Sample inlet tube for ion source
Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA
2002-09-24
An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.
Discharging Static Electricity From Inside A Glass Tube
NASA Technical Reports Server (NTRS)
Ellsbury, Walter L.
1994-01-01
Device that contains emitter of alpha particles discharges static electricity from inside wall of glass tube of volumetric-flow calibrator. Includes cylinder that has wall thickness of 1/16 in., diameter about 1/2 in. smaller than inside diameter of tube, and height that extends about 1/2 in. above piston that moves along tube and is part of calibrator.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
End Restraints for Impact-Energy-Absorbing Tube Specimens
NASA Technical Reports Server (NTRS)
Farley, G. L.; Modlin, J. T.
1985-01-01
Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.
Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material
NASA Astrophysics Data System (ADS)
Wang, Xiaotao; Zhang, Shuang; Yu, Guoyao; Dai, Wei; Luo, Ercang
2014-01-01
Pulse tube coolers operating at higher frequency lead to a high energy density and result in a more compact system. This paper describes the performance of a 300 Hz pulse tube cooler driven by a linear compressor. Such high frequency operation leads to decreased thermal penetration, which requires a smaller hydraulic diameter and smaller wire diameter in the regenerator. In our previous experiments, the stainless steel mesh with a mesh number of 635 was used as the regenerator material, and a no-load temperature of 63 K was obtained. Both the numerical and experimental results indicate this material causes a large loss in the regenerator. A stainless steel fiber regenerator is introduced and studied in this article. Because this fiber has a wide range of wire diameter and porosity, such material might be more suitable for higher frequency pulse tube coolers. With the fiber as the regenerator material and after a series of optimizations, a no-load temperature of 45 K is acquired in the experiment. Influences of various parameters such as frequency and inertance tube length have been investigated experimentally.
NASA Astrophysics Data System (ADS)
Hwang, Da Young; Suh, Dong Hack
2014-05-01
Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs.Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00897a
Chen, Xin; Hu, Rui; Bai, Fan
2017-01-01
The influences of diameter and length of the Fe−N4-patched carbon nanotubes (Fe−N4/CNTs) on oxygen reduction reaction (ORR) activity were investigated by density functional theory method using the BLYP/DZP basis set. The results indicate that the stability of the Fe−N4 catalytic site in Fe−N4/CNTs will be enhanced with a larger tube diameter, but reduced with shorter tube length. A tube with too small a diameter makes a Fe−N4 site unstable in acid medium since Fe−N and C−N bonds must be significantly bent at smaller diameters due to hoop strain. The adsorption energy of the ORR intermediates, especially of the OH group, becomes weaker with the increase of the tube diameter. The OH adsorption energy of Fe−N4/CNT with the largest tube diameter is close to that on Pt(111) surface, indicating that its catalytic property is similar to Pt. Electronic structure analysis shows that the OH adsorption energy is mainly controlled by the energy levels of Fe 3d orbital. The calculation results uncover that Fe−N4/CNTs with larger tube diameters and shorter lengths will exhibit better ORR activity and stability. PMID:28772903
May, T.W.; Wiedmeyer, Ray H.
1998-01-01
The CETAC ADX-500 autodiluter system was tested with ELAN?? v 2.1 software and the ELAN 6000 ICP-MS instrument to determine on-line automated dilution performance during analysis of standard solutions containing nine analytes representative of the mass spectral range (mass 9 to mass 238). Two or more dilution schemes were tested for each of 5 test tube designs. Dilution performance was determined by comparison of analyte concentration means of diluted and non-diluted standards. Accurate dilutions resulted with one syringe pump addition of diluent in small diameter round-bottomed (13 mm OD) or conical-