isotopic and microbial evidence for higher denitrification activities. The depth zonation was observed throughout the year, with stronger temporal variations of nitrate concentrations just below the water table compared to deeper layers. Nitrate isotopes showed a clear seasonal trend of denitrification activities (high in summer, low in winter). Our dataset gives new insight into river-groundwater exchange processes and shows the highly heterogeneous distribution of

  10. Small-scale, spatially distributed water management practices: Implications for research in the hydrologic sciences

    NASA Astrophysics Data System (ADS)

    Potter, Kenneth W.

    2006-03-01

    Traditional water resources management in the United States relies heavily on the use of centralized facilities, such as regional wastewater treatment plants and flood control reservoirs. Increasing concern for human impacts on aquatic systems and diminished federal support for large water management projects are motivating the increased use of small-scale, widely distributed practices, such as treatment wetlands and infiltration practices. These practices, which exploit or enhance natural systems and processes, can be used alone or in conjunction with traditional practices to enhance performance and reduce environmental impacts. The use of smaller, more distributed water management practices challenges the hydrological science community to improve its capacity for assessing and predicting hydrologic conditions and to make this capacity accessible to water resource practitioners.

  11. Mercury Exposure Assessment and Spatial Distribution in A Ghanaian Small-Scale Gold Mining Community

    PubMed Central

    Rajaee, Mozhgon; Long, Rachel N.; Renne, Elisha P.; Basu, Niladri

    2015-01-01

    Mercury is utilized worldwide in artisanal and small-scale gold mining (ASGM) and may pose a risk for miners and mining communities. While a number of studies have characterized mercury in ASGM communities, most have focused on a single media and few have taken a holistic approach. Here, a multiple media exposure assessment and cross-sectional study of mercury was conducted in 2010 through 2012 in northeast Ghana with a small-scale gold mining community, Kejetia, a subsistence farming community, Gorogo, and an urban ASGM gold refinery in Bolgatanga. The objective was to assess mercury in a range of human (urine and hair) and ecological (household soil, sediment, fish, and ore) samples to increase understanding of mercury exposure pathways. All participants were interviewed on demographics, occupational and medical histories, and household characteristics. Participants included 90 women of childbearing age and 97 adults from Kejetia and 75 adults from Gorogo. Median total specific gravity-adjusted urinary, hair, and household soil mercury were significantly higher in Kejetia miners (5.18 µg/L, 0.967 µg/g, and 3.77 µg/g, respectively) than Kejetia non-miners (1.18 µg/L, 0.419 µg/g, and 2.00 µg/g, respectively) and Gorogo participants (0.154 µg/L, 0.181 µg/g, and 0.039 µg/g) in 2011. Sediment, fish, and ore Hg concentrations were below guideline values. Median soil mercury from the Bolgatanga refinery was very high (54.6 µg/g). Estimated mean mercury ingestion for Kejetia adults from soil and dust exceeded the U.S. Environmental Protection Agency reference dose (0.3 µg Hg/kg·day) for pica (0.409 µg Hg/kg·day) and geophagy (20.5 µg Hg/kg·day) scenarios. Most participants with elevated urinary and household soil mercury were miners, but some non-miners approached and exceeded guideline values, suggesting a health risk for non-mining residents living within these communities. PMID:26340636

  12. Mercury Exposure Assessment and Spatial Distribution in A Ghanaian Small-Scale Gold Mining Community.

    PubMed

    Rajaee, Mozhgon; Long, Rachel N; Renne, Elisha P; Basu, Niladri

    2015-09-01

    Mercury is utilized worldwide in artisanal and small-scale gold mining (ASGM) and may pose a risk for miners and mining communities. While a number of studies have characterized mercury in ASGM communities, most have focused on a single media and few have taken a holistic approach. Here, a multiple media exposure assessment and cross-sectional study of mercury was conducted in 2010 through 2012 in northeast Ghana with a small-scale gold mining community, Kejetia, a subsistence farming community, Gorogo, and an urban ASGM gold refinery in Bolgatanga. The objective was to assess mercury in a range of human (urine and hair) and ecological (household soil, sediment, fish, and ore) samples to increase understanding of mercury exposure pathways. All participants were interviewed on demographics, occupational and medical histories, and household characteristics. Participants included 90 women of childbearing age and 97 adults from Kejetia and 75 adults from Gorogo. Median total specific gravity-adjusted urinary, hair, and household soil mercury were significantly higher in Kejetia miners (5.18 µg/L, 0.967 µg/g, and 3.77 µg/g, respectively) than Kejetia non-miners (1.18 µg/L, 0.419 µg/g, and 2.00 µg/g, respectively) and Gorogo participants (0.154 µg/L, 0.181 µg/g, and 0.039 µg/g) in 2011. Sediment, fish, and ore Hg concentrations were below guideline values. Median soil mercury from the Bolgatanga refinery was very high (54.6 µg/g). Estimated mean mercury ingestion for Kejetia adults from soil and dust exceeded the U.S. Environmental Protection Agency reference dose (0.3 µg Hg/kg·day) for pica (0.409 µg Hg/kg·day) and geophagy (20.5 µg Hg/kg·day) scenarios. Most participants with elevated urinary and household soil mercury were miners, but some non-miners approached and exceeded guideline values, suggesting a health risk for non-mining residents living within these communities.

  13. Ensemble reconstruction of small-scale variability in Atlantic sea surface temperatures from 1870 - 2001

    NASA Astrophysics Data System (ADS)

    Karspeck, A. R.; Sain, S.; Kaplan, A.

    2008-12-01

    Existing historical records of sea surface temperature extending back to the mid 1800's are a valuable source of information for understanding climate variability at interannual and decadal time-scales. However, the temporal and spatial irregularity of these data make them difficult to use in scientific climate research, where gridded data fields are preferred for both direct analysis and forcing of numerical models of the atmosphere. Infilling methods based on constraining the leading eigenvectors of the global-scale covariance have proven very successful in creating gridded estimates of sea surface temperature. These methods are especially useful for infilling within the vast regions of unobserved ocean that characterize the earliest segments of the data record. Regional variability, on the other hand, is not well represented by these methods. This is especially true in data-poor regions. Here we present a method for augmenting the existing large-scale reconstruction methods with a statistical model of the regional scale variability. Using high quality sea surface temperature data from the last 25 years, including satellite-derived records, we specify a spatially non-stationary covariance model for the regional scale marine surface temperature variability. The use of a non-stationary, non-isotropic correlation function in the covariance model is a novel aspect in this work. With the covariance model estimated from the modern record, historical observations are used to condition posterior distributions on the regional scales back to the mid 1800's It is common in the geosciences for the expected value of the distribution to be offered as the data reconstruction. If uncertainty information is provided, it often takes the form of a point-wise estimate that neglects the covariability inherent in the full distribution. In contrast to this common practice, we generate multiple realizations from the full posterior distribution. These samples will be made available to

  14. Variability of macrobenthic assemblages under abnormal climatic conditions in a small scale tropical estuary

    NASA Astrophysics Data System (ADS)

    Lucero R., Carlos H.; Cantera K., Jaime R.; Romero, Isabel C.

    2006-06-01

    Macrobenthic assemblages associated with mangrove mud flats were studied at three stations in the Dagua River Estuary (Colombian coast, Tropical Eastern Pacific) to assess broad distribution patterns with relation to hydrographical and sediment conditions during the cold (La Niña) phase of the 1997-2000 El Niño/Niña Phenomenon (ENSO Niño/Niña). During the study period, abnormal water and interstitial temperature, high dissolved oxygen and low salinity conditions were present in the water column of the small scale (5.5 km long) estuary, reducing its extension and moving estuarine conditions downstream. Sediment samples were collected for sediment analysis (grain size, water content) and biological studies (specific composition, relative abundance, diversity, evenness and trophic structure) from quadrates (25 × 25 cm) located in the lower, middle and upper regions of the estuary. Macrobenthic assemblages at the upper estuary were composed of 78 species and dominated by Tanaidaceans, suggesting the direct effect of freshwater inflow, and by some polychaetes in the lower region, showing marine influence. Diversity and evenness increased along the salinity gradient from the upper region of the estuary towards the lower region. Surface deposit feeders (SDF, 72.2%) and sub-surface deposit feeders (SSDF, 21%) were dominant as trophic groups. SDF were the most abundant group in the upper estuary, SSDF dominated the lower estuary. These patterns were controlled by the abnormal conditions generated by the cold phase of ENSO (Niño/Niña) in water temperature, higher deposition of organic matter and low salinity that changed the estuarine's typical macrobenthic assemblage structure, with dominance of marine species to one characterized by few abundant freshwater species (Tanaidaceans, insects).

  15. Fungi at a small scale: spatial zonation of fungal assemblages around single trees.

    PubMed

    Branco, Sara; Bruns, Thomas D; Singleton, Ian

    2013-01-01

    Biological communities are often structured by environmental factors even at small spatial scales. Fungi are no exception, though the patterns and mechanisms underlying their community structure are usually unknown. Previous work documented zonation in fungi under tree canopies primarily through their fruiting patterns. Here we investigate the existence of zonation patterns in fungal communities around isolated Pinus muricata trees of different ages in northern coastal California. Using a combination of ingrowth bags and pyrosequencing to target underground mycelium we found highly diverse soil fungal communities associated with single trees. Both ectomycorrhizal and non-ectomycorrhizal fungi were present in all samples, but the latter were more species rich, dominated the samples by sequence read abundance, and showed partitioning by canopy-defined zones and tree age. Soil chemistry was correlated with fungal zonation, but host root density was not. Our results indicate different guilds of fungi partition space differently and are driven by distinct environmental parameters.

  16. Fungi at a Small Scale: Spatial Zonation of Fungal Assemblages around Single Trees

    PubMed Central

    Branco, Sara; Bruns, Thomas D.; Singleton, Ian

    2013-01-01

    Biological communities are often structured by environmental factors even at small spatial scales. Fungi are no exception, though the patterns and mechanisms underlying their community structure are usually unknown. Previous work documented zonation in fungi under tree canopies primarily through their fruiting patterns. Here we investigate the existence of zonation patterns in fungal communities around isolated Pinus muricata trees of different ages in northern coastal California. Using a combination of ingrowth bags and pyrosequencing to target underground mycelium we found highly diverse soil fungal communities associated with single trees. Both ectomycorrhizal and non-ectomycorrhizal fungi were present in all samples, but the latter were more species rich, dominated the samples by sequence read abundance, and showed partitioning by canopy-defined zones and tree age. Soil chemistry was correlated with fungal zonation, but host root density was not. Our results indicate different guilds of fungi partition space differently and are driven by distinct environmental parameters. PMID:24147130

  17. Small-scale variability in suspended matter associated with the Connecticut River plume front

    NASA Astrophysics Data System (ADS)

    Ackleson, Steven G.; O'Donnell, James

    2011-10-01

    We report high spatial resolution observations of optical proxies for suspended particles and dissolved matter measured at the boundary of the Connecticut River plume (CRP) in Long Island Sound (LIS) in April 2000 when river discharge was near the annual maximum. The magnitude of beam attenuation, cp, backscatter, bb, and absorption at short wavelengths indicated higher concentration of suspended particles and colored dissolved matter within the LIS relative to the adjacent CRP. The fractional backscatter from particles indicated relatively higher organic matter fraction within the LIS. An absorption feature centered at 429 nm (aPB), indicated the presence of pigmented heterotrophic bacteria unique to the LIS and the strongest signals were observed at locations closest to shore. The spectral slope of beam attenuation associated with particulate matter (γ) indicated the presence of relatively larger particle assemblages within the LIS. Strong linear relationships between γ and salinity were observed within the energetic CRP boundary region, within 30 m of the front location. Regression residuals indicated a shift to smaller particles and were greatest at the front and decreased with distance toward the plume interior with a length scale similar to previous reports of the kinetic energy dissipation rate. At the same time, the magnitude of cp and bb remained uniform. These results are consistent with the disruption of low fractal dimension particle assemblages due to enhanced turbulence and mixing. The residuals in γ were weakly correlated with salinity and aPB suggesting that aggregate disruption was primarily associated with entrained Long Island Sound water.

  18. Plasticity and acclimation to light reflected in temporal and spatial changes of small-scale macroalgal distribution in a stream.

    PubMed

    Ensminger, Ingo; Foerster, Julia; Hagen, Christoph; Braune, Wolfram

    2005-08-01

    The small-scale distribution pattern of macroalgae in the river Ilm, in Germany was monitored. These patterns were then related to abiotic factors and tested to discover whether the distribution of the common macroalgae, Cladophora glomerata (L.) Kütz. and Vaucheria sp., was linked to differences in their photosynthetic plasticity. Cladophora glomerata revealed higher maximum photosynthetic electron transport rates after acclimation to high light (HL) compared with low light (LL) acclimated samples. By contrast, Vaucheria sp. did not acclimate to different growth light conditions. The photosynthetic performance of both algae also varied according to diurnal conditions. High light caused a reversible decrease of the dark-adapted quantum yield (F(v)/F(m)) in C. glomerata and a concomitant reversible decrease of the light-adapted quantum yield (DeltaF/F'(m)). In Vaucheria sp., F(v)/F(m) remained mostly unchanged over the day, whereas DeltaF/F'(m) decreased during the morning at low light. Photosynthetic pigments confirmed acclimational differences between the species. HL C. glomerata showed increased chlorophyll a:chlorophyll b ratios, and higher amounts of xanthophyll-cycle pigments compared with LL samples, whereas Vaucheria sp. did not reveal differences between the light treatments. While preferences for substrate size, water velocity, and depth are similar for C. glomerata and Vaucheria sp., the physiological responses to light conditions are different. It is concluded that light conditions significantly affect the small-scale spatial distribution of macroalgae and that fitness is enhanced in species with a higher plasticity in photosynthetic acclimation in unstable environments.

  19. Active moss biomonitoring of small-scale spatial distribution of airborne major and trace elements in the Belgrade urban area.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Goryainova, Zoya; Frontasyeva, Marina; Tomašević, Milica; Popović, Aleksandar

    2013-08-01

    In urban environments, human exposure to air pollutants is expected to be significantly increased, especially near busy traffic streets, street canyons, tunnels, etc. where urban topography and microclimate may additionally cause poor air conditions giving rise to pollution hotspots. As a practical and cost-effective approach, active moss biomonitoring survey of some major and trace element air pollution was performed in the Belgrade street canyons and city tunnel in 2011 with the aim to evaluate possibility of using Sphagnum girgensohnii moss bags for investigation of the small-scale vertical and horizontal distribution patterns of the elements. In five street canyons, the moss bags were hung at heights of about 4, 8 and 16 m, during 10 weeks, and also, for the same time, the moss bags were exposed in the tunnel, in front of and out of it. After the exposure period, the concentrations of Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V and Zn in the moss were determined by inductively coupled plasma optical emission spectrometry. According to the results, in all street canyons, the vertical distribution patterns of the moss elements concentration (Al, Ba, Co, Cr, Cu, Ni, Pb, Sr, V and Zn) showed statistically significant decrease from the first to the third heights of bags exposure. In the tunnel experiment, from inner to out of the tunnel, for Al, Ba, Cd, Co, Cr, Cu, Fe, K and Zn, decreasing trend of concentrations was obtained. Significantly higher concentration of the elements was pronounced for the tunnel in comparison with the street canyons. The results indicate that the use of S. girgensohnii moss bags is a simple, sensitive and inexpensive way to monitor the small-scale inner city spatial distribution of airborne major and trace element content.

  20. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    NASA Astrophysics Data System (ADS)

    Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.

    2016-12-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.

  1. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    NASA Astrophysics Data System (ADS)

    Leinemann, Timo; Kalbitz, Karsten; Mikutta, Robert; Guggenberger, Georg

    2016-04-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Podzolic Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80% from 10 to 50 cm depth and by 40% from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. Together with juvenile DO14C up to 150 cm depth this can be an indication for the importance of preferential flow on carbon transport to subsoil.

  2. HF radar observations of small-scale surface current variability in the Straits of Florida

    NASA Astrophysics Data System (ADS)

    Parks, A. B.; Shay, L. K.; Johns, W. E.; Martinez-Pedraja, J.; Gurgel, K.-W.

    2009-08-01

    A dual-station high-frequency Wellen radar (WERA), transmitting at 16.045 MHz, was deployed along the eastern Florida Shelf and operated and maintained by the University of Miami's Rosenstiel School of Marine and Atmospheric Science. From September 2004 to June 2005, a moored acoustic Doppler current profiler (ADCP) acquired subsurface current measurements within the radar footprint along the shelf break at 86-m depth. The shallowest ADCP bin located at 14-m depth was used as a comparison for the WERA surface measurements. RMS differences ranged from 0.1 to 0.3 m s-1 between the surface and 14-m depth, with good agreement over most of the period. Regression analyses indicated slopes near unity in the north-south (v) component and ≈0.5 for the east-west (u) component velocities. When utilized in tandem with the ADCP subsurface measurements, WERA enables three-dimensional snapshots of coastal oceanographic features to be resolved. For example, from December 2004 through February 2005, three energetic circulation patterns were observed: (1) a subsurface stratified countercurrent, (2) a submesoscale coherent vortex, and (3) a mesoscale circulation feature, i.e., a propagating Tortugas gyre. These features represent the significant current variability along the western flank of the Florida Current that impacts the coastal ocean.

  3. Preschoolers' knowledge of their classroom environment: evidence from small-scale and life-size spatial tasks.

    PubMed

    Liben, L S; Moore, M L; Golbeck, S L

    1982-10-01

    Preschoolers (N = 20) and student teachers (N = 10) were asked to reconstruct the complete layout of their familiar classroom using a small-scale model as well as using life-size furniture in their actual classroom. Children were given the model task once within a testing room (standard model) and once within their normally arranged classroom (cued model). Subjects were also given an isolated-location task in which they were asked to show the location of individual pieces of furniture, 1 at a time. Adults performed virtually perfectly on all tasks. Children demonstrated more knowledge about their classroom when no scale reduction was necessary (i.e., performance was significantly better in the classroom than on the model) and when information about spatial arrangement was available (i.e., performance on the cued model surpassed performance on the standard model). Nevertheless, some children still performed inaccurately, even with these additional aids. Results from the isolated-location task demonstrated that, when possible children rely on relational information in determining locations. Implications for conclusions about children's spatial competence are discussed.

  4. Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat

    NASA Astrophysics Data System (ADS)

    Kan, Valery; Dalaudier, Francis; Sofieva, Viktoria

    In this work, we consider possibilities for studying the anisotropy of small-scale air density irregularities using satellite observations of bi-chromatic stellar scintillations during tangential occultations. Estimation of the anisotropy coefficient (the ratio of the characteristic horizontal to vertical scales) and other atmospheric parameters is based on the comparison of simulated/theoretical and experimental auto-spectra and coherency spectra of scintillation. Our analyses exploit a 3D model of the spectrum of atmospheric inhomogeneities, which consists of anisotropic and isotropic components. For the anisotropic component, a spectral model with variable anisotropy is used. Using stellar scintillations measurements by GOMOS (Global Ozone Monitoring by Occultation of Stars) fast photometers, estimates of the anisotropy coefficient are obtained for atmospheric irregularities with vertical scales of 8-55 m at altitudes of 43-30 km. It is shown that the anisotropy increases from about 10 to 50 with increasing vertical scales.

  5. Effect of microtopography and species composition on small-scale variability of CO2 fluxes in a subalpine grassland

    NASA Astrophysics Data System (ADS)

    Galvagno, Marta; Filippa, Gianluca; Cremonese, Edoardo; Morra di Cella, Umberto; Isabellon, Michel

    2015-04-01

    Grassland ecosystems cover around 30% of the Earth's land surface and consequently play an important role in the terrestrial carbon balance. Climate and land use changes have a significant effect on the sink/source strength of grasslands, especially in mountain regions. For these reasons the carbon cycle of high-altitude grasslands has recently received higher attention, however little is know on the within-ecosystem variability in CO2 fluxes. In fact, alpine and subalpine grasslands are often characterized by complex topography which generates differences in snowmelt dynamics at site level and related different microhabitats. The deriving patchy distribution of vegetation leads to the coexistence of different plant functional traits and developmental strategies within the same ecosystem. In this study we evaluated the effect of microtopography and associated vegetation types on the CO2 flux components of an unamanaged subalpine grassland located at 2160 m asl, by means of automated clear and opaque chambers. In order to disentangle the contribution of different growth forms to the whole ecosystem carbon sequestration we compare chambers with eddy covariance CO2 flux data. Results show that: i) different growth forms are associated with concave o convex shapes of the terrain and, in detail, grass species dominate in convex areas while forbs are especially found in concave ones ii) two distinct CO2 flux trajectories associated to these shapes can be distinguished in this ecosystem: graminoids show a later beginning of the carbon uptake period but higher CO2 net uptake (NEE), while forbs develop just after snowmelt but show lower NEE. The observed small-scale patterns of carbon sequestration may reflect the distinct vegetation type responses to snowmelt and different adaptations to resource use efficiency (light, temperature, nutrients) specific of their own microhabitat. Further investigations will be carried on to better evaluate the role of microhabitat

  6. Small-scale spatial heterogeneity as a source for uncertainty of methane fluxes in an extensive near-natural bog-ecosystem

    NASA Astrophysics Data System (ADS)

    Hommeltenberg, J.; Schmid, H. P. E.; Bechtold, M.; Tiemeyer, B.

    2015-12-01

    Natural and restored peatlands are often a strong source of the greenhouse gas methane (CH4). CH4 fluxes vary greatly between different peatland ecosystems, depending on temperature, water level and vegetation. In addition, peatlands often show high small-scale spatial heterogeneity that strongly influences the magnitude of CH4 production. This heterogeneity potentially induce a sensor location bias and leads to additional uncertainties due to the flux footprint variability over heterogeneous terrain. To account for such uncertainty, we installed two eddy covariance towers 26 m apart (height: 6 m) to measure the CH4 flux, together with latent heat and CO2 fluxes at the bog ecosystem "Schechenfilz" in southern Germany. The study site is a large near-natural bog (111 ha) with heterogeneity that is characterized by patches of bog-pine forest, sedge meadows, peat mosses and open water areas. Ongoing CH4 measurements on one of the towers began in July 2012, and both towers were operated with a LI-7700 to measure the CH4 flux simultaneously from autumn 2014 to early spring 2015. In a second campaign, from mid-October to mid-November 2014, both instruments were operated at the same tower for comparison. Throughout the investigation, 17 water level gauges were used to measure the temporal variability of the water level in the mean footprint area. The water level was interpolated based on a high-resolution digital terrain model, which also allows us to account for the impact of the spatial variability of the water table. A vegetation map focused on the distribution of plants with aerenchymous tissues was used to determine the influence of the vegetation composition on the CH4 exchange. In this study, we estimated the uncertainty of CH4 fluxes induced by the instrument system and the flux footprint variability. The footprint analyses together with the water table measurements and vegetation map were also used to analyze the impact of small-scale spatial heterogeneity on the

  7. Modelling Pesticide Leaching At Column, Field and Catchment Scales Ii. Influence of Soil Variability On Small Scale Transfer Properties

    NASA Astrophysics Data System (ADS)

    Roulier, S.; Jarvis, N.

    The aim of this study was to investigate the differences in small scale transfer prop- erties in relation to variability of soil characteristics in a small undulating agricultural catchment (Vemmenhög, 9 km2), where texture and organic C content are strongly related to landscape position (see Gärdenäs et al., this session). Undisturbed soil col- umn samples (20 cm diameter, 20 cm height) were taken at two locations (4 columns at each location): on a hilltop (high clay content), and in a hollow (high C content). Transient leaching experiments for a tracer and a herbicide (MCPA) were carried out in two steps. After a first application of solute and pesticide the columns were ex- posed to natural rainfall. After one pore volume of drainage had flowed through the columns, they were transferred indoors. A second dose of tracer and pesticide was applied, and the columns were irrigated with half a pore volume of natural rainwa- ter. The breakthrough curves obtained for the hilltop columns showed strong evidence of macroporous flow. The flux concentrations and the resident concentration at the end of the experiment measured for the hollow columns suggested that the loss of pesticide from those columns is little. The MACRO model and the inverse modelling package SUFI were used to estimate the small scale parameters for water transfer, so- lute transport, and pesticide. Good agreement was obtained between model and data. Macroporous flow and diffusive transport through hilltop columns was highlighted by the high calibrated values of the effective diffusion pathlength and the dispersivity. As a consequence of the significant organic C content in the hollows, the value of the degradation rate coefficient for hollow columns was important. In both hilltop and hollow columns, the variation of the degradation rate coefficient between the first and the second application of MCPA showed the ability of the micro-organisms to adapt to the pesticide.

  8. Small-scale spatial variation in near-surface turbidites around the JFAST site near the Japan Trench

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shuro; Kanamatsu, Toshiya; Kasaya, Takafumi

    2016-03-01

    This paper aims to improve our understanding of the depositional processes associated with turbidites related to recent earthquake events. A series of short sediment cores (ca. 20-30 cm long) were recovered from the landward slope of the Japan Trench around JFAST (Japan Trench Fast Drilling Project) site C0019 by a remotely operated vehicle, KAIKO 7000 II, and the sample sites were accurately located using an LBL (long base line) acoustic navigation system. The properties of the cores were analyzed using visual observations, soft X-ray radiographs, smear slides, measurement of anisotropy of magnetic susceptibility, and analysis of radioactive elements (134Cs, 137Cs, and excess 210Pb). For the first time, small-scale (ca. 200-1000 m) spatial variations in recent earthquake-triggered deep-sea turbidites, the formation of which was probably linked to the 2011 Tohoku-oki earthquake, are described. We also examine the submarine landslide that probably generated the sediment unit below the turbidites, which is thought to be an important process in the study area. The spatial distribution and characteristics of the near-surface seismoturbidite obtained immediately after the earthquake, presented here, will enable precise calibration of offshore evidence of recent earthquakes, and thus facilitate the use of the sedimentary archive for paleoseismic interpretations. Furthermore, although sampling for turbidite seismology on steep slopes has not been widely performed previously, our results suggest that the recent event deposits may be continuously tracked from the slope to the basin using a combination of the present sampling method and conventional large-scale investigation techniques.

  9. Assessment of small-scale variability of rainfall and multisatellite precipitation estimates using a meso-rain gauge network measurements from southern peninsular India

    NASA Astrophysics Data System (ADS)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2015-10-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00-02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30

  10. Drivers of small scale variability in soil-atmosphere fluxes of CH4, N2O and CO2 in a forest soil

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Nicolai, Clara; Wheeler, Denis; Lang, Friedeike; Paulus, Sinikka

    2016-04-01

    Soil-atmosphere fluxes of CH4, N2O and CO2 can vary on different spatial scales, on large scales between ecosystems but also within apparently homogenous sites. While CO2 and CH4 consumption is rather evenly distibuted in well aerated soils, the production of N2O and CH4 seems to occur at hot spots that can be associated with anoxic or suboxic conditions. Small-scale variability in soil properties is well-known from field soil assesment, affecting also soil aeration and thus theoretically, greenhouse gas fluxes. In many cases different plant species are associated with different soil conditions and vegetation mapping should therefor combined with soil mapping. Our research objective was explaining the small scale variability of greenhouse gas fluxes in an apparently homogeneous 50 years old Scots Pine stand in a former riparian flood plain.We combined greenhouse gas measurements and soil physical lab measurments with field soil assessment and vegetation mapping. Measurements were conducted with at 60 points at a plot of 30 X 30 m at the Hartheim monitoring site (SW Germany). For greenhouse gas measurements a non-steady state chamber system and laser analyser, and a photoacoustic analyser were used. Our study shows that the well aerated site was a substantial sink for atmospheric CH4 (-2.4 nmol/m² s) and also a for N2O (-0.4 nmol/m² s), but less pronounced, whereas CO2 production was a magnitude larger (2.6 μmol/m² s). The spatial variability of the CH4 consumption of the soils could be explained by the variability of the soil gas diffusivity (measured in situ + using soil cores). Deviations of this clear trend were only observed at points where decomposing woody debris was directly under the litter layer. Soil texture ranged from gravel, coarse sand, fine sand to pure silt, with coarser texture having higher soil gas diffusivity. Changes in texture were rather abrupt at some positions or gradual at other positions, and were well reflected in the vegetation

  11. The Effect of Variable Geochemical Conditions on the Reactive Transport of U(VI) in Small Scale Tracer Tests

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.; Fox, P.; Kohler, M.; Davis, J. A.

    2005-12-01

    Small-scale tracer tests were conducted to evaluate the effect of variable geochemical conditions on the reactive transport of U(VI). The tracer tests were conducted in a shallow alluvial aquifer downgradient from a former uranium mill and a tailings disposal area near Naturita, CO. The U(VI) concentration in the groundwater at the tracer test site was approximately 5 μM, the alkalinity was 8.5 meq/L and the pH was approximately 7.1. Previous studies at the site demonstrated the U(VI) was most sensitive to the alkalinity and least sensitive to the pH values relative to the range of measured values. Uranium migration tests were conducted on a scale of 1-2.5 m and considered variable U(VI) and alkalinity and included Br as an inert tracer. The tracer tests demonstrated that the sediment readily released U(VI) even after many years of contact with the contaminated groundwater suggesting the U(VI) migration is controlled by adsorption reactions. Reactive transport simulations used a surface complexation model developed independently from laboratory bench scale studies to simulate adsorption. The reactive transport simulations gave good predictions of the observed breakthrough of U(VI) when the advection and dispersion parameters were fitted to Br breakthrough. Field studies also included several single well push-pull tests that were conducted at increased and decreased U(VI) and alkalinity values. Reactive transport simulations of these experiments will be presented and compared with the tracer tests simulations.

  12. Small-scale spatial pattern of web-building spiders (Araneae) in alfalfa: relationship to disturbance from cutting, prey availability, and intraguild interactions.

    PubMed

    Birkhofer, Klaus; Scheu, Stefan; Wise, David H

    2007-08-01

    Understanding the development of spatial patterns in generalist predators will improve our ability to incorporate them into biological control programs. We studied the small-scale spatial patterns of spider webs in alfalfa by analyzing the relationship between web locations over distances ranging from 4 to 66 cm. Using a coordinate-based spatial statistic (O-ring) and assuming a heterogeneous distribution of suitable web sites, we analyzed the impact of cutting and changes in spider abundance on web distribution. We analyzed the influence of small-scale variation in prey availability by comparing web distributions to the pattern of sticky-trap captures of Aphididae and Diptera described by a count-based spatial statistic (SADIE). Cutting of alfalfa reduced the overall density of web-building spiders but had no immediate impact on the spatial distribution of their webs. Availability of aphids was highest before the alfalfa was cut and was clumped at a scale of 66 cm. Spider webs, however, were not clumped at any scale or date. In contrast, webs were regularly distributed at smaller distances (<20 cm) immediately before and after cutting. Because cursorial and web-building spiders were most active during this period, we hypothesize that the development of small-scale regularity in web locations was driven by intraguild interactions. Our results suggest that intraguild interactions contribute to the development of small-scale spatial patterns of spider webs in alfalfa. Variation in prey availability may have more of an influence on web distribution in crops with a different vegetation structure or if patterns are studied at larger spatial scales.

  13. Small-scale variability of chlorophyll, CDOM, and suspended matter in the Lake Balaton as obtained by shipborne UV fluorescent lidar

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Palmer, Stephanie; Khymchenko, Lisa

    2015-04-01

    Despite a long history in oceanography, few attempts have been made to use fluorescent lidars to evaluate water quality in lakes. We report lidar measurements taken on the Lake Balaton over the period of five days in August, 2012. Lake Balaton, the largest lake in Central Europe in area (597 km2), is very shallow (average depth of 3.5m). The lake is mesotrophic exhibiting a strong trophic gradient from SW to NE. The UV fluorescent lidar UFL-9 used in this study was developed at the Shirshov Institute of Oceanology. It can be used for CDOM, organic pollutants, chlorophyll, and suspended matter concentrations measurements at very high spatial resolution (up to ~1 m). The data were collected continuously during daytime while the boat was travelling. The entire area of the lake was covered by the measurement. The lidar data were calibrated against those obtained in situ through water sampling and then converted from the optical units into the mass concentrations of the above mentioned constituents. Based on this data set, we mapped and investigated in detail the small-scale spatial variability of CDOM, chlorophyll-a, and suspended matter concentrations. In particular, the characteristics of patchiness for the selected parameters were quantified and inter-compared, and their relations with the background forcing conditions were analyzed. We also discuss the applicability of lidar techniques for assessing the hydrological and ecological conditions in shallow inland water bodies. The study was partly supported by the Russian Science Foundation, Grant 14-50-00095.

  14. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India

    NASA Astrophysics Data System (ADS)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2016-05-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain events (both in space and time) over a complex hilly terrain in Southeast India. Three years of high-resolution gauge measurements are used to validate 3-hourly rainfall and sub-daily variations of four widely used multi-satellite precipitation estimates (MPEs). The network, established as part of the Megha-Tropiques validation program, consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of 6-12 km. Morphological features of rainfall in two principal rainy seasons (southwest monsoon, SWM, and northeast monsoon, NEM) show marked differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale/long-lived systems (during wet spells), whereas the contribution from small-scale/short-lived systems is considerable during the SWM. Rain events with longer duration and copious rainfall are seen mostly in the western quadrants (a quadrant is 1/4 of the study region) in the SWM and northern quadrants in the NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits large spatial and seasonal variability with larger diurnal amplitudes at all the gauge locations (except for 1) during the SWM and smaller and insignificant diurnal amplitudes at many gauge locations during the NEM. On average, the diurnal amplitudes are a factor of 2 larger in the SWM than in the NEM. The 24 h harmonic explains about 70 % of total variance in the SWM and only ˜ 30 % in the NEM. During the SWM, the rainfall peak is observed between 20:00 and 02:00 IST (Indian Standard Time) and is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the

  15. Fundamental mismatches between measurements and models in aeolian sediment transport prediction: The role of small-scale variability

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.

    2014-12-01

    Predicting aeolian sediment transport is a long-standing and difficult challenge that is important to a variety of scientific disciplines, including geology, geomorphology, agriculture, meteorology, and climatology. Here, we argue that improvements in predictions of aeolian sediment transport are limited by incompatibilities between empirical measurements and mathematical models. We focus on the spatial and temporal variability in transport. Measurements indicate considerable variability on small time (second) and length (meter) scales, yet models are almost ubiquitously based on assumptions of time and space-invariant transport. Mismatches between measurements and models limit summative predictive capacity by reducing the ability to use measured data to test and drive models. We suggest: (i) revising model conceptualizations and evaluating the representativeness of steady state saltation to constrain the realism of existing models, (ii) improving and optimizing measurement technology to produce more reliable and accurate measurements, (iii) explicitly specifying the scale of measurements, and (iv) designing variable matching tests between models and measurements to work around measurement limitations. Continuing with the status quo, where measurements and models are dealt with separately, is likely to erode summative predictive capacity.

  16. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  17. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an

  18. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  19. Small-scale variability in geomorphological settings influences mangrove-derived organic matter export in a tropical bay

    NASA Astrophysics Data System (ADS)

    Signa, Geraldina; Mazzola, Antonio; Kairo, James; Vizzini, Salvatrice

    2017-02-01

    Organic matter (OM) exchanges between adjacent habitats affect the dynamics and functioning of coastal systems, as well as the role of the different primary producers as energy and nutrient sources in food webs. Elemental (C, N, C : N) and isotope (δ13C) signatures and fatty acid (FA) profiles were used to assess the influence of geomorphological setting in two climatic seasons on the export and fate of mangrove OM across a tidally influenced tropical area, Gazi Bay (Kenya). The main results indicate that tidal transport, along with riverine runoff, plays a significant role in the distribution of mangrove organic matter. In particular, a marked spatial variability in the export of organic matter from mangroves to adjacent habitats was due to the different settings of the creeks flowing into the bay. Kinondo Creek acted as a mangrove retention site, where export of mangrove material was limited to the contiguous intertidal area, while Kidogoweni Creek acted as a flow-through system, from which mangrove material spreads into the bay, especially in the rainy season. This pattern was evident from the isotopic signature of primary producers, which were more 13C-depleted in the Kinondo Creek and nearby, due to the lower dilution of the dissolved inorganic carbon (DIC) pool, typically depleted as an effect of intense mangrove mineralisation. Despite the trapping efficiency of the seagrass canopy, suspended particulate OM showed the important contribution of mangroves across the whole bay, up to the coral reef, as an effect of the strong ebb tide. Overall, mixing model outcomes indicated a widespread mixed contribution of both allochthonous and autochthonous OM sources across Gazi Bay. Moreover, FAs indicated a notable contribution of brown macroalgae and bacteria in both sediment and suspended pools. These results suggest that ecological connectivity in Gazi Bay is strongly influenced by geomorphological setting, which may have far-reaching consequences for the

  20. Spatial and Temporal Variability of Grain Size and Small-Scale Morphology

    DTIC Science & Technology

    2007-01-01

    been moved into deeper water, just below the low tide water line. This is consistent with the typical scenario where sediment is moved offshore when...4 DETAILS Operation Mode 1) land-based operator communicates via a bright-green underwater umbilical with the crawler controlling movements...tethered umbilical operations are limited to 300m f. Umbilical cable has the tendency to get entangled with the crawler’s tracks. Floatation was used

  1. Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world

    PubMed Central

    Leyk, Stefan; Binder, Claudia R; Nuckols, John R

    2009-01-01

    Background Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Results Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. Conclusion This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and

  2. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China.

    PubMed

    Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei

    2013-10-01

    Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation

  3. Small-scale spatial heterogeneity in Pennsylvanian-age vegetation from the roof shale of the Springfield coal (Illinois Basin)

    SciTech Connect

    DiMichele, W.A. ); Nelson, W.J. )

    1989-06-01

    An underground mine in southern Illinois exposes the spatial composition of the final forest of the Springfield (No. 5) Coal swamp. The area studied is within 600 m of the Galatia channel, contemporaneous deposits that mark the course of a river that periodically flooded the surface of the adjacent peat-forming forest. A nearly pure stand of Sigillaria mamillaris is flanked on the south, the side farthest from the channel, by a pteridosperm-calamite vegetation from which Sigillaria is absent. The ecotonal contact of these two assemblages may be as narrow as 2 m wide. On the north end, the side closest to the channel, the Sigillaria stand grades over a 40 m wide ecotone into a mixed lycopod-calamite vegetation with minor pteridosperms. Tree ferns and ground cover are nearly absent from all assemblages. This exposure provides a rare look at the short-term spatial heterogeneity of a Pennsylvanian-age peat-forming forest, and reveals an unexpected degree of patchiness, which is not demonstrable from most outcrop or coal-ball exposures.

  4. Contribution of Small-Scale Correlated Fluctuations of Microstructural Properties of a Spatially Extended Geophysical Target Under the Assessment of Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Yurchak, Boris S.

    2010-01-01

    The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter from spatially extended geophysical targets (SEGT). We consider the microstructure irregularities of a SEGT as the essential factor that affect radar backscatter. To evaluate their contribution this study uses the "slice" approach: particles close to the front of incident radar wave are considered to reflect incident electromagnetic wave coherently. The radar equation for a SEGT is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice's reflectivity. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration. The slice approach applied allows parameterizing the features of the SEGT's inhomogeneities.

  5. Small-scale spatial variation in the elemental composition of otoliths of Stegastes nigricans (Pomacentridae) in French Polynesia

    NASA Astrophysics Data System (ADS)

    Lo-Yat, Alain; Meekan, Mark; Munksgaard, Niels; Parry, David; Planes, Serge; Wolter, Marten; Carleton, John

    2005-12-01

    Solution-based inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine if Stegastes nigricans collected from 15 sites in French Polynesia could be distinguished by the trace element composition of their otoliths. A total of 293 adults were collected by spearing and their otoliths were analysed. We found that elemental signatures differed significantly among sites within and between the islands of Tahiti and Moorea ( p<0.001), primarily due to variation in concentrations of the elements Ba, Ca, Li, Mg, Mn, Na, Sr and Y. The otoliths of fish collected within Papeete Harbour in Tahiti had distinctive elemental signatures characterised by relatively high concentrations of Mn. Otoliths of these fish could be distinguished from others that were collected only a small distance (200 m) from the harbour. This is the first time that differences in chemical composition of otoliths have been reported at such small spatial scales and this trait may prove useful for the studies of connectivity of populations at within reef scales.

  6. Coincidence of Small-scale Spatial Discontinuities in Leaf Morphology and Nuclear Microsatellite Variation of Quercus petraea and Q. robur in a Mixed Forest

    PubMed Central

    Gugerli, F.; Walser, J.-C.; Dounavi, K.; Holderegger, R.; Finkeldey, R.

    2007-01-01

    Background and Aims The taxon complex comprising Quercus petraea and Q. robur shows distinct morphologies and ecological preferences, but mostly low differentiation in various types of molecular markers at a broad spatial range. Local, spatially explicit analyses may reveal patterns induced by microevolutionary processes operating mainly over short distances. However, no attempts have been made to date to explore the potential of spatial analyses combining morphological and genetic data of these oaks. Methods A mixed oak stand was studied to elucidate the small-scale population genetic structure. All adult individuals were classified and putative hybrids were identified using multivariate discrimination analysis of leaf morphological characters. Likewise, all trees were genotyped with five nuclear microsatellites, and a Bayesian assignment method was applied based on maximum likelihood of multilocus genotypes for taxon and putative hybrid classification. Key Results Multivariate analyses of leaf morphological data recognized two groups with few individuals as putative hybrids. These groups were significantly differentiated at the five microsatellites, and genetic taxon assignment coincided well with morphological classification. Furthermore, most putative hybrids were assigned to the taxon found in their spatial neighbourhood. When grouping trees into clusters according to their spatial positions, these clusters were clearly dominated by one taxon. Discontinuities in morphological and genetic distance matrices among these clusters showed high congruence. Conclusions The spatial–genetic analyses and the available literature led to the assumption that reproductive barriers, assortative mating, limited seed dispersal and microsite-induced selection in favour of the locally adapted taxon at the juvenile stage may reinforce taxon-specific spatial aggregation that fosters species separation. Thus, the results tend to support the hypothesis that Q. petraea and Q. robur

  7. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  8. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  9. Investigating the Small-Scale Spatial Variabilty of Precipitable Water Vapor by Adding Single-Frequency Receivers into an Existing Dual-Frequency Receiver Network

    NASA Astrophysics Data System (ADS)

    Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-04-01

    Exploiting GNSS signal delays is one possibility to obtain Precipitable Water Vapor (PWV) estimates in the atmosphere. The technique is well known since the early 1990s and by now an established method in the meteorological community. The data is crucial for weather forecasting and its assimilation into numerical weather forecasting models is a topic of ongoing research. However, the spatial resolution of ground based GNSS receivers is usually low, in the order of tens of kilometres. Since severe weather events such as convective storms can be concentrated in spatial extent, existing GNSS networks are often not sufficient to retrieve small scale PWV fluctuations and need to be densified. For economic reasons, the use of low-cost single-frequency receivers is a promising solution. In this study, we will deploy a network of single-frequency receivers to densify an existing dual-frequency network in order to investigate the spatial and temporal PWV variations. We demonstrate a test network consisting of four single-frequency receivers in the Rotterdam area (Netherlands). In order to eliminate the delay caused by the ionosphere, the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) is applied, using a surrounding dual-frequency network distributed over a radius of approximately 25 km. With the synthesized L2 frequency, the tropospheric delays are estimated using the Precise Point Positioning (PPP) strategy and International GNSS Service (IGS) final orbits. The PWV time series are validated by a comparison of a collocated single-frequency and a dual-frequency receiver. The time series themselves form the basis for potential further studies like data assimilation into numerical weather models and GNSS tomography to study the impact of the increased spatial resolution on local heavy rain forecast.

  10. Spatial Variability of VOCl Fluxes From Forest Soil

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Black, A. T.; Fulton, T.; Molodovskaya, M. S.; Nesic, Z.; Pickering, L.; Pilz, J.; Oberg, G.

    2011-12-01

    Naturally formed volatile chlorinated organic compounds (VOCl) are involved in various atmospheric processes such as ozone depletion. These compounds are present in several environmental compartments and some of them are of ecotoxicological concern. Over the past few years, a small but growing literature has focused on the emission of VOCls from terrestrial environments and there are indications that the emissions vary between ecosystems and that spatial and temporal patterns exist. Due to methodological challenges, the studies have hitherto been based on rather few measurements; subsequently estimates of both the magnitude and the variability of the fluxes are quite uncertain. To enable collection of larger sample sets, which would allow reliable surveying of spatial variability, we developed a portable chamber system. The system consists of a non-steady-state chamber (area 0.20 m2, volume 56.9L), a close-looped air-circulation unit with a diaphragm pump, and a VOCl sampling unit with carbon-based adsorbent tubes for later analysis in the laboratory by gas chromatography (GC7890, Agilent Technologies, USA) with micro-ECD detection (Agilent Technologies, USA), a thermal desorption system (TDSA2, Gerstel Inc., USA) and cryocooled inlet system (CIS4, Gerstel Inc., USA). We are using the portable system to investigate the spatial variability of chloroform fluxes at different scales and at various forested sites in south-west British Columbia, Canada. Our pilot observations strongly indicate that the flux from adjacent chambers (0.5-2 m between locations), may vary ten times or more, and that small-scale variability often overrides any larger scale patterns, or differences between sites. In addition, 'hot' and 'cold' measurement locations were not consistent spatially, indicating non-consistent spatial patterns in time. The study highlights that we need to better understand small-scale spatial heterogeneity of VOCl fluxes to interpret larger scale temporal and spatial

  11. Multifractal assessment of the hydrological impacts of the small scale rainfall variability in an urban catchment: X-band vs. C-band radar data

    NASA Astrophysics Data System (ADS)

    da Silva Rocha Paz, Igor; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Rainfall is a very complex process that can be hardly represented with the help of a system of deterministic equations. However, it does possess non-trivial symmetries that have been more and more used to define stochastic processes modelling rainfall with the help of a few parameters that are physically meaningful. This parsimonious representation is of the upmost importance for many applications, in particular to assess the small-scale rainfall variability and its hydrological impacts. We follow this approach to assess the interest of high-resolution rainfall measurements for a better modelling of urban and peri-urban catchments' responses. More precisely, we investigate this question with the help of multifractals applied to two types of rainfall data: C-band radar data provided by Météo-France at a resolution of 1 km in space and 5 min in time and data from a newly installed X-band radar operated by Ecole des Ponts ParisTech and providing data with a resolution of 125 m in space and 3.4 min in time. A multifractal analysis of the X-band data defines the parameter values of the multiplicative cascade to be used to downscale the C-band radar data down to the X-band data resolution. This multifractal downscaling is then used to generate an ensemble of high-resolution rainfalls whose multifractal consistency is carefully checked. They are thereafter input into a validated hydrological model to obtain a large ensemble of hydrographs (e.g. a hundred of them), whose consistency with the responses to the X-band data is again carefully checked, as well as with empirical hydrological data. The variability observed within the simulated ensemble corresponds to the hydrological impact of the small-scale rainfall variability that is not measured by the C-band radar. These impacts are characterised with the help of classical statistics and multifractal analysis. We show that the fully distributed hydrological models and their multifractal analysis tend to give more insights

  12. Recurrent patterning in the daily foraging routes of hamadryas baboons (Papio hamadryas): spatial memory in large-scale versus small-scale space.

    PubMed

    Schreier, Amy L; Grove, Matt

    2014-05-01

    The benefits of spatial memory for foraging animals can be assessed on two distinct spatial scales: small-scale space (travel within patches) and large-scale space (travel between patches). While the patches themselves may be distributed at low density, within patches resources are likely densely distributed. We propose, therefore, that spatial memory for recalling the particular locations of previously visited feeding sites will be more advantageous during between-patch movement, where it may reduce the distances traveled by animals that possess this ability compared to those that must rely on random search. We address this hypothesis by employing descriptive statistics and spectral analyses to characterize the daily foraging routes of a band of wild hamadryas baboons in Filoha, Ethiopia. The baboons slept on two main cliffs--the Filoha cliff and the Wasaro cliff--and daily travel began and ended on a cliff; thus four daily travel routes exist: Filoha-Filoha, Filoha-Wasaro, Wasaro-Wasaro, Wasaro-Filoha. We use newly developed partial sum methods and distribution-fitting analyses to distinguish periods of area-restricted search from more extensive movements. The results indicate a single peak in travel activity in the Filoha-Filoha and Wasaro-Filoha routes, three peaks of travel activity in the Filoha-Wasaro routes, and two peaks in the Wasaro-Wasaro routes; and are consistent with on-the-ground observations of foraging and ranging behavior of the baboons. In each of the four daily travel routes the "tipping points" identified by the partial sum analyses indicate transitions between travel in small- versus large-scale space. The correspondence between the quantitative analyses and the field observations suggest great utility for using these types of analyses to examine primate travel patterns and especially in distinguishing between movement in small versus large-scale space. Only the distribution-fitting analyses are inconsistent with the field observations, which

  13. Identification of temporal and small-scale spatial variations of phosphate concentration in the near-shore groundwater of an oligotrophic lake

    NASA Astrophysics Data System (ADS)

    Pöschke, Franziska; Schlichting, Hendrik; Lewandowski, Jörg

    2016-04-01

    Lake Stechlin is one of the last oligotrophic lakes in the German North-Eastern Lake District. In recent years there was some worry over a small but continuous increase of phosphate concentrations in the open water body. The reasons remain unclear. Since the lake obtains its water only from groundwater and precipitation there is the assumption that the former can be a significant source of phosphate inputs into the lake. In the present study, three different groundwater sampling settings on different scales in time and space were used to investigate the phosphate concentration in the near-shore groundwater. A multi-level sampling grid of twelve samplers and 60 sampling ports was installed to study the temporal small-scale fluctuations of P concentration in the groundwater and the interstitial water. Furthermore, a one-time sampling campaign of shallow near-shore groundwater was conducted every 500 m along the lake shore. Additionally, nests of permanent groundwater wells were sampled monthly for one year to identify concentration patterns in the deeper aquifer. The results indicate a large spatial and small temporal heterogeneity of P concentrations. The range of P concentration is < 0.01 mg/l up to 0.2 mg/l. There was no significant increase of P concentrations downstream of the small near-shore village Neuglobsow. Since the groundwater catchment belongs since 1938 to a natural protected area other anthropogenic impacts are quite unlikely. Hence, the main source for phosphate is probably the decomposition of naturally present organic material under anaerobic and warm conditions.

  14. Small-scale spatial variation in population- and individual-level reproductive parameters of the blue-legged hermit crab Clibanarius tricolor.

    PubMed

    Baeza, J Antonio; Behringer, Donald C

    2017-01-01

    Management of the few regulated ornamental fisheries relies on inadequate information about the life history of the target species. Herein, we investigated the reproductive biology of the most heavily traded marine invertebrate in the western Atlantic; the blue-legged hermit crab Clibanarius tricolor. We report on density, individual-level, and population-level reproductive parameters in 14 populations spanning the Florida Keys. In C. tricolor, abundance, population-level, and individual-level reproductive parameters exhibited substantial small-scale spatial variation in the Florida Keys. For instance, the proportion of brooding females varied between 10-94% across localities. In females, average (±SD) fecundity varied between 184 (±54) and 614 (±301) embryos crab-1 across populations. Fecundity usually increases with female body size in hermit crabs. However, we found no effect of female body size on fecundity in three of the populations. Altogether, our observations suggest that C. tricolor may fit a source-sink metapopulation dynamic in the Florida Keys with low reproductive intensity and absence of a parental body size-fecundity relationship resulting in net reproductive loses at some localities. We argue in favor of additional studies describing population dynamics and other aspects of the natural history of C. tricolor (e.g., development type, larval duration) to reveal 'source' populations, capable of exporting larvae to nearby populations. Our observations imply that future studies aimed at assessing standing stocks or describing other aspects of the life history of this hermit crab need to focus on multiple localities simultaneously. This and future studies on the reproductive biology of this species will form the baseline for models aimed at assessing the stock condition and sustainability of this heavily harvested crustacean.

  15. Small-scale spatial variation in population- and individual-level reproductive parameters of the blue-legged hermit crab Clibanarius tricolor

    PubMed Central

    Behringer, Donald C.

    2017-01-01

    Management of the few regulated ornamental fisheries relies on inadequate information about the life history of the target species. Herein, we investigated the reproductive biology of the most heavily traded marine invertebrate in the western Atlantic; the blue-legged hermit crab Clibanarius tricolor. We report on density, individual-level, and population-level reproductive parameters in 14 populations spanning the Florida Keys. In C. tricolor, abundance, population-level, and individual-level reproductive parameters exhibited substantial small-scale spatial variation in the Florida Keys. For instance, the proportion of brooding females varied between 10–94% across localities. In females, average (±SD) fecundity varied between 184 (±54) and 614 (±301) embryos crab-1 across populations. Fecundity usually increases with female body size in hermit crabs. However, we found no effect of female body size on fecundity in three of the populations. Altogether, our observations suggest that C. tricolor may fit a source-sink metapopulation dynamic in the Florida Keys with low reproductive intensity and absence of a parental body size—fecundity relationship resulting in net reproductive loses at some localities. We argue in favor of additional studies describing population dynamics and other aspects of the natural history of C. tricolor (e.g., development type, larval duration) to reveal ‘source’ populations, capable of exporting larvae to nearby populations. Our observations imply that future studies aimed at assessing standing stocks or describing other aspects of the life history of this hermit crab need to focus on multiple localities simultaneously. This and future studies on the reproductive biology of this species will form the baseline for models aimed at assessing the stock condition and sustainability of this heavily harvested crustacean. PMID:28229028

  16. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  17. Small scale sanitation technologies.

    PubMed

    Green, W; Ho, G

    2005-01-01

    Small scale systems can improve the sustainability of sanitation systems as they more easily close the water and nutrient loops. They also provide alternate solutions to centrally managed large scale infrastructures. Appropriate sanitation provision can improve the lives of people with inadequate sanitation through health benefits, reuse products as well as reduce ecological impacts. In the literature there seems to be no compilation of a wide range of available onsite sanitation systems around the world that encompasses black and greywater treatment plus stand-alone dry and urine separation toilet systems. Seventy technologies have been identified and classified according to the different waste source streams. Sub-classification based on major treatment methods included aerobic digestion, composting and vermicomposting, anaerobic digestion, sand/soil/peat filtration and constructed wetlands. Potential users or suppliers of sanitation systems can choose from wide range of technologies available and examine the different treatment principles used in the technologies. Sanitation systems need to be selected according to the local social, economic and environmental conditions and should aim to be sustainable.

  18. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With

  19. Small-scale variability of zooplankton pyruvate kinase activity in the Gironde Estuary plume (Atlantic French Coast): A case study under unusually low freshwater discharge

    NASA Astrophysics Data System (ADS)

    Bergeron, Jean-Pierre

    2006-09-01

    Pyruvate kinase (PK) activity measurements are used to assess the role of carbohydrates in global feeding of mesozooplankton communities inhabiting an estuary plume. As a consequence of a remarkably low freshwater discharge rate, the sea surface layers of the area under estuarine influence showed a very moderate salinity fall and a nearly total depletion in nitrates, whereas higher levels of these nutrients were found in deeper, more saline, layers. Small-scale PK activity variations in mesozooplankton appear to be closely correlated to nitrate integration values within the water column. The results were analysed in comparison with literature reports. The study produced a coherent overall interpretation, which strongly supports the reliability of this new biochemical tool in detecting assimilation of trace carbohydrates in the diet of mesozooplankton.

  20. Small-scale hydropower systems

    SciTech Connect

    Not Available

    1988-04-01

    This report covers several aspects of small-scale hydropower systems. The topics covered are: head and flow; waterwheels; impulse and reaction turbines; feasibility and practicality; environmental impact; and economics. 24 refs., 5 figs. (JF)

  1. Hot moments and hot spots in hyporheic nutrient transformation - To what degree does small-scale variability control stream-reach attenuation potential?

    NASA Astrophysics Data System (ADS)

    Krause, S.; Blume, T.; Binley, A.; Heathwaite, L.; Cassidy, N. J.; Munz, M.; Tecklenburg, C.; Kaeser, D.

    2011-12-01

    Concentrations of nutrients and contaminants in up-welling groundwater can significantly change along the passage through highly heterogeneous streambed sediments with substantial implications for the quality of connected surface water bodies. This study presents investigations into the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bioavailable organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break through of nitrate without significant concentration changes along the hyporheic flow path. Fibre-optic distributed temperature sensor networks and streambed electric resistivity tomography were applied for identifying exchange flow patterns between groundwater and surface water in dependency of streambed structural

  2. The spatial structure of correlated neuronal variability.

    PubMed

    Rosenbaum, Robert; Smith, Matthew A; Kohn, Adam; Rubin, Jonathan E; Doiron, Brent

    2017-01-01

    Shared neural variability is ubiquitous in cortical populations. While this variability is presumed to arise from overlapping synaptic input, its precise relationship to local circuit architecture remains unclear. We combine computational models and in vivo recordings to study the relationship between the spatial structure of connectivity and correlated variability in neural circuits. Extending the theory of networks with balanced excitation and inhibition, we find that spatially localized lateral projections promote weakly correlated spiking, but broader lateral projections produce a distinctive spatial correlation structure: nearby neuron pairs are positively correlated, pairs at intermediate distances are negatively correlated and distant pairs are weakly correlated. This non-monotonic dependence of correlation on distance is revealed in a new analysis of recordings from superficial layers of macaque primary visual cortex. Our findings show that incorporating distance-dependent connectivity improves the extent to which balanced network theory can explain correlated neural variability.

  3. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters

  4. Hidden founder effects: small-scale spatial genetic structure in recently established populations of the grassland specialist plant Anthyllis vulneraria.

    PubMed

    Helsen, Kenny; Jacquemyn, Hans; Honnay, Olivier

    2015-06-01

    The long-term establishment success of founder plant populations has been commonly assessed based on the measures of population genetic diversity and among population genetic differentiation, with founder populations expected to carry sufficient genetic diversity when population establishment is the result of many colonists from multiple source populations (the 'migrant pool' colonization model). Theory, however, predicts that, after initial colonization, rapid population expansion may result in a fast increase in the extent of spatial genetic structure (SGS), independent of extant genetic diversity. This SGS can reduce long-term population viability by increasing inbreeding. Using 12 microsatellite markers, we inferred colonization patterns in four recent populations of the grassland specialist plant Anthyllis vulneraria and compared the extent of SGS between recently established and old populations. Assignment analyses of the individuals of recent population based on the genetic composition of nine adjacent putative source populations suggested the occurrence of the 'migrant pool' colonization model, further confirmed by high genetic diversity within and low genetic differentiation among recent populations. Population establishment, however, resulted in the build-up of strong SGS, most likely as a result of spatially restricted recruitment of the progeny of initial colonists. Although reduced, significant SGS was nonetheless observed to persist in old populations. The presence of SGS was in all populations associated with elevated inbreeding coefficients, potentially affecting the long-term viability of these populations. In conclusion, this study illustrates the importance of studying SGS next to population genetic diversity and differentiation to adequately infer colonization patterns and long-term establishment success of plant species. © 2015 John Wiley & Sons Ltd.

  5. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral

  6. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  7. Intra-event and Inter-event Ground Motion Variability from 3-D Broadband (0-8 Hz) Ensemble Simulations of Mw 6.7 Thrust Events Including Rough Fault Descriptions, Small-Scale Heterogeneities and Q(f)

    NASA Astrophysics Data System (ADS)

    Withers, K.; Olsen, K. B.; Shi, Z.; Day, S. M.

    2015-12-01

    We model blind thrust scenario earthquakes matching the fault geometry of 1994 Mw 6.7 Northridge earthquake up to 8 Hz by first performing dynamic rupture propagation using a support operator method (SORD). We extend the ground motion by converting the slip-rate data to a kinematic source for the finite difference wave propagation code AWP-ODC, which incorporates an improved frequency-dependent attenuation approach. This technique has high accuracy for Q values down to 15. The desired Q function is fit to the 'effective' Q over the coarse grained-cell for low Q, and a simple interpolation formula is used to interpolate the weights for arbitrary Q. Here, we use a power-law model Q above a reference frequency in the form Q 0 f^n with exponents ranging from 0.0-0.9. We find envelope and phase misfits only slightly larger than that of the elastic case when compared with that of the frequency-wavenumber solution for both a homogenous and a layered model with a large-velocity contrast. We also include small-scale medium complexity in both a 1D layered model and a 3D medium extracted from SCEC CVM-S4 including a surface geotechnical layer (GTL). We model additional realizations of the scenario by varying the hypocenter location, and find that similar moment magnitudes are generated. We observe that while the ground motion pattern changes, the median ground motion is not affected significantly, when binned as a function of distance, and is within 1 interevent standard deviation from the median GMPEs. We find that intra-event variability for the layered model simulations is similar to observed values of single-station standard deviation. We show that small-scale heterogeneity can significantly affect the intra-event variability at frequencies greater than ~1 Hz, becoming increasingly important at larger distances from the source. We perform a parameter space study by varying statistical parameters and find that the variability is fairly independent of the correlation length

  8. Spatial variability of atrazine dissipation in an allophanic soil.

    PubMed

    Müller, Karin; Smith, Roger E; James, Trevor K; Holland, Patrick T; Rahman, Anis

    2003-08-01

    The small-scale variability (0.5 m) of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) concentrations and soil water contents in a volcanic silt loam soil (Haplic Andosol, FAO system) was studied in an area of 0.1 ha. Descriptive and spatial statistics were used to analyse the data. On average we recovered 102% of the applied atrazine 2 h after the herbicide application (CV = 35%). An increase in the CV of the concentrations with depth could be ascribed to a combination of extrinsic and intrinsic factors. Both variables, atrazine concentrations and soil water content, showed a high horizontal variability. The semivariograms of the atrazine concentrations exhibited the pure nugget effect, no pattern could be determined along the 15.5-m long transects on any of the seven sampling days over a 55-day period. Soil water content had a weak spatial autocorrelation with a range of 6-10 m. The dissipation of atrazine analysed using a high vertical sampling resolution of 0.02 m to 0.2 m showed that 70% of the applied atrazine persisted in the upper 0.02-m layer of the soil for 12 days. After 55 days and 410 mm of rainfall the centre of the pesticide mass was still at a soil depth of 0.021 m. The special characteristics of the soil (high organic carbon content, allophanic clay) had a strong influence on atrazine sorption and mobility. The mass recovery after 55 days was low. The laboratory degradation rate for atrazine, determined in a complementary incubation study and corrected for the actual field temperature using the Arrhenius equation, only accounted for about 35% of the losses that occurred in the field. Results suggest field degradation rates to be more changeable in time and much faster than under controlled conditions. Preferential flow is discussed as a component of the field transport process.

  9. Small-Scale-Field Dynamo

    SciTech Connect

    Gruzinov, A.; Cowley, S.; Sudan, R. ||

    1996-11-01

    Generation of magnetic field energy, without mean field generation, is studied. Isotropic mirror-symmetric turbulence of a conducting fluid amplifies the energy of small-scale magnetic perturbations if the magnetic Reynolds number is high, and the dimensionality of space {ital d} satisfies 2.103{lt}{ital d}{lt}8.765. The result does not depend on the model of turbulence, incompressibility, and isotropy being the only requirements. {copyright} {ital 1996 The American Physical Society.}

  10. Variability of pigment biomass in the California Current system as determined by satellite imagery. I - Spatial variability

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Zhang, Xueyun; Michaelsen, Joel

    1988-01-01

    Spatial variability of chlorophyll in the California Current system was analyzed using Coastal Zone Color Scanner (CZCS) imagery. A total of 48 images were analyzed to produce seasonal averages and variances, gradients, and power spectra. Roughly one third to one half of the variance in pigment biomass can be explained by consistent, large-scale gradients. In general, biomass is higher in the north and in nearshore areas. Nearshore areas also have proportionally more small-scale variability than the areas offshore. Slopes of the power spectra for nearshore areas are about -2.2 (for spatial scales of 10-100 km), while slopes for offshore areas are about -3. In addition, the power spectra show evidence of a change in slope at about 10 km, with slopes of about -1 for shorter-length scales. This may indicate that biological processes dominate the smaller scales, while mesoscale eddies and geostrophic currents dominate the larger scales.

  11. Variability of pigment biomass in the California Current system as determined by satellite imagery. I - Spatial variability

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Zhang, Xueyun; Michaelsen, Joel

    1988-01-01

    Spatial variability of chlorophyll in the California Current system was analyzed using Coastal Zone Color Scanner (CZCS) imagery. A total of 48 images were analyzed to produce seasonal averages and variances, gradients, and power spectra. Roughly one third to one half of the variance in pigment biomass can be explained by consistent, large-scale gradients. In general, biomass is higher in the north and in nearshore areas. Nearshore areas also have proportionally more small-scale variability than the areas offshore. Slopes of the power spectra for nearshore areas are about -2.2 (for spatial scales of 10-100 km), while slopes for offshore areas are about -3. In addition, the power spectra show evidence of a change in slope at about 10 km, with slopes of about -1 for shorter-length scales. This may indicate that biological processes dominate the smaller scales, while mesoscale eddies and geostrophic currents dominate the larger scales.

  12. Spatial variability, structure and composition of crustose algal communities in Diadema africanum barrens

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Díaz-Villa, Tania; Hernández, José Carlos; Clemente, Sabrina; Afonso-Carrillo, Julio

    2014-12-01

    Crustose algal communities were studied in Diadema africanum urchin barrens around Tenerife (Canary Islands, NE Atlantic). A hierarchical nested sampling design was used to study patterns of community variability at different spatial scales (sectors, three sides of the island; sites within each sector, 5-10 km apart; stations within each site, 50-100 m apart). Although noncrustose species contributed the most to community richness, cover was dominated by crustose forms, like the coralline algae Hydrolithon farinosum, H. samoënse, H. onkodes, Neogoniolithon orotavicum and N. hirtum, and the phaeophycean Pseudolithoderma adriaticum. The structure of these communities showed high spatial variability, and we found differences in the structure of urchin barrens when compared across different spatial scales. Multivariate analysis showed that variability in community structure was related to the five environmental variables studied (wave exposure, urchin density, substrate roughness, productivity and depth). Wave exposure was the variable that contributed most to community variability, followed by urchin density and substrate roughness. Productivity and depth had limited influence. The effects of these variables differed depending on the spatial scale; wave exposure and productivity were the main variables influencing community changes at the largest scale (between different sectors of the island), while D. africanum density, roughness and depth were the most influential at medium and small scales.

  13. Small-scale Starshade Test

    NASA Image and Video Library

    2016-08-09

    A test of a small-scale starshade model (58 cm), made from metal, in a dry lake bed in central Nevada's Smith Creek, took place from May to June 2014. Nineteen different versions of the miniaturized starshade were tested over five days. The tests revealed that a starshade, or external occulter, is capable of blocking starlight to a degree that reveals the relatively dim reflected light of a planet next to its brighter star. Like holding your hand up to block sunlight, the starshade works to block excessive starlight from the "eyes" of a space telescope like Hubble. http://photojournal.jpl.nasa.gov/catalog/PIA20902

  14. Spatial variability of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Magnusdottir, G.

    2012-04-01

    The North Atlantic Oscillation (NAO) is a seesaw in mass (or anticorrelation in pressure) between a northern center of action, located close to Iceland, and a southern center of action, located close to the Azores. It is assumed to have a fixed spatial structure during winter and an index of time variability is measured, the NAO index. However, it is well documented that there was a shift in location of the northern center of action of the NAO from the two decades 1958-1977 to the two decades of 1978-1997. In this talk we examine dynamical changes associated with the aforementioned shift in the northern center of action of the NAO. We then go on to examine variability in the location of both centers of action over a longer time period, or from 1871. The analysis results in two possible approaches to understanding the evolution of the NAO. First, we define an additional index (to the NAO index), the angle index, to describe decadal atmospheric variability in the region associated with spatial shifts in the centers of action of the NAO. The angle index measures the angle that the great circle connecting the two centers makes with the meridian running through the northern center. It gives supplemental information to the NAO index alone. In light of the slow movement of the NAO, one may need more than the one dominating climate pattern to describe low-frequency atmospheric variability in the region. However, it is conceptually attractive as well as economical to summarize atmospheric low-frequency variability by referring to one climate pattern, especially when one is examining interactions with other parts of the climate system such as sea-ice variability. As our second approach we are developing an alternative to the static EOF-based (or correlation based) definition of the NAO. Our work to develop a dynamic statistical model to characterize the evolution of the NAO will be briefly described.

  15. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

    NASA Astrophysics Data System (ADS)

    Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.

    2015-01-01

    A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

  16. Spatial ascariasis risk estimation using socioeconomic variables.

    PubMed

    Valencia, Luis Iván Ortiz; Fortes, Bruno de Paula Menezes Drumond; Medronho, Roberto de Andrade

    2005-12-01

    Frequently, disease incidence is mapped as area data, for example, census tracts, districts or states. Spatial disease incidence can be highly heterogeneous inside these areas. Ascariasis is a highly prevalent disease, which is associated with poor sanitation and hygiene. Geostatistics was applied to model spatial distribution of Ascariasis risk and socioeconomic risk events in a poor community in Rio de Janeiro, Brazil. Data were gathered from a coproparasitologic and a domiciliary survey in 1550 children aged 1-9. Ascariasis risk and socioeconomic risk events were spatially estimated using Indicator Kriging. Cokriging models with a Linear Model of Coregionalization incorporating one socioeconomic variable were implemented. If a housewife attended school for less than four years, the non-use of a home water filter, a household density greater than one, and a household income lower than one Brazilian minimum wage increased the risk of Ascariasis. Cokriging improved spatial estimation of Ascariasis risk areas when compared to Indicator Kriging and detected more Ascariasis very-high risk areas than the GIS Overlay method.

  17. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed

  18. May We Identify The Spatial Variability of Soil Hydraulic Properties Based On Measurements With "spatial Tdr"? A) Model Study

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Becker, R.; Schädel, W.

    A dynamic system left without external disturbances, will always tend to a stable equilibrium state that is consistent with the internal physics. For natural soils such an equilibrium state is reached when the gradients of the total hydraulic potential tend to zero. This statement is still valid for heterogeneous soils, because the hydraulic po- tential is an intensive state variable and therefore continuous at discontinuities of the pore space. In contrary the soil water content is as an extensive property discontinu- ous at discontinuities of the pore space. Hence, a small scale soil moisture pattern that persists if the soil state tends to hydraulic equilibrium, reflects the lateral small scale variability of the pore space. The objectives of our study are to show a) whether and how we could use TDR observations to identify the small scale variability of the pore space. For that purpose we analyse artificial TDR measurements, taken from physi- cally based simulations of soil water dynamics in heterogeneous media. b) We want to introduce a new TDR technology which we call "Spatial TDR", that is suitable for that purposes. To produce the artificial TDR-datasets we generate random fields of soil porosity and saturated hydraulic conductivity with different statistical properties based on field data in a Luvisol and simulate artificial water dynamics in this model soil based on Richards-equation. Within this model soil we define several hypothetical "Spatial TDR" clusters, that differ in the lateral spacing and the number of the probes, in the temporal resolution of the hypothetical measurements and in the assumed mea- surement accuracy. If the model soil approaches hydraulic equilibrium, the remaining soil moisture pattern will be dominated by the statistical properties of the porosity. In contrary the variability of the hydraulic conductivity will dominate the soil moisture patterns during infiltration events. The hypothetical Spatial TDR measurements within the

  19. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  20. Spatial impacts of urban structures on micrometeorological variables

    NASA Astrophysics Data System (ADS)

    Koelbing, Merle; Schuetz, Tobias; Weiler, Markus

    2016-04-01

    The heterogeneity of urban surfaces including buildings and the urban vegetation causes high variability of micrometeorological variables on small spatial scales which makes it hard to observe or even predict climate conditions and in particular evapotranspiration with high resolution on the scale of entire cities. Regarding future climate changes and their impacts on urban climate and hydrology the predictability of these small scale variations becomes more and more relevant i.e. for city planners to improve the development of appropriate mitigation strategies. Therefore, new transfer functions for meteorological variables are needed, which consider the structural variability in urban areas and its impacts on the energy balance (shading effects, ventilation, lateral longwave energy fluxes). We approach this goal by testing a mobile meteorological station (the station is mounted on a bicycle trailer and transported by an E-Bike) as a means to derive empirical spatial transfer functions for specific urban structures. We observe air temperature and relative air humidity at 2 different heights, wind direction and speed, incoming and outgoing shortwave radiation as well as infrared temperature from above and below and the four directions. First measurements have been performed in December 2015 at 22 locations in four clusters, which represent manifold different characteristics of urban areas within the city of Freiburg. Every location has been monitored two to six times. Overall, nearly 200 measurements of each variable have been taken. Each measurement takes five minutes. Values are logged every 15 seconds. These measurements were analyzed with regard to a climate station mounted on a rooftop in the proximity of all clusters. Results show a systematic pattern in the differences between the values taken with the fixed and those taken with the mobile climate station, depending on the measurement locations. For example, lower air temperature and higher relative air

  1. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  2. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  3. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  4. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  5. Drivers of Spatial Soil Variability on Hillslopes

    NASA Astrophysics Data System (ADS)

    Harrison, Bruce

    2017-04-01

    Hillslope soils are generally not considered to be of high agricultural value and consequently they are only mapped at very broad scales in most national soil maps and the range of soil properties is poorly characterized. Researchers who need more detailed soil information have to either develop their own maps or rely on inadequate pedotransfer functions. A major constraint to characterizing soil landscapes in non-agricultural areas is collecting sufficient samples to adequately capture the range of soils and the spatial distribution pattern. Such patterns reflect the nature and rate of the geomorphic processes operating on hillslopes. Significant differences in the pattern of soil variability occur as the activity of geomorphic processes increases. While there is a continuum in rate and extent of geomorphic activity across natural landscapes the impact of these processes on soil variability will be illustrated by considering soil landscapes from two extremes, a very high rainfall drainage basin and a semi-arid drainage basin. In the high rainfall area, the pattern of soil variability reflects the frequency and location of erosional and depositional events. Three soil chronosequences each containing five soil profile classes were identified: one for soils forming on bedrock, a second of soils forming in unconsolidated regolith and finally a sequence of compound soil profiles containing one or more buried soils. In the semi-arid drainage all soils have been forming for the same period of time. Soil variability reflects the impact of slope orientation and position and the parent material the soils are forming in. The dominant driver of soil variability is slope orientation, with more strongly developed and thicker soil profiles on north facing slopes compared to south facing slopes. Soil catenas are well developed on most north facing slopes independent of parent material, but more weakly expressed on south facing slopes. Two distinct parent materials are a quartz

  6. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy Dennis J., Jr.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. Additional information is contained in the original extended abstract.

  7. A semi-urban case study of small scale variability of rainfall and run-off, with C- and X-band radars and the fully distributed hydrological model Multi-Hydro

    NASA Astrophysics Data System (ADS)

    Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    The complexity of urban hydrology results both from that of urban systems and the extreme rainfall variability. The latter can display strongly localised rain cells that can be extremely damaging when hitting vulnerable parts of urban systems. This paper investigates this complexity on a semi-urban sub-catchment - located in Massy (South of Paris, France) - of the Bievre river, which is known for its frequent flashfloods. Advanced geo-processing techniques were used to find the ideal pixel size for this 6.326km2 basin. C-band and X-band radar data are multifractally downscaled at various resolutions and input to the fully distributed hydrological model Multi-Hydro. The latter has been developed at Ecole des Ponts ParisTech. It integrates validated modules dealing with surface flow, saturated and unsaturated surface flow, and sewer flow. The C-band radar is located in Trappes, approx. 21km East of the catchment, is operated by Méteo-France and has a resolution of 1km x 1km x 5min. The X-band radar operated by Ecole des Ponts Paris Tech on its campus has a resolution of 125m x 125m x 3.4min. The performed multifractal downscaling enables both the generation of large ensemble realizations and easy change of resolution (e.g. down to 10 m in the present study). This in turn allows a detailed analysis of the impacts of small scale variability and the required resolution to obtain accurate simulations, therefore predictions. This will be shown on two rainy episodes over the chosen sub-catchment of the Bievre river.

  8. Small-scale eruptive filaments on the quiet sun

    NASA Technical Reports Server (NTRS)

    Hermans, Linda M.; Martin, Sara F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments.

  9. Image restoration with spatially variable PSF

    NASA Astrophysics Data System (ADS)

    Ciliegi, Paolo; La Camera, Andrea; Schreiber, Laura; Bellazzini, Michele; Bertero, Mario; Boccacci, Patrizia; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Massari, Davide; Montegriffo, Paolo; Talia, Margherita

    2014-08-01

    We present a method for the restoration of astronomical images obtained with Adaptive Optics (AO) systems. In order to maximize the scientific return from AO data and, in general, from the data of the next generation telescopes, we developed a restoration method based on deconvolution for the de-blurring of images degraded by a spatially variable PSF. The deconvolution method is based on a partition of the image domain in partially overlapping sub-domains where the PSF can be assumed to be space invariant. The software, called Patch, is written in IDL language and is freely distributed to the community. Here we report a general description of the method and of its graphical interface. The potentiality of the Software Patch have been tested on two completely different astrophysical scenarios: a crowded stellar field and an extended galaxy. Despite the very conservative assumptions made on the Point Spread Function (assumed to be strongly variable across the field of view), we obtained good results in terms of image reconstruction both for the stellar (point-like) case and for the extended galaxy.

  10. On the Spatial Variability of Arsenic Contamination in the Groundwater of Bangladesh

    NASA Astrophysics Data System (ADS)

    Karthik, B.; Islam, S.; Harvey, C. F.

    2001-05-01

    The widespread arsenic contamination of groundwater in Bangladesh has been recognized as posing a serious health problem to millions of people in the region. We have performed a detailed spatial analysis of arsenic data from groundwater in an attempt to identify dominant controls on the spatial distribution of arsenic. The variogram analysis suggests that large-scale geological and physical features control a significant fraction of the spatial variability in shallow wells (55 %) as well as in the deeper wells (88 %). We propose that the prevalence of higher arsenic concentrations of arsenic in shallow wells is because of the `small-scale' processes (less than 6 km. approx.) exerting a greater degree of control at shallower depths in the sediments. A comparison of the correlated spatial variability for high and low arsenic concentrations indicates that the `large scale' processes also control the distribution of higher arsenic concentrations to a significant extent. Through an indicator variogram analysis we demonstrate that the correlation structure of the arsenic magnitudes is primarily due to the spatial distribution of their locations, around an approximate concentration cut-off limit of 0.07 mg/L. Our results suggest that the complex spatial distribution of high-level arsenic concentrations is a consequence of interactions among multiscale geologic and geochemical processes.

  11. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives.

  12. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives. Previously announced in STAR as N83-24896

  13. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  14. Capturing the Spatial Variability of Microbial Communties within Agricultural Soils

    USDA-ARS?s Scientific Manuscript database

    Understanding patterns in spatial variability of soil microbial communities can provide important insights into the mechanisms that control ecosystem function. The level of replication required to adequately characterize the variability of soil communities across both small and large geographic and ...

  15. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  16. When does small-scale convection begin beneath oceanic lithosphere?

    NASA Technical Reports Server (NTRS)

    Buck, W. R.

    1985-01-01

    A numerical model of small-scale convection in a fluid of variable viscosity is described. The results indicate that recently observed gravity anomalies showing a pattern of highs and lows aligned in the direction of oceanic plate motion may be the result of small-scale mantle flow. The convective flow must begin in the first six Myr of lithospheric cooling to produce the observed signals, which is not inconsistent with constraints on the viscosity of the mantle. The calculated trend for the subsidence of the ocean floor is found to be almost linear with the square root of time even when small-scale convection has significantly changed the rate of subsidence. For average shallow asthenospheric viscosities of about 10 to the 18th Pa/s, the model subsidence can match data for the oceans and reproduce the magnitude and wavelength of the observed gravity anomalies.

  17. Method and system for small scale pumping

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2010-01-26

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  18. Small scale bipolar nickel-hydrogen testing

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1988-01-01

    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value.

  19. Small scale structure on cosmic strings

    SciTech Connect

    Albrecht, A.

    1989-10-30

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs.

  20. Small-scale explosive welding of aluminum

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  1. Small Scale Features at Vesta South Pole

    NASA Image and Video Library

    2011-10-01

    This image from NASA Dawn spacecraft shows a raised mound material overlying the brighter material that makes up the floor of the south polar depression of asteroid Vesta. Many small scale craters are clear in this image.

  2. Spatial and temporal variability in a butterfly population.

    PubMed

    Thomas, C D

    1991-09-01

    The dynamics of a butterfly (Plebejus argus) population were analysed at two levels, (i) the population as a whole and (ii) sections within the population. Some sections of the population fluctuated out of synchrony with others, such that the variability [SD Log(Density+1)] shown by the population as a whole was less than the variability shown by each part of the population - overall temporal variability was dampened by spatial asynchrony. Since observed population variability depends on the spatial scale that is sampled, comparisons of population variability among taxa should be carried out only with caution. Implications for island biogeography and conservation biology are discussed.

  3. Small-scale spatial and temporal reproductive variability of the brown macroalga Sargassum thunbergii in contrasting habitats: A study on the island of Xiaoheishan, Changdao Archipelago, China

    NASA Astrophysics Data System (ADS)

    Yu, Yongqiang; Zhang, Quansheng; Lu, Zhicheng; Tang, Yongzheng; Zhang, Shubao; Chu, Shaohua

    2012-10-01

    A study of the reproductive pattern of Sargassum thunbergii, which is distributed widely around the island of Xiaoheishan (Changdao Archipelago, China), shows that it exhibits a flexibility to adapt to contrasting habitats. Populations of S. thunbergii from two depths at nine field sites exposed to increasing degrees of wave action were studied to determine their spatio-temporal variations in reproductive pattern. The start of the reproductive period was significantly delayed with increasing geographical latitude but independent of depth and wave exposure, and seawater temperature was found to be a significant controlling factor for maturation. In contrast with reproductive onset, two-way ANCOVA showed that there were significant effects of both depth and wave exposure on the peak and end point of the reproductive period. The latter were significantly delayed in the semi-exposed deep-water habitats compared to sheltered shallow-water habitats. The shortest duration of the reproductive period was recorded in the wave-exposed shallow-water habitats, while the longest duration was in the semi-exposed deep-water habitats. In addition, reproductive allocation (RA) in the studied populations showed a similar and significant temporal variation during reproduction, and RA increased as time progressed, followed by a rapid decrease in late summer. Wave exposure as well as depth also influenced significantly the RA whereby thalli from exposed and semi-exposed deep-water habitats allocated significantly more biomass to the production of receptacles than did thalli from sheltered shallow-water habitats.

  4. Modelling the spatial-temporal variability of spring snowmelt in an arctic catchment

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Marsh, P.

    2006-05-01

    Arctic spring landscapes are usually characterized by a mosaic of coexisting snow-covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land-surface-atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle.Small-scale variability in arctic snowmelt is addressed here by combining a spatially distributed end-of-winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above- or below-average end-of-winter snow water equivalents were determined from land-cover classifications, topography, land-cover-based snow surveys, and distributed surface wind-field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small-scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs.Results show the relative importance of variable end-of-winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow-covered areas, as well as the location, timing, and amount of meltwater release from

  5. A mobile system for quantifying the spatial variability of the surface energy balance: design and application.

    PubMed

    Wohlfahrt, Georg; Tasser, Erich

    2015-05-01

    We present a mobile device for the quantification of the small-scale (a few square meters) spatial variability in the surface energy balance components and several auxiliary variables of short-statured (<1 m) canopies. The key element of the mobile device is a handheld four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (1) land use and (2) slope and aspect of the underlying surface, (3) controls on landscape-scale variability in soil temperature and albedo and (4) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  6. A mobile system for quantifying the spatial variability of the surface energy balance: design and application

    NASA Astrophysics Data System (ADS)

    Tasser, Erich; Wohlfahrt, Georg

    2014-05-01

    We present a mobile device for the quantification of the small-scale spatial variability in the surface energy balance components and several auxiliary variables of short-statured canopies. The key element of the mobile device is a hand-held four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (i) land use and (ii) slope and aspect of the underlying surface, (iii) controls on landscape-scale variability in soil temperature and albedo, and (iv) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  7. A mobile system for quantifying the spatial variability of the surface energy balance: design and application

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Tasser, Erich

    2015-05-01

    We present a mobile device for the quantification of the small-scale (a few square meters) spatial variability in the surface energy balance components and several auxiliary variables of short-statured (<1 m) canopies. The key element of the mobile device is a handheld four-component net radiometer for the quantification of net radiation, albedo and infrared surface temperature, which is complemented with measurements of air temperature, wind speed, soil temperature and soil water content. Data are acquired by a battery-powered data logger, which is mounted on a backpack together with the auxiliary sensors. The proposed device was developed to bridge between the spatial scales of satellite/airborne remote sensing and fixed, stationary tower-based measurements with an emphasis on micrometeorological, catchment hydrological and landscape-ecological research questions. The potential of the new device is demonstrated through four selected case studies, which cover the issues of net radiation heterogeneity within the footprint of eddy covariance flux measurements due to (1) land use and (2) slope and aspect of the underlying surface, (3) controls on landscape-scale variability in soil temperature and albedo and (4) the estimation of evapotranspiration based exclusively on measurements with the mobile device.

  8. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  9. Longitudinal study on the temporal and micro-spatial distribution of Galba truncatula in four farms in Belgium as a base for small-scale risk mapping of Fasciola hepatica.

    PubMed

    Charlier, Johannes; Soenen, Karen; De Roeck, Els; Hantson, Wouter; Ducheyne, Els; Van Coillie, Frieke; De Wulf, Robert; Hendrickx, Guy; Vercruysse, Jozef

    2014-11-26

    The trematode parasite Fasciola hepatica causes important economic losses in ruminants worldwide. Current spatial distribution models do not provide sufficient detail to support farm-specific control strategies. A technology to reliably assess the spatial distribution of intermediate host snail habitats on farms would be a major step forward to this respect. The aim of this study was to conduct a longitudinal field survey in Flanders (Belgium) to (i) characterise suitable small water bodies (SWB) for Galba truncatula and (ii) describe the population dynamics of G. truncatula. Four F. hepatica-infected farms from two distinct agricultural regions were examined for the abundance of G. truncatula from the beginning (April 2012) until the end (November 2012) of the grazing season. Per farm, 12 to 18 SWB were selected for monthly examination, using a 10 m transect analysis. Observations on G. truncatula abundance were coupled with meteorological and (micro-)environmental factors and the within-herd prevalence of F. hepatica using simple comparison or negative binomial regression models. A total of 54 examined SWB were classified as a pond, ditch, trench, furrow or moist area. G. truncatula abundance was significantly associated with SWB-type, region and total monthly precipitation, but not with monthly temperature. The clear differences in G. truncatula abundance between the 2 studied regions did not result in comparable differences in F. hepatica prevalence in the cattle. Exploration of the relationship of G. truncatula abundance with (micro)-environmental variables revealed a positive association with soil and water pH and the occurrence of Ranunculus sp. and a negative association with mowed pastures, water temperature and presence of reed-like plant species. Farm-level predictions of G. truncatula risk and subsequent risk for F. hepatica occurrence would require a rainfall, soil type (representing the agricultural region) and SWB layer in a geographic information

  10. Determining Small Scale Albedos Using High Resolution Multiangle Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Markowski, G. R.; Davies, R.

    2005-05-01

    Current satellite short-wave (SW) albedo measurements, such as CERES's, have only a broad spatial resolution and cannot by themselves accurately measure reflectance (roughly solar "forcing") on small space and time scales. The major difficulty is that earth's surface reflectivity, including the atmosphere and clouds, is substantially anisotropic. However, accurate regional and time-dependent albedos are needed for studying causes of climate variability and change, and improving models from global to at least cloud resolving scales. A first step to obtain these albedos, for which we show results, is to accurately relate (and verify) the high resolution spatial and angular surface narrow-band MISR (Multi-Angle Imaging Spectroradiometer) radiance measurements aboard the Terra satellite to coincident total shortwave broadband (SWB) low resolution measurements from the onboard CERES instrument. Because MISR measures radiance of the same points along an orbital swath, it becomes possible to check and improve Angular (reflection) Distribution Models (ADMs) at small scales (< 1 km). The ADMs can later be used to invert a measured angular radiance to a local albedo. The difficulty lies in obtaining accurate ADMs for earth's highly varied surface and lighting conditions. We show prediction accuracy examples of CERES SWB vs. single and multiple band MISR data regressions. We include view angle dependence (9 angles: nadir plus 26, 46, 60, and 70 degrees fore and aft) and show improved accuracy when surface data, e.g., solar zenith and scattering angle, and surface type are included. In many cases, we predict angular (bidirectional) reflectance to ~ 0.01, or about 10 watts/sq m in irradiance. We also show examples of "difficult" scene types, such as varying levels of broken clouds, where accuracy degrades by a factor of ~2.

  11. Small-scale models of multiring basins

    NASA Astrophysics Data System (ADS)

    Allemand, Pascal; Thomas, Pierre

    1999-07-01

    Small-scale sand-silicone simulations of multiring impact structures have been undertaken in order to understand the effects of the rheology of the lithosphere on the variability of natural multiring structures. For low sand-silicone thickness ratio (1:3), brittle strain is accommodated by spiral strike-slip faults. For higher sand-silicone ratios (1:1 or 2:1), an inner concentric ring affected by strike-slip faults is relayed by an external ring affected by concentric normal faults. The diameter of the inner ring decreases with the increase of the sand-silicone thickness ratio. It is suggested that the flexure of the brittle layer due to the silicone flow is responsible for the brittle strain field which is enhanced by the channel flow of the lower crust. The characteristic geometry of the intersection of conjugated strike-slip faults can be observed around large multiring basins on silicate crust such as Orientale on the Moon and on icy crust, such as Valhalla on Callisto and Gilgamesh on Ganymede. The strain field around these large craters is discussed in terms of mechanical properties of the lithospheres. On the Moon, large craters without relaxation faults, such as Imbrium are located on thin crust regions. The crust was too thin to have a ductile lower layer at the time of impact. Gilgamesh on Ganymede is surrounded mainly by strike-slip faults. Asgard on Callisto has the same diameter as Gilgamesh but is surrounded by concentric normal faults. The brittle-ductile thickness ratio is thus higher on Callisto than on Ganymede.

  12. Managing Temporal and Spatial Variability in Vapor Intrusion Data

    DTIC Science & Technology

    2012-03-28

    Managing Temporal and Spatial Variability in Vapor Intrusion Data Todd McAlary, M.Sc., P.Eng., P.G. Geosyntec Consultants, Inc...TITLE AND SUBTITLE Managing Temporal and Spatial Variability in Vapor Intrusion Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Koc (mL/g) OSWER indoor conc. at 10-6 risk (ppb) Vapour pressure (atm) Water solubility (g/l) 1,1,1-Trichloroethane 110 400

  13. Combining snowpack modeling and terrestrial laser scanner observations improves the simulation of small scale snow dynamics

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Vionnet, Vincent; López-Moreno, Juan-Ignacio; Lafaysse, Matthieu; Morin, Samuel

    2016-02-01

    Accurately determining the snowpack distribution in mountain areas is complex because of the difficulty of establishing over large areas the spatial distribution of all variables that define the state of the snowpack at any particular time. In this study we used distributed snowpack simulations that were corrected throughout the snow season using snow depth distributions measured using a terrestrial laser scanner (TLS). This enabled us to obtain a more realistic view of the small scale spatial evolution of the mass and depth of the snowpack. Several TLS snow depth data acquisitions were made during the 2012, 2013 and 2014 snow seasons in a small catchment (55 ha) located in the central Spanish Pyrenees. The Crocus snowpack model was used to simulate the snowpack evolution on a 5-m grid, based on downscaled meteorological variables obtained using SAFRAN reanalysis. The simulation was stopped when a snow depth distribution map measured using the TLS was available, and the modeled snow depth distribution was adjusted to match the observed snow depth. The snow simulation was then restarted and run until the next TLS acquisition was available. Prior to matching the simulation and observational data, both snowpack distributions were compared. The results for the three snow seasons showed an improvement in the snowpack simulation, especially with respect to simulating the influence of small scale topographic effects on the observed snowpack distribution, and also the timing of snow melt dynamics.

  14. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  15. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, D. R.

    1983-01-01

    Progress in research on the small-scale physics of the ocean is reviewed. The contribution of such research to the understanding of the large scales is addressed and compared for various depth ranges of the ocean. The traditional framework for discussing small-scale measurements and turbulence is outlined, and recent research in the area is reviewed, citing references. Evidence for the existence of salt fingering in oceanic mixing is discussed. Factors that might inhibit the growth of salt fingers are assessed, and the influence of differences between laboratory tank and ocean in studying the fingers is discussed. The role of salt fingers in creating intrusions is examined. Instruments and methods used to measure the smallest scales at which there is appreciable variation and the stability of the patch of ocean in which the small-scale motions take place are considered.

  16. The Phenomenology of Small-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    Sreenivasan, K. R.; Antonia, R. A.

    I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.

  17. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  18. The Impacts of Water Quality and Food Availability on Children's Health in West Africa: A Spatial Analysis Using Remotely Sensed Data and Small-Scale Water Quality Data and Country-level Health Data

    NASA Astrophysics Data System (ADS)

    Frederick, L.; Grace, K.; Lloyd, B.

    2014-12-01

    As the global climate changes and the populations of many African countries grow, ensuring clean drinking water and food has become a pressing concern. Because of their vulnerability to malnutrition and food insecurity, children face the greatest risk for adverse health outcomes related to climate change. Vulnerability, however, is highly variable, with some children in food insecure communities showing healthy growth, while some children in food secure communities show signs of malnutrition. In West Africa, Burkina Faso faces high levels of child malnutrition, loses to farmland and a large share of the population have no access to clean water. Because the overwhelming majority of children rely on locally grown, rainfed agriculture and well/surface water, the combined impact of climate change and population growth decreases water availability and farmland per person. However, there is notable community and individual variation in malnutrition levels suggesting that there are important coping strategies that vulnerable families may use to secure their children's health. No spatially relevant analysis of water and food insecurity and children's health exists for Burkina Faso. The goal of this research is to identify and quantify the combined and inter-related impact of unsafe drinking water and community-level food availability on the physical health outcomes of Burkinabe children under five years of age. To accomplish this goal we rely on a publically available highly detailed, geo-referenced data set (Demographic and Health Survey (DHS)) to provide information on measures of childhood malnutrition and details on parental characteristics related to children's health. Information on water source (covered/uncovered well, piped water, etc.) and water quality (measures of arsenic and pollution) comes from DHS along with a recently collected geo-referenced US Agency for International Development (USAID) data set. Critical information on food production, environmental

  19. The Impacts of Water Quality and Food Availability on Children's Health in West Africa: A Spatial Analysis Using Remotely Sensed Data and Small-Scale Water Quality Data and Country-level Health Data

    NASA Astrophysics Data System (ADS)

    Frederick, L.; Grace, K.; Lloyd, B.

    2015-12-01

    As the global climate changes and the populations of many African countries grow, ensuring clean drinking water and food has become a pressing concern. Because of their vulnerability to malnutrition and food insecurity, children face the greatest risk for adverse health outcomes related to climate change. Vulnerability, however, is highly variable, with some children in food insecure communities showing healthy growth, while some children in food secure communities show signs of malnutrition. In West Africa, Burkina Faso faces high levels of child malnutrition, loses to farmland and a large share of the population have no access to clean water. Because the overwhelming majority of children rely on locally grown, rainfed agriculture and well/surface water, the combined impact of climate change and population growth decreases water availability and farmland per person. However, there is notable community and individual variation in malnutrition levels suggesting that there are important coping strategies that vulnerable families may use to secure their children's health. No spatially relevant analysis of water and food insecurity and children's health exists for Burkina Faso. The goal of this research is to identify and quantify the combined and inter-related impact of unsafe drinking water and community-level food availability on the physical health outcomes of Burkinabe children under five years of age. To accomplish this goal we rely on a publically available highly detailed, geo-referenced data set (Demographic and Health Survey (DHS)) to provide information on measures of childhood malnutrition and details on parental characteristics related to children's health. Information on water source (covered/uncovered well, piped water, etc.) and water quality (measures of arsenic and pollution) comes from DHS along with a recently collected geo-referenced US Agency for International Development (USAID) data set. Critical information on food production, environmental

  20. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  1. Spatial and Temporal Variability of Macronutrients in a Lime-amended Acid Paddy Field

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Morales, L. A.; Paz González, A.

    2012-04-01

    tillering could be also attributed to lime addition, but a negative effect of liming on P availability was observed during flowering. Mehlich I extractable K was in general low to very low and decreased from sowing to flowering, irrespective of lime treatment. Semivariogram analysis showed a rather strong spatial dependence of NH4+, P and K concentrations and this all over the three study periods and for the three lime treatments. Empirical semivariograms could be adjusted quite well by a nugget component (C0) plus a spatial structure (C1), which was described by spherical or exponential models with a correlation range between 40 and 85 m. Geostatistical analysis provided insight into possible processes responsible of the observed spatial variability patterns within the rice soil. Kriging was useful in mapping macronutrient variability allowing identifying microrregions with high or low values of the target soil properties clearly showing the presence of small scale variability for the study soil attributes within each liming treatment and during each of the three sampling dates. Also the position of patches with maxima and minima values changed between successive sampling dates illustrating the lack of temporal stability of the pattern of spatial distribution for the study soil attributes. Results illustrate the potential for applying the principles of precision agriculture to control spatiotemporal variability in rice fields.

  2. Quantifying and mapping spatial variability in simulated forest plots

    Treesearch

    Gavin R. Corral; Harold E. Burkhart

    2016-01-01

    We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...

  3. Effects of Spatial Variability on Annual Average Water Balance

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.; Eagleson, P. S.

    1987-11-01

    Spatial variability of soil and vegetation causes spatial variability of the water balance. For an area in which the water balance is not affected by lateral water flow, the frequency distributions of storm surface runoff, evapotranspiration, and drainage to groundwater are derivable from distributions of soil hydraulic parameters by means of a point water balance model and local application of the vegetal equilibrium hypothesis. Means and variances of the components of the budget can be found by Monte Carlo simulation or by approximate local expansions. For a fixed set of mean soil parameters, soil spatial variability may induce significant changes in the areal mean water balance, particularly if storm surface runoff occurs. Variability of the pore size distribution index and permeability has a much larger effect than that of effective porosity on the means and variances of water balance variables. The importance of the pore size distribution index implies that the microscopic similarity assumption may underestimate the effects of soil spatial variability. In general, the presence of soil variability reduces the sensitivity of water balance to mean properties. For small levels of soil variability, there exists a unique equivalent homogeneous soil type that reproduces the budget components and the mean soil moisture saturation of an inhomogeneous area.

  4. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  5. IAPSA 2 small-scale system specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Torkelson, Thomas C.

    1990-01-01

    The details of a hardware implementation of a representative small scale flight critical system is described using Advanced Information Processing System (AIPS) building block components and simulated sensor/actuator interfaces. The system was used to study application performance and reliability issues during both normal and faulted operation.

  6. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  7. Small-scale coronal structure, part 3

    NASA Technical Reports Server (NTRS)

    Webb, David F.

    1986-01-01

    Recent observations and models pertaining specifically to solar coronal bright points (BPs) and generally to small-scale coronal structure are reviewed. Two questions were addressed: What is the degree of correspondence among various alleged signatures of BPs at different levels of atmosphere and what can PBs tell about the emerging flux spectrum of the sun?

  8. Temporal variability in aboveground plant biomass decreases as spatial variability increases.

    PubMed

    McGranahan, Devan Allen; Hovick, Torre J; Elmore, R Dwayne; Engle, David M; Fuhlendorf, Samuel D; Winter, Stephen L; Miller, James R; Debinski, Diane M

    2016-03-01

    Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional group synchrony as predicted by metacommunity variability theory. As disturbance from fire and grazing interact to create a shifting mosaic of spatially heterogeneous patches within a landscape, temporal variability in aboveground plant biomass can be dampened. These results suggest that spatially heterogeneous disturbance regimes contribute to a portfolio of ecosystem functions provided by biodiversity, including wildlife habitat, fuel, and forage. We discuss how spatial patterns of disturbance drive variability within and among patches.

  9. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    NASA Astrophysics Data System (ADS)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  10. Impact of spatial climate variability on catchment streamflow predictions

    NASA Astrophysics Data System (ADS)

    Patil, Sopan; Wigington, Jim; Leibowitz, Scott; Sproles, Eric; Comeleo, Randy

    2014-05-01

    The ability of hydrological models to predict a catchment's streamflow response serves several important needs of our society, such as flood protection, irrigation demand, domestic water supply, and preservation of fish habitat. However, spatial variability of climate within a catchment can negatively affect streamflow predictions if it is not explicitly accounted for in hydrological models. In this study, we examined the changes in streamflow predictability when a hydrological model is run with spatially variable (distributed) meteorological inputs instead of spatially uniform (lumped) meteorological inputs. Both lumped and distributed versions of the EXP-HYDRO model were implemented at 41 meso-scale (500 - 5000 km2) catchments in the Pacific Northwest region of USA (Oregon, Washington, and Idaho). We used two complementary metrics of long-term spatial climate variability, moisture homogeneity index (IM) and temperature variability index (ITV), to analyse the performance improvement with distributed model. Results showed that the distributed model performed better than the lumped model in 38 catchments, and noticeably better (>10% improvement) in 13 catchments. Furthermore, spatial variability of moisture distribution alone was insufficient to explain the observed patterns of model performance improvement. For catchments with low moisture homogeneity (IM < 80%), IM was a better predictor of model performance improvement than ITV; whereas for catchments with high moisture homogeneity (IM > 80%), ITV was a better predictor of performance improvement than IM. Based on the results, we conclude that: (1) catchments that have low homogeneity of moisture distribution are the obvious candidates for using spatially distributed meteorological inputs, and (2) catchments with homogeneous moisture distribution benefit from spatially distributed meteorological inputs if those catchments have high spatial variability of precipitation phase (rain vs. snow). Our use of spatially

  11. [Spatial variability of soil phosphorus in field scale].

    PubMed

    Jiang, Yong; Liang, Wenju; Zhang, Yuge

    2005-11-01

    In this paper, the spatial variability of soil total P and Olsen-P at the depths of 0 approximately 10 and 10 approximately 20 cm in a field-scale was examined by using traditional statistics combined with geostatistics methods. A sampling grid of 30 m x 42 m including 49 pairs of soil sampling points was established in the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences. The results showed that the variance coefficients were much higher for Olsen-P (46.56% approximately 56.42%) than for total P (11.68% approximately 13.33%). Both total P and Olsen-P in the two soil depths had strongly spatial structures and similar spatial correlation ranges. The parameters derived from best-fitted models showed that the spatial variability of both total P and Olsen-P was mainly affected by structural factors, with C/(C0 + C) being higher than 66% for all the variables. The kriging contour maps showed that both total P and Olsen-P in the two soil depths had similar spatial distribution patterns. A more precise sampling scheme could be made based on the spatial distribution pattern of test soil properties combined with traditional variance coefficients. To recognize the strong variability of soil Olsen-P in field-scale is of significance for better understanding the P cycling in farm ecosystems and for precise agriculture.

  12. Exploring High-Latitude Electric Field Variability With the Auroral Spatial Structures Probe Mission

    NASA Astrophysics Data System (ADS)

    Farr, D.; Stromberg, E.; Neilsen, T. L.; Weston, C.; Byers, B.; Frazier, C. A.; Nelson, W.; Perkins, C.; Miller, J.; Swenson, C.; Fish, C. S.

    2012-12-01

    The Auroral Spatial Structures Probe (ASSP) is a NASA sounding rocket mission to be launched in the late January 2014 time frame that, will be used to study both the spatial and temporal small scale variation of the electric and magnetic fields during active aurora and just before the onset of an auroral sub-storm. This will be accomplished through the use of a constellation of small payloads that separate relative to each other throughout a sounding rocket flight. The multiple baseline observations of the electric and magnetic fields will be used to observe variability of both the E-field and the Poynting flux. These observations will be placed in the context of available data, including winds, large scale E-fields, and proxy conductivity (airglow images) observations. In this way we will address the main scientific objective of this mission which is: What are the contributions of small spatial scale and rapid temporal scale fluctuations of electric fields relative to the larger-scale electrodynamic processes? The high altitude rocket will be launched along the magnetic field line and carry six sub-payloads to be ejected from the main payload at high velocity. The sub-payloads will be deployed both along the flight path and perpendicular to the flight path so that both spatial features and temporal-spatial ambiguities can be explored. The low-mass sub-payloads that, for a fixed ejection impulse will achieve at least a 50 km separation by the end of the flight are key to the observational success. Each sub-payload will carry a crossed pair of double-probe sensors to measure in-situ electric fields, a three axis magnetometer, a Langmuir probe and a GPS receiver. In this poster we review the ASSP science and mission, and preliminary design.

  13. Spatial variability of correlated color temperature of lightning channels

    NASA Astrophysics Data System (ADS)

    Shimoji, Nobuaki; Aoyama, Ryoma; Hasegawa, Wataru

    In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other.

  14. Evolution of road risk disparities at small-scale level: example of Belgium.

    PubMed

    Eksler, Vojtech; Lassarre, Sylvain

    2008-01-01

    Road accident outcomes are traditionally analyzed at state or road network level due to a lack of aggregated data and suitable analytical methods. The aim of this paper is to demonstrate usefulness of a simple spatiotemporal modeling of road accident outcomes at small-scale geographical level. Small-area spatiotemporal Bayesian models commonly used in epidemiological studies reveal the existence of spatial correlation in accident data and provide a mechanism to quantify its effect. The models were run for Belgium data for the period 2000-2005. Two different scale levels and two different exposure variables were considered under Bayesian hierarchical models of annual accident and fatal injury counts. The use of the conditional autoregressive (CAR) formulation of area specific relative risk and trend terms leads to more distinctive patterns of risk and its evolution. The Pearson correlation tests for relative risk rates and temporal trends allows researchers to determine the development of risk disparities in time. Analysis of spatial effects allowed the identification of clusters with similar risk outcomes pointing toward spatial structure in road accident outcomes and their background mechanisms. From the analysis of temporal trends, different developments in road accident and fatality rates in the three federated regions of Belgium came into light. Increasing spatial disparities in terms of fatal injury risk and decreasing spatial disparities in terms of accident risk with time were further identified. The application of a space-time model to accident and fatal injury counts at a small-scale level in Belgium allowed identification of several areas with outstandingly high accident (injury) records. This could allow more efficient redistribution of resources and more efficient road safety management in Belgium.

  15. DOE small scale fuel alcohol plant design

    SciTech Connect

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  16. Small Scale Equidistribution of Random Eigenbases

    NASA Astrophysics Data System (ADS)

    Han, Xiaolong

    2017-01-01

    We investigate small scale equidistribution of random orthonormal bases of eigenfunctions (i.e., eigenbases) on a compact manifold M. Assume that the group of isometries acts transitively on M and the multiplicity {m_λ} of eigenfrequency {λ} tends to infinity at least logarithmically as {λ to ∞}. We prove that, with respect to the natural probability measure on the space of eigenbases, almost surely a random eigenbasis is equidistributed at small scales; furthermore, the scales depend on the growth rate of {m_λ}. In particular, this implies that almost surely random eigenbases on the sphere S^n ({n ≥ 2}) and the tori T^n ({n ≥ 5}) are equidistributed at polynomial scales.

  17. Characterization of the spatial variability of channel morphology

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2002-01-01

    The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.

  18. Small Scale Water Disinfection for Military Purposes

    DTIC Science & Technology

    1990-01-01

    AD-A268 654 Small scale water disinfection for military purposes. Gary Thomson DSTO DoGC Materials Research Laboratory ELECTE P.O. Box 147 m...Scottsdale AUG 2 4 •9 3 1. SUMTasmania 7260 E When a military force is in the field, it is impossible to apply at all times the normal practices of water ...purification such as coagulation, flocculation, sedimentation, filtration and chlorination used for a municipal water supply. For personnel who are

  19. Accounting for rainfall systematic spatial variability in flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kévin; Labat, David; Dartus, Denis

    2016-10-01

    Just as with the storms that cause them, flash floods are highly variable and non-linear phenomena in both time and space; hence understanding and anticipating the genesis of flash floods is far from straightforward. There is therefore a huge requirement for tools with the potential to provide advance warning of situations likely to lead to flash floods, and thus provide additional time for the flood forecasting services. The Flash Flood Guidance (FFG) method is used on US catchments to estimate the average number of inches of rainfall for given durations required to produce flash flooding. This rainfall amount is used afterwards as a flood warning threshold. In Europe, flash floods often occur on small catchments (approximately 100 km2) and it has already been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, an improved FFG method which accounts for rainfall spatial variability is proposed. The objectives of this paper are (i) to assess the FFG method applicability on French Mediterranean catchments with a distributed process-oriented hydrological model and (ii) to assess the effect of the rainfall spatial variability on this method. The results confirm the influence of the spatial variability of rainfall events in relation with its interaction with soil properties.

  20. Spatial and temporal variability of chlorophyll in Bay of Bengal.

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, S.; Islam, S.

    2009-04-01

    The Bay of Bengal (BoB) receives approximately 628 km3/ year of freshwater discharge from the Ganges and Brahmaputra rivers. Freshwater discharge from rivers increases the nutrient load and thereby enhances phytoplankton production in the BoB. Cholera, an infectious water-borne disease caused by bacterium Vibrio cholerae, remains endemic in the BoB region. Phytoplankton provides favorable environment for survival of cholera bacteria. Therefore, for development of any predictive model for cholera, it is important to quantify the spatial and temporal variability of phytoplankton in the BoB. Satellite remote sensing is the most effective way to quantify this variability over a range of space and time scales. Using ten years (1998-2007) of daily, weekly and monthly SeaWiFs chlorophyll, a surrogate variable for measuring phytoplankton, imagery we explore the spatial pattern and dominant temporal variability of chlorophyll over the BoB region. We find that chlorophyll in the coastal waters has more variability, both in temporal and spatial scales, than the offshore waters. Mechanism of production and space-time variability of coastal chlorophyll is different from those of offshore chlorophyll. While coastal chlorophyll is dominated by influx of terrestrial nutrients through river discharge, chlorophyll in the offshore region is primarily controlled by oceanic processes. We will also explore issues related to dominant space and time scales of chlorophyll variations in the entire bay.

  1. Probabilistic and spatially variable niches inferred from demography

    Treesearch

    Jeffrey M. Diez; Itamar Giladi; Robert Warren; H. Ronald. Pulliam

    2014-01-01

    Summary 1. Mismatches between species distributions and habitat suitability are predicted by niche theory and have important implications for forecasting how species may respond to environmental changes. Quantifying these mismatches is challenging, however, due to the high dimensionality of species niches and the large spatial and temporal variability in population...

  2. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  3. Temporal and spatial variability of the Denmark Strait Overflow

    NASA Astrophysics Data System (ADS)

    Moritz, Martin; Nunes, Nuno; Jochumsen, Kerstin; Quadfasel, Detlef

    2016-04-01

    The Denmark Strait Overflow (DSO) represents about half of the export of dense waters formed in the Nordic Seas to the deep circulation in the North Atlantic. The passage connecting the two is wider than the Rossby radius of deformation, and highly variable meso-scale current fluctuations are observed in the overflow. In the summer of 2014, the mooring array used for monitoring the Denmark Strait Overflow was expanded from two to five moorings in order to better resolve its spatial variability. Continuous measurements of the velocity field were made using four acoustic profilers (ADCP) and one point current meter (RCM). The instruments were deployed along the sill between the deepest point and 33 km westward of it, towards the Greenland shelf. A descriptive analysis of the structure of the velocity field at the Denmark Strait sill is presented, along with its spatial and temporal variability. The fluctuations are dominated by passing meso-scale vortices, pulsating changes in the strength of the overflow and shifts in the location of the Polar Front. These changes and their respective contribution to the variability of the flow field are discussed with relation to the different source water masses for the DSO. The relationship between spatial coherence and temporal variability on daily to monthly time scales is explored, and the influence of meso-scale eddies on daily to weekly transport estimates is quantified. The results of the analysis are used to develop a measurement strategy for unbiased DSO transport estimates.

  4. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is

  5. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  6. Philippines: Small-scale renewable energy update

    SciTech Connect

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  7. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  8. Small-scale physics of the ocean

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas R.

    1987-01-01

    Observations and theoretical models of small-scale phenomena in the oceans are reviewed, with a focus on progress during the period 1983-1986. Topics examined include surface layers, equatorial turbulence, off-equator mixed layers, the scaling of mixing, turbulence concepts, laboratory results, internal waves and mixing, rings, the nature of the bottom layer, double diffusion and intrusions, salt fingers, and biological interactions. Also discussed are developments in instrumentation (fast sampling profilers with upward-profiling capability, deep profilers, ship-motion correction, horizontal samplers, small submersibles, submarines, towed packages, conductivity sensors, dissolved-oxygen sensors, and acoustic Doppler current profilers) and goals for future research.

  9. Spatial scales of pollution from variable resolution satellite imaging.

    PubMed

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. One perspective on spatial variability in geologic mapping

    USGS Publications Warehouse

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  11. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  12. Analytical model of reactive transport processes with spatially variable coefficients.

    PubMed

    Simpson, Matthew J; Morrow, Liam C

    2015-05-01

    Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

  13. Random spatial processes and geostatistical models for soil variables

    NASA Astrophysics Data System (ADS)

    Lark, R. M.

    2009-04-01

    Geostatistical models of soil variation have been used to considerable effect to facilitate efficient and powerful prediction of soil properties at unsampled sites or over partially sampled regions. Geostatistical models can also be used to investigate the scaling behaviour of soil process models, to design sampling strategies and to account for spatial dependence in the random effects of linear mixed models for spatial variables. However, most geostatistical models (variograms) are selected for reasons of mathematical convenience (in particular, to ensure positive definiteness of the corresponding variables). They assume some underlying spatial mathematical operator which may give a good description of observed variation of the soil, but which may not relate in any clear way to the processes that we know give rise to that observed variation in the real world. In this paper I shall argue that soil scientists should pay closer attention to the underlying operators in geostatistical models, with a view to identifying, where ever possible, operators that reflect our knowledge of processes in the soil. I shall illustrate how this can be done in the case of two problems. The first exemplar problem is the definition of operators to represent statistically processes in which the soil landscape is divided into discrete domains. This may occur at disparate scales from the landscape (outcrops, catchments, fields with different landuse) to the soil core (aggregates, rhizospheres). The operators that underly standard geostatistical models of soil variation typically describe continuous variation, and so do not offer any way to incorporate information on processes which occur in discrete domains. I shall present the Poisson Voronoi Tessellation as an alternative spatial operator, examine its corresponding variogram, and apply these to some real data. The second exemplar problem arises from different operators that are equifinal with respect to the variograms of the

  14. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors.

  15. Microbial spatial variability: An example from the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Martin, Adrian P.; Zubkov, Mikhail V.; Fasham, Michael J.; Burkill, Peter H.; Holland, Ross J.

    2008-03-01

    In July 2004, dominant populations of microbial ultraplankton (<5 μm), in the surface of the Celtic Sea (between UK and Eire), were repeatedly mapped using flow cytometry, at 1.5 km resolution over a region of diameter 100 km. The numerically dominant representatives of all basic functional types were enumerated including one group of phototrophic bacteria (Syn), two groups of phytoplankton (PP, NP), three groups of heterotrophic bacterioplankton (HB) and the regionally dominant group of heterotrophic protists (HP). The distributions of all organisms showed strong spatial variability with little relation to variability in physical fields such as salinity and temperature. Furthermore, there was little agreement between distributions of different organisms. The only linear correlation consistently explaining more than 50% of the variance between any pairing of the organism groups enumerated is between two different groups of HB. Specifically, no linear, or non-linear, relationship is found between any pairings of SYB, PP or HB groups with their protist predators HP. Looking for multiple dependencies, factor analysis reveals three groupings: Syn, PP and low nucleic acid content HB (LNA); high nucleic acid content HB (HNA); HP and NP. Even the manner in which the spatial variability of Syn, PP and HB abundance varies as a function of lengthscale (represented by a semivariogram) differs significantly from that for HP. In summary, although all microbial planktonic groups enumerated are present and numerically dominant throughout the region studied, at face value the relationships between them seem weak. Nevertheless, the behaviour of a simple, illustrative ecological model, with strongly interacting phototrophs and heterotrophs, with stochastic forcing, is shown to be consistent with the observed poor correlations and differences in how spatial variability varies with lengthscale. Thus, our study suggests that a comparison of microbial abundances alone may not discern

  16. Small-scale universality in fluid turbulence

    PubMed Central

    Schumacher, Jörg; Scheel, Janet D.; Krasnov, Dmitry; Donzis, Diego A.; Yakhot, Victor; Sreenivasan, Katepalli R.

    2014-01-01

    Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re ∼ 102 the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range. PMID:25024175

  17. Small-scale ethanol-production demonstration

    SciTech Connect

    Adcock, L.E. II; Eley, M.H.; Schroer, B.J.

    1981-09-01

    The Johnson Environmental and Energy Center with assistance from the Madison County Farm Bureau Association received a grant from the US Department of Energy to design, fabricate, and evaluate a small scale continuous ethanol plant. The scope of the study was to satisfy four specific objectives. The first objective was to design a small scale continuous distillation unit capable of producing 10 to 15 gallons per hour of 170 to 190 proof ethanol. A second objective was to economically fabricate the distillation unit. A third objective was to thoroughly evaluate the unit with emphasis on production potential, operation considerations, and energy balance. The fourth objective was to work with the Farm Bureau in identifying an organization that would place the unit in a production environment. The results of the study indicate that the distillation unit is capable of producing an average of 9 to 14 gallons per hour (based on alcohol percent in beer) of 174 proof ethanol. The energy ratio for distillation is a positive 3:1. Once the unit has reached steady state very little operator attention is required with the exception of periodically refluxing. Material cost of the plate column is approximately $5000. The unit could be built by an individual provided he is trained in welding and has the necessary shop equipment. The report also contains 7 appendices entitled: Principles of ethanol production; pump manufacturer specifications; boiler manufacturer specifications, water treatment manufacturer specifications; tank specifications; test results; and boiler efficiency data sheets. 39 figures, 112 tables.

  18. Expanded Small-Scale Shock Reactivity Test

    NASA Astrophysics Data System (ADS)

    Granholm, Richard

    2005-07-01

    Explosives react from a strong shock, even in quantities too small for detonation. The potential for a new material to be an explosive can be evaluated from this shock reactivity. The recently developed small-scale shock reactivity test (SSRT)ootnotetextH. W. Sandusky, R. H. Granholm, D. G. Bohl, ``Small-Scale Shock Reactivity Test,'' NSWC Technical Report (in publication), Naval Surface Warfare Center, Indian Head, MD 20640 uses very high confinement to allow prompt reactions to occur in less than half-gram samples well below critical diameter, with the reactions quantified by a dent in a soft aluminum witness block. This test has been expanded to simultaneously measure both early and late-time reactions from a single sample subjected to the output from an RP-80 detonator. The sample apparatus is further confined within a small chamber instrumented with a pressure gage for internal air blast. This provides a measure of late-time reactions, such as from fuel/air combustion. Results are shown from several simultaneous early- and late-reaction measurements.

  19. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  20. Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation.

    PubMed

    Born, Céline; Hardy, Olivier J; Chevallier, Marie-Hélène; Ossari, Simon; Attéké, Christiane; Wickings, E Jean; Hossaert-McKey, Martine

    2008-04-01

    Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m.

  1. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  2. Spatial Variability in Basal Mass Balance of the Roi Baudouin Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank

    2017-04-01

    Ice-shelf buttressing is an important component controlling the dynamic mass loss of ice sheets. The basal mass balance (BMB, i.e. the sum of melting/refreezing beneath ice shelves), and spatio-temporal variations thereof, critically impact the ice-shelf buttressing strength. Therefore, it is important to pinpoint BMB area-wide from space which is challenging because many input parameters are typically not well resolved. Here, we present the BMB field of the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica at 10 m gridding, based on mass conservation in a Lagrangian framework using interferometric elevations and surface velocities along with atmospheric modelling. We apply the total variation differentiation to account for noisy input data, which circumnavigates spatial averaging with corresponding loss of spatial resolution. At the core of our analysis is a high-resolution surface elevation model from the TandDEM-X satellites (consisting out of 43 scenes), from which we derive the hydrostatic ice thickness in 2013 and 2014. This dataset clearly resolves small-scale features such as ice-shelf channels, resulting in a yearly-averaged BMB field revealing much detail. Our satellite-based BMB field shows good agreement with on-site measurements from phase-sensitive radar over a two-week time period, and we compare the hydrostatic thickness with measurements from ground-penetrating radar highlighting unresolved spatial variations of firn density. Our BMB field ranges from -14.8 to 8.6 m/yr, with an average of -0.8 m/yr. Highest melting is found close to the grounding line, where ice thickness changes are most prominent. As an example for the small-scale variability in the BMB field, we investigate a previously identified englacial lake at 30 m depth extending over an area of 0.7 by 1.3 km. Using the TanDEM-X DEMs and kinematic GNSS we find localized surface lowering of 5 to 10 m/yr which we tentatively attribute to a transient adaptation to hydrostatic

  3. Modeling spatial variability of airborne levoglucosan in Seattle, Washington

    NASA Astrophysics Data System (ADS)

    Su, J. G.; Buzzelli, M.; Brauer, M.; Gould, T.; Larson, T. V.

    In many urban areas residential wood burning is a significant source of wintertime fine particles and has an important influence on spatial variability of particle concentrations. Although woodsmoke fine particles are usually within the size range thought to be most damaging to human health, their chemical composition is different from those derived from fossil fuel combustion, on which most health-effects studies have focused. Development of an exposure assessment tool for identification of the spatial distribution of woodsmoke will improve future epidemiological studies that rely on such intra-urban variability. For land-use regression (LUR) models, uniform buffers (i.e., circular areas or grids) are often applied to model spatial variability of pollutant concentrations. However, when winter woodsmoke levels are expected to be at a maximum, the surface wind is influenced by drainage flow and a given receptor location is systematically downwind of uphill sources. This research extends our previously developed GIS-based catchment air flow modeling approach of wintertime average woodsmoke levels to Seattle, WA, with emphasis on the use of levoglucosan as a marker of wood combustion. We further compare our regression model to a historical data set of mobile light-scattering measurements taken 15-20 years ago. Although fine particle levels have decreased significantly over this period, the spatial models for current levoglucosan ( R2=0.57) and historical light scattering ( R2=0.49) predict similar spatial patterns. This research demonstrates the usefulness of using both light scattering and levoglucosan to model ambient woodsmoke concentrations and further demonstrates the usefulness of the concept of drainage catchments to identify elevated, persistent nighttime levels of fine particles.

  4. Spatial and temporal variability of hyperspectral signatures of terrain

    NASA Astrophysics Data System (ADS)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

  5. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  6. Small-scale soil moisture determination with GPR

    NASA Astrophysics Data System (ADS)

    Igel, Jan; Preetz, Holger

    2010-05-01

    The knowledge of topsoil moisture distribution is an important input for modelling water flow and evapotranspiration which are essential processes in hydrology, meteorology, and agriculture. All these processes involve non-linear effects and thus the small-scale variability of input parameters play an important role. Using smoothed interpolations instead can cause significant biases. Lateral soil moisture distribution can be sensed by different techniques at various scales whereby geophysical methods provide spatial information which closes the gap between point measurements by classical soil scientific methods and measurements on the field or regional scale by remote sensing. Ground-penetrating radar (GPR) can be used to explore soil moisture on the field scale as propagation of electromagnetic waves is correlated to soil water content. By determining the velocity of the ground wave, which is a guided wave travelling along the soil surface, we can sense soil water content. This method has been applied to determine topsoil moisture for several years. We present a new groundwave technique which determines the velocity in between two receiving antennas which enables a higher lateral resolution (approx. 10 cm) compared to classical groundwave technique (half meter and more). We present synthetic data from finite-differences (FD) calculations as well as data from a sandbox experiment carried out under controlled conditions to demonstrate the performance of this method. Further, we carried out field measurements on two sites on a sandy soil which is used as grassland. The measurements were carried out in late summer at dry soil conditions. Soil moisture on the first site shows an isotropic pattern with correlation lengths of approx. 35 cm. We think this natural pattern is governed by rout distribution within the soil and the water uptake of vegetation. On the second site, soil moisture distribution shows a regular stripe pattern. As the land has been used as

  7. Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters

    NASA Astrophysics Data System (ADS)

    Tortell, Philippe D.

    2005-11-01

    Marine continental shelf waters are known to contribute significantly to the global air-sea fluxes of many gases. Biogeochemical cycles in these regions are highly dynamic, and it is thus often difficult to fully resolve the spatial and temporal distribution of gases in the upper water column. High-frequency, real-time gas measurements with a membrane inlet mass spectrometer (MIMS) reveal significant small-scale heterogeneity in the distribution of CO2, O2/Ar ratios, and dimethylsulfide (DMS) in continental shelf waters of the Eastern Subarctic Pacific Ocean and Bering Sea. Decorrelation length scales for the gas distributions ranged from 15 to 25 km, with significant variability observed on subkilometer spatial scales. In the case of DMS, a number of rapid excursions were observed over distances that would be difficult to resolve with conventional methods. Across most of the sampling transects, CO2 and O2/Ar ratios were correlated, suggesting that biological processes dominated the cycling of these gases. In contrast, DMS concentrations were generally uncoupled from CO2 and O2/Ar, although concentrations often did change sharply across hydrographic and productivity fronts. The results presented here suggest that previous field studies may have underestimated the true spatial variability of dissolved gases (DMS in particular) in surface waters of highly dynamic marine systems. High-frequency gas measurements have significant promise for unraveling complex biogeochemical cycles in these regions.

  8. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be

  9. Multi-scale controls on spatial variability in river biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load

  10. Spatial and temporal precipitation variability as a component of site-specific crop yield variability

    NASA Astrophysics Data System (ADS)

    O'Neal, Monte Ray

    The purpose of this study was to determine spatial and temporal precipitation variability, and the effect of this variability on yield and profitability. On-farm precipitation data is currently being measured by site- specific farmers. One potential use of the data is to provide inputs for corn yield modeling, which has been performed with neural networks and simulation. Profitability of measuring on-farm data depends on spatial precipitation variability and its effect on yield. Precipitation and air temperature from corn silking to dent stages, scale of yield data, and a technology factor were used to model corn yield in east central Indiana at farm (250 ha), county, and state scales, using backpropagation neural networks with five data coding schemes. The best net gave a root-mean-squared error of 11.9% overall (10.9% farm, 10.5% county, 7.9% state yield), with maximum-value interval coding. Four rain gauges on the same farm, spaced apart 1.02 to 3.04 km, gave a median absolute deviation of precipitation among gauges, by corn and soybean phenological phase, of 0.25 to 1.73 mm.day-1 (spatial variability). Median absolute deviation from a reference year was 0.17 to 3.40 mm.day-1 (temporal/year-to- year variability). Spatial variability was less than temporal variability, and frequently less than 1 mm. Three precipitation data sources-a National Weather Service (NWS) station on the same farm, the nearest non- urban NWS station, and a weighted mean of three nearest non-urban NWS stations (27-35 km distance)-were used to simulate corn yield by 1-ha grid cells with CERES-Maize. The percent absolute difference of simulated yield among the three sources (effect of spatial precipitation variability) was 15.8%. The percent absolute difference from long-term mean (temporal variability) was 21.5%, of the same order as spatial variability. A choice among nitrogen application strategies-variable-rate versus whole-field application, starter versus no starter-was made for the

  11. Concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: implications for small-scale diagnostic and environmental monitoring.

    PubMed

    Fisner, Mara; Taniguchi, Satie; Majer, Alessandra P; Bícego, Márcia C; Turra, Alexander

    2013-11-15

    Plastic pellets may serve as a carrier of toxic contaminants, including polycyclic aromatic hydrocarbons (PAHs). Considering that beach morphodynamics and pellet distribution varied along the shore, and that contaminant sources may vary on different scales, it is expected that this variability is reflected in the concentration and composition of contaminants. This hypothesis was tested through a sampling of plastic pellets at 30 sites along the shore in Santos Bay (Brazil). The total PAH concentrations and the priority PAHs showed high variability, with no clear pattern. Their composition differed among the sampling sites; some of the compounds represent a potential risk to organisms. The sources of contamination, as indicated by the isomer ratios, were also variable among sites. The high small-scale spatial variability found here has implications for estimating the plastic pellet contamination on beaches, since a sample from a single site is unlikely to be representative of an entire beach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Energetics in robotic flight at small scales.

    PubMed

    Karydis, Konstantinos; Kumar, Vijay

    2017-02-06

    Recent advances in design, sensing and control have led to aerial robots that offer great promise in a range of real-world applications. However, one critical open question centres on how to improve the energetic efficiency of aerial robots so that they can be useful in practical situations. This review paper provides a survey on small-scale aerial robots (i.e. less than 1 m(2) area foot print, and less than 3 kg weight) from the point of view of energetics. The paper discusses methods to improve the efficiency of aerial vehicles, and reports on recent findings by the authors and other groups on modelling the impact of aerodynamics for the purpose of building energy-aware motion planners and controllers.

  13. Small-scale Features in Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Jones, S.; Jaynes, A. N.; Knudsen, D. J.; Trondsen, T.; Lessard, M.

    2011-12-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the 'off' phase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  14. Small-Scale Features in Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc

    2011-01-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  15. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1992-01-01

    A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains.

  16. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  17. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  18. [Scale-dependency of spatial variability of soil available nutrients].

    PubMed

    Yang, Qi-Yong; Yang, Jing-Song; Liu, Guang-Ming

    2011-02-01

    With the support of GIS and by using classical statistics and geostatistics methods, the spatial variability of soil available P (AP) and available K (AK) in cultivated lands in Yucheng City of Shandong Province was approached at county and township scales. The results showed that both the soil AP and AK followed the logarithmic normal distribution, with the coefficient of variation (CV) at the two scales being 26.5% - 36.6% and presenting a moderate variation. With the decrease of the scale, the CV of the soil AP and AK increased. Both the soil AP and AK were spatially correlated with scale. At county scale, the soil AP and AK had a larger spatial correlation distance, being 9.0 km and 26.5 km, respectively; while at township scale, the soil AP and AK had a smaller spatial correlation distance, being 1.7 km and 2.8 km, respectively. The spatial distribution of the soil AP and AK at the two scales was obviously different, which was mainly affected by structural factors and random factors.

  19. Small-scale distribution of Solea solea and Solea senegalensis juveniles in the Tagus estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Maia, A.; Reis-Santos, P.; Costa, M. J.; Cabral, H. N.

    2009-02-01

    The distribution of Solea solea and Solea senegalensis in the Tagus estuary was studied following a small-scale approach. Preliminary sampling revealed that sole concentrated in two areas within their nursery grounds, the main subtidal channel and a large intertidal mudflat. Beam trawls were conducted intensively in the two areas in July 2006. Depth, salinity and water temperature were measured. Substrate samples were collected for sediment type determination and macrobenthos identification and quantification. Generalized linear models were applied in order to explain the occurrence and variability of soles' densities, using depth, salinity, water temperature and abundance of polychaetes, oligochaetes, amphipods, isopods and bivalves as explanatory variables. While S. solea was more abundant in the main subtidal channel, a deeper, warmer and lower salinity area, S. senegalensis abundance was highest at the intertidal mudflat area. Presence of both species in the two areas was associated with abundance of polychaetes (generally with another variable associated), and for S. senegalensis in the subtidal channel it was associated with amphipods and depth. Abundance of S. solea in the main subtidal channel was associated mainly with polychaetes abundance, while that of S. senegalensis was associated with amphipods density. In the intertidal mudflat, bivalves and polychaetes presented significant relationships with both species densities. Some of the factors that had been reported to be important for the distribution of these species in previous studies also do so at a finer scale; however, this small-scale approach provided an in-depth knowledge on habitat selection and spatial segregation of these species within this nursery area.

  20. Small-scale variation of snow in a regional permafrost model

    NASA Astrophysics Data System (ADS)

    Gisnås, Kjersti; Westermann, Sebastian; Vikhamar Schuler, Thomas; Melvold, Kjetil; Etzelmüller, Bernd

    2016-06-01

    The strong winds prevalent in high altitude and arctic environments heavily redistribute the snow cover, causing a small-scale pattern of highly variable snow depths. This has profound implications for the ground thermal regime, resulting in highly variable near-surface ground temperatures on the metre scale. Due to asymmetric snow distributions combined with the nonlinear insulating effect of snow, the spatial average ground temperature in a 1 km2 area cannot be determined based on the average snow cover for that area. Land surface or permafrost models employing a coarsely classified average snow depth will therefore not yield a realistic representation of ground temperatures. In this study we employ statistically derived snow distributions within 1 km2 grid cells as input to a regional permafrost model in order to represent sub-grid variability of ground temperatures. This improves the representation of both the average and the total range of ground temperatures. The model reproduces observed sub-grid ground temperature variations of up to 6 °C, and 98 % of borehole observations match the modelled temperature range. The mean modelled temperature of the grid cell reproduces the observations with an accuracy of 1.5 °C or better. The observed sub-grid variations in ground surface temperatures from two field sites are very well reproduced, with estimated fractions of sub-zero mean annual ground surface temperatures within ±10 %. We also find that snow distributions within areas of 1 km2 in Norwegian mountain environments are closer to a gamma than to a lognormal theoretical distribution. The modelled permafrost distribution seems to be more sensitive to the choice of distribution function than to the fine-tuning of the coefficient of variation. When incorporating the small-scale variation of snow, the modelled total permafrost area of mainland Norway is nearly twice as large compared to the area obtained with grid-cell average snow depths without a sub

  1. Small-scale morphology across the surf zone

    USGS Publications Warehouse

    Thornton, E.B.; Swayne, J.L.; Dingler, J.R.

    1998-01-01

    Small-scale (< 5 m horizontal length) nearshore morphologic height variations were measured by combining CRAB surveys with bed elevations acquired with a 1 MHz sonic altimeter mounted on the CRAB during the October Phase of the DUCK94 experiment. Bedform plan views were recorded simultaneously using a 500 kHz side-scan sonar mounted on the CRAB. Waves and currents were measured at the same time. Significant temporal and spatial variations in the small-scale morphology were measured in response to changing waves and currents during the 2 weeks examined. Three cases are examined in detail: (1) mild waves and weak longshore currents resulting in wave ripples throughout the study area; (2) storm waves with strong longshore currents resulting in lunate and straight-crested mega-ripples in the trough of the barred beach; and (3) narrow-band, normally incident waves with a strong rip current resulting in a planar bed except in the throat of the rip where mega-ripples were measured. Wavenumber spectra of the bed were generally broad, indicating newly formed ripples coexisted with residual ripples from the past to form complex, multi-scaled ripple patterns.

  2. Wet tropospheric delay spatial variability over terrestrial water bodies

    NASA Astrophysics Data System (ADS)

    Clark, E.; Moller, D.; Andreadis, K.; Lettenmaier, D. P.

    2013-12-01

    Among the sources of uncertainty in radar altimetry measurements of inland water bodies is the signal delay associated with space-time variations in water vapor in the atmosphere. Over the ocean, zenith wet tropospheric path delays (PD) can be measured by satellite microwave radiometry; however, the high brightness temperature of land prevents the use of these techniques over inland waters. SAR-based Atmospheric Phase Screens can be estimated over land, but not over water bodies. Radiosonde- and GPS-based estimates of PD over land are available, yet these measurements occur at specific, sparse locations. Atmospheric models are therefore the best source of information about space-time variations in PD, where observations (e.g., from radiosonde and GPS) are incorporated via data assimilation. The upcoming Surface Water and Ocean Topography mission (SWOT) will use Interferometric Synthetic Aperture Radar (InSAR) in Ka-band, at a high incidence angle, to measure temporal variations in water elevation, slope, and extent in rivers, lakes, and reservoirs. Images will be collected over a 120-km wide swath with <100 m spatial resolution and ~1 cm height precision when averaged over a 1 km2 area, with a 21-day repeat cycle. At present, the spatial and temporal variability of PD at spatial scales relevant to the mission's inland water objectives (e.g., measurement of variations in the storage of reservoirs and lakes with spatial extent order 1 sq. km and larger) is an open question. We report the results of simulations of PD based on simulations from the Weather Research and Forecasting (WRF) numerical weather prediction model. We consider two domains within the continental U.S.: 1) the Pacific Northwest (at 4-km and 4/3-km spatial resolutions, via WRF results provided by the Northwest Modeling Consortium), and 2) sections of New Mexico, Oklahoma, and Texas (at 2.33-km spatial resolution, via simulations performed for this study). We then investigate the spatial and temporal

  3. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e

  4. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes, and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions. Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical-biological-chemical interactions take place. Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain, yielding a framework for exploring the controls on spatially and temporally intermittent processes. The following discussion highlights

  5. Catchment scale soil moisture spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2012-02-01

    SummaryThe characterization of the spatial-temporal variability of soil moisture is of paramount importance in many scientific fields and operational applications. However, due to the high variability of soil moisture, its monitoring over large areas and for extended periods through in situ point measurements is not straightforward. Usually, in the scientific literature, soil moisture variability has been investigated over short periods and in large areas or over long periods but in small areas. In this study, an effort to understanding soil moisture variability at catchment scale (>100 km2), which is the size needed for some hydrological applications and for remote sensing validation analysis, is done. Specifically, measurements were carried out in two adjacent areas located in central Italy with extension of 178 and 242 km2 and over a period of 1 year (35 sampling days) with almost weekly frequency except for the summer period because of soil hardness. For each area, 46 sites were monitored and, for each site, 3 measurements were performed to obtain reliable soil moisture estimates. Soil moisture was measured with a portable Time Domain Reflectometer for a layer depth of 0-15 cm. A statistical and temporal stability analysis is employed to assess the space-time variability of soil moisture at local and catchment scale. Moreover, by comparing the results with those obtained in previous studies conducted in the same study area, a synthesis of soil moisture variability for a range of spatial scales, from few square meters to several square kilometers, is attempted. For the investigated area, the two main findings inferred are: (1) the spatial variability of soil moisture increases with the area up to ˜10 km2 and then remains quite constant with an average coefficient of variation equal to ˜0.20; (2) regardless of the areal extension, the soil moisture exhibits temporal stability features and, hence, few measurements can be used to infer areal mean values with a

  6. Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak

    PubMed Central

    Chu, Hone-Jay; Lin, Bo-Cheng; Yu, Ming-Run; Chan, Ta-Chien

    2016-01-01

    Outbreaks of infectious diseases or multi-casualty incidents have the potential to generate a large number of patients. It is a challenge for the healthcare system when demand for care suddenly surges. Traditionally, valuation of heath care spatial accessibility was based on static supply and demand information. In this study, we proposed an optimal model with the three-step floating catchment area (3SFCA) to account for the supply to minimize variability in spatial accessibility. We used empirical dengue fever outbreak data in Tainan City, Taiwan in 2015 to demonstrate the dynamic change in spatial accessibility based on the epidemic trend. The x and y coordinates of dengue-infected patients with precision loss were provided publicly by the Tainan City government, and were used as our model’s demand. The spatial accessibility of heath care during the dengue outbreak from August to October 2015 was analyzed spatially and temporally by producing accessibility maps, and conducting capacity change analysis. This study also utilized the particle swarm optimization (PSO) model to decrease the spatial variation in accessibility and shortage areas of healthcare resources as the epidemic went on. The proposed method in this study can help decision makers reallocate healthcare resources spatially when the ratios of demand and supply surge too quickly and form clusters in some locations. PMID:27983611

  7. Temporal Changes in the Spatial Variability of Soil Nutrients

    SciTech Connect

    R. L. Hoskinson; J. R. Hess; R. S. Alessi

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  8. Temporal Changes in the Spatial Variability of Soil Nutrients

    SciTech Connect

    Hoskinson, Reed Louis; Hess, John Richard; Alessi, Randolph Samuel

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  9. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the

  10. Impact of small-scale distribution of basal pressure for subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Pierre-Marie; Jackson, Miriam; Lappegard, Gaute; Ove Hagen, Jon

    2013-04-01

    speed-up events or a surge. In this study, we provide a long-term analysis of the occurrence of those events and infer their significance for maintaining areas of high water pressure over different time-scales (days, months and years) as well as for the basal drag. Finally, we discuss the importance of small-scale observations in the light of measurements showing very strong spatial disparities in normal pressure for two pairs of sensors located less than a meter apart. Discharge measurements provide further insights into the overall behaviour of the subglacial system. Strong correlation with subglacial normal pressure demonstrates the existence of rare global events. In contrast, locally independent events are more frequent suggesting very variable water flow paths and a more distributed drainage system. These last observations suggest periods of water flow controlled mainly by small-scale pressure distribution and small-scale topography. These results highlight the importance of the transition between high and low pressurised drainage system regarding local water storage and its possible impact on ice dynamics. As the resolution of models increases, new small-scale processes will have to be included.

  11. Dual-tracer transport experiments in a physically and chemically heterogeneous porous aquifer: effective transport parameters and spatial variability

    NASA Astrophysics Data System (ADS)

    Ptak, T.; Schmid, G.

    1996-08-01

    In order to investigate the effects of reactive transport processes within a heterogeneous porous aquifer, two small-scale forced gradient tracer tests were conducted at the 'Horkheimer Insel' field site. During the experiments, two fluorescent tracers were injected simultaneously in the same fully penetrating groundwater monitoring well, located approximately 10 m from the pumping well. Fluoresceine and Rhodamine WT were used to represent the classes of practically non-sorbing and sorbing solutes, respectively. Multilevel breakthrough curves with a temporal resolution of 1 min were measured for both tracers at different depths within the pumping well using fibre-optic fluorimeters. This paper presents the tracer test design, the fibre-optic fluorimetry instrumentation, the experimental results and the interpretation of the measured multilevel breakthrough curves in terms of temporal moments and effective transport parameters. Significant sorption of Rhodamine WT is apparent from the effective retardation factors. Furthermore, an enhanced tailing of Rhodamine WT breakthrough curves is observed, which is possibly caused by a variability of aquifer sorption properties. The determined effective parameters are spatially variable, suggesting that a complex numerical flow and transport modelling approach within a stochastic framework will be needed to adequately describe the transport behaviour observed in the two experiments. Therefore, the tracer test results will serve in future work for the validation of numerical stochastic transport simulations taking into account the spatial variability of hydraulic conductivity and sorption-related aquifer properties.

  12. Coastal fish indicators response to natural and anthropogenic drivers-variability at temporal and different spatial scales

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Bergström, U.; Olsson, J.; Carstensen, J.

    2016-12-01

    Ecological indicators are increasingly used in marine and freshwater management but only few are developed towards full operationalization with known patterns of variability and documented responses to natural and anthropogenic environmental drivers. Here, we evaluate potential sources of indicator variability at two different spatial scales in three coastal fish-based indicators of environmental status in the Baltic Sea; abundance of cyprinids, abundance of perch and the proportion of larger perch. The study was performed on a data set covering 41 monitoring areas subject to different levels of anthropogenic impact, at a latitudinal range of 56-66°N and a salinity range of 2-8. Interannual variation was clearly minor relative to spatial variation. Small-scale spatial variation was related to water depth, wave exposure and water temperature. The remaining variation was assessed in relation to differences in natural and anthropogenic drivers between monitoring areas. Cyprinids showed a clear inverse relationship to water transparency, which was used as a proxy for eutrophication, indicating increased abundances in nutrient enriched areas. None of the indicators showed an expected negative relationship to the level of coastal commercial fisheries catches. Rather, a positive relationship for Perch suggested that the coastal fisheries were concentrated to areas with strong perch populations in the studied areas. The effect of salinity and climate (temperature during the growth season) among monitoring areas were small. The results emphasize the importance of assigning area-specific boundary levels to define good environmental status in the coastal fish indicators, in order to account for natural sources of variability. Further, although long-term monitoring in reference areas is crucial for obtaining a historical baseline, our results suggest that the status assessment of coastal fish would generally gain precision by increasingly including spatially based assessments

  13. Modeling Small-Scale Nearshore Processes

    NASA Astrophysics Data System (ADS)

    Slinn, D.; Holland, T.; Puleo, J.; Puleo, J.; Hanes, D.

    2001-12-01

    In recent years advances in high performance computing have made it possible to gain new qualitative and quantitative insights into the behavior and effects of coastal processes using high-resolution physical-mathematical models. The Coastal Dynamics program at the U.S. Office of Naval Research under the guidance of Dr. Thomas Kinder has encouraged collaboration between modelers, theoreticians, and field and laboratory experimentalists and supported innovative modeling efforts to examine a wide range of nearshore processes. An area of emphasis has been small-scale, time-dependent, turbulent flows, such as the wave bottom boundary layer, breaking surface waves, and the swash zone and their effects on shoaling waves, mean currents, and sediment transport that integrate to impact the long-term and large-scale response of the beach system to changing environmental conditions. Examples of small-scale modeling studies supported by CD-321 related to our work include simulation of the wave bottom boundary layer. Under mild wave field conditions the seabed forms sand ripples and simulations demonstrate that the ripples cause increases in the bed friction, the kinetic energy dissipation rates, the boundary layer thickness, and turbulence in the water column. Under energetic wave field conditions the ripples are sheared smooth and sheet flow conditions can predominate, causing the top few layers of sand grains to move as a fluidized bed, making large aggregate contributions to sediment transport. Complementary models of aspects of these processes have been developed simultaneously in various directions (e.g., Jenkins and Hanes, JFM 1998; Drake and Calantoni, 2001; Trowbridge and Madsen, JGR, 1984). Insight into near-bed fluid-sediment interactions has also been advanced using Navier-Stokes based models of swash events. Our recent laboratory experiments at the Waterways Experiment Station demonstrate that volume-of-fluid models can predict salient features of swash uprush

  14. Spatial and temporal variability of precipitation and drought in Portugal

    NASA Astrophysics Data System (ADS)

    Martins, D. S.; Raziei, T.; Paulo, A. A.; Pereira, L. S.

    2012-05-01

    The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941-2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI), was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI) and the modified PDSI for Mediterranean conditions (MedPDSI) were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.

  15. Initial Comparison of Spatial Variability in CO2 Column as seen by OCO-2 and an Airborne CO2 LIDAR within ACT-America

    NASA Astrophysics Data System (ADS)

    Bell, E.; O'Dell, C.; Browell, E. V.; Lin, B.; Kooi, S. A.; Dobler, J. T.; Obland, M. D.; Lauvaux, T.; Feng, S.; Davis, K. J.

    2016-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite provides column CO2 data at high enough spatial resolution, 1-10km, that sparse ground-based networks cannot directly validate the accuracy of the measured spatial variability. As part of NASA's Atmospheric Carbon and Transport - America (ACT-America) field campaign, the Multi-functional Fiber Laser Lidar (MFLL) instrument has completed underflights of OCO-2 in an attempt to capture and validate these spatial variations in XCO2 within North America. In this work, analysis of data from the ACT-America summer/early fall 2016 campaign reveals the level of agreement between the two. We have found that the success of the comparison depends on several variables, such as OCO-2 quality flagging, lidar-measured range to the surface, and data averaging to reduce instrument noise. The roles of systematic errors in both OCO-2 and the MFLL measurements are evaluated to determine how they contribute to spurious spatial variability. We will also discuss the spatial variability on these small scales in the context of simulated column CO2 variability from a high-resolution model simulation. Pending data availability, measurements from the ASCENDS CarbonHawk Experiment Simulator (ACES) lidar instrument, which was also flown on the same aircraft, will also be included in the comparison.

  16. Evolving Flare Ribbon Small-Scale Substructure: A Second Candidate

    NASA Astrophysics Data System (ADS)

    Roegge, Alissa; Brannon, Sean

    2017-01-01

    We present preliminary analysis on imaging and spectroscopic observations from the Interface Region Imaging Spectrograph (IRIS) of the evolution of the flare ribbon in the SOL2014-06-22T13:08 B-class flare event, at high spatial resolution and time cadence. IRIS is a solar observation satellite containing a high frame rate ultraviolet imaging spectrometer. This work continues the work started in Brannon et al 2015 by searching for small-scale substructure within flare ribbons, which manifest themselves as coherent quasiperiodic oscillations in both position and Doppler velocities. Using IRIS observations from October 2013 to June 2016, we selected candidate observations on the basis of physical characteristics, Si IV intensity, and shift in doppler velocity. In addition to our preliminary analysis and images, we present our techniques that can be used to find further observations also containing the periodic oscillations, and other small-substructure.

  17. Spatial Variability of Drought for Continental South America

    NASA Astrophysics Data System (ADS)

    De Mattos, J. Z.; Goncalves, L.; Herdies, D. L.; Dos Santos, A. F.; Scanlon, B. R.

    2013-12-01

    Drought is one of the most complex but least understood of all natural hazards, affecting more people than any other natural hazard. Unlike other disasters that quickly come and go, droughts generally persist for a long time, leading to extensive damage and, in some cases, is responsible for mass migration and civilization losses. In the last years, many countries in South America have undergone long periods of drought, leading to large scale decline in agricultural and livestock production. Understanding spatial variability and duration of drought is critical for establishing early warning systems to reduce vulnerability to this natural hazard. In this study, we investigated spatial variability and duration of drought espisodes over South America from 1948 to 2006. The analisys is based on a regional soil moisture dataset derived from a model simulation of the terrestrial hydrologic cycle. The simulation is driven by a hybrid observation-reanalysis-based meteorological dataset and provides a globally consistent and physically based view of moisture availability. A clustering algorithm was used as well to identify individual drought events and their spatial extent from monthly summaries of simulated data. Results show that the 1960's was a period of most severe drought for the period of analysis. In addition, several other periods had intense droughts, such as 1995 where 40% of South America was under drought. Regions historically marked by droughts, such as the Brazil Northeast also shows intense intense droughts during 1997-1998. Information on spatiotemporal variability in droughts throughout S America using a consistent modeling framework and forcing data will be extremely valuable for assessing future drought vulnerability in these regions.

  18. Spatial Variability of Streambed Hydraulic Conductivity of a Lowland River

    NASA Astrophysics Data System (ADS)

    Schneidewind, Uwe; Thornton, Steven; Van De Vijver, Ellen; Joris, Ingeborg; Seuntjens, Piet

    2015-04-01

    Streambed hydraulic conductivity K is a key physical parameter, which describes flow processes in the hyporheic zone (HZ), i.e. the dynamic interface between aquifers and streams or rivers. Knowledge of the spatial variability of K is also important for the interpretation of contaminant transport processes in the HZ. Streambed K can vary over several magnitudes at small spatial scales. It depends mostly on streambed sediment characteristics (e.g. effective porosity, grain size, packing), streambed processes (e.g. sedimentation, colmation and erosion) and the development of stream channel geometry and streambed morphology (e.g. dunes, anti-dunes, pool-riffle sequences, etc.). Although heterogeneous in natural streambeds, streambed K is often considered to be a constant parameter due to a lack of information on its spatial distribution. Here we show the spatial variability of streambed K for a small section of the River Tern, a lowland river in the UK. Streambed K was determined for more than 120 vertically and horizontally distributed locations from grain size analyses using four empirical approaches (Hazen, Beyer, Kozeny and the USBR model). Additionally, streambed K was estimated from falling head tests in 36 piezometers installed into the streambed on a 4 m by 16 m grid, by applying the Springer-Gelhar Model. For both methods streambed K followed a log-normal distribution. Variogram analysis was used to deduce the spatial variability of the streambed K values within several streambed profiles parallel and perpendicular to the main flow direction in the stream. Hydraulic conductivity Kg estimated from grain size analyses varied between 1 m/d and 155 m/d with standard deviations of 79% to 99% depending on the empirical approach used. Kh estimated from falling head tests varied between 1 m/d and 22 m/d with a standard deviation of about 50%, depending on the degree of anisotropy assumed. After rescaling the data to obtain a common sample support, Pearson correlation

  19. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  20. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1993-01-01

    A previously derived analytical model for the small-scale structure of turbulence is reformulated in such a way that the energy spectrum may be computed. The model is an ensemble of two-dimensional (2D) vortices with internal spiral structure, each stretched by an axially symmetric strain flow. Stretching and differential rotation produce an energy cascade to smaller scales in which the stretching represents the effect of instabilities and the spiral structure is the source of dissipation at the end of the cascade. The energy spectrum of the resulting flow may be expressed as a time integration involving only the enstrophy spectrum of the time evolving 2D cross section flow, which may be obtained numerically. Examples are given in which a k exp -5/3 spectrum is obtained by this method. The k exp -5/3 inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the 2D enstrophy spectrum. The results are found to be insensitive to time dependence of the strain rate, including even intermittent on-or-off strains.

  1. Marrying kin in small-scale societies.

    PubMed

    Walker, Robert S; Bailey, Drew H

    2014-01-01

    Marriages among kin have the dual effect of both increasing average group relatedness as well as reducing the total number of kin by eliminating more genealogically and geographically distant individuals from kinship networks. Marriage decisions therefore face a tradeoff between density of kin, or formation of intensive kinship systems, and the diversity of kin, or extensive kinship systems. This article tests the hypothesis that extensive kinship systems best characterize hunter-gatherer societies, whereas more intensive forms of subsistence, like horticultural, agricultural, and pastoral economies, are more likely to have intensive kinship systems. Here, we investigate the wide range of variation in prevalence of kin marriages across a sample of 46 small-scale societies, split evenly between hunter-gatherers and agropastoralists (including horticulturalists), using genealogies that range in depth from 4 to 16 generations. Regression methods examine how subsistence and polygyny relate to spousal relatedness and inbreeding across societies. On average, hunter-gatherers show limited numbers of kin marriages and low levels of inbreeding, whereas some agropastoralists are characterized by much higher levels of both, especially in societies where polygynous marriages are more common. Intensive kinship systems emerge in some intensive economies. This pattern may have favored a kin-selected increase in more large-scale cooperation and inequality occurring relatively recently in human history after the advent of domesticated plants and animals. Copyright © 2014 Wiley Periodicals, Inc.

  2. TURBULENT SMALL-SCALE DYNAMO ACTION IN SOLAR SURFACE SIMULATIONS

    SciTech Connect

    Graham, Jonathan Pietarila; Cameron, Robert; Schuessler, Manfred

    2010-05-10

    We demonstrate that a magneto-convection simulation incorporating essential physical processes governing solar surface convection exhibits turbulent small-scale dynamo action. By presenting a derivation of the energy balance equation and transfer functions for compressible magnetohydrodynamics, we quantify the source of magnetic energy on a scale-by-scale basis. We rule out the two alternative mechanisms for the generation of the small-scale magnetic field in the simulations: the tangling of magnetic field lines associated with the turbulent cascade and Alfvenization of small-scale velocity fluctuations ('turbulent induction'). Instead, we find that the dominant source of small-scale magnetic energy is stretching by inertial-range fluid motions of small-scale magnetic field lines against the magnetic tension force to produce (against Ohmic dissipation) more small-scale magnetic field. The scales involved become smaller with increasing Reynolds number, which identifies the dynamo as a small-scale turbulent dynamo.

  3. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies

  4. Mapping the spatial variability of plant diversity in a tropical forest: comparison of spatial interpolation methods.

    PubMed

    Hernandez-Stefanoni, J Luis; Ponce-Hernandez, Raul

    2006-06-01

    Knowledge of the spatial distribution of plant species is essential to conservation and forest managers in order to identify high priority areas such as vulnerable species and habitats, and designate areas for reserves, refuges and other protected areas. A reliable map of the diversity of plant species over the landscape is an invaluable tool for such purposes. In this study, the number of species, the exponent Shannon and the reciprocal Simpson indices, calculated from 141 quadrat sites sampled in a tropical forest were used to compare the performance of several spatial interpolation techniques used to prepare a map of plant diversity, starting from sample (point) data over the landscape. Means of mapped classes, inverse distance functions, kriging and co-kriging, both, applied over the entire studied landscape and also applied within vegetation classes, were the procedures compared. Significant differences in plant diversity indices between classes demonstrated the usefulness of boundaries between vegetation types, mapped through satellite image classification, in stratifying the variability of plant diversity over the landscape. These mapped classes, improved the accuracy of the interpolation methods when they were used as prior information for stratification of the area. Spatial interpolation by co-kriging performed among the poorest interpolators due to the poor correlation between the plant diversity variables and vegetation indices computed by remote sensing and used as covariables. This indicated that the latter are not suitable covariates of plant diversity indices. Finally, a within-class kriging interpolator yielded the most accurate estimates of plant diversity values. This interpolator not only provided the most accurate estimates by accounting for the indices' intra-class variability, but also provided additional useful interpretations of the structure of spatial variability of diversity values through the interpretation of their semi-variograms. This

  5. SPATIAL AND TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM METABOLISM IN WESTERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...

  6. SPATIAL AND TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM METABOLISM IN WESTERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...

  7. Spatial variability of triazine herbicides in the Lower Mississippi River

    USGS Publications Warehouse

    Moody, J.A.; Goolsby, D.A.

    1993-01-01

    During May 15-17, 1990, an intense rainstorm moved across Iowa, Illinois, Indiana, and Ohio where triazine herbicides are heavily used for growing agricultural crops. Following the storm, the peak concentrations of triazine herbicides in some secondary tributaries to the Upper Mississippi and Ohio Rivers were as high as 36 ??g/L. This runoff water was funneled into the Lower Mississippi River at the Upper Mississippi-Ohio River confluence at Cairo, IL. The spatial variability of this runoff event was measured by collecting midchannel water samples for triazine herbicide analysis from 1 to 2 m below the surface of the Mississippi River every ???16 km from Baton Rouge, LA, upriver to the Mississippi-Ohio River confluence during May 26-29, 1990. All samples were analyzed for triazine herbicides by using an enzyme-linked immunosorbant assay. The results showed a background level of ???2.7 ??g/L, an upriver gradient of 0.2 ??g/L per 100 km, and longitudinal spatial variability that is hypothesized to be the result of cross-channel gradients and "slugs" of water from various upriver tributaries with length scales of 100-150 km and amplitudes of ???1 ??g/L.

  8. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  9. Small scale geothermal development strategy framework

    SciTech Connect

    Ciptomulyono, U.

    1995-12-31

    With request to the promotion for diversification of energy resources geothermal energy is an alternative energy, renewable, relatively clean and nonexportable resource; the maximum utilization of these resources therefore has a first priority as Indonesia is one of the world prominent volcanics countries with many active volcanic phenomena. Most of the geothermal prospects are located in rural areas, which have limited small diesel generating plants or no electricity at all; under the energy sector policy of the Government of Indonesia which stressed rural electrification, taking into account the equity of development for ail Indonesia`s regions and with the goal of National benefits. To ensure that small scale geothermal power plants for rural electrification can be implemented most effectively and efficiently, a strategy framework needs to include appropriate arrangement for project planning; from scientific study to construction periods, which are currently a constraint on both cost and time domains. This paper discusses the strategy framework approaches, including a possible combining of a serial plural activities and streamlining of contract packages. Indonesia as a country which is made up more than 16,000 islands of varying sizes, located between 6{degrees} N-11{degrees} S Lat and 95{degrees}-141{degrees} E Long. The Government of Indonesia stresses a guideline for the energy policy, namely: intensification on the survey and exploration of resources; diversification of energy by means of reducing oil depency utilization and promoting through development, utilization and customary use of substitute fuels; conservation of natural resources with goals to economize and efficiently use energy utilization; and indexation of each energy need with the most appropriate energy resources available in the country.

  10. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    SciTech Connect

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane; Schadt, Christopher Warren; Zhou, Jizhong

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be

  11. Spatial variability in plant species composition and peatland carbon exchange

    NASA Astrophysics Data System (ADS)

    Goud, E.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.

  12. Modeling temporal and spatial variability of crop yield

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Manoli, G.; Scudiero, E.; Morari, F.; Putti, M.; Teatini, P.

    2014-12-01

    In a world of increasing food insecurity the development of modeling tools capable of supporting on-farm decision making processes is highly needed to formulate sustainable irrigation practices in order to preserve water resources while maintaining adequate crop yield. The design of these practices starts from the accurate modeling of soil-plant-atmosphere interaction. We present an innovative 3D Soil-Plant model that couples 3D hydrological soil dynamics with a mechanistic description of plant transpiration and photosynthesis, including a crop growth module. Because of its intrinsically three dimensional nature, the model is able to capture spatial and temporal patterns of crop yield over large scales and under various climate and environmental factors. The model is applied to a 25 ha corn field in the Venice coastland, Italy, that has been continuously monitored over the years 2010 and 2012 in terms of both hydrological dynamics and yield mapping. The model results satisfactorily reproduce the large variability observed in maize yield (from 2 to 15 ton/ha). This variability is shown to be connected to the spatial heterogeneities of the farmland, which is characterized by several sandy paleo-channels crossing organic-rich silty soils. Salt contamination of soils and groundwater in a large portion of the area strongly affects the crop yield, especially outside the paleo-channels, where measured salt concentrations are lower than the surroundings. The developed model includes a simplified description of the effects of salt concentration in soil water on transpiration. The results seem to capture accurately the effects of salt concentration and the variability of the climatic conditions occurred during the three years of measurements. This innovative modeling framework paves the way to future large scale simulations of farmland dynamics.

  13. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland.

    PubMed

    Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie

    2013-12-01

    Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model.

  14. [Temporal and spatial variability of livestock and poultry productions and manure nutrients in Shanxi Province, China].

    PubMed

    Zhang, Jian-jie; Guo, Cai-xia; Qin, Wei; Zhang, Qiang

    2016-01-01

    China's livestock and poultry productions have changed significantly in the last three decades, from mainly traditional and small-scale systems in early 1980s towards more intensive and industrialized ones in recent years, due to the booming economy and the changes in people' diet. There is an urgent need to increase the understanding of the changes in the livestock and poultry productions and the impact of manure recycle on the environment. Here, we reported on a systematic and quantitative analysis on the temporal and spatial variability of livestock and poultry productions and manure nutrients in Shanxi Province, China, using a large database and a coupled food chain nutrient flow model (NUFER) with GIS. In the period of 1978 to 2012, total animal manure production increased from 1.61 x 10⁷ t to 2.75 x 10⁷ t by 171%. The manure N increased from 7.74 x 10⁴ t to 17.32 x 10⁴ t, and the manure P from 1.09x104 t to 3.39x104 t. Besides the huge increase in total animal manure production, the distribution of animal manure was much uneven among regions, with high amounts of manure N and P per unit land in the north, middle and southeastern regions and low values in the north-central and southwestern regions, based on the results of 2012. The uneven distribution of manure was the combined effect of regional specializations in livestock and poultry productions and related policies. Our findings suggested that optimizing the structure of livestock and poultry productions and enhancing interregional collaborations on nutrient management could be two effective measures for reducing pollution and environmental risks, while achieving efficient and sustainable use of manure nutrient in the long term.

  15. Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone"

    NASA Astrophysics Data System (ADS)

    Barthlott, C.; Hoose, C.

    2015-11-01

    This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling (COSMO) model. Six intensive observation periods of the HOPE (HD(CP)2 Observational Prototype Experiment) measurement campaign conducted in spring 2013 and 1 summer day of the same year are simulated. By means of a series of grid-refinement resolution tests (horizontal grid spacing 2.8, 1 km, 500, and 250 m), the applicability of the COSMO model to represent real weather events in the gray zone, i.e., the scale ranging between the mesoscale limit (no turbulence resolved) and the large-eddy simulation limit (energy-containing turbulence resolved), is tested. To the authors' knowledge, this paper presents the first non-idealized COSMO simulations in the peer-reviewed literature at the 250-500 m scale. It is found that the kinetic energy spectra derived from model output show the expected -5/3 slope, as well as a dependency on model resolution, and that the effective resolution lies between 6 and 7 times the nominal resolution. Although the representation of a number of processes is enhanced with resolution (e.g., boundary-layer thermals, low-level convergence zones, gravity waves), their influence on the temporal evolution of precipitation is rather weak. However, rain intensities vary with resolution, leading to differences in the total rain amount of up to +48 %. Furthermore, the location of rain is similar for the springtime cases with moderate and strong synoptic forcing, whereas significant differences are obtained for the summertime case with air mass convection. Domain-averaged liquid water paths and cloud condensate profiles are used to analyze the temporal and spatial variability of the simulated clouds. Finally, probability density functions of convection-related parameters are analyzed to investigate their dependance on model resolution and their impact on cloud formation and subsequent precipitation.

  16. Disturbance History,Spatial Variability, and Patterns of Biodiversity

    NASA Astrophysics Data System (ADS)

    Bendix, J.; Wiley, J. J.; Commons, M.

    2012-12-01

    The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.

  17. Multi-frequency scanning interferometry using variable spatial spectral filter

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Sato, Ryoko; Kato, Heiichi; Sasaki, Osami; Suzuki, Takamasa

    2014-04-01

    Recently, a variety of the optical comb-based interferometries has been developed for profilometry and tomography. However the interference amplitude and phase characteristics involving the center frequency and mode spacing of the optical comb have not been sufficiently studied. To investigate these multi-frequency interference characteristics, we proposed a broadband frequency variable quasi-comb generator utilizing 4-f optical system and a spatial spectral filter which can perform unrestricted scanning of the center frequency and mode spacing. By using a sinusoidal phase modulating interferometer with the quasi-comb generator, fundamental proof-of-principle experiments were successfully demonstrated. The interference phase fixation during the symmetrical varying of the mode spacing produced the interference amplitude peak envelope without fringes. On the other hand, it was confirmed that the interference phase was changed linearly without the amplitude change by the center frequency shift of the multi-frequency spectrum.

  18. Spatial Variability of SWE in Alpine Areas - How do variability patterns change with grid designs?

    NASA Astrophysics Data System (ADS)

    Heilig, A.; Marshall, H.; Mayer, C.; Winstral, A. H.

    2011-12-01

    Estimation of the total amount of water stored as snow in a catchment area during the winter season is a major driver for successful modeling and managing of water resources as well as for accurate predictions of mass balances and changes thereof on glaciated areas. As a comprehensive measurement of the entire catchment is usually impossible, the main difficulty is to link scales. Point measurements of snow depth and density must be combined to estimate the distribution of snow water equivalent (SWE) in a slope, and various slopes are combined to estimate in the average amount of SWE in a catchment. However, especially in mountainous areas, wind redistribution in combination with variable precipitation and complex surface topography, reduce the representativeness of single point data of SWE to sometimes less than a few meters. Therefore, the estimated variability pattern will highly depend on the applied measurement grid and its spatial resolution. For the present study, we employed radar technology to increase the resolution of measurement points to tens of centimeters and less. These radar measurements were performed at three different locations: (i) a relatively low slope, high Alpine glacier in Tirol, Austria, (ii) a non glaciated, high Alpine site in SW Colorado, USA and (iii) a highly wind influenced middle elevation site in Idaho, USA. A regular grid of circles subdivides the respective measurement area in several parts. The variability patterns of the two-way travel time (TWT) of the radar signal are analyzed for each circle separately utilizing geostatistical methods. These patterns are compared with the results using different spatial resolutions and to the results of the respective probings in the circles. At site (i) the observed snow depths were very homogeneous on a scale of hundreds of meters, and the variability patterns of the radar data stay fairly constant and correspond well with the probings. Site (ii) and (iii), however, are characterized by

  19. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  20. Determining the spatial variability of personal sampler inlet locations

    SciTech Connect

    Vinson, R.; Volkwein, J.; Mcwilliams, L.

    2007-09-15

    This article examines the spatial variability of dust concentrations within a coal miner's breathing zone and the impact of sampling location at the cap lamp, nose, and lapel. Tests were conducted in the National Institute for Safety and Health Pittsburgh Research Laboratory full-scale, continuous miner gallery using three prototype personal dust monitors (PDM). The dust masses detected by the PDMs were used to calculate the percentage difference of dust mass between the cap lamp and the nose and between the lapel and the nose. The calculated percentage differences of the masses ranged from plus 12% to minus 25%. Breathing zone tests were also conducted in four underground coal mines using the torso of a mannequin to simulate a miner. Coal mine dust was sampled with multi-cyclone sampling cans mounted directly in front of the mannequin near the cap lamp, nose, and lapel. These four coal mine tests found that the spatial variability of dust levels and imprecision of the current personal sampler is a greater influence than the sampler location within the breathing zone. However, a one-sample t-test of this data did find that the overall mean value of the cap lamp/nose ratio was not significantly different than 1 (p-value = 0.21). However; when applied to the overall mean value of the lapel/nose ratio there was a significant difference from 1 (p-value < 0.0001). This finding is important because the lapel has always been the sampling location for coal mine dust samples. But these results suggest that the cap location is slightly more indicative of what is breathed through the nose area.

  1. Nitrogen Transport in Thick, Unsaturated, Spatially Variable Alluvial Sediments

    NASA Astrophysics Data System (ADS)

    Denton, M. A.; Harter, T.; Hopmans, J. W.; Horwath, W. R.

    2001-12-01

    We are investigating the spatial variability of unsaturated hydraulic properties as part of an effort to improve our understanding of nitrogen transport through thick, unsaturated alluvial sediments that underlie many of the agricultural regions in the southwestern United States. Prior studies of soil nitrogen concentrations have focused on nitrogen cycling in the relatively shallow root zone and have generally not considered field-scale spatial variability of hydraulic properties. This study will survey nitrogen levels in a thick, layered, vadose zone at a well-controlled, long-term research nectarine orchard. The site is located in the Kings River alluvial fan on the east side of the San Joaquin Valley, approximately 30 miles southeast of Fresno, California, at the University of California Kearney Research Center. A controlled fertilizer experiment was conducted at the orchard over a 12-year period (1983-1994) during which three subplots were subjected to three different rates of fertilization: 0, 100, and 325 lbs/acre. During 1997-1998, we drilled and characterized approximately 3000 ft. of geologic material from 60 cores drilled to groundwater at a depth of 52 feet. Horizontal spacing of the borehole locations varied from 1.2 to 3 meters in a transect that is approximately 100 m long and 2.4 m wide. Nine major hydrofacies have been identified within the transect based on textural, morphological, and mineralogical interpretation of the continuous cores. Hydraulic properties of each of these hydrofacies are determined using the multi-step outflow method. Unsaturated hydraulic parameters for the van Genuchten and lognormal models are determined by inverse modeling of the multi-step outflow experiments. Armed with the hydraulic parameters the USGS numerical model VS2DT, modified to allow for the lognormal retention model, is used to model the fertilizer experiments. The results are compared to measured nitrate distributions in the subplots. This is the first step

  2. Determining the spatial variability of personal sampler inlet locations.

    PubMed

    Vinson, Robert; Volkwein, Jon; McWilliams, Linda

    2007-09-01

    This article examines the spatial variability of dust concentrations within a coal miner's breathing zone and the impact of sampling location at the cap lamp, nose, and lapel. Tests were conducted in the National Institute for Safety and Health Pittsburgh Research Laboratory full-scale, continuous miner gallery using three prototype personal dust monitors (PDM). The dust masses detected by the PDMs were used to calculate the percentage difference of dust mass between the cap lamp and the nose and between the lapel and the nose. The calculated percentage differences of the masses ranged from plus 12% to minus 25%. Breathing zone tests were also conducted in four underground coal mines using the torso of a mannequin to simulate a miner. Coal mine dust was sampled with multi-cyclone sampling cans mounted directly in front of the mannequin near the cap lamp, nose, and lapel. These four coal mine tests found that the spatial variability of dust levels and imprecision of the current personal sampler is a greater influence than the sampler location within the breathing zone. However, a one-sample t-test of this data did find that the overall mean value of the cap lamp/nose ratio was not significantly different than 1 (p-value = 0.21). However, when applied to the overall mean value of the lapel/nose ratio there was a significant difference from 1 (p-value < .0001). This finding is important because the lapel has always been the sampling location for coal mine dust samples. But these results suggest that the cap location is slightly more indicative of what is breathed through the nose area.

  3. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  4. Observations of How Magnetofluid Turbulence Dissipates at Small Scales

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Sahraoui, Fouad

    2012-01-01

    The solar wind is a turbulent magneto fluid that can be studied intensively at multiple scales. Investigations using single spacecraft have revealed much about the properties of the solar wind throughout the heliosphere (from 0.3 AU to 100 AU). More recently, data from multiple spacecraft have provided further details of both the statistical properties of the turbulence and its small-scale structure. In particular, high time resolution magnetic field measurements from the four Cluster spacecrafl have led to the conclusion that at spatial scales of order the proton inertial length and smaller, the turbulence becomes strongly anisotropic and the power in fluctuations that are perpendicular to the (local) magnetic field is measured to be much larger than that in fluctuations that are parallel to the magnetic field. As the spatial scales approach the electron inertial length, the power is almost completely dissipated. Various analysis techniques and theoretical ideas have been put forward to account for the properties of those measurements. The talk will describe the current state of observations, theory and simulations.

  5. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales

    PubMed Central

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-01-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. PMID:24824667

  6. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales.

    PubMed

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-11-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.

  7. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-01-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  8. Small-Scale Habitat Structure Modulates the Effects of No-Take Marine Reserves for Coral Reef Macroinvertebrates

    PubMed Central

    Dumas, Pascal; Jimenez, Haizea; Peignon, Christophe; Wantiez, Laurent; Adjeroud, Mehdi

    2013-01-01

    No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species PMID:23554965

  9. Speckle imaging of solar small scale structure. 2: Study of small scale structure in active regions

    NASA Astrophysics Data System (ADS)

    von der Luehe, O.

    1994-01-01

    The speckle imaging technique which is described in the first paper of this series (von der Luehe 1993) was used to analyze time series of high angular resolution images of solar small scale structure at a wavelength of 585 nm in active regions with the 76 cm diameter vacuum tower telescope at National Solar Observatory (NSO)/Sac Peak. Two sets of reconstructed images with a field of 4 by 4 arcsec which cover a period of 36 min and 83 min were generated and analyzed. The image reconstructions are supplemented with simultaneous large field photographs taken within a 15 A passband centered on the Ca II K (3933) line. The prime objective of the observing program was the study of the structure and the dynamics of the continuum wavelength counterpart of facular points which appear with high contrast in the Ca pictures, i.e., continuum bright points (CBPs). In addition to CBPs, the reconstructions allow studying other small scale phenomena. Results of the studies are given.

  10. Reconnection rates, small scale structures and simulations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.

    1983-01-01

    The study of reconnection in the context of one fluid, two dimensional magnetohydrodynamics (MHD), with spatially uniform constant density, viscosity and resistivity is though to retain most of the physics important in reconnection. Much of the existing reconnection literature makes use of this approach. This discussion focuses on attempts to determine the properties of reconnection solutions to MHD as precisely as possible without regard to the intrinsic limitations of the model.

  11. Mapping Spatial Variability in Health and Wealth Indicators in Accra, Ghana Using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Engstrom, R.; Ashcroft, E.

    2014-12-01

    There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to

  12. Spatially variable effects of a marine pest on ecosystem function.

    PubMed

    Ross, D Jeff; Longmore, Andy R; Keough, Michael J

    2013-06-01

    The broad spectrum of anthropogenic pressures on many of the world's coastal bays and estuaries rarely act in isolation, yet few studies have directly addressed the interactive effects of multiple pressures. Port Phillip Bay in southeastern Australia is a semi-enclosed bay in which nutrient management is a major concern. In recent years it has been heavily invaded by marine pests. We manipulated the density of one such invader, the European fanworm Sabella spallanzanii, and showed that it causes changes in the composition of macrofauna in the surrounding sediments, provides habitat for epibiota (both fauna and flora) on Sabella tubes, and reduces the biomass of microphytobenthos on the surrounding sediments. Of greatest concern, however, was the indirect impact on nutrient cycling. We suggest that the impacts on nutrient cycling are largely due to the feeding of Sabella and the epifauna on its tubes, capturing organic N before it reaches the sediment, excreting it back up into the water column as NH4, thereby bypassing sedimentary processes such as denitrification. Most notably, the efficiency of denitrification, the key ecosystem process that permanently removes N from the system, fell by 37-53 % in the presence of Sabella. Importantly though, this study also demonstrated significant spatial variability in fauna, geochemistry and the magnitude of Sabella effects. Given that the effect of Sabella is also likely to vary in time and with changes in density, all of these sources of variability need to be considered when incorporating the effects of Sabella in nutrient management strategies.

  13. Spatial and temporal variability of Antarctic precipitation from atmospheric methods

    SciTech Connect

    Cullather, R.L.; Bromwich, D.H.; Van Woert, M.L.

    1998-03-01

    The spatial and temporal variability of net precipitation (precipitation minus evaporation/sublimation) for Antarctica derived from the European Centre for Medium-Range Weather Forecasts operational analyses via the atmospheric moisture budget is assessed in comparison to a variety of glaciological and meteorological observations and datasets. For the 11-yr period 1985-95, the average continental value is 151 mm yr{sup {minus}1} water equivalent. Large regional differences with other datasets are identified, and the sources of error are considered. Interannual variability in the Southern Ocean storm tracks is found to be an important mechanism for enhanced precipitation minus evaporation (P-E) in both east and west Antarctica. In relation to the present findings, an evaluation of the rawinsonde method for estimating net precipitation in east Antarctica is conducted. Estimates of P-E using synthetic rawinsondes derived from the analyses are found to compare favorably to glaciological estimates. A significant upward trend of 2.4 mm yr{sup {minus}1} is found for the Antarctic continent that is consistent with findings from the National Centers for Environmental Prediction, formerly the National Meteorological Center, and the National Center for Atmospheric Research Reanalysis precipitation dataset. Despite large regional discrepancies, the general agreement on the main features of Antarctic precipitation between studies suggests that a threshold has been reached, where the assessment of the smaller terms including evaporation/sublimation and drift snow loss is required to explain the differences. 76 refs., 24 figs., 1 tab.

  14. Temporal and Spatial Variability along the Deep Western Boundary Current

    NASA Astrophysics Data System (ADS)

    Schmidtko, Sunke; Fischer, Jürgen

    2017-04-01

    The North Atlantic Deep Western Boundary Current (DWBC) connects the polar and subpolar regions, where the ocean is ventilated to greater depth, with the tropical oceans and beyond. It is part of the global ocean circulation as the deep branch of the Atlantic meridional overturning circulation (AMOC). It has a core depth between 1500-4500m with water mass properties varying by origin and decade. We analyze all publically available CTD data from Porcupine Abyssal Plain along Denmark Straight, Labrador Sea, Cape Cod, Cape Hatteras and Bahamas to the equator. The spatial and temporal development is analyzed for the past five decades. Waters originating from the overflow regions between Greenland and Scotland and from the Labrador Sea merge along the pathway but show distinct temporal variability and trends. We distinguish between local and large-scale variability and relate our results with the atmospheric forcing of the North Atlantic. This gives insight into new key aspects to be validated with state of the art ocean circulation models.

  15. Spatial variability of snow physical properties across northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Polashenski, C.; Dibb, J. E.; Domine, F.

    2013-12-01

    In the late spring and early summer of 2013, researchers on the SAGE (Sunlight Absorption on the Greenland ice sheet Experiment) Traverse, embarked on a 4000 km ground traverse across northwestern Greenland in an attempt to quantify spatial variability of snow chemistry, snow physical properties, and snow reflectance. The field team targeted sites first visited by Carl Benson during his series of traverses from 1952 to 1955 as part of his pioneering work to characterize the Greenland Ice Sheet. This route now represents a rapidly changing and variable area of Greenland, as the route passes through several of the ice sheet facies first delimited by Benson. Along the traverse, the SAGE field team made ground-based albedo measurements using a hand-held spectroradiometer and collected snow physical property samples to determine snow specific surface area (SSA) from shallow, 2m pits. In addition, snow density and stratigraphy were measured. Snow layers in the near-surface and at the previous season's melt layer were targeted for sampling. Here we present preliminary snow physical property results from the upper portion of the snow pits and relate these to surface albedo data collected over the route. Further measurements of snow properties in the 2012 melt layer will be analyzed to assess the potential role of snow chemical (see Dibb et al. for a discussion of chemical analysis) and physical property driven albedo feedbacks could have played in contributing to that event. Route of 2013 SAGE Traverse in northwestern Greenland.

  16. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.

  17. Spatial and temporal variability of Mediterranean drought events

    NASA Astrophysics Data System (ADS)

    Trigo, R.; Sousa, P.; Nieto, R.; Gimeno, L.

    2009-04-01

    The original Palmer Drought Severity Index (PDSI) and a recent adaptation to European soil characteristics, the Self Calibrated PDSI (or scPDSI) proposed by Schrier et al (2005) were used. We have computed monthly, seasonal and annual trends between 1901 and 2000 but also for the first and second halves of the 20th century. Results were represented only when achieving a minimum level of statistical significance (either 5% or 10% using a Mann-Kendall test) and confirm that the majority of the western and central Mediterranean is getting drier in the last decades of the 20th century while Turkey is generally getting wetter (Trigo et al., 2006). The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. The inter-annual variability of the regional spatial droughts indices for each region was analyzed separately. We have also performed an evaluation of their eventual links with large-scale atmospheric circulation indices that affect the Mediterranean basin, namely the NAO, EA, and SCAND. Finally we have evaluated the main sources of moisture affecting two drought prone areas in the western (Iberia) and eastern (Balkans) Mediterranean. This analysis was performed by means of backward tracking the air masses that ultimately reach these two regions using the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998) and meteorological analysis data from the ECMWF to track atmospheric moisture. This was done for a five-year period (2000

  18. Meso-Scale Hydrological Modeling Using Small Scale Parameterizations in a Discontinuous Permafrost Watershed in the Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Hinzman, L. D.; Morton, D.; Young, J. M.

    2014-12-01

    The sub-Arctic region lies in the transition zone between the warm temperate region to the south and the cold arctic region to the north. The sub-Arctic hosts sharply contrasting ecosystems that vary over short horizontal spatial scales due to the presence or absence of permafrost. In the discontinuous permafrost zone, the presence or absence of permafrost plays a dominant role to many hydrological processes including stream flow, soil moisture, and water storage dynamics. The distribution of permafrost also has a strong influence on ecosystem composition and function. The land cover and vegetation distribution is also an important parameter affecting the stream flow responses due to the large differences in the transpiration rates between coniferous and deciduous vegetation. As a result, accurate simulation of the hydrology in this region is challenging. The objectives of this study are to improve the parameterization of meso-scale hydrologic simulations in the discontinuous permafrost zone through fine-scale observation and modeling. Slope and aspect, derived from 30m Digital Elevation Model (DEM), are used as a proxy for permafrost distribution and vegetation composition. Small-scale parameterizations were conducted at the two sub-basins (area ~11km2 ) of the Caribou-Poker Creeks Research Watershed (CPCRW) using the Variable Infiltration Capacity (VIC) meso-scale hydrological model. The small scale parameterization simulation results indicate that slope and aspect based vegetation cover and soil parameter parameterization improve meso-scale hydrological modeling in these regions. In order to test the extent to which these small-scale parameterizations are valid, the Chena River Basin (area ~5,478 km2), located in Interior Alaska, is being simulated using these small-scale parameterizations. Aspect will be used as the proxy for the parameterization of vegetation cover and soil property. Results from the VIC simulation using the small scale parameterization will

  19. Spatial and temporal variability of rainfall in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Onyutha, C.; Willems, P.

    2015-05-01

    Spatiotemporal variability in annual and seasonal rainfall totals were assessed at 37 locations of the Nile Basin in Africa using quantile perturbation method (QPM). To get insight into the spatial difference in rainfall statistics, the stations were grouped based on the pattern of the long-term mean (LTM) of monthly rainfall and that of temporal variability. To find the origin of the driving forces for the temporal variability in rainfall, correlation analyses were carried out using global monthly sea level pressure (SLP) and sea surface temperature (SST). Further investigations to support the obtained correlations were made using a total of 10 climate indices. It was possible to obtain three groups of stations; those within the equatorial region (A), Sudan and Ethiopia (B), and Egypt (C). For group A, annual rainfall was found to be below (above) the reference during the late 1940s to 1950s (1960s to mid-1980s). Conversely for groups B and C, the period from 1930s to late 1950s (1960s to 1980s) was characterized by anomalies being above (below) the reference. For group A, significant linkages were found to Niño 3, Niño 3.4, and the North Atlantic Ocean and Indian Ocean drivers. Correlations of annual rainfall of group A with Pacific Ocean-related climate indices were inconclusive. With respect to the main wet seasons, the June-September rainfall of group B has strong connection to the influence from the Indian Ocean. For the March-May (October-February) rainfall of group A (C), possible links to the Atlantic and Indian oceans were found.

  20. Parameterization of Small-Scale Processes

    DTIC Science & Technology

    1989-09-01

    o’r ( B.A. Warren, co., Pergamon Press .Ox o. 74 Schott, F., K. Leaman and R. Zika : . Deep mixing in the Cll of Lions, revisited.. Gcoph.. l...derived from the GEOSAT altimeter. The secondary maximum in variability off the coast of Brazil is also reproduced by the model. The sea level

  1. The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2016-12-01

    Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.

  2. A Physically-Based Two-dimensional Rainfall-Runoff Model for Small-Scale Watersheds

    NASA Astrophysics Data System (ADS)

    Chen, L.; Young, M. H.

    2006-12-01

    The goal of this research was to integrate physically-based and distributed modeling technique to develop a model for understanding the physical mechanisms as well as spatial variability of near-surface hydrological processes. This new model consists of two major components: rainfall infiltration and surface runoff routing. The infiltration module employs the analytical solution of the Green-Ampt model in every computational cell. Two unique features of the infiltration module include the impact of slope on infiltration, and the use of a newly- developed, improved algorithm to handle unsteady rainfall distribution. The two-dimensional surface runoff module routes excess rainwater from cell to cell in two directions using a common computational fluid dynamics (CFD) approach. The governing equation for runoff routing is the two-dimensional diffusion wave equation, which is necessary when treating complicated topography. The equation was derived using a decomposing approach that maintains internal consistency and avoids non-numerical errors. The second-order McCormack scheme is applied in this module to achieve satisfactory accuracy both in space and time. The infiltration and runoff modules thus work together to deal with complicated spatially-variable infiltration and runoff cases. The model also employs a staggered computational grid for complicated topography, and can provide detailed results of spatial distribution for infiltration amount and runoff depth with higher resolution output. The model has been applied to a small-scale subbasin of Walnut Gulch watershed in Arizona. One single-peak storm and one multi-peak storm at Lucky Hill 104, a 4.5 ha subbasin, were simulated using 2m×2m high grid resolution. The modeling results agree well with the recorded hydrograph, both in peak runoff value and in total volume. The results are superior to simulation results from other compared models.

  3. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences

    NASA Astrophysics Data System (ADS)

    Kean, Jason W.; Smith, J. Dungan

    2006-12-01

    The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.

  4. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.

  5. SCION: CubeSat Mission Concept to Observe Midlatitude Small-Scale Irregularities and Scintillation

    NASA Astrophysics Data System (ADS)

    Heine, T.; Moldwin, M.

    2014-12-01

    The SCintillation and Ionospheric Occultation NanoSats (SCION) mission concept is to deploy two low-cost CubeSat spacecraft that maintain a separation distance <1 km to measure scintillation and associated small-scale density irregularities in the midlatitude ionosphere. Each spacecraft is equipped with a dual frequency GPS receiver to measure total electron content (TEC) and the S4 scintillation index along raypaths from the receiver to the GPS constellation. Scintillation causing small-scale density irregularities are increasingly observed in the vicinity of large TEC gradients associated with storm enhanced density (SED) regions. Detection of irregularities of the scale that cause GPS and VHF scintillation has previously relied on assumptions about their structural stability and drift speed. Space-based, multipoint observations would provide broad, regional coverage and disambiguation of temporal and spatial density fluctuations in order to detect small-scale irregularities without these assumptions.

  6. Investigating spatial variability in gas-flux dynamics within Big Cypress National Preserve, Florida using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.

    2016-12-01

    Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.

  7. Performance of small-scale tidal power plants

    NASA Astrophysics Data System (ADS)

    Fay, J. A.; Smachlo, M. A.

    1983-12-01

    Small-scale tidal power plants - having electric power between 1 and 100 MW, approximately - possess several attractive economic and environmental benefits. The dynamical behavior of such systems is calculated in terms of dimensionless variables and parameters, so that the size of the system is inconsequential (except for one parameter related to the slope of the walls of the tidal basin). Two measures of system performance are defined: capacity factor (ratio of average to rated power) and effectiveness (ratio of average to ideal tidal power). It was found that improving both parameters is mutually incompatible so that an economic analysis will determine the optimum values of the system design and performance parameters. The effects of variation of tidal range and basin shape were determined. Using typical variable flow properties of low-head hydroturbines, a favorable design head could be determined from the analysis. It was found that the change in the area of the intertidal zone relative to the surface area of the tidal pond is greater for small, as compared to large, systems, possibly leading to proportionately greater environmental effects. A comparison of the performance of several tidal power plant designs with the methodology of this paper showed generally good agreement with the dimensionless performance parameters and only a modest difference among them over several orders of magnitude in size of power plant.

  8. Performance of small-scale tidal power plants

    SciTech Connect

    Fay, J.A.; Smachio, M.A.

    1983-11-01

    Small-scale tidal power plants--having electric power between 1 and 100 MW, approximately--possess several attractive economic and environmental benefits. The dynamical behavior of such systems is calculated in terms of dimensionless variables and parameters so that the size of the system is inconsequential (except for one parameter related to the slope of the walls of the tidal basin). Two measures of system performance are defined: capacity factor (ratio of average to rated power) and effectiveness (ratio of average to ideal tidal power). It was found that improving both parameters is mutually incompatible so that an economic analysis will determine the optimum values of the system design and performance parameters. The effects of variation of tidal range and basin shape were determined. Using typical variable flow properties of low-head hydroturbines, a favorable design head could be determined from the analysis. It was found that the change in the area of the intertidal zone relative to the surface area of the tidal pond is greater for small, as compared to large, systems, possibly leading to proportionately greater environmental effects. A comparison of the performance of several tidal power plant designs with the methodology of this paper showed generally good agreement with the dimensionless performance parameters and only a modest difference among them over several orders of magnitude in size of power plant.

  9. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  10. Spatial and temporal variability of the precipitation seasonality

    NASA Astrophysics Data System (ADS)

    Baciu, Madalina; Cheval, Sorin; Dumitrescu, Alexandru; Breza, Traian

    2014-05-01

    Climate change scenarios assume significant modifications in the precipitation characteristics over the South-Eastern Europe (SEE), raising a huge interest from the general public and stakeholders. In the recent period, the scientific community has produced many reports showing that the overall precipitation amounts are likely to decrease until the end of the 21st century with variations related to geography, seasons, and parameters. The distribution of the precipitation along the year is key information for water management in hydrologic and agricultural applications, which are very sensitive issues for the SEE countries. This study investigates the observed variability of the seasonality over the SEE (1961-2020), and the expected changes according to IPCC scenarios for the next decades (2021-2050). The analysis exploits the outputs of the Regional Climate Models (RCMs) RegCM3 (ICTP), Aladin (CNRM), and Promes (UCLM), at 25-km spatial resolution and seasonal focus, while ECA&D, and E-OBS datasets were used for featuring the actual climate. Markham (a), and Walsh & Lawler (b) seasonality indices (SI) were computed and employed for the whole area, while the trend analysis was conducted using the nonparametric Mann-Kendall statistics (c), and the Pettitt test (d) and Rodionov Regime Shift Index (e) tests were employed to identify the shifting points. The results pointed out strong differentiations between the different climates in the studied region (e.g. Mediterranean and Carpathian regions), and significant changes in certain spots. Correlated with the variability of the water resources, consumption and availability, the results can be extremely useful for the water management activities. This study is the result of activities developed within the CC-WARE Project (Mitigating Vulnerability of Water Resources under Climate Change), contract no. SEE/D/0143/2.1/X.

  11. Spatial variability of absorption properties in Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Riddick, C. A.; Hunter, P. D.; Tyler, A. N.; Vicente, V. M.; Groom, S.; Horváth, H.; Kovacs, A.; Preston, T.; Presing, M.

    2013-12-01

    In order to improve robustness of current remote sensing algorithms for lake monitoring, it is vital to understand the variability of inherent optical properties (IOPs) within a lake. In this study, absorption coefficients were measured in situ at 38 stations in Lake Balaton, Hungary, using a WET Labs AC-S and AC-9 and compared to concurrent absorption measurements by dual beam spectrophotometry in the laboratory. The spatial variability of bulk and chlorophyll-specific absorption coefficients was examined across 5 basins, demonstrating a gradient in total absorption corresponding to the trophic gradient. Our data suggests that sampling conditions had an impact on particulate absorption, affecting the proportion attributed to non-algal particles (aNAP), phytoplankton (aph) or color dissolved organic matter (aCDOM). The specific absorption of phytoplankton (a*ph) spectra showed a distinct peak in the UV portion of the spectra in Basins 3 and 4 (east), which may be due to the presence of phytoplankton photoprotective pigments to compensate for lower CDOM levels in these basins. In contrast to oceans, particulate attenuation (cp) had a weaker relationship to chlorophyll-a (R2=0.15) than to total suspended matter (R2=0.84), particularly the inorganic fraction. Additionally, the relative contribution of particulate scattering (bp) to attenuation was significantly higher in Lake Balaton (up to 85-99%) than that found in previous lacustrine studies. bp also demonstrated a gradient across the lake, where values increased as the water progressed from phytoplankton-dominated to mineral-dominated. These results provide knowledge of the heterogeneity of the IOPs within Lake Balaton, which is to be considered for the future improvement of bio-optical algorithms for constituent retrieval in inland waters.

  12. Spatial distribution and galactic model parameters of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Ak, T.; Bilir, S.; Ak, S.; Eker, Z.

    2008-04-01

    The spatial distribution, galactic model parameters and luminosity function of cataclysmic variables (CVs) in the solar neighbourhood have been determined from a carefully established sample of 459 CVs. The sample contains all of the CVs with distances computed from the period-luminosity-colours (PLCs) relation of CVs which has been recently derived and calibrated with 2MASS photometric data. It has been found that an exponential function fits best to the observational z-distributions of all of the CVs in the sample, non-magnetic CVs and dwarf novae, while the sech 2 function is more appropriate for nova-like stars and polars. The vertical scaleheight of CVs is 158 ± 14 pc for the 2MASS J-band limiting apparent magnitude of 15.8. On the other hand, the vertical scaleheights are 128 ± 20 and 160 ± 5 pc for dwarf novae and nova-like stars, respectively. The local space density of CVs is found to be ˜3 × 10 -5 pc -3 which is in agreement with the lower limit of the theoretical predictions. The luminosity function of CVs shows an increasing trend toward higher space densities at low luminosities, implying that the number of short-period systems should be high. The discrepancies between the theoretical and observational population studies of CVs will almost disappear if for the z-dependence of the space density the sech 2 density function is used.

  13. Spatial variability of Antarctic Peninsula net surface mass balance

    NASA Astrophysics Data System (ADS)

    Turner, J.; Lachlan-Cope, T. A.; Marshall, G. J.; Morris, E. M.; Mulvaney, R.; Winter, W.

    2002-07-01

    Measurements from ice cores and snow pits collected over the last 50 years are used to examine how net surface mass balance varies across the Antarctic Peninsula to give the first detailed map of mass balance for the region. A total of 211 reliable mass balance measurements were available for the preparation of the map, but some areas were found to be very data sparse. The analysis suggests that the largest values of mass balance are found along the spine of the northern part of the peninsula, where over 2.5 m yr-1 water equivalent (WE) has been measured. A secondary peak of more than 2.0 m yr-1 WE is determined along the mountains of eastern Alexander Island. Precipitation minus evaporation (P-E) fields from the European Centre for Medium-Range Weather Forecasts reanalysis project are compared with our analysis of in situ data. The model fields are found to have peak values of P-E of only half the amounts found from the measurements; the greatest model values are located on the western side of the peninsula. Areas where a high density of in situ data is available, including King George VI Sound and the high south central plateau part of the peninsula, show a high spatial variability of net surface mass balance, suggesting that local orographic features play a major part in dictating the mass balance.

  14. Spatial variability in hydrologic properties of a volcanic tuff

    SciTech Connect

    Istok, J.D.; Rautman, C.A.; Flint, L.E.; Flint, A.L.

    1994-09-01

    Spatial variability of hydrologic properties was quantified for a nonwelded-to-welded ash flow tuff at Yucca Mountain, Nevada, the potential site of a high-level, nuclear waste repository. Bulk density, porosity, saturated hydraulic conductivity, and sorptivity were measured on core specimens collected from outcrops on a grid that extended vertically through the entire unit thickness and horizontally 1.3 km in the direction of ash transport from the volcanic vent. A strong, geologically determined vertical trend in properties was apparent that correlated with visual trends in degree of welding observed in the outcrop. The trend was accurately described by simple regression models based on stratigraphic elevation. No significant horizontal trends in properties were detected along the length of the transect. The validity of the developed model was tested by comparing model predictions with measured porosity values from additional outcrop sections and boreholes that extended 3,000 m north, 1,500 m northeast, and 6,000 m south of the study area. The model accurately described vertical porosity variations except for locations very close to the source caldera, where the model underpredicted porosity in the upper half of the section. The presence of deterministic geologic trends, such as those demonstrated for an ash flow unit in this study, can simplify the collection of site characterization data and the development of site-scale models.

  15. Glaciological Evidence of Temporal and Spatial Tropical Climate Variability

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Buffen, A.

    2006-12-01

    variability in the southern Andes of Peru. An abrupt event, ~5200 years ago, was widespread and spatially coherent through much of the world and was coincident with structural changes in several civilizations. The role of the ITCZ and ENSO in the short-term, as well as longer-term climate variability in the tropics will be discussed.

  16. Risk of resource failure and toolkit variation in small-scale farmers and herders.

    PubMed

    Collard, Mark; Ruttle, April; Buchanan, Briggs; O'Brien, Michael J

    2012-01-01

    Recent work suggests that global variation in toolkit structure among hunter-gatherers is driven by risk of resource failure such that as risk of resource failure increases, toolkits become more diverse and complex. Here we report a study in which we investigated whether the toolkits of small-scale farmers and herders are influenced by risk of resource failure in the same way. In the study, we applied simple linear and multiple regression analysis to data from 45 small-scale food-producing groups to test the risk hypothesis. Our results were not consistent with the hypothesis; none of the risk variables we examined had a significant impact on toolkit diversity or on toolkit complexity. It appears, therefore, that the drivers of toolkit structure differ between hunter-gatherers and small-scale food-producers.

  17. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Brace, L. H.; Kasprzak, W. T.; Russell, C. T.

    1990-01-01

    The evolution of the Venus small-scale waves as they propagate into the nightsite is examined, and the small-scale structures are compared with the waves in the three components of the magnetic field, magnetic dip angle, and neutral density. It is demonstrated that the small-scale fluctuations evolve between the transterminator and antisolar regions. It is shown that atmospheric gravity waves may also be producing some of the fluctuations observed at longer wavelengths. The electron temperature and density are shown to be approximately 180 deg out of phase and exhibiting the highest correlation of any pair of variables. Waves in the electron and neutral densities are found to be correlated moderately on most orbits, while the average electron temperature is higher when the average magnetic field is more horizontal.

  18. [Fractal theory and its application in the analysis of soil spatial variability: a review].

    PubMed

    Zhang, Fa-Sheng; Liu, Zuo-Xin

    2011-05-01

    Soil has spatial variability in its attributes. The analysis of soil spatial variability is of significance for soil management. This paper summarized the fractal theory and its application in spatial analysis of soil variability, with the focus on the utilization of moment method in calculating the fractal dimension of soil attributes, the multi-fractal analysis of soil spatial variability, and the scaling up of soil attributes based on multi-fractal parameters. The studies on the application of fractal theory and multi-fractal method in the analysis of soil spatial variability were also reviewed. Fractal theory could be an important tool in quantifying the spatial variability and scaling up of soil attributes.

  19. Small Scale Landscape Evolution: Rainfall Simulations On High Precision Dtms

    NASA Astrophysics Data System (ADS)

    Catani, F.; Moretti, S.

    Processes characterizing the evolution of relief have recently been recognized as hav- ing scaling properties both in their physical behavior and in their effects on the shape of landscape. Sophisticated evolutionary models have been devised so far, which takes also into account fractal properties, self-similarity and self-organized criticality, espe- cially in the organization of river networks inside catchments. Despite these efforts, which are generally successful from a theoretical point of view, few attempts have been made to actually test these hypotheses in the field. This is due mainly to the dif- ficulties connected with the practical realization of suitable physical models as well as with the problem of the time scale of such processes when dealing with whole river basins. This paper, that presents experimental data on the geometric and morphometric evolution of small scale soil parcels after simulated cycles of rainfall, could contribute to partially fill this gap giving insight on the spatial patterns of newly formed valleys and ridges as well as on the most stable geomorphological configurations. Starting from chosen parcels on crops or bare soils in central Italy, rainfall simulations have been undertaken over repeating cycles of storms. At the beginning of the experiment and after each event, a high resolution DTM of the parcel was automatically generated by means of a recently developed digital stereo-photogrammetric ground-based tech- nique. At the same time, sediment yield and runoff were measured. All the studied parcels were initially characterized by the absence of an internal channel system. Ini- tial topographies could basically be considered as random space functions with quasi- isotropic distribution of the elevations. Each DTM sequence can thus be regarded as an example of channel building process, from sheet flow erosion to the convergence and intersection of small flows to the full development of the surface, with a system of valleys and

  20. Experimental, theoretical, and numerical studies of small scale combustion

    NASA Astrophysics Data System (ADS)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  1. Detecting small scale CO2 emission structures using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen

    2016-04-01

    Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology

  2. Spatial variability in degassing at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilanko, Tehnuka; Oppenheimer, Clive; Kyle, Philip; Burgisser, Alain

    2015-04-01

    Erebus volcano on Ross Island, Antarctica, hosts an active phonolitic lava lake, along with a number of persistently degassing vents in its summit crater. Flank degassing also occurs through ice caves and towers. The longevity of the lake, and its stable convection, have been the subject of numerous studies, including Fourier transform infrared (FTIR) spectroscopy of the lava lake. Two distinct gas compositions were previously identified in the main lava lake plume (Oppenheimer et al., 2009; 2011): a persistent 'conduit' gas with a more oxidised signature, ascribed to degassing through a permeable magma conduit; and a H2O- and SO2- enriched 'lake' composition that increases and decreases cyclically due to shallow degassing of incoming magma batches. During the past decade of annual field seasons on Erebus, gas compositions have been measured through FTIR spectroscopy at multiple sites around Erebus volcano, including flank degassing through an ice cave (Warren Cave). We present measurements from four such vents, and compare their compositions to those emitted from the main lava lake. Summit degassing involves variable proportions of H2O, CO2, CO, SO2, HF, HCl, OCS. Cyclicity is evident in some summit vents, but with signatures indicative of shallower magmatic degassing than that of the lava lake. By contrast, flank degassing at Warren Cave is dominated by H2O, CO2, and CH4. The spatial variability in gas compositions within the summit crater suggests an alternative origin for 'conduit' and 'lake' degassing to previous models that assume permeability in the main conduit. Rather, the two compositions observed in main lake degassing may be a result of decoupled 'conduit' gas and pulses of magma rising through discrete fractures before combining in the lake floor or the main plume. Smaller vents around the crater thus emit isolated 'lake' or 'conduit' compositions while their combined signature is observed in the lava lake. We suggest that this separation between gas

  3. Ionospheric total electron content: Spatial patterns of variability

    NASA Astrophysics Data System (ADS)

    Lean, J. L.; Meier, R. R.; Picone, J. M.; Sassi, F.; Emmert, J. T.; Richards, P. G.

    2016-10-01

    The distinctive spatial patterns of the ionosphere's total electron content (TEC) response to solar, seasonal, diurnal, and geomagnetic influences are determined across the globe using a new statistical model constructed from 2-hourly TEC observations from 1998 to 2015. The model combines representations of the physical solar EUV photon and geomagnetic activity drivers with solar-modulated sinusoidal parameterizations of four seasonal cycles and solar-modulated and seasonally modulated parameterizations of three diurnal cycles. The average absolute residual of the data-model differences is 2.1 total electron content unit, 1 TECU = 1016 el m-2 (TECU) (9%) and the root-mean-square error is 3.5 TECU (15%). Solar and geomagnetic variability, the semiannual oscillation and the diurnal and semidiurnal oscillations all impact TEC most at low magnetic latitudes where TEC itself maximizes, with differing degrees of longitudinal inhomogeneity. In contrast, the annual oscillation manifests primarily in the Southern Hemisphere with maximum amplitude over midlatitude South America, extending to higher southern latitudes in the vicinity of the Weddell Sea. Nighttime TEC levels in the vicinity of the Weddell Sea exceed daytime levels every year in Southern Hemisphere summer as a consequence of the modulation of the diurnal oscillations by the seasonal oscillations. The anomaly, which is present at all phases of the solar cycle, commences sooner and ends later under solar minimum conditions. The model minus data residuals maximize at tropical magnetic latitudes in four geographical regions similar to the ionosphere pattern generated by lower atmospheric meteorology. Enhanced residuals at northern midlatitudes during winter are consistent with an influence of atmospheric gravity waves.

  4. Spatial variability of leaf wetness duration in different crop canopies.

    PubMed

    Sentelhas, Paulo C; Gillespie, Terry J; Batzer, Jean C; Gleason, Mark L; Monteiro, José Eduardo B A; Pezzopane, José Ricardo M; Pedro, Mário J

    2005-07-01

    The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45 degrees. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45 degrees. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.

  5. A Small-Scale Safety Test for Initiation Components

    SciTech Connect

    Cutting, J; Chow, C; Chau, H; Hodgin, R; Lee, R

    2002-04-22

    We have developed a small-scale safety test for initiation train components. A low-cost test was needed to assess the response of initiation components to an abnormal shock environment and to detect changes in the sensitivity of initiation components as they age. The test uses a disk of Detasheet to transmit a shock through a PMMA barrier into a the test article. A schematic drawing of the fixture is shown. The 10-cm-diameter disk of 3-mm-thick Detasheet, initiated at its center by a RISI, RP detonator, produces a shock wave that is attenuated by a variable-thickness PMMA spacer (gap). Layers of metal and plastic above the test article and the material surrounding the test article may be chosen to mock up the environment of the test article at its location in a warhead. A metal plate at the bottom serves as a witness plate to record whether or not the test article detonated. For articles containing a small amount of explosive, it can be difficult to determine whether or not a detonation has occurred. In such cases, one can use a pressure transducer or laser velocimeter to detect the shock wave from the detonation of the article. The assembly is contained in a 10-cm-ID section of PVC pipe and fired in a containment vessel rated at 100 g. Test results are given for a hemispherical, exploding-bridgewire (EBW) detonator.

  6. Spatial and temporal variability of biophysical variables in southwestern France from airborne L-band radiometry

    NASA Astrophysics Data System (ADS)

    Zakharova, E.; Calvet, J.-C.; Lafont, S.; Albergel, C.; Wigneron, J.-P.; Pardé, M.; Kerr, Y.; Zribi, M.

    2012-06-01

    In 2009 and 2010 the L-band microwave Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) campaign was performed in southwestern France to support the calibration and validation of the new Soil Moisture and Ocean Salinity (SMOS) satellite mission. The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve surface soil moisture (SSM) and the vegetation optical depth (VOD) from the CAROLS brightness temperature measurements. The CAROLS SSM was compared with in situ observations at 11 sites of the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France. For eight of them, significant correlations were observed (0.51 ≤ r ≤ 0.82), with standard deviation of differences ranging from 0.039 m3 m-3 to 0.141 m3 m-3. Also, the CAROLS SSM was compared with SSM values simulated by the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-gs) model along 20 flight lines, at a resolution of 8 km × 8 km. A significant spatial correlation between these two datasets was observed for all the flights (0.36 ≤ r ≤ 0.85). The CAROLS VOD presented significant spatial correlations with the vegetation water content (VWC) derived from the spatial distribution of vegetation types used in ISBA-A-gs and from the Leaf Area Index (LAI) simulated for low vegetation. On the other hand, the CAROLS VOD presented little temporal changes, and no temporal correlation was observed with the simulated LAI. For low vegetation, the ratio of VOD to VWC tended to decrease, from springtime to summertime. The ISBA-A-gs grid cells (8 km × 8 km) were sampled every 5 m by CAROLS observations, at a spatial resolution of about 2 km. For 83% of the grid cells, the standard deviation of the sub-grid CAROLS SSM was lower than 0.05 m3 m-3. The presence of small water bodies within the ISBA-A-gs grid cells tended to increase the CAROLS SSM spatial variability, up to 0.10 m3 m-3

  7. Spatial and temporal variability of biophysical variables in Southwestern France from airborne L-band radiometry

    NASA Astrophysics Data System (ADS)

    Zakharova, E.; Calvet, J.-C.; Lafont, S.; Albergel, C.; Wigneron, J.-P.; Pardé, M.; Kerr, Y.; Zribi, M.

    2012-01-01

    In 2009 and 2010 the L-band microwave Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) campaign was performed in Southwestern France to support the calibration and validation of the new Soil Moisture and Ocean Salinity (SMOS) satellite mission. The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve Surface Soil Moisture (SSM) and the Vegetation Optical Depth (VOD) from the CAROLS brightness temperature measurements. The CAROLS SSM was compared with in situ observations at 11 sites of the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France. For eight of them, significant correlations were observed (0.51 ≤ r ≤ 0.82), with standard deviation of differences ranging from 0.039 m3 m-3 to 0.141 m3 m-3. Also, the CAROLS SSM was compared with SSM values simulated by the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-gs) model along twenty flight lines, at a resolution of 8 km × 8 km. A significant spatial correlation between these two datasets was observed for all the flights (0.36 ≤ r ≤ 0.85). The CAROLS VOD presented significant spatial correlations with the vegetation water content (VWC) derived from the spatial distribution of vegetation types used in ISBA-A-gs and from the Leaf Area Index (LAI) simulated for low vegetation. On the other hand, the CAROLS VOD presented little temporal changes, and no temporal correlation was observed with the simulated LAI. For low vegetation, the ratio of VOD to VWC tended to decrease, from springtime to summertime. For 83% of ISBA-A-gs grid cells (8 km × 8 km), sampled every 5 m by CAROLS observations at a spatial resolution of about 2 km, the standard deviation of the sub-grid CAROLS SSM was lower than 0.05 m3 m-3. The presence of small water bodies within the ISBA-A-gs grid cells tended to increase the CAROLS SSM spatial variability, up to 0.10 m3 m-3. Also, the grid cells

  8. Spatial and temporal variability of hydrometeorological variables based on UAV measurements

    NASA Astrophysics Data System (ADS)

    Brosy, Caroline; Krampf, Karina; Junkermann, Wolfgang; Emeis, Stefan; Schäfer, Klaus; Völksch, Ingo; Kunstmann, Harald

    2017-04-01

    Hydrometeorological variables in the lower planetary boundary layer (PBL) are strongly dependent on the land surface temperature (LST) as this temperature controls the water vapor transport at the soil-atmosphere boundary or via stomatal conductance between the biosphere and the atmosphere. LST refers to the temperature which is calculated from infrared radiation measured at the interface between the land surface and the atmosphere. We present LST investigations on a local scale that were performed by unmanned aerial vehicle (UAV)-based mapping of meteorological variables and LST over a grassland site, located in the foothills of the Alps in Germany. While air temperature, relative humidity and LST were measured with sensors installed at a hexacopter, wind speed and direction were derived from the hexacopter's onboard attitude sensors and GPS data. The investigation area was about 350 x 150 m over a soil moisture and soil temperature network installed in a grassland area, operated in the framework of the TERENO-preAlpine observatory. During the ScaleX campaign in the summer 2016, flights were made under different meteorological conditions and in three levels above ground (5, 10, 15 m). Statistical methods were applied to investigate the relationship between the measured variables in combination with soil and surface characteristics. Results show that the spatial LST pattern over the site is strongly dependent on vegetation height/ cover and the absolute values on incoming radiation. While air temperature differed horizontally up to 1.5 K, LST showed differences up to 18 K during warm and sunny days. We finally show first results of a geostatistical analysis of pattern characteristics for selected hydrometeorological variables.

  9. Small-scale structures in common-volume meteor wind measurements

    NASA Astrophysics Data System (ADS)

    Fraser, G. J.; Marsh, S. H.; Baggaley, W. J.; Bennett, R. G. T.; Lawrence, B. N.; McDonald, A. J.; Plank, G. E.

    2006-02-01

    Observational differences occur when different techniques are used for measuring mesospheric winds because the different instruments observe different physical quantities to infer the wind velocity, and have differing time and space resolution. The AMOR meteor wind radar near Christchurch, New Zealand [Marsh et al., 2000. Journal of Atmospheric and Solar-Terrestrial Physics 62,1129 1133.] has good resolution in time (˜0.1 s) and height (˜1 km) and a narrow beam centred in the geographic N S meridian. The meteor echoes randomly sample the atmosphere in a region extending over several hundred kilometres to the South of the radar. The volume of data obtained from the one instrument has made it possible to use correlations between measurements made from individual meteor trails to identify the contribution of atmospheric variability to the observational differences. Measurements of the meridional wind component made from May July 1997 inclusive show that a large part (20 30 m/s r.m.s.) of the atmospheric variation is due to inhomogeneities with small scales, of the order of 10 km and 1 h. There is also a component which has a random time phase over the observation interval but a spatial scale which is coherent over several hundred kilometres, consistent with the behaviour of gravity waves.

  10. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  11. Small scale thematic mapping - A case for radar imagery

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1974-01-01

    Small scale thematic maps (1:250,000 and smaller) of physical and cultural phenomena manifested on the landscape are a major concern to scientists and investigators in diverse disciplines. A strip of K-band radar imagery consisting of a traverse from eastern Minnesota to northern Utah was employed to evaluate the potential of radar imagery for small scale land use mapping. In the course of this investigation, it was discovered that certain borders derived from radar imagery were compatible with borders found on the nonland use thematic maps used for comparison. Specifically, numerous borders and regions of small scale maps of landforms, soils, vegetation, and geology are found to be similar to the radar land use regions. Although far from conclusive it appears that radar imagery can be employed in the small scale mapping of landforms and possibly for mapping physiognomic or economic vegetation.

  12. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  13. Spatial and temporal variability of N2O emission on grazed pastures - influence of management and meteorological drivers

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Voglmeier, Karl; Jocher, Markus

    2017-04-01

    Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.

  14. Map Analysis and Spatial Statistic: Assessment of Spatial Variability of Agriculture Land Conversion at Urban Fringe Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2016-11-01

    Urban development has brought various effects, one of which was the marginalization of the agricultural sector. Agricultural land is gradually converted to other type of land uses which considered more profitable. Conversion of agricultural land cannot be avoided but it should be controlled. Early identification on spatial distribution and intensity of agricultural land conversion as well as its related factor is necessary. Objective of the research were (1) to assess the spatial variability of agricultural land conversion, (2) to identify factors that affecting the spatial variability of agricultural land conversion. Research was conducted at urban fringe area of Yogyakarta. Spatial variability of agricultural land conversion was analysed using an index called Relative Conversion Index (RCI). Combined of map analysis and spatial statistical were used to determine the center of agricultural land conversion. Simple regression analysis was used to determine the factors associated with the conversion of agricultural land. The result shows that intensity of agricultural land conversion in the study area varies spatially as well as temporally. Intensity of agricultural land conversion in the period 1993-2000, involves three categories which are high, moderate and low. In the period of 2000-2007, the intensity of agricultural land conversion involves two categories which are high and low. Spatial variability of agricultural land conversion in the study area has a significant correlation with three factors: population growth, fragmentation of agricultural land and distance of agricultural land to the city

  15. Observation and Analysis of Small-scale Solar Magnetic Structure

    NASA Astrophysics Data System (ADS)

    Berger, T.

    1996-05-01

    Solar magnetic flux elements on spatial scales below 350 km (0\\arcsec.5) are analyzed using G-Band 4305 Angstroms, Ca II K-line, and 4686 Angstroms continuum filtegrams as well as Fe I 6302 Angstroms and 5250 Angstroms magnetograms acquired nearly simultaneously at the Swedish Solar Vacuum Telescope on La Palma. Spatial resolution is below 0\\arcsec.3 in the majority of images. Phase-diversity image restoration is applied to yield a 180 frame (78 minute) image set in which nearly every frame exhibits 0\\arcsec.2 spatial resolution. Image processing algorithms are developed which successfully segment the magnetic elements from the surrounding granulation for analysis. The FWHM of magnetic elements demarcated by G-band bright points in disk-center plage is log-normally distributed with a modal value of 220 km and an average value of 250 km. Average disk center contrast of magnetic elements in the G-band is 31% with maximum values frequently exceeding 70% relative to the quiet-Sun average. Simulataneous 4686 Angstroms continuum contrast is 2 to 3 times lower. The average G-band contrast of magnetic elements shows no size dependency over a range of 150---600 km in diameter. G-band bright points occur without exception on sites of isolated magnetic flux concentrations or peninsular concentrations extending from larger concentrations of flux; isolated magnetic flux concentrations are found without associated G-band bright points. Magnetic elements demarcated by G-band bright points occupy no more than 1---2% of plage and active network regions by area at any one time. Magnetic elements move in the intergranular flowfield at speeds from 0.5 to 5 km sec(-1) . The RMS speed is 2.4 km sec(-1) over an average range of 2100 km (3\\arcsec). Continual fragmentation and merging of magnetic elements is the normal evolutionary mode for small-scale magnetic elements. The time scale for the dynamics is approximately 6--8 minutes, but significant morphological changes occur on time

  16. Temporal and spatial variability of cobalt in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Saito, Mak A.; Moffett, James W.

    2002-06-01

    The spatial and temporal variability of cobalt in the Atlantic Ocean was investigated by means of adsorptive cathodic stripping voltammetry. A vertical profile of total dissolved cobalt at the Bermuda Atlantic Time Series station ranged from 17 to 73 pM and displayed surface depletion indicative of biological utilization. This profile when compared with a cobalt profile from the northeast Pacific shows no increase in deep-water concentrations with thermohaline circulation through the deep ocean basins. Moreover, the middepth maximum observed in northeast Pacific profiles is not present in the Sargasso Sea, perhaps because of the lack of cobalt scavenging by particulate manganese oxides in surface waters and to the absence of a suboxic oxygen minimum zone, which, if present, could dissolve the manganese oxides. Total dissolved cobalt measurements were also made on a surface transect from the Sargasso Sea to coastal Massachusetts, USA, and on time-series samples from the Moored In Situ Trace Element Serial Sampler. Dissolved cobalt on this transect correlated strongly with salinity (r2 = 0.93) and ranged from 19 to 133 pM, indicating mixing of cobalt from shelf waters into the Sargasso Sea. Time-series samples near Bermuda did not show an obvious response to the summer maximum in aeolian dust deposition, with an annual average of 20 ± 10 pM at 40- to 47-m depths. By use of this annual value and particulate cobalt data from the literature, 100-m surface-water residence times were calculated to be as low as 0.32 yr for cobalt. Several sharp decreases in cobalt were observed in the time series that occurred simultaneously with a shallowing of the thermocline depth. These decreases could be caused by nutrient drawdown associated with higher productivity mesoscale eddy events. A west-east surface transect across the South Atlantic showed high cobalt concentrations at the boundaries of the transect and low concentrations in the center despite the high precipitation rates

  17. Spatial and temporal variability of the Aridity Index in Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Politi, Nadia; Kapsomenakis, John

    2013-01-01

    The objective of this paper is to study the spatial and temporal variability of the Aridity Index (AI) in Greece, per decade, during the 50-year period (1951-2000). Besides, the projected changes in ensemble mean AI between the period 1961-1990 (reference period) and the periods 2021-2050 (near future) and 2071-2100 (far future) along with the inter-model standard deviations were presented, based on the simulation results, derived from a number of Regional Climatic Models (RCMs), within the ENSEMBLE European Project. The projection of the future climate was done under SRES A1B. The climatic data used, concern monthly precipitation totals and air temperature from 28 meteorological stations (22 stations from the Hellenic National Meteorological Service and 6 stations from neighboring countries, taken from the Monthly Climatic Data for the World). The estimation of the AI was carried out based on the potential evapotranspiration (PET) defined by Thornthwaite (1948). The data processing was done by the application of the statistical package R-project and the Geographical Information Systems (GIS). The results of the analysis showed that, within the examined period (1951-2000), a progressive shift from the "humid" class, which characterized the wider area of Greece, towards the "sub-humid" and "semi-arid" classes appeared in the eastern Crete Island, the Cyclades complex, the Evia and Attica, that is mainly the eastern Greece. The most significant change appears during the period 1991-2000. The future projections at the end of twentieth century, using ensemble mean simulations from 8 RCMs, show that drier conditions are expected to establish in regions of Greece (Attica, eastern continental Greece, Cyclades, Dodecanese, eastern Crete Island and northern Aegean). The inter-model standard deviation over these regions ranges from 0.02 to 0.05 against high values (0.09-0.15) illustrated in western mountainous continental Greece, during 2021-2050. Higher values of inter

  18. The active liquid Earth - importance of temporal and spatial variability

    NASA Astrophysics Data System (ADS)

    Arheimer, Berit

    2016-04-01

    The Planet Earth is indeed liquid and active - 71 percent of its surface is water-covered and this water never rests. Thanks to the water cycle, our planet's water supply is constantly moving from one place to another and from one form to another. Only 2.5% of the water is freshwater and it exists in the air as water vapor; it hits the ground as rain and snow; it flows on the surface from higher to lower altitudes in rivers, lakes, and glaciers; and it flows in the ground in soil, aquifers, and in all living organisms until it reaches the sea. On its way over the Earth's crust, some returns quickly to vapor again, while some is trapped and exposed to many "fill and spill" situations for a long journey. The variability in the water balance is crucial for hydrological understanding and modelling. The water cycle may appear simple, but magnitudes and rates in fluxes are very different from one place to another, resulting from variable drivers such as solar energy, precipitation and gravity in co-evolution with geology, soil, vegetation and fauna. The historical evolution, the temporal fluxes and diversity in space continue to fascinate hydrological scientists. Specific physical processes may be well known, but their boundary conditions, interactions and rate often remain unknown at a specific site and are difficult to monitor in nature. This results in mysterious features where trends in drivers do not match runoff, like the Sahelian Paradox or discharge to the Arctic Ocean. Humans have always interfered with the water cycle and engineering is fundamental for water regulation and re-allocation. Some 80% of the river flow from the northern part of the Earth is affected by fragmentation of the river channels by dams. In water management, there is always a tradeoff between upstream and downstream activities, not only regarding total water quantities but also for temporal patterns and water quality aspects. Sharing a water resource can generate conflicts but geopolitical

  19. Turbulent small-scale neutral and ion density fluctuations as measured during MAC/Epsilon

    NASA Technical Reports Server (NTRS)

    Luebken, F.-J.; Hillert, W.; Vonzahn, U.; Blix, T. A.; Thrane, E. V.

    1989-01-01

    During the MAC/Epsilon campaign (Fall 1987, from Andoya, Northern Norway, 69 N, 16 E) a total of four altitude profiles of neutral gas number densities and six profiles of ion number densities were measured with high spatial resolution in the height range from 60 to 120 km. First results of these rocket-borne experiments are presented with emphasis on small scale turbulent density variations and related turbulent parameter as structure function constants and energy dissipation rates.

  20. The Physical Character of Small-Scale Interstellar Structures

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the multiple interstellar absorption lines of H2 toward the members of 3 resolvable binary/multiple star systems to explore the physical conditions in known interstellar small-scale structures. Each of the selected systems was meant to address a different aspect of the models for the origin of these structures: 1) The stars HD 32039/40 were meant to probe a temporally varying component which probed a cloud with an inferred size of tens to a few hundreds of AU. The goal was to see if there was any significant H2 associated with this component; 2) The star HD 36408B and its companion HD 36408A (observed as part of FUSE GTO program P119) show significant spatial and temporal (proper motion induced) Na I column variations in a strong, relatively isolated component, as well as a relatively simple component structure. The key goal here was to identify any differences in H2 or C I excitation between the sightlines, and to measure the physical conditions (primarily density and temperature) in the temporally varying component; 3) The stars HD 206267C and HD 206267D are highly reddened sightlines which showed significant variations in K I and molecular absorption lines in multiple velocity components. Coupled with FUSE GTO observations of HD 206267A (program P116), the goal was to study the variations in H2 along sightlines which are significantly more distant, with larger separations, and with greater extinctions than the other selected binary systems.

  1. Simulating maize yield and biomass with spatial variability of soil field capacity

    USDA-ARS?s Scientific Manuscript database

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  2. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  3. Spatial variability of soil properties using nested variograms at multiple scales

    USDA-ARS?s Scientific Manuscript database

    Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. The structure of variability determines the required spatial intensity of data collection and can be used for directing the delineation of management zones. Especially ...

  4. Spatial variability of the Arctic Ocean's double-diffusive staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.

    2017-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.

  5. Spatial Variability in Toxicity Indicators Used to Rank Chemical Risks

    PubMed Central

    Cutter, Susan L.; Scott, Michael S.; Hill, Arleen A.

    2002-01-01

    Objectives. This study used 6 different measures of toxicity to explore spatial and statistical variations in relative risk indicators of Toxic Release Inventory emissions. Methods. Statistical and spatial correlations between the 6 indices were computed for individual South Carolina facilities. Results. Although the 6 toxicity indices are not highly correlated in theory, they have more commonality in practice. There was significant spatial variation in the indices by individual facility level. Conclusions. Environmental justice researchers must be cognizant of differences in toxicity indices because the choice of the toxicity measure can alter (statistically and spatially) the results of equity analyses and lead to erroneous conclusions. (Am J Public Health. 2002;92:420-422) PMID:11867323

  6. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing

  7. Temporal and Spatial Variability in Landslide Susceptibility Analyses

    NASA Astrophysics Data System (ADS)

    Trizzino, Rosamaria; Pagliarulo, Rossella

    2014-05-01

    The geomorphic processes in landscape evolution are commonly assumed deterministic, although their high variability in rates and time. As the stability analyses of slopes are concerned, the classical methods consider threshold values of the different elements (slope angle, friction angle, climatic conditions, hydrogeological conditions, seismicity) that condition the safety factors, but often widespread landscape instabilities occur when the threshold values are not exceeded. To analyze these phenomena we studied a model for defining an "average" pattern of landscape evolution starting from the single deterministic process. Many previous studies demonstrated the driving role of weathering and erosion processes in landslide evolution. Among these, the "instability principle of geomorphic equilibrium" (Scheidegger, 1983) stated the relevancy of exogenic processes (weathering, erosion, etc.) particularly in those places where preexisting micro topographic irregularities or lithological variations are recognizable. The present paper gives an example of the unstable growth of small perturbations from the initial conditions up to the landslide initiation, even if there were no measurable variations in external controls. In this analysis the geo- materials are considered as a weathering system mathematically depicted as an n-components nonlinear dynamical system. A hierarchical multiscale model of instability is applied. The model treats four spatial scales: 1) local regolith scale (weathering processes, in situ breakdown of geo-materials), 2) hill slope scale (allocation of weathered products: soil removal in solid form, via erosion and mass wasting, or in dissolved form via surface water flow), 3) landscape units (relationships between weathering and denudation), 4) broadest landscape scale (topographic and isostatic response to weathering-limited denudation, unloading or depositional loading). The landslide susceptibility analysis for the present study is located in

  8. Spatial variability of thorughfall under three sage brush (Artemesia tridentata)

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Carlyle-Moses, D. E.; Grzybowski, A.; Brewer, S.; Hill, D.

    2015-12-01

    Rainfall interception loss (I) has been poorly studied in semi-arid systems. Past work suggests that I can range from less than 3 % to 27% of gross precipitation in semi-arid systems. For many years the hydrologic flow paths in vegetation canopies has been treated as a black box. For example, when researching canopy interception loss, researchers typically monitored total rainfall above and below the vegetation canopy. More recently, the spatial pattern of throughfall (TF) and stemflow (SF) have been of interest. Past research on the spatial patterning of TF under forest canopies has documented that persistent patterns of TF can occur. These patterns create "hot spots" of throughfall. Like trees, persistent spatial patterns of TF may exist under shrubs. To test the changes in the throughfall depth and distribution with changing local meteorological conditions, we monitored throughfall and stemflow under three sagebrush shrubs (n=64 throughfall gauges for each shrub). Rainfall interception loss under the shrubs ranged from 31 to 100% for storm events ranging from 0.4 to 52 mm in size. Stemflow only occurred during larger storm events (>10 mm). Stemflow is likely limited because the tortuous nature of the canopy architecture that readily sheds water from the canopy. The canopy architecture also resulted in temporally and spatially persistent drip points. For storms sufficient to saturate the canopy, temporally and spatially persistent drip points generated water inputs that were 1.5 time greater than gross precipitation.

  9. Experiments for comparison of small scale rainfall simulators

    NASA Astrophysics Data System (ADS)

    Iserloh, T.; Ries, J. B.

    2012-04-01

    Small scale portable rainfall simulators are an essential tool in research of recent process dynamics of soil erosion. Such rainfall simulators differ in design, rainfall intensities, rain spectra etc., impeding comparison of the results. Due to different research questions a standardisation of rainfall simulation is not in sight. Nevertheless, the data become progressively important for soil erosion modelling and therefore the basis for decision-makers in application-oriented erosion protection. The project aims at providing a criteria catalogue for estimation of the different simulators as well as the comparability of the results and a uniform calibration procedure for generated rainfall. Within the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" many rainfall simulators used by European research groups were compared. The artificially generated rainfall of the rainfall simulators at the Universities Basel, La Rioja, Malaga, Trier, Tübingen, Valencia, Wageningen, Zaragoza and at different Spanish CSIC-institutes (Almeria, Cordoba, Granada, Murcia, Zaragoza) were measured with the same methods (Laser Precipitation Monitor for drop spectra and rain collectors for spatial distribution). The data are very beneficial for improvements of simulators and comparison of simulators and results. Furthermore, they can be used for comparative studies with natural rainfall spectra. A broad range of rainfall data was measured (e.g. intensity: 30 - 149 mmh-1, Christiansen Coefficient for spatial rainfall distribution 61 - 98 %, mean drop diameter 0.375 - 5.0 mm, mean kinetic energy expenditure 25 - 1322 J m-2 h-1, mean kinetic energy per unit area and unit depth of rainfall 4 - 14 J m-2 mm-1). Similarities among the simulators could be found e.g. concerning drop size distributions (maximum drop numbers are reached within the two smallest drop

  10. Modeling coastal upwelling around a small-scale coastline promontory

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Cai, D.; Freismuth, T. M.; MacMahan, J.; Di Lorenzo, E.; Suanda, S. H.; Kumar, N.; Miller, A. J.; Edwards, C. A.

    2016-12-01

    On the US west coast, northerly winds drive coastal ocean upwelling, an important process which brings cold nutrient rich water to the nearshore. The coastline geometry has been shown to be a significant factor in the strength of the upwelling process. In particular, the upwelling in the lee of major headlands have been shown to be enhanced. Recent observations from the Pt. Sal region on the coast of southern California have shown the presence of cooler water south of a small (350 m) rocky promontory (Mussel Pt.) during upwelling events. The hypothesis is that the small scale promontory is creating a lee side enhancement to the upwelling. To shed some light on this process, numerical simulations of the inner shelf region centered about Pt. Sal are conducted with the ROMS module of the COAWST model system. The model system is configured with four nested grids with resolutions ranging from approximately 600 m to the outer shelf ( 200 m) to the inner shelf ( 66 m) and finally to the surf zone ( 22 m). A solution from a 1 km grid encompassing our domain provides the boundary conditions for the 600 m grid. Barotropic tidal forcing is incorporated at the 600 m grid to provide tidal variability. This model system with realistic topography and bathymetry, winds and tides, is able to isolate the forcing mechanisms that explain the emergence of the cold water mass. The simulations focus on the time period of June - July, 2015 corresponding to the pilot study in which observational experiment data was collected. The experiment data in part consists of in situ measurement, which includes mooring with conductivity, temperature, depth, and flow velocity. The model simulations are able to reproduce the important flow features including the cooler water mass south of Mussel Pt. As hypothesized, the strength of the upwelling is enhanced on the side of Mussel Pt. In addition, periods of wind relaxation where the upwelling ceases and even begins to transform towards downwelling is

  11. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  12. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    PubMed

    Sonnemann, Ilja; Pfestorf, Hans; Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  13. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator.

    PubMed

    Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui

    2016-11-15

    Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.

  14. Continuous-variable spatial entanglement for bright optical beams

    SciTech Connect

    Hsu, Magnus T.L.; Bowen, Warwick P.; Lam, Ping Koy; Treps, Nicolas

    2005-07-15

    A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the standard quantum limit. We identify the position and momentum observables for bright optical beams and show that position and momentum entanglement can be generated by interfering two position, or momentum, squeezed beams on a beam splitter. The position and momentum measurements of these beams can be performed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare this form of spatial entanglement with split detection-based spatial entanglement.

  15. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    NASA Astrophysics Data System (ADS)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also

  16. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition.

    PubMed

    Veen, G F Ciska; Geuverink, Elzemiek; Olff, Han

    2012-02-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground-belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant-soil-vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground-belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground-belowground interactions for small-scale plant community composition.

  17. Artificial cells: building bioinspired systems using small-scale biology.

    PubMed

    Zhang, Ying; Ruder, Warren C; LeDuc, Philip R

    2008-01-01

    Artificial cells have generated much interest since the concept was introduced by Aleksandr Oparin in the 1920s, and they have had an impact on the pharmaceutical and biotechnology industry in various areas, including potential therapeutic applications. Here, we discuss the development of small-scale, bio-inspired artificial cell components that recreate the function of key cellular and physiological systems. We describe artificial cells, selected current applications and how small-scale biology could be used to provide what might be a next-generation approach in this area. We believe that this type of work is in its infancy and that exploiting small-scale biological inspiration in the field of artificial cells has great potential for successes in the future.

  18. Spatial variability of heating profiles in windrowed poultry litter

    USDA-ARS?s Scientific Manuscript database

    In-house windrow composting of broiler litter has been suggested as a means to reduce microbial populations between flocks. Published time-temperature goals are used to determine the success of the composting process for microbial reductions. Spatial and temporal density of temperature measurement ...

  19. Violation of Bell's inequality with continuous spatial variables

    SciTech Connect

    Abouraddy, Ayman F.; Yarnall, Timothy; Saleh, Bahaa E. A.; Teich, Malvin C.

    2007-05-15

    The Einstein-Podolsky-Rosen (EPR) argument revealed the paradoxical properties of a two-particle system entangled continuously in the spatial parameter. Yet a direct test of quantum nonlocality exhibited by this state, via a violation of Bell's inequality, has not been forthcoming. In this paper, we identify and construct experimental arrangements comprising simple optical components, without nonlinearities or moving parts, that implement operators in the spatial-parity space of single-photon fields that correspond to the familiar Pauli spin operators. We achieve this by first establishing an isomorphism between the single-mode multiphoton electromagnetic-field space spanned by a Fock-state basis and the single-photon multimode electromagnetic-field space spanned by a spatial-eigenmode basis. We then proceed to construct a Hilbert space with a two-dimensional basis of spatial even-odd parity modes. In particular, we describe an arrangement that implements a rotation in the parity space of each photon of an entangled-photon pair, allowing for a straightforward experimental test of Bell's inequality using the EPR state. Finally, the violation of a Bell inequality is quantified in terms of the physical parameters of the two-photon source.

  20. Spatial distribution visualization of PWM continuous variable-rate spray

    USDA-ARS?s Scientific Manuscript database

    Chemical application is a dynamic spatial distribution process, during which spray liquid covers the targets with certain thickness and uniformity. Therefore, it is important to study the 2-D and 3-D (dimensional) spray distribution to evaluate spraying quality. The curve-surface generation methods ...

  1. Spatial variability of fine particle concentrations in three European areas

    NASA Astrophysics Data System (ADS)

    Hoek, Gerard; Meliefste, Kees; Cyrys, Josef; Lewné, Marie; Bellander, Tom; Brauer, Mike; Fischer, Paul; Gehring, Ulrike; Heinrich, Joachim; van Vliet, Patricia; Brunekreef, Bert

    Epidemiological studies of long-term air pollution effects have been hampered by difficulties in characterizing the spatial variation in air pollution. We conducted a study to assess the risk of long-term exposure to traffic-related air pollution for the development of inhalant allergy and asthma in children in Stockholm county, Munich and the Netherlands. Exposure to traffic-related air pollution was assessed through a 1-year monitoring program and regression modeling using exposure indicators. This paper documents the performance of the exposure monitoring strategy and the spatial variation of ambient particle concentrations. We measured the ambient concentration of PM2.5 and the reflectance of PM2.5 filters ('soot') at 40-42 sites representative of different exposure conditions of the three study populations. Each site was measured during four 14-day average sampling periods spread over one year (spring 1999 to summer 2000). In each study area, a continuous measurement site was operated to remove potential bias due to temporal variation. The selected approach was an efficient method to characterize spatial differences in annual average concentration between a large number of sites in each study area. Adjustment with data from the continuous measurement site improved the precision of the calculated annual averages, especially for PM2.5. Annual average PM2.5 concentrations ranged from 11 to 20 μg/m 3 in Munich, from 8 to 16 μg/m 3 in Stockholm and from 14 to 26 μg/m 3 in the Netherlands. Larger spatial contrasts were found for the absorption coefficient of PM2.5. PM2.5 concentrations were on average 17-18% higher at traffic sites than at urban background sites, but PM2.5 absorption coefficients at traffic sites were between 31% and 55% increased above background. This suggests that spatial variation of traffic-related air pollution may be underestimated if PM2.5 only is measured.

  2. Small-scale dynamo at low magnetic Prandtl numbers.

    PubMed

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  3. Small-scale dynamo at low magnetic Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  4. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  5. Small-scale to large-scale and back: larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe.

    PubMed

    Brown, Rebecca; Soldánová, Miroslava; Barrett, John; Kostadinova, Aneta

    2011-01-01

    We examined the small-scale temporal and spatial variability in composition and structure of larval trematode communities in Lymnaea stagnalis and Planorbarius corneus in two fish ponds in the Czech Republic and compared the patterns of richness and similarity to continental and regional trematode faunas of these hosts. The levels of parasitism in the populations of both hosts were high, the former parasitized predominantly by allogenic species maturing in a wide range of birds and the latter infected by relatively more species completing their life cycles in micromammals. Communities in both hosts exhibited a congruent pattern of seasonal change in overall infection rates and community composition with lower levels of infection in spring. Both temporal and spatial variation was closely related to the structure of snail populations, and no significant differentiation of community composition with respect to pond was observed. Comparisons with large-scale inventories revealed overall congruent patterns of decreased richness and similarity and increased variability at the smaller scales in both host-parasite systems. The relative compositional homogeneity of larval communities in both snail hosts irrespective of scale suggests that historical data at small to medium regional scales may provide useful estimates of past richness and composition of larval trematode communities in these snail hosts.

  6. Can APEX Represent In-Field Spatial Variability and Simulate Its Effects On Crop Yields?

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, from variable rate nitrogen application to precision irrigation, promises improved management of resources by considering the spatial variability of topography and soil properties. Hydrologic models need to simulate the effects of this variability if they are to inform about t...

  7. Fundamental economic issues in the development of small scale hydro

    SciTech Connect

    Not Available

    1980-05-01

    Some basic economic issues involved in the development of small-scale hydroelectric power are addressed. The discussion represents an economist's view of the investment process in this resource. Very little investment has been made in small-scale hydro development and an attempt is made to show that the reason for this may not be that the expected present worth of the returns of the project do not exceed the construction cost by a sufficient amount. Rather, a set of factors in combination impose costs on the project not normally incurred in small businesses. The discussion covers costs, supply, demand, and profitability.

  8. Feedback of a small-scale magnetic dynamo.

    PubMed

    Nazarenko, S V; Falkovich, G E; Galtier, S

    2001-01-01

    We develop a WKB approach to the rapid distortion theory for magnetohydrodynamic turbulence with large magnetic Prandtl number. Within this theory, we study the growth of small-scale magnetic fluctuations in a large-scale velocity field being initially a pure strain. We show that the magnetic Lorentz force excites a secondary flow in the form of counterrotating vortices on the periphery of the magnetic spot. Those vortices slow down stretching of the magnetic spot and thus provide a negative feedback for a small-scale magnetic dynamo.

  9. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    SciTech Connect

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  10. Design for a small-scale fuel-alcohol plant

    SciTech Connect

    Berglund, G.R.; Richardson, J.G.

    1981-06-01

    The design of a small scale fuel alcohol plant 100 L/h (26.4 gal/h) of 95% (190 proof) ethanol is presented. The plant was designed and constructed using commercially available equipment. The object was to provide an energy efficiency and economical feasible reference design of a small scale fuel alcohol plant. The design requirements of the plant are presented. Each subsystem is described in detail. The systems discussed are feedstock handling and preparation; cooking and saccharification fermentation, distillation, and the automatic control system. Also discussed are test results, and costs.

  11. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  12. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  13. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  14. Spatial variability of muscle activity during human walking: the effects of different EMG normalization approaches.

    PubMed

    Cronin, N J; Kumpulainen, S; Joutjärvi, T; Finni, T; Piitulainen, H

    2015-08-06

    Human leg muscles are often activated inhomogeneously, e.g. in standing. This may also occur in complex tasks like walking. Thus, bipolar surface electromyography (sEMG) may not accurately represent whole muscle activity. This study used 64-electrode high-density sEMG (HD-sEMG) to examine spatial variability of lateral gastrocnemius (LG) muscle activity during the stance phase of walking, maximal voluntary contractions (MVCs) and maximal M-waves, and determined the effects of different normalization approaches on spatial and inter-participant variability. Plantar flexion MVC, maximal electrically elicited M-waves and walking at self-selected speed were recorded in eight healthy males aged 24-34. sEMG signals were assessed in four ways: unnormalized, and normalized to MVC, M-wave or peak sEMG during the stance phase of walking. During walking, LG activity varied spatially, and was largest in the distal and lateral regions. Spatial variability fluctuated throughout the stance phase. Normalizing walking EMG signals to the peak value during stance reduced spatial variability within LG on average by 70%, and inter-participant variability by 67%. Normalizing to MVC reduced spatial variability by 17% but increased inter-participant variability by 230%. Normalizing to M-wave produced the greatest spatial variability (45% greater than unnormalized EMG) and increased inter-participant variability by 70%. Unnormalized bipolar LG sEMG may provide misleading results about representative muscle activity in walking due to spatial variability. For the peak value and MVC approaches, different electrode locations likely have minor effects on normalized results, whereas electrode location should be carefully considered when normalizing walking sEMG data to maximal M-waves. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Effects of attentional and cognitive variables on unilateral spatial neglect.

    PubMed

    Ricci, Raffaella; Salatino, Adriana; Garbarini, Francesca; Ronga, Irene; Genero, Rosanna; Berti, Anna; Neppi-Mòdona, Marco

    2016-11-01

    Patients with visuospatial neglect when asked to cancel targets partially or totally omit to cancel contralesional stimuli. It has been shown that increasing the attentional demands of the cancellation task aggravates neglect contralesionally. However, some preliminary evidence also suggests that neglect might be worsened by engaging the patient in a demanding, non-spatial, cognitive activity (i.e. a mathematical task). We studied cancellation performance of 16 patients with right-hemisphere lesions, 8 with neglect, 8 without neglect, and 8 age-matched healthy control participants by means of five cancellation tasks which varied for the degree of attentional and/or high level cognitive demands (preattentive and attentive search of a visual target, searching for numbers containing the digit 3, even numbers, and multiples of 3). Results showed that attentive search of visual targets, relative to the preattentive search condition, aggravated neglect patients' performance. Moreover, searching for multiples not only worsened spatial neglect contralesionally, but also slowed down performance of patients with right-hemisphere lesions without neglect. Our findings further demonstrate the presence of specific deficits of attention in neglect. In addition, the worse performance of patients without neglect in the 'multiples of 3' task is consistent with the evidence that right-hemisphere lesions per se impair the ability to maintain attention (i.e. sustained attention). This suggests that the exacerbation of neglect during execution of a demanding, non-spatial, cognitive task might be explained by a deficit of sustained attention in addition to a selective deficit of spatial attention.

  16. Spatially-variable carbonation reactions in polycrystalline olivine

    NASA Astrophysics Data System (ADS)

    Wells, Rachel K.; Xiong, Wei; Sesti, Erika; Cui, Jinlei; Giammar, Daniel; Skemer, Philip; Hayes, Sophia E.; Conradi, Mark S.

    2017-05-01

    Carbon dioxide (CO2) injection into olivine-rich mafic and ultramafic rocks is expected to result in the precipitation of divalent metal carbonate minerals, permanently storing the CO2 underground. Previous experiments that used unconsolidated forsterite (Mg2SiO4) particles in experimental investigations of reactions with water and carbon dioxide have been useful for determining the identity, rates of formation, and spatial location of carbonate mineral reaction products. However there remains a need for information regarding the influence of the internal pore structure and grain boundary surfaces on the extent and locations of these reactions in dense aggregates. We conducted several experiments at 100 °C and 100 bar CO2 using sintered San Carlos olivine (Fo90) and pure forsterite (Fo100) cylinders, and we documented the type and spatial distribution of the reaction products. Timing of carbonation was measured using in-situ 13C NMR spectroscopy without removing the sample from the reactor. Ex-situ solid-state NMR spectroscopy, Raman spectroscopy, and electron microscopy were used to examine reacted samples and precipitates. Within 15 days, magnesite is observed only on the surface of Fo90. After 53 and 102 days of reaction, magnesite and amorphous silica are observed as a crust around the entire Fo100 cylinder and as isolated layers within the sample. The spatial transition from an amorphous silica layer to the host Fo100 indicates that the development of amorphous silica did not impede further forsterite dissolution. While earlier studies documented localized reactions at the grain scale, the development of distinct zones of magnesite and amorphous silica suggest that divalent metal cations are mobile during carbonation of olivine. Grain boundaries, pore structure, and geochemical gradients strongly influence the locations of silicate mineral dissolution and carbonate mineral precipitation even in the absence of advective transport or confinement. The clear

  17. Scale dependencies of hydrologic models to spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Koren, V. I.; Finnerty, B. D.; Schaake, J. C.; Smith, M. B.; Seo, D.-J.; Duan, Q.-Y.

    1999-04-01

    This study is focused on analyses of scale dependency of lumped hydrological models with different formulations of the infiltration processes. Three lumped hydrological models of differing complexity were used in the study: the SAC-SMA model, the Oregon State University (OSU) model, and the simple water balance (SWB) model. High-resolution (4×4 km) rainfall estimates from the next generation weather radar (NEXRAD) Stage III in the Arkansas-Red river basin were used in the study. These gridded precipitation estimates are a multi-sensor product which combines the spatial resolution of the radar data with the ground truth estimates of the gage data. Results were generated from each model using different resolutions of spatial averaging of hourly rainfall. Although all selected models were scale dependent, the level of dependency varied significantly with different formulations of the rainfall-runoff partitioning mechanism. Infiltration-excess type models were the most sensitive. Saturation-excess type models were less scale dependent. Probabilistic averaging of the point processes reduces scale dependency, however, its effectiveness varies depending on the scale and the spatial structure of rainfall.

  18. Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure

    NASA Astrophysics Data System (ADS)

    Palmer, D. R.; Georges, T. M.; Jones, R. M.

    1991-04-01

    Ray theory is usually the basis of data inversion schemes for acoustic remote sensing of the ocean. Chaotic ray paths are expected to be present whenever the ocean environment possesses small-scale, range-dependent structure. We are studying the implications of their presence for data inversion schemes. Using numerical simulations we consider ray-path characteristics for acoustic remote sensing of the Florida Current. We find small-scale bathymetric structure results in chaotic ray paths and an exponential proliferation of eigenrays. As a result, for each feature in the time-of-arrival pattern, there is associated not a single eigenray but a group, thereby limiting the spatial resolution of a remote sensing system.

  19. High spatial variability in coral bleaching around Moorea (French Polynesia): patterns across locations and water depths.

    PubMed

    Penin, Lucie; Adjeroud, Mehdi; Schrimm, Muriel; Lenihan, Hunter Stanton

    2007-02-01

    Mass coral bleaching events are one of the main threats to coral reefs. A severe bleaching event impacted Moorea, French Polynesia, between March and July 2002, causing 55+/-14% of colonies to suffer bleaching around the island. However, bleaching varied significantly across coral genera, locations, and as a function of water depth, with a bleaching level as high as 72% at some stations. Corals in deeper water bleached at a higher rate than those in shallow water, and the north coast was more impacted than the west coast. The relatively small scale of variability in bleaching responses probably resulted from the interaction between extrinsic factors, including hydrodynamic condition, and intrinsic factors, such as differential adaptation of the coral/algal association.

  20. Temporal and spatial variability of global water balance

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  1. Crown fuel spatial variability and predictability of fire spread

    Treesearch

    Russell A. Parsons; Jeremy Sauer; Rodman R. Linn

    2010-01-01

    Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...

  2. Small Scale Beekeeping. Appropriate Technologies for Development. Manual M-17.

    ERIC Educational Resources Information Center

    Gentry, Curtis

    This manual is designed to assist Peace Corps volunteers in the development and implementation of small-scale beekeeping programs as a tool for development. Addressed in the individual chapters are bees and humans; project planning; the types and habits of bees; the essence of beekeeping; bee space and beehives; intermediate technology beekeeping;…

  3. On the Small-Scale Morphology of Asthenospheric Flow

    NASA Astrophysics Data System (ADS)

    Vidal, V.; Davaille, A.; Crambes, C.

    2003-12-01

    We investigated the interaction of small-scale cold instabilities dripping from a cooling lithosphere with a shear flow confined in the asthenosphere, using analog experiments. Rayleigh numbers ranged between 104 and 108. The fluids were either polymer solutions (constant viscosity), sugar or corn syrups (viscosity depending on temperature), or wax (phase transition). When cooling away from the ridge, the thickening lithosphere becomes thermally unstable and develops small-scale convective instabilities at its bottom. For sufficiently fast asthenospheric flow, these instabilities are sheared and remain trapped in the asthenosphere, following a helicoidal path aligned with the direction of plate motion. A phase diagram and scaling laws for the flow characteristics were determined. The observed helicoidal pattern could explain some geophysical observables such as small wavelength lineations in the terrestrial gravity field, or seismic anisotropy anomalies under the Pacific plate. Moreover, the distance from the ridge at which the small-scale instabilities form depends on the underlying mantle temperature: for a hotter mantle, they are generated closer to the ridge. Therefore, in the case of a ridge-centered plume, the hot temperature anomaly due to the plume triggers small-scale instabilities almost at the ridge. The heat transfer out of the mantle is accelerated, and the thickening of the lithosphere away from the ridge is delayed. Therefore, a groove at the bottom of the lithosphere may be expected along the track of a ridge-centred hotspot.

  4. Application of Small-Scale Systems: Evaluation of Alternatives

    Treesearch

    John Wilhoit; Robert Rummer

    1999-01-01

    Large-scale mechanized systems are not well-suited for harvesting smaller tracts of privately owned forest land. New alternative small-scale harvesting systems are needed which utilize mechanized felling, have a low capital investment requirement, are small in physical size, and are based primarily on adaptations of current harvesting technology. This paper presents...

  5. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    SciTech Connect

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  6. Solar small-scale dynamo and polarity of sunspot groups

    NASA Astrophysics Data System (ADS)

    Sokoloff, D.; Khlystova, A.; Abramenko, V.

    2015-08-01

    In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.

  7. Small Scale Charcoal Making: A Manual for Trainers.

    ERIC Educational Resources Information Center

    Karch, Ed; And Others

    This training program offers skills training in all stages of the development of technologies related to small-scale charcoal production, including the design, construction, operation, maintenance, repair, and evaluation of prototype kilns. The kiln designs are selected to be as consistent as possible with the realities of rural areas in…

  8. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  9. Small Scale Marine Fisheries: An Extension Training Manual. TR-30.

    ERIC Educational Resources Information Center

    Martinson, Steven; And Others

    This manual is designed for use in a preservice training program for prospective volunteers whose Peace Corps service will be spent working with small-scale artisanal fishing communities in developing nations. The program consists of 8 weeks of intensive training to develop competencies in marine fisheries technology and fisheries extension work…

  10. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  11. The Role of Leadership in Small Scale Educational Change

    ERIC Educational Resources Information Center

    Wei, Wei; DeBrot, David; Witney, Carol

    2015-01-01

    By investigating the factors facilitating and hindering a small scale educational change, this study highlights the crucial role of leadership in designing and implementing an educational change at a transnational university in Vietnam. During its initiation stage, the programme leaders seemed to fail to (1) set up a clear schedule for changing,…

  12. Design and operation of a small-scale ethanol still

    SciTech Connect

    Floyd, J.E.

    1980-01-01

    A description is presented of a small-scale alcohol still utilizing beer derived from both corn and potato mash. Use was made of the ethanol in alcohol vehicles imported from Brazil. By-products (stillage) were successfully used as cattle feed. (DMC)

  13. Environmentally Sound Small-Scale Forestry Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Ffolliott, Peter F.; Thames, John L.

    This manual, the third in a series of publications that address community development possibilities in developing nations, provides guidelines for small-scale forestry projects that are integrative and conservation-oriented. Chapters focus on: (1) users and uses (specifying targeted audience and general objectives); (2) planning process (including…

  14. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  15. Environmentally Sound Small-Scale Forestry Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Ffolliott, Peter F.; Thames, John L.

    This manual, the third in a series of publications that address community development possibilities in developing nations, provides guidelines for small-scale forestry projects that are integrative and conservation-oriented. Chapters focus on: (1) users and uses (specifying targeted audience and general objectives); (2) planning process (including…

  16. Environmentally Sound Small-Scale Energy Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Bassan, Elizabeth Ann; Wood, Timothy S., Ed.

    This manual is the fourth volume in a series of publications that provide information for the planning of environmentally sound small-scale projects. Programs that aim to protect the renewable natural resources that supply most of the energy used in developing nations are suggested. Considerations are made for physical environmental factors as…

  17. The Role of Leadership in Small Scale Educational Change

    ERIC Educational Resources Information Center

    Wei, Wei; DeBrot, David; Witney, Carol

    2015-01-01

    By investigating the factors facilitating and hindering a small scale educational change, this study highlights the crucial role of leadership in designing and implementing an educational change at a transnational university in Vietnam. During its initiation stage, the programme leaders seemed to fail to (1) set up a clear schedule for changing,…

  18. Shaping Component Leads for Small-Scale Production

    NASA Technical Reports Server (NTRS)

    Jan, Lawrence

    1987-01-01

    Simple tool makes it easy to bend leads of electronic components quickly and uniformly for assembly on circuit board. Useful in small-scale production of electronic circuits; saves labor but avoids cost of complicated machinery. Made in range of sizes to accommodate components in variety of dimensions.

  19. Radon emanation from the moon - Spatial and temporal variability.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Golub, L.; Bjorkholm, P.

    1973-01-01

    Observations of Rn-222 and Po-210 on the lunar surface with the orbiting Apollo alpha particle spectrometer reveal a number of features in their spatial distribution and indicate the existence of time variations in lunar radon emission. Localized Rn-222 or Po-210 around the craters Aristarchus and Grimaldi and the edges of virtually all maria indicates time varying radon emission and suggests a correlation between alpha 'hot spots' and sites of transient optical events observed from the earth. In a gross sense, the slower variations of Rn-222 seem to correlate with the distribution of gamma activity.

  20. Radon emanation from the moon - Spatial and temporal variability.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Golub, L.; Bjorkholm, P.

    1973-01-01

    Observations of Rn-222 and Po-210 on the lunar surface with the orbiting Apollo alpha particle spectrometer reveal a number of features in their spatial distribution and indicate the existence of time variations in lunar radon emission. Localized Rn-222 or Po-210 around the craters Aristarchus and Grimaldi and the edges of virtually all maria indicates time varying radon emission and suggests a correlation between alpha 'hot spots' and sites of transient optical events observed from the earth. In a gross sense, the slower variations of Rn-222 seem to correlate with the distribution of gamma activity.

  1. Radiotherapy Adapted to Spatial and Temporal Variability in Tumor Hypoxia

    SciTech Connect

    Sovik, Aste; Malinen, Eirik . E-mail: emalinen@fys.uio.no; Skogmo, Hege K.; Bentzen, Soren M.; Bruland, Oyvind S.; Olsen, Dag Rune

    2007-08-01

    Purpose: To explore the feasibility and clinical potential of adapting radiotherapy to temporal and spatial variations in tumor oxygenation. Methods and Materials: Repeated dynamic contrast enhanced magnetic resonance (DCEMR) images were taken of a canine sarcoma during the course of fractionated radiation therapy. The tumor contrast enhancement was assumed to represent the oxygen distribution. The IMRT plans were retrospectively adapted to the DCEMR images by employing tumor dose redistribution. Optimized nonuniform tumor dose distributions were calculated and compared with a uniform dose distribution delivering the same integral dose to the tumor. Clinical outcome was estimated from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Results: The biologically adapted treatment was found to give a substantial increase in TCP compared with conventional radiotherapy, even when only pretreatment images were used as basis for the treatment planning. The TCP was further increased by repeated replanning during the course of treatment, and replanning twice a week was found to give near optimal TCP. Random errors in patient positioning were found to give a small decrease in TCP, whereas systematic errors were found to reduce TCP substantially. NTCP for the adapted treatment was similar to or lower than for the conventional treatment, both for parallel and serial normal tissue structures. Conclusion: Biologically adapted radiotherapy is estimated to improve treatment outcome of tumors having spatial and temporal variations in radiosensitivity.

  2. Geostatistical independent simulation of spatially correlated soil variables

    NASA Astrophysics Data System (ADS)

    Boluwade, Alaba; Madramootoo, Chandra A.

    2015-12-01

    The selection of best management practices to reduce soil and water pollution often requires estimation of soil properties. It is important to find an efficient and robust technique to simulate spatially correlated soils parameters. Co-kriging and co-simulation are techniques that can be used. These methods are limited in terms of computer simulation due to the problem of solving large co-kriging systems and difficulties in fitting a valid model of coregionalization. The order of complexity increases as the number of covariables increases. This paper presents a technique for the conditional simulation of a non-Gaussian vector random field on point support scale. The technique is termed Independent Component Analysis (ICA). The basic principle underlining ICA is the determination of a linear representation of non-Gaussian data so that the components are considered statistically independent. With such representation, it would be easy and more computationally efficient to develop direct variograms for the components. The process is presented in two stages. The first stage involves the ICA decomposition. The second stage involves sequential Gaussian simulation of the generated components (which are derived from the first stage). This technique was applied for spatially correlated extractable cations such as magnesium (Mg) and iron (Fe) in a Canadian watershed. This paper has a strong application in stochastic quantification of uncertainties of soil attributes in soil remediation and soil rehabilitation.

  3. Evaluating spatial and temporal variability of fecal coliform bacteria loads at Pelahatchie Watershed in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Bacterial contaminations of surface waters are an increasing concern for scientists because pathogenic bacteria can cause adverse effects on human health. This research was performed to investigate spatial and seasonal variability of fecal coliform bacteria (FCB) concentrations from the Pelahatchie ...

  4. Spatial and temporal variability in forest growth in the Olympic Mountains, Washington: sensitivity to climatic variability.

    Treesearch

    Melisa L. Holman; David L. Peterson

    2006-01-01

    We compared annual basal area increment (BAI) at different spatial scales among all size classes and species at diverse locations in the wet western and dry northeastern Olympic Mountains. Weak growth correlations at small spatial scales (average R = 0.084-0.406) suggest that trees are responding to local growth conditions. However, significant...

  5. The Impact of Small-Scale Heterogeneity on Proxies in Biomineral Archives

    NASA Astrophysics Data System (ADS)

    Gagnon, A. C.

    2015-12-01

    acidification and aspects of the organic templating process during skeletal nucleation, respectively. Collectively these experiments can help explain small-scale proxy heterogeneity, upscale this variability to bulk composition, and more accurately resolve specific environmental signals from the geochemical record.

  6. Extreme small-scale wind episodes over the Barents Sea: When, where and why?

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.

    2015-04-01

    The Barents Sea is mostly ice-free during winter and therefore prone to severe weather associated with marine cold air outbreaks, such as polar lows. With the increasing marine activity in the region, it is important to study the climatology and variability of episodes with strong winds, as well as to understand their causes. Explosive marine cyclogenesis is usually caused by a combination of several mechanisms: upper-level forcing, stratospheric dry intrusions, latent heat release, surface energy fluxes, low-level baroclinicity. An additional factor that has been linked to extremely strong surface winds, is low static stability in the lower atmosphere, which allows for downward transfer of high-momentum air. Here the most extreme small-scale wind episodes in a high-resolution (5 km) 35-year hindcast were analyzed from a dynamical perspective, and it was found that they were associated with unusually strong low-level baroclinicity and surface heat fluxes. And crucially, the 12 most severe episodes had stronger cold-air advection than 12 slightly less severe cases, suggesting that marine cold air outbreaks are the most important mechanism for extreme winds on small spatial scales over the Barents Sea. Observational data is sparse in the Arctic, so forecasters are often in need of simple indicators when evaluating the potential for strong winds. Polar low forecasters in northern Norway monitor the vertical difference between the SST and the temperature at 500 hPa, which is a simple and effective indicator of cold air outbreaks. Already 24 hours before the most intense storms' peak intensity, this difference was higher than normal, acting as a possible harbinger of extreme winds for experienced forecasters. As the quality and resolution of the forecast models increase with time, it is in data-sparse regions such as the Barents Sea that human experience still gives a vital edge.

  7. Integrated bioenergy conversion concepts for small scale gasification power systems

    NASA Astrophysics Data System (ADS)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  8. Visualization of small scale structures on high resolution DEMs

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky

  9. Spatial variability of factors influencing coastal change in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Manson, G. K.; Solomon, S. M.; Forbes, D. L.; Atkinson, D. E.; Craymer, M.

    2005-06-01

    Coastal change in the western Canadian Arctic is influenced by coastal morphology, relative sea-level trend and sea-ice and storm climates. The spatial variability of these factors tends to follow general east west trends suggesting similar trends in coastal erosion hazard, processes and rates of coastal change. The spatial variability in the causes of coastal change is examined in the communities of Tuktoyaktuk, Sachs Harbour, Holman and Kugluktuk.

  10. Understanding Stellar Light Spatial Inhomogeneities and Time Variability

    NASA Technical Reports Server (NTRS)

    Uitenbroek, Han; Sasselov, Dimitar D.

    2000-01-01

    We would like the opportunity to thank NASA for supporting our efforts to construct tools to analyze the spectra of spatially inhomogeneous and temporally varying stellar atmospheres. This financial support has allowed us to a versatile radiative transfer code that can be used for many different applications. With this numerical code we have written a point-and-click analysis package written in IDL that can be used to look extensively at the generated output data. Below we describe the most recent results obtained with our transfer code and list papers that have appeared with these results. Although we have not been able to produce as many time-dependent calculations as we had hoped (mainly because of programmatic reasons; Sasselov took another position halfway through the grant), we believe we have

  11. Soil Carbon Dynamics in a Shelterbelt in the Midwest: Sources and Spatial Variability

    USDA-ARS?s Scientific Manuscript database

    Shelterbelt planting in cropland may sequester carbon (C), but sources and spatial variability have not been documented. This study was conducted to assess sources and spatial variation of soil organic C (SOC) in a 35-year-old shelterbelt, and in two adjacent cultivated fields (CF) in eastern Nebras...

  12. The Effects of Spatial Stimulus-Response Compatibility on Choice Time Production Accuracy and Variability

    ERIC Educational Resources Information Center

    Rakitin, Brian C.

    2005-01-01

    Five experiments examined the relations between timing and attention using a choice time production task in which the latency of a spatial choice response is matched to a target interval (3 or 5 s). Experiments 1 and 2 indicated that spatial stimulus-response incompatibility increased nonscalar timing variability without affecting timing accuracy…

  13. Sensitivity of Average Annual Runoff to Spatial Variability and Temporal Correlation of Rainfall.

    NASA Astrophysics Data System (ADS)

    Babin, Steven M.

    1995-08-01

    This paper examines the sensitivity of annual area mean runoff calculations to the effects of spatial variability and temporal correlation of rainfall. The model used is based upon the hypothesis that the annual water balance is determined only by rainfall, potential evapotranspiration, and soil water storage. A simple bucket hydrology model with a seasonally varying potential evapotranspiration is used with rainfall data measured at several sites on the Delmarva Peninsula. Annual area mean runoffs are calculated for three cases: 1) actual spatial variability among the rain gauge sites and temporal correlation between consecutive 1-min rainfall amounts are maintained (the actual case); 2) actual spatial variability among the sites is maintained but temporal correlation between the consecutive 1-min rainfall amounts is minimized (the site-shuffled case); and 3) both spatial variability and temporal correlation are ignored (the area-averaged case). The actual case represents the baseline for comparison with the other two cases. The annual a' mean runoffs show little sensitivity to spatial variability and temporal correlation for this model. Therefore, if finite soil permeability effects are ignored in favor of simple water storage capacity, then spatial variability and temporal correlation of rainfall appear to have little impact on the annual area mean runoff for the data considered in this study.

  14. River flow forecasting using a rainfall disaggregation model incorporating small-scale topographic effects

    NASA Astrophysics Data System (ADS)

    Misumi, R.; Bell, V. A.; Moore, R. J.

    2001-09-01

    River flow forecasting using rainfall predictions from a mesoscale weather prediction model in combination with a physically-based rainfall disaggregation model incorporating small-scale topographic variability is demonstrated. Rainfall predicted by the UK Met Office Mesoscale Model on a 16.8 km grid is disaggregated onto a 2 km grid using a rainfall model which adds the effect of small-scale topography. River flow is calculated by a distributed rainfall-runoff model using the output from the rainfall model. A thunderstorm event on 7 June 1996 over the Brue catchment in Somerset, England is used to evaluate the models. The rainfall model successfully forecasts the band-shaped rainfall field within the catchment and the error in the total amount of flow during the storm is only -12%. An error of -40% in the peak flow is attributed to the treatment of convective clouds in the model.

  15. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes

    NASA Astrophysics Data System (ADS)

    Marton, John M.; Roberts, Brian J.

    2014-03-01

    Phosphorus (P) biogeochemistry has been studied in multiple wetland ecosystems, though few data exist on P sorption in U.S. Gulf Coast marshes. There also is a limited understanding of how oil spills in coastal zones can influence P dynamics in wetland soils. In this study, we measured P sorption potential, using the P sorption index (PSI), soil properties, and P saturation at increasing distances from the marsh edge in oiled and unoiled marshes in three regions along the southeastern Louisiana coast (Terrebonne Bay, western, and eastern Barataria Bay). Individual PSI values were highly variable, ranging from 19.5 to 175.6 mg P 100 g-1 and varying by at least a factor of five within each of the three regions, and did not significantly differ between regions or between oiled and unoiled marshes. Soil pH, organic matter, total N, N:P ratio, moisture content, cation exchange capacity, and P saturation differed between regions, and all soil parameters showed great variability between and within individual marshes. Extractable iron was the strongest predictor of PSI across all regions, explaining between 51 and 95% of the variability in individual regions. PSI increased with distance from marsh edge in Terrebonne Bay where other soil properties exhibited similar trends. Results suggest mineral composition of marsh soils, influenced by elevation-inundation gradients, are critical in dictating P loading to estuaries and open waters, and overall marsh functioning. Further, within 2 years of the Deepwater Horizon oil spill, oiled marshes are able to sorb phosphorus at comparable levels as unoiled marshes.

  16. Decadal Climate Variability and the Spatial Organization of Deep Drought

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Hodes, J.; Arulraj, M.

    2016-12-01

    Baseflow analysis of long-term (> 50 years) records of river discharge in the SE US followed by Principal Component, Wavelet and Coherence analysis reveals three key modes of space-time variability linked to 1) annual precipitation, 2) the Atlantic Multidecadal Oscillation (AMO) and track and frequency of tropical storms, and 3) physiographic controls separating basins with headwaters in the Appalachians from lowland basins in the Piedmont and in the Coastal Plain. These results highlight regional-scale hydrogeological controls of baseflow connectivity on hydrologic drought beyond topographic surface boundaries.

  17. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  18. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  19. Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition.

    PubMed

    Storch, David; Gaston, Kevin J; Cepák, Jaroslav

    2002-09-07

    Temporal and spatial environmental variability are predicted to have reddened spectra that reveal increases in variance with the period or length sampled. However, spectral analyses have seldom been performed on ecological data to determine whether these predictions hold true in the case of spatial environmental variability. For a 50 km long continuous transect of 128 point samples across a heterogeneous cultural landscape in the Czech Republic, both habitat composition and bird species composition decomposed by standard ordination techniques did indeed exhibit reddened spectra. The values of main ordination axes have relationships between log spectral density and log frequency with slopes close to -1, indicating 1/f, or 'pink' noise type of variability that is characterized by scale invariance. However, when habitat composition was controlled for and only residuals for bird species composition were analysed, the spectra revealed a peak at intermediate frequencies, indicating that population processes that structure bird communities but are not directly related to the structure of the environment might have some typical correlation length. Spatial variability of abundances of individual species was mostly reddened as well, but the degree was positively correlated to their total abundance and niche position (strength of species-habitat association). If 'pink' noise type of variability is as generally typical for spatial environmental variability as for temporal variability, the consequences may be profound for patterns of species diversity on different spatial scales, the form of species-area relationships and the distribution of abundances within species ranges.

  20. Simulation of fluid distributions observed at a crude oil spill site incorporating hysteresis, oil entrapment, and spatial variability of hydraulic properties

    USGS Publications Warehouse

    Essaid, H.I.; Herkelrath, W.N.; Hess, K.M.

    1993-01-01

    Subsurface oil, water, and air saturation distributions were determined using 146 samples collected from seven boreholes along a 120-m transect at a crude oil spill site near Bemidji, Minnesota. The field data, collected 10 years after the spill, show a clearly defined oil body that has an oil saturation distribution that appears to be influenced by sediment heterogeneities and water table fluctuations. The center of the oil body has depressed the water-saturated zone boundary and the oil appears to have migrated laterally within the capillary fringe. A multiphase cross-sectional flow model was developed and used to simulate the movement of oil and water at the spill site. Comparisons between observed and simulated oil saturation distributions serve as an indicator of the appropriateness of using such models to predict the actual spread of organic immiscible liquids at spill sites. Sediment hydraulic properties used in the model were estimated from particle size data. The general large-scale features of the observed oil body were reproduced only when hysteresis with oil entrapment and representations of observed spatial variability of hydraulic properties were incorporated into the model. The small-scale details of the observed subsurface oil distribution were not reproduced in the simulations. The discrepancy between observed and simulated oil distributions reflects the considerable uncertainty in model parameter estimates and boundary conditions, three-phase capillary pressure-saturation-relative permeability functions, representations of spatial variability of hydraulic properties, and hydrodynamics of the groundwater flow system at the study site.

  1. Simulation of fluid distributions observed at a crude oil spill site incorporating hysteresis, oil entrapment, and spatial variability of hydraulic properties

    USGS Publications Warehouse

    Essaid, H.I.; Herkelrath, W.N.; Hess, K.M.

    1993-01-01

    Subsurface oil, water, and air saturation distributions were determined using 146 samples collected from seven boreholes along a 120-m transect at a crude oil spill site near Bemidji, Minnesota. The field data, collected 10 years after the spill, show a clearly defined oil body that has an oil saturation distribution that appears to be influenced by sediment heterogeneities and water table fluctuations. The center of the oil body has depressed the water-saturated zone boundary and the oil appears to have migrated laterally within the capillary fringe. A multiphase cross-sectional flow model was developed and used to simulate the movement of oil and water at the spill site. Comparisons between observed and simulated oil saturation distributions serve as an indicator of the appropriateness of using such models to predict the actual spread of organic immiscible liquids at spill sites. Sediment hydraulic properties used in the model were estimated from particle size data. The general large-scale features of the observed oil body were reproduced only when hysteresis with oil entrapment and representations of observed spatial variability of hydraulic properties were incorporated into the model. The small-scale details of the observed subsurface oil distribution were not reproduced in the simulations. The discrepancy between observed and simulated oil distributions reflects the considerable uncertainty in model parameter estimates and boundary conditions, three-phase capillary pressure-saturation-relative permeability functions, representations of spatial variability of hydraulic properties, and hydrodynamics of the groundwater flow system at the study site.

  2. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NASA Astrophysics Data System (ADS)

    Santamaría, Luis

    2002-06-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.

  3. Spatial variability and sources of ammonia in three European cities

    NASA Astrophysics Data System (ADS)

    Prevot, Andre S. H.; Elser, Miriam; El Haddad, Imad; Maasikmets, Marek; Bozzetti, Carlo; Robert, Wolf; Richter, Rene; Slowik, Jay; Teinemaa, Erik; Hueglin, Christoph; Baltensperger, Urs

    2017-04-01

    For the assessment of ammonia (NH3) effects on ecosystems and climate, one would ideally know the emission sources and also the spatial distributions. Agriculture is the largest global source of NH3. However traffic, especially gasoline vehicles, biomass burning or waste management can be significant in urban areas. Ambient NH3 measurements using cavity ring-down spectroscopy were performed online at high time resolution on a moving vehicle in three cities: Zurich (Switzerland), Tartu (Estonia) and Tallinn (Estonia). Initial tests showed that a regular inlet cannot be used. A heated line including an auxiliary flow was finally deployed to minimize NH3 adsorption onto the inlet walls. We will present the characterization of the response and recovery times of the measurement system which was used to deconvolve the true NH3 signal from the remaining adsorption-induced hysteresis. Parallel measurements with an Aerodyne aerosol mass spectrometer were used to correct the observed NH3 for the contribution of ammonium nitrate (NH4NO3) which completely evaporated to NH3 and nitric acid (HNO3) in the heated line at the chosen temperature, in contrast to ammonium sulfate. Finally, quantitative measurements of ambient NH3 are possible with sufficient time resolution to enable measurement of NH3 point or line sources with a mobile sampling platform. The NH3 analyzer and the aerosol mass spectrometer were complemented by an aethalometer to measure black carbon and various gas-phase analyzers to enable a complete characterization of the sources of air pollution, including the spatial distributions and the regional background concentrations and urban increments of all measured components. Although at all three locations similar urban increment levels of organic aerosols were attributed to biomass burning and traffic, traffic emissions clearly dominated the city enhancements of NH3, equivalent black carbon (eBC) and carbon dioxide (CO2). Concentration gradients in areas strongly

  4. Spatial variability of available soil microelements in an ecological functional zone of Beijing.

    PubMed

    Ye, Huichun; Shen, Chongyang; Huang, Yuanfang; Huang, Wenjiang; Zhang, Shiwen; Jia, Xiaohong

    2015-02-01

    Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability.

  5. IM-CRDS for the analysis of matrix-bound water isotopes: a streamlined (and updated) tool for ecohydrologists to probe small-scale variability in plants Yasuhara, S. (syasuhara@picarro.com)1,Carter, J.A. (jcarter@picarro.com)1, Dennis, K.J. (kdennis@picarro.com)1 1Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, CA 95054

    NASA Astrophysics Data System (ADS)

    Yasuhara, S.

    2013-12-01

    The ability to measure the isotopic composition of matrix-bound water is valuable to many facets of earth and environmental sciences. For example, ecohydrologists use stable isotopes of oxygen and hydrogen in plant and soil water, in combination with measurements of atmospheric water vapor, surface water and precipitation, to estimate budgets of evapotranspiration. Likewise, water isotopes of oceanic water, brines and other waters with high total dissolved solids (TDS, e.g., juices) are relevant to studying large-scale oceanic circulation, small-scale mixing, groundwater contamination, the balance of evaporation to precipitation, and the provenance of food. Conventionally matrix-bound water has been extracted using cryogenic distillation, whereby water is distilled from the material in question (e.g., a leaf sample) by heating under vacuum and collecting the resultant water vapor using liquid nitrogen. The water can then be analyzed for its stable isotopic composition by a variety of methods, including isotope ratio mass spectrometry and laser techniques, such as Cavity Ring-Down Spectroscopy (CRDS). Here we present recent improvements in an alternative, and stream-lined, solution for integrated sample extraction and isotopic measurement using a Picarro Induction Module (IM) coupled to commercially-available CRDS analyzer from Picarro. This technique is also valuable for waters with high TDS, which can have detrimental effects on flash vaporization process, typically used for the introduction of water to Picarro CRDS water isotope analyzers. The IM works by inductively heating a sample held within a metal sample holder in a glass vial flushed with dry air. Tested samples include leaves, stems, twigs, calibration water, juices, and salt water. The heating process evolves water vapor which is then swept through the system at approximately 150 standard cubic centimeters per minute. The evolved water vapor passes through an activated charcoal cartridge for removal of

  6. MAGNETOHYDRODYNAMIC KINK WAVES IN NONUNIFORM SOLAR FLUX TUBES: PHASE MIXING AND ENERGY CASCADE TO SMALL SCALES

    SciTech Connect

    Soler, Roberto; Terradas, Jaume

    2015-04-10

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  7. Causes and implications of the loss of small-scale surface texture in Viking Orbiter images

    SciTech Connect

    Kahn, R.; Guinness, E.; Arvidson, R.

    1985-01-01

    Previous studies of orbital images of Mars suggest that the equatorial regions have been stripped of sedimentary debris and that the polar regions are covered with a deposit that thins equatorward. These conclusions were based, in part, on the presence or absence of small-scale texture in images. The absence of small-scale features in Orbiter images must be interpreted with caution because of atmospheric haze that will also preferentially obscure high spatial frequency features. Two sets of overlapping images taken under different atmospheric conditions allow one to verify a single scattering atmospheric model that quantitatively accounts for the observations. Application of the model shows that twelve crater size-frequency distributions for areas in the northern hemisphere behave in the manner predicted for hazy conditions. Loss of surface resolution due to the nearly ubiquitous haze in the northern mid to high latitudes makes it impossible to assess, with existing images, the validity of suggestions that small-scale features have been preferentially degraded by surface processes. To the limited degree that the present data set samples the northern hemisphere, there is no evidence in these data for wide-spread young debris deposits hundreds of meters thick, other than the polar layered terrain. A debris deposit about 100 meters thick is a likely explanation for the observed crater size-frequency distribution at two mid northern latitude locations, one each in Arcadia and Acidalia Planitias.

  8. An Attempt of Formalizing the Selection Parameters for Settlements Generalization in Small-Scales

    NASA Astrophysics Data System (ADS)

    Karsznia, Izabela

    2014-12-01

    The paper covers one of the most important problems concerning context-sensitive settlement selection for the purpose of the small-scale maps. So far, no formal parameters for small-scale settlements generalization have been specified, hence the problem seems to be an important and innovative challenge. It is also crucial from the practical point of view as it is necessary to develop appropriate generalization algorithms for the purpose of the General Geographic Objects Database generalization which is the essential Spatial Data Infrastructure component in Poland. The author proposes and verifies quantitative generalization parameters for the purpose of the settlement selection process in small-scale maps. The selection of settlements was carried out in two research areas - in Lower Silesia and Łódź Province. Based on the conducted analysis appropriate contextual-sensitive settlements selection parameters have been defined. Particular effort has been made to develop a methodology of quantitative settlements selection which would be useful in the automation processes and that would make it possible to keep specifics of generalized objects unchanged.

  9. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    NASA Technical Reports Server (NTRS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  10. Research on the Spatial Variability of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Zhang, Changli; Liu, Shuqiang; Zhang, Xianyue; Tan, Kezhu

    China is a country seriously suffering from the lack of water resource, especially the north of China (a dense area) where there are more agricultural production than other places in China. Therefore, some have become most important problems which should be settled down right now for precision agriculture: saving the water of agriculture, optimizing the water for cropland as well as making use of soil moisture effectively. To realise the potential of soil-moisture, protect the water source , strengthen the management of the soil moisture of farm, design the irrigation and drainage, monitor the soil-moisture, etc. ,the data collection of soil moisture and the study on how to could provide the far-reaching and academic significance of guidance together with higher regional and practical use value. The IDW, Spline and Kriging in the Spatial Analyst of ArcGIS 9.0 are applied on drawing the distributing map of soil moisture and it also offers the theoretical foundation for the connection between studying soil moisture and enhancing the yield.

  11. Eddies spatial variability at Makassar Strait – Flores Sea

    NASA Astrophysics Data System (ADS)

    Nuzula, F.; Syamsudin, M. L.; Yuliadi, L. P. S.; Purba, N. P.; Martono

    2017-01-01

    This study was aimed to get the distribution of eddies spatially and temporally from Makassar Waters (MW) to Flores Sea (FS), as well as its relations with the upwelling, the downwelling, and chlorophyll-a concentration. The study area extends from 115º–125º E to 2.5º–8º S. The datasets were consisted of monthly geostrophic currents, sea surface heights, sea surface temperatures, and chlorophyll-a from 2008 – 2012. The results showed that eddies which found at Makassar Strait (MS) has the highest diameter and speed of 255.3 km and 21.4 cm/s respectively, while at the southern MW has 266.4 km and 15.6 cm/s, and at FS has 182.04 km and 11.4 cm/s. From a total of 51 eddies found, the majority of eddies type was anticyclonic. At MS and FS, eddies formed along the year, whereas at southern MW were found missing in West Season. Moreover, the chlorophyll-a concentration was consistently higher at the eddies area. Even though, the correlation among eddies and the upwelling downwelling phenomena was not significantly as shown by sea surface temperatures value.

  12. Spatial Variability of Near Shore Turbidity At Lake Tahoe

    NASA Astrophysics Data System (ADS)

    McConnell, J.; Taylor, K.

    2001-12-01

    The turbidity of the near shore zone at Lake Tahoe has been mapped during different seasons. While the turbidity values are consistently low by comparison to most lakes, there are significant turbidity differences between different locations and seasons. Prior to the start of the 2001 spring runoff the turbidity values where low, except for around Tahoe Keys were large changes to the surface drainage patterns have an adverse influence on the lake. Early in the summer of 2001 high turbidity was observed off the community of South Lake Tahoe and there is a suggestion of a moderate turbidity plume moving along the South East shore. In late summer of 2000, high turbidity areas were noted offshore of areas with developed land. Identification of persistent high turbidity areas can help direct where restoration efforts will be most effective. Repeat turbidity surveys can help assess the effectiveness of restoration efforts. Analysis of the temporal and spatial patterns of turbidity can suggest the location of sources and transportation pathways of undesirable material that enters the lake.

  13. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  14. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  15. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  16. Spatial and temporal variability of VAS radiance measurements by structure and correlation analysis

    NASA Technical Reports Server (NTRS)

    Hillger, Donald W.; Purdom, James F. W.; Jones, Andrew S.; Vonder Haar, Thomas H.

    1988-01-01

    The statistical structure function analysis presently applied to VISSR Atmospheric Sounder (VAS) measurements has been extended to include time, and yields structure plots in either two spatial dimensions or one spatial dimension and time that indicate three-dimensional measurement variability. The analyses that include time as a coordinate also yield an indication of the mean speed and direction of the analyzed data. Results for three-hourly VAS data indicate that sampling at a high, approximately 1-hour, frequency is required in order to correctly monitor VAS measurements' temporal variability in a way equivalent to high spatial resolution.

  17. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  18. Soil spatial variability and symbiotic nitrogen fixation by legumes

    SciTech Connect

    Reichardt, K. )

    1990-09-01

    The isotope dilution method for the estimation of N{sub 2} fixation by legumes is analyzed, comparing the application of {sup 15}N-enriched fertilizer with {sup 15}N-labeled soil. Soil variability of other dynamic processes in the soil are discussed in light of the distribution of the {sup 15}N label in the system. Field data were collected along six transects, 45 m long, with 30 plots (replicates) each. The legume (Vicia faba L.) was used as a fixing crop, barley (Hordeum vulgare L.) and oil radish (Raphinus sativus L.) as nonfixing standard crops. Isotope methods were also compared with the yield difference method. Results show that isotope methods were very sensitive to the distribution of the label in the soil and that dynamic processes involving N can significantly affect this distribution over a whole field. Best results were obtained with {sup 15}N-labeled soil. The particular site used, having been farmed for more than 20 years with {sup 15}N trials, showed a homogeneous residual {sup 15}N label that made it possible to estimate N{sub 2} fixation without the application of extra label. Estimates of N{sub 2} fixation with the isotope method were well correlated with the yield difference method when fertilizer use efficiency of the fixing and nonfixing crops were similar. Results also indicate that a good reference crop for one method might not be the best for the other method, and one reason for this is the variability of soil parameters and of dynamic processes occurring in the soil.

  19. Spatial Variability of Snowpack Fracture Propagation Propensity at the Slope Scale

    NASA Astrophysics Data System (ADS)

    Hoyer, I.; Hendrikx, J.; Birkeland, K.; Irvine, K. M.

    2013-12-01

    Understanding the spatial variability of fracture propagation is very important for avalanche forecasting, assessing the representativeness of point stability tests, and for working towards a fuller understanding of avalanche processes. There has been a significant amount of prior research examining the spatial variability of snow stability at the slope scale. However, most earlier research focused on measurements associated with fracture initiation. As both fracture initiation and propagation are necessary ingredients for an avalanche, an investigation of the spatial variability of fracture propagation is important to an understanding of spatial snow stability. The small body of previous work examining the spatial variability of fracture propagation has shown inconsistent results, with early studies related to testing the Extended Column Test (ECT) showing very homogenous results, while later studies showed more heterogeneous results. The ECT is used in this study to measure the fracture propagation potential of the snowpack for a range of weak layer types. On each slope we conducted 28 ECTs in a structured grid with a 30m by 30m extent. The slopes sampled were wind sheltered clearings, below treeline, with uniform slope and aspect, across southwest Montana. We tested slopes with a variety of weak layers (surface hoar, depth hoar, new snow, and near surface facets), a variety of slab characteristics (slab harness, slab depth), and varying levels of forecasted stability. Our data shows that on many slopes there is considerable spatial variability in fracture propagation potential. There was often significant variability in fracture propagation even without substantial variation in snowpack structure. Weak layer type was found not to be a controlling factor in the level of spatial variability; for any given weak layer type some slopes had very variable fracture propagation while others had quite homogenous results.

  20. Effects of spatial variability on the rainfall runoff process in a small loess catchment

    NASA Astrophysics Data System (ADS)

    Merz, Bruno; Bárdossy, András

    1998-12-01

    Numerous field experiments have revealed that hydrological processes and parameters can show considerable spatial variability. When modelling the rainfall runoff process, the influence of this variability on the runoff should be assessed. For regionalization purposes, it is an important question if and how this variability is reflected in the behaviour on a larger scale. A quasi-three-dimensional, process-oriented model is used to understand the influence of spatial variability on the runoff behaviour. The study area, "Neuenbürger Pfad", is a small loess catchment in southwestern Germany. Because of low infiltration capacity of the loess soil, runoff is produced by infiltration excess overland flow. Three examples are presented which elaborate on the effects of different types of spatial variability. The first example shows that an agricultural road plays a crucial role in the runoff behaviour of the investigated catchment. The second example studies the role of the spatial distribution of soil parameters. It demonstrates the importance of structured variability in heterogeneous fields. Purely random fields result in hydrographs similar to the homogeneous case, whereas fields with structured variability yield very different runoff. The third example is concerned with the effects of different soil moisture interpolations, which serve as initial state for the runoff model. The examples presented show that spatial variability can have a dominant influence on the rainfall runoff behaviour. For sound modelling, a close inspection of the particular catchment characteristics is necessary. Structured variability should be included in hydrological models because of the larger influence compared to stochastic variability. To understand the extent and the significance of catchment variability, an interdiciplinary teamwork should be fruitful.

  1. Spatial variability in forest growth—climate relationships in the Olympic Mountains, Washington.

    Treesearch

    Jill M. Nakawatase; David L. Peterson

    2006-01-01

    For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....

  2. Preliminary results of spatial modeling of selected forest health variables in Georgia

    Treesearch

    Brock Stewart; Chris J. Cieszewski; Eric L. Smith

    2009-01-01

    Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....

  3. Leadership solves collective action problems in small-scale societies

    PubMed Central

    Glowacki, Luke; von Rueden, Chris

    2015-01-01

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies. PMID:26503683

  4. Radar for small-scale land-use mapping

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1975-01-01

    Small-scale (1:250,000 and smaller) land-use maps are a major concern not only to geographers but also to national and regional planners. Unfortunately, such maps are usually out of date by the time they are printed. An interpretation key consisting of five physical and cultural characteristics of the environment evident on radar imagery is used to create land-use regions. Regions and borders interpreted from radar are compared with those found on two existing land-use maps created by traditional methods. Radar imagery can be used to create a small-scale land-use map with regions comparable to those found on existing land-use maps. However, the radar regions depict something more than land use and should be termed rural landscape regions.

  5. Development of a small scale orange juice extractor.

    PubMed

    Olaniyan, A M

    2010-01-01

    A small scale motorized orange juice extractor was designed and fabricated, using locally-available construction materials. The essential components of the machine include feeding hopper, top cover, worm shaft, juice sieve, juice collector, waste outlet, transmission belt, main frame, pulleys and bearings. In operation, the worm shaft conveys, crushes, presses and squeezes the fruit to extract the juice. The juice extracted is filtered through the juice sieve into juice collector while the residual waste is discharged through waste outlet. Result showed that the average juice yield and juice extraction efficiency were 41.6 and 57.4%, respectively. Powered by a 2 hp electric motor, the machine has a capacity of 14 kg/h. With a machine cost of about $100, it is affordable for small-scale citrus farmers in the rural communities.

  6. LLNL Small-Scale Friction sensitivity (BAM) Test

    SciTech Connect

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list of (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.

  7. Electron Precipitation Associated with Small-Scale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Michell, R.; Samara, M.; Grubbs, G. A., II; Hampton, D. L.; Bonnell, J. W.; Ogasawara, K.

    2014-12-01

    We present results from the Ground-to-Rocket Electrons Electrodynamics Correlative Experiment (GREECE) sounding rocket mission, where we combined high-resolution ground-based auroral imaging with high time-resolution precipitating electron measurements. The GREECE payload successfully launched from Poker Flat, Alaska on 03 March 2014 and reached an apogee of approximately 335 km. The narrow field-of-view auroral imaging was taken from Venetie, AK, which is directly under apogee. This enabled the small-scale auroral features at the magnetic footpoint of the rocket payload to be imaged in detail. The electron precipitation was measured with the Acute Precipitating Electron Spectrometer (APES) onboard the payload. Features in the electron data are matched up with their corresponding auroral structures and boundaries, enabling measurement of the exact electron distributions responsible for the specific small-scale auroral features. These electron distributions will then be used to infer what the potential electron acceleration processes were.

  8. Leadership solves collective action problems in small-scale societies.

    PubMed

    Glowacki, Luke; von Rueden, Chris

    2015-12-05

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies.

  9. Design for a small-scale fuel alcohol plant

    SciTech Connect

    Berglund, G.R.; Richardson, J.G.

    1982-08-01

    The paper describes the small-scale fuel alcohol plant (SSFAT) which was designed as a small-scale chemical processing plant. The DOE publication, Fuel from Farms, set forth the basic design requirements. To lower operating costs, it was important that all the processes required to produce alcohol were integrated. Automated control was also an important consideration in the design to reduce the number of operators and operator time, thus reducing operating costs. Automated control also provides better quality control of the final product. The plant is presently operating in a test mode to evaluate operating characteristics. The discussion covers the following topics - design requirements; plan operations; fermentation; distillation; microprocessor control; automatic control; operating experience. 1 ref.

  10. Spatial and temporal variability of periglaciation of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Oliva, M.; Serrano, E.; Gómez-Ortiz, A.; González-Amuchastegui, M. J.; Nieuwendam, A.; Palacios, D.; Pérez-Alberti, A.; Pellitero-Ondicol, R.; Ruiz-Fernández, J.; Valcárcel, M.; Vieira, G.; Antoniades, D.

    2016-04-01

    Active periglacial processes are currently marginal in the Iberian Peninsula, spatially limited to the highest mountain ranges. However, a wide variety of periglacial deposits and landforms are distributed in low and mid-altitude environments, which shows evidence of past periods of enhanced periglacial activity. The purpose of this paper is to summarize the present knowledge of past periglacial activity in the Iberian Peninsula. The chronological framework takes four main stages into account: the last glaciation, deglaciation, Holocene and present-day processes. This study focuses on the highest massifs (Pyrenees, Cantabrian Range, NW ranges, Central Range, Iberian Range, Sierra Nevada) as well as other lower elevation environments, namely the central Iberian Meseta. During the last glaciation the periglacial belt extended to much lower altitudes than today, reaching current sea level in the NW corner of the Iberian Peninsula. A wide range of geomorphological landforms and sedimentary records is indicative of very active periglacial processes during that phase, in some cases related to permafrost conditions (i.e., block streams, rock glaciers). Most of the inactive landforms and deposits in low and mid-elevations in Iberia are also related to this phase. The massive deglaciation of the Iberian massifs was caused by a gradual increase in temperatures. The deglaciation phase was only interrupted by a short period with colder conditions (the Younger Dryas) that reactivated periglacial processes in the formerly glaciated cirques of the highest lands, specifically with the widespread development of rock glaciers. During the Holocene, periglacial processes have been only active in the highest ranges, shifting in altitude according to temperature regimes and moisture conditions. The Little Ice Age saw the reactivation of periglacial activity in lower elevations than today. Currently, periglacial processes are only active in elevations exceeding 2500 m in the southern

  11. Small-Scale Heterogeneity in Deep-Sea Nematode Communities around Biogenic Structures

    PubMed Central

    Hasemann, Christiane; Soltwedel, Thomas

    2011-01-01

    The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments. PMID:22216193

  12. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  13. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  14. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  15. Characterizing the Small Scale Structure in Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    We have applied a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies to several clusters. Three of these clusters show interesting structure. In addition to the small scale structure in surface brightness, we have searched for temperature structure using Advanced Satellite for Cosmology and Astrophysics (ASCA) observations. For A754, we find a filamentary structure, similar to that previously detected in A85. For A119, we find small scale structure associated with both cool and hot regions with a hot filament extending to the northeast. For A1750, one of the first clusters to show substructure from Einstein, we have a rederived the substructure from the ROSAT observations. The ASCA observations show a hot region between the two small scale features - sub-clusters. The hot region shows that the two subclusters are merging and producing a shock wave at the leading edge of the interaction. This analysis had been applied to a sample of 17 clusters to determine the radial distribution of substructure in a sample. The number of detected substructures was rather small and it was decided to select a different cluster sample at larger redshift. This provided a larger radial range over which substructure could be detected. This new cluster sample also includes about 20 clusters and is being analyzed. Finally, we are considering how to compare the substructure parameters of nearby clusters with a more distant sample to see if one can extract cosmological information. Since substructure frequency should depend on the cosmological density parameter, it may be possible to derive new constraints by comparing nearby and distant clusters.

  16. MIX DESIGN FOR SMALL-SCALE MODELS OF CONCRETE STRUCTURES

    DTIC Science & Technology

    An easily applied method of mix design was developed for concretes suitable for use in small -scale models of concrete structures. By use of the...properties were collected for model concretes with portland cement and gypsum cement bases. These concretes had maximum aggregate sizes of No. 4...strength, the model concretes using approximately scaled aggregate were found to have about the same splitting-tensile strength and flexural strength, a

  17. Spatial variability in community composition on a granite breakwater versus natural rocky shores: lack of microhabitats suppresses intertidal biodiversity.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2014-10-15

    Strong differences have been observed between the assemblages on artificial reefs and on natural hard-bottom habitats worldwide, but little is known about the mechanisms that cause contrasting biodiversity patterns. We examined the influence of spatial attributes in relation to both biogenic and topographic microhabitats, in the distribution and composition of intertidal species on both artificial and natural reefs. We found higher small-scale spatial heterogeneity on the natural reef compared with the study breakwater. Species richness and diversity were associated with a higher availability of crevices, rock pools and mussels in natural habitats. Spatial distribution of certain grazers corresponded well with the spatial structure of microhabitats. In contrast, the lack of microhabitats on the breakwater resulted in the absence of several grazers reflected in lower species richness. Biogenic and topographic microhabitats can have interactive effects providing niche opportunities for multiple species, explaining differences in species diversity between artificial versus natural reefs.

  18. Spatial variability and source apportionment of PM2.5 across multiple sampling locations in southwest China

    NASA Astrophysics Data System (ADS)

    Shi, F.; Xie, S.

    2015-12-01

    contribution of Mo-related manufacturing profile was largest at a rural site which is located in the north of the Chengdu Plain, where several small-scale Mo metal processing factories scattered around. The analysis of the combined data from five sites helped to study the common origins affecting the whole area and the spatial variability of the different locations.

  19. Spatial and temporal variability of inorganic chlorine in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Hollis, L. D. J.; Baker, A. R.; Ball, S. M.; Bell, T. G.; Cordell, R. L.; Fleming, Z.; Gaget, M.; Yang, M. X.; Monks, P. S.

    2015-12-01

    Chlorine is well known to be a strong oxidant in the atmosphere;chlorine reactivity impacts the formation of tropospheric ozone, theoxidation of methane and non-methane hydrocarbons, and the cycling ofnitrogen, sulphur and mercury. An accurate assessment of the roleplayed by chlorine in tropospheric chemical processes is complicatedby the scarce knowledge of its sources, sinks and distribution.We report observations of inorganic chlorine species (Cl2, ClNO2,particulate chloride) taken over the period 2014-2015 at threedifferent locations in Britain: an urban site a hundred kilometersfrom the ocean (Leicester), a coastal site mostly affected by shiptraffic (Penlee Point, Cornwall) and a coastal site experiencingeither clean air from the North Sea or polluted air from inland(Weybourne, Norfolk).This dataset provides a first look into the geographical distributionand seasonal variability of chlorine in Northwestern Europe: theresults suggest that, during the night, ClNO2 is ubiquitous withconcentrations in the range of hundreds to thousands of pptV at alllocations, whereas Cl2 can be observed only at coastal sites, withconcentrations of a few tens of pptV. The implications of thewidespread presence of these forms of inorganic chlorine for ozoneproduction and, in general, for the oxidative processes in the loweratmosphere are discussed with the help of a wide range of supportingmeasurements.

  20. Relationship Between Shoulder Pain and Kinetic and Temporal-Spatial Variability In Wheelchair Users

    PubMed Central

    Rice, Ian M; Jayaraman, Chandrasekaran; Hsiao-Wecksler, Elizabeth T.; Sosnoff, Jacob J.

    2014-01-01

    Objective To examine intra-individual variability of kinetic and temporal-spatial parameters of wheelchair propulsion as a function of shoulder pain in manual wheelchair users (MWU). Design Cohort Setting University Research Laboratory Participants 26 adults with physical disabilities who use a manual wheelchair for mobility full time (>80% ambulation) Interventions Participants propelled their own wheelchairs with force sensing wheels at a steady state pace on a dynamometer at 3 speeds (self-selected, 0.7m/s, 1.1m/s) for 3 minutes. Temporal-spatial and kinetic data were recorded unilaterally at the hand rim. Main Outcome Measures Shoulder pain was quantified with the wheelchair users shoulder pain index (WUSPI). Intra-individual mean, standard deviation (SD), and coefficient of variation of (CV = mean/SD) with kinetic and temporal spatial metrics were determined at the handrim. Results There were no differences in mean kinetic and temporal spatial metrics as a function of pain group (p's > 0.016). However, individuals with pain displayed less relative variability (CV) in peak resultant force and push time then pain free individuals (p<0.016). Conclusions Shoulder pain had no influence on mean kinetic and temporal-spatial propulsion variables at the handrim however group differences were found in relative variability. These results suggest that intra-individual variability analysis is sensitive to pain. It is proposed that variability analysis may offer an approach of earlier identification of manual wheelchair users at risk for developing shoulder pain. PMID:24291595

  1. Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.

    2011-12-01

    Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.

  2. Spatial Relationships between Polychaete Assemblages and Environmental Variables over Broad Geographical Scales

    PubMed Central

    Benedetti-Cecchi, Lisandro; Iken, Katrin; Konar, Brenda; Cruz-Motta, Juan; Knowlton, Ann; Pohle, Gerhard; Castelli, Alberto; Tamburello, Laura; Mead, Angela; Trott, Tom; Miloslavich, Patricia; Wong, Melisa; Shirayama, Yoshihisa; Lardicci, Claudio; Palomo, Gabriela; Maggi, Elena

    2010-01-01

    This study examined spatial relationships between rocky shore polychaete assemblages and environmental variables over broad geographical scales, using a database compiled within the Census of Marine Life NaGISA (Natural Geography In Shore Areas) research program. The database consisted of abundance measures of polychaetes classified at the genus and family levels for 74 and 93 sites, respectively, from nine geographic regions. We tested the general hypothesis that the set of environmental variables emerging as potentially important drivers of variation in polychaete assemblages depend on the spatial scale considered. Through Moran's eigenvector maps we indentified three submodels reflecting spatial relationships among sampling sites at intercontinental (>10000 km), continental (1000–5000 km) and regional (20–500 km) scales. Using redundancy analysis we found that most environmental variables contributed to explain a large and significant proportion of variation of the intercontinental submodel both for genera and families (54% and 53%, respectively). A subset of these variables, organic pollution, inorganic pollution, primary productivity and nutrient contamination was also significantly related to spatial variation at the continental scale, explaining 25% and 32% of the variance at the genus and family levels, respectively. These variables should therefore be preferably considered when forecasting large-scale spatial patterns of polychaete assemblages in relation to ongoing or predicted changes in environmental conditions. None of the variables considered in this study were significantly related to the regional submodel. PMID:20886075

  3. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    NASA Astrophysics Data System (ADS)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  4. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    NASA Astrophysics Data System (ADS)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-05-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  5. Spatial variability of functional brain networks in early-blind and sighted subjects.

    PubMed

    Boldt, Robert; Seppä, Mika; Malinen, Sanna; Tikka, Pia; Hari, Riitta; Carlson, Synnöve

    2014-07-15

    To further the understanding how the human brain adapts to early-onset blindness, we searched in early-blind and normally-sighted subjects for functional brain networks showing the most and least spatial variabilities across subjects. We hypothesized that the functional networks compensating for early-onset blindness undergo cortical reorganization. To determine whether reorganization of functional networks affects spatial variability, we used functional magnetic resonance imaging to compare brain networks, derived by independent component analysis, of 7 early-blind and 7 sighted subjects while they rested or listened to an audio drama. In both conditions, the blind compared with sighted subjects showed more spatial variability in a bilateral parietal network (comprising the inferior parietal and angular gyri and precuneus) and in a bilateral auditory network (comprising the superior temporal gyri). In contrast, a vision-related left-hemisphere-lateralized occipital network (comprising the superior, middle and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus) was less variable in blind than sighted subjects. Another visual network and a tactile network were spatially more variable in the blind than sighted subjects in one condition. We contemplate whether our results on inter-subject spatial variability of brain networks are related to experience-dependent brain plasticity, and we suggest that auditory and parietal networks undergo a stronger experience-dependent reorganization in the early-blind than sighted subjects while the opposite is true for the vision-related occipital network.

  6. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  7. Accurate age estimation in small-scale societies

    PubMed Central

    Smith, Daniel; Gerbault, Pascale; Dyble, Mark; Migliano, Andrea Bamberg; Thomas, Mark G.

    2017-01-01

    Precise estimation of age is essential in evolutionary anthropology, especially to infer population age structures and understand the evolution of human life history diversity. However, in small-scale societies, such as hunter-gatherer populations, time is often not referred to in calendar years, and accurate age estimation remains a challenge. We address this issue by proposing a Bayesian approach that accounts for age uncertainty inherent to fieldwork data. We developed a Gibbs sampling Markov chain Monte Carlo algorithm that produces posterior distributions of ages for each individual, based on a ranking order of individuals from youngest to oldest and age ranges for each individual. We first validate our method on 65 Agta foragers from the Philippines with known ages, and show that our method generates age estimations that are superior to previously published regression-based approaches. We then use data on 587 Agta collected during recent fieldwork to demonstrate how multiple partial age ranks coming from multiple camps of hunter-gatherers can be integrated. Finally, we exemplify how the distributions generated by our method can be used to estimate important demographic parameters in small-scale societies: here, age-specific fertility patterns. Our flexible Bayesian approach will be especially useful to improve cross-cultural life history datasets for small-scale societies for which reliable age records are difficult to acquire. PMID:28696282

  8. Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Zucco, G.; Mittelbach, H.; Moramarco, T.; Seneviratne, S. I.

    2014-07-01

    The analysis of the spatial-temporal variability of soil moisture can be carried out considering the absolute (original) soil moisture values or relative values, such as the percent of saturation or temporal anomalies. Over large areas, soil moisture data measured at different sites can be characterized by large differences in their minimum, mean, and maximum absolute values, even though in relative terms their temporal patterns are very similar. In these cases, the analysis considering absolute compared with percent of saturation or temporal anomaly soil moisture values can provide very different results with significant consequences for their use in hydrological applications and climate science. In this study, in situ observations from six soil moisture networks in Italy, Spain, France, Switzerland, Australia, and United States are collected and analyzed to investigate the spatial soil moisture variability over large areas (250-150,000 km2). Specifically, the statistical and temporal stability analyses of soil moisture have been carried out for absolute, temporal anomaly, and percent of saturation values (using two different formulations for temporal anomalies). The results highlight that the spatial variability of the soil moisture dynamic (i.e., temporal anomalies) is significantly lower than that of the absolute soil moisture values. The spatial variance of the time-invariant component (temporal mean of each site) is the predominant contribution to the total spatial variance of absolute soil moisture data. Moreover, half of the networks show a minimum in the spatial variability for intermediate conditions when the temporal anomalies are considered, in contrast with the widely recognized behavior of absolute soil moisture data. The analyses with percent saturation data show qualitatively similar results as those for the temporal anomalies because of the applied normalization which reduces spatial variability induced by differences in mean absolute soil moisture

  9. Dryland Precipitation Variability and Desertification Processes: An Assessment of Spatial and Temporal Rain Variability within the Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Caster, J.; Sankey, J. B.; Draut, A.; Fairley, H.; Collins, B. D.; Bedford, D.

    2014-12-01

    In drylands, spatial and temporal rain variability can result from natural climatic cycles, weather patterns, and physiographic factors. In these environments, minor differences in rainfall distribution can invoke significant ecosystem response. The Grand Canyon, Arizona is an iconic dryland environment that receives less than 430 mm of annual rainfall. Recent monitoring of desertification processes at culturally sensitive landscapes in Grand Canyon has examined variability in vegetation, soil crusts, and runoff induced erosion, and identified a lack of knowledge about the nature, drivers and effects of local rainfall variability. We examine rainfall variability using five years of high resolution data collected from 11 weather stations distributed along the Colorado River within Grand Canyon, coupled with 60 years of lower resolution data from National Weather Service Cooperative Observer (NOAA COOP) stations. We characterize spatial and temporal variability in 10-minute rainfall intensity, an important predictor of soil erosion, and daily rainfall depth, an important predictor of biotic cover. We quantify the intensity-daily depth relationship to infer long-term variability in rainfall intensity from the NOAA COOP data that only record rainfall depth. Results confirm findings from previous studies showing a bi-seasonally rainfall pattern with longer duration-lower intensity storms in the cool season and shorter duration-higher intensity storms during the North American Monsoon (NAM).Seasonal differences in rainfall intensity-depth relationships are significant, and suggest NAM storms have greater potential to produce erosion-generating intensities. As NAM rainfall is spatially and inter-annually more variable than cool season rain, yearly rain depths are strongly influenced by NAM fluctuations. These findings will be useful in future efforts to track desertification processes in this and other drylands characterized by complex topography and extreme rainfall

  10. Small-scale structure of nonlinearly interacting species advected by chaotic flows.

    PubMed

    Hernandez-Garcia, Emilio; Lopez, Cristobal; Neufeld, Zoltan

    2002-06-01

    We study the spatial patterns formed by interacting biological populations or reacting chemicals under the influence of chaotic flows. Multiple species and nonlinear interactions are explicitly considered, as well as cases of smooth and nonsmooth forcing sources. The small-scale structure can be obtained in terms of characteristic Lyapunov exponents of the flow and of the chemical dynamics. Different kinds of morphological transitions are identified. Numerical results from a three-component plankton dynamics model support the theory, and they serve also to illustrate the influence of asymmetric couplings. (c) 2002 American Institute of Physics.

  11. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  12. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  13. Estimating electric field enhancement factors on an aircraft utilizing a small scale model: A method evaluation

    NASA Technical Reports Server (NTRS)

    Easterbrook, Calvin C.; Rudolph, Terence; Easterbrook, Kevin

    1988-01-01

    A method for obtaining field enhancement factors at specific points on an aircraft utilizing a small scale model was evaluated by measuring several canonical shapes. Comparison of the form factors obtained by analytical means with measurements indicate that the experimental method has serious flaws. Errors of 200 to 300 percent were found between analytical values and measured values. As a result of the study, the analytical method is not recommended for calibration of field meters located on aircraft, and should not be relied upon in any application where the local spatial derivatives of the electric field on the model are large over the dimensions of the sensing probe.

  14. Small-Scale Spatio-Temporal Distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) Using Probability Kriging.

    PubMed

    Wang, S Q; Zhang, H Y; Li, Z L

    2016-10-01

    Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.

  15. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    NASA Astrophysics Data System (ADS)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  16. Formation and evolution of small-scale solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.

    2008-06-01

    In this thesis I investigate the formation and evolution of small-scale magnetic fields on the surface of the Sun. I observe the magnetic field in quiet sun regions in an effort to further understand the baseline magnetic field that exists throughout the photosphere at all phases of the solar cycle. An automated feature tracking algorithm that I helped develop allows me to systematically analyze datasets containing over 10 5 evolving magnetic features. In 1.2"-resolution Michelson Doppler Imager (MDI) magnetograms, I find that 30% of features identified by our algorithm originate without other detectable flux within 2.2 Mm. These features having an apparent unipolar origin account for 94% of the flux newly detected by the algorithm. I infer from their ensemble average that these features are actually previously existing flux, coalesced by surface flows into concentrations large and strong enough to detect. Flux coalescence is at least as important as bipolar ephemeral region emergence for introducing detectable flux into the photosphere, underscoring the importance of small-scale fields to the overall photospheric flux budget. Using 0.3"-resolution magnetograms from the Narrowband Filter Imager (NFI) on the recently-launched Hinode spacecraft, I confirm that apparent unipolar emergence seen with MDI is indeed flux coalescence. I then demonstrate that apparent unipolar emergence seen in NFI magnetograms also corresponds to coalescence of previously existing weak field. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 30-50% of the total flux within 3 Mm of the detected features. Finally, I study small-scale fields around intermediate-scale supergranular network concentrations. This is motivated by simulations and observations showing suppression of flux production by background magnetic fields at small and large scales. Within 12 Mm of the network concentrations, I find no evidence that the concentrations

  17. The cause of small scale disturbances in the lower ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Peter, Kerstin Susanne; Pätzold, Martin; González-Galindo, Francisco; Molina-Cuberos, Gregorio; Lillis, Robert J.; Dunn, Patrick A.; Witasse, Olivier; Tellmann, Silvia; Häusler, Bernd

    2016-10-01

    The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. A subset of these MaRS dayside observations contains small scale disturbances in the lower part of the ionosphere. Those electron density profiles show unusual small scale features in the M1 altitude range which appear either merged with or completely detached from the M1 layer. Possible explanations for this additional ionospheric electron density may be ionospheric NO+, enhanced solar X-ray fluxes, solar energetic particle events (SEPs) or meteoroid influx. A 1D photo-chemical model of the Mars dayside ionosphere (IonA-2) is used to investigate the behavior of planetary NO+ in the lower dayside ionosphere. The influence of variable solar X-ray on the ionospheric electron density is estimated with IonA-2 and the influence of SEPs is discussed. A possible correlation between the meteoroid influx in the Mars atmosphere and the small scale disturbances is investigated based on a model of the ablation/chemical reactions of meteoroids with the atmosphere/ionosphere (MSDM) and on MAVEN IUVS magnesium ion observations.

  18. Why do large and small scales couple in a turbulent boundary layer?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.

    2011-11-01

    Correlation measurement, which is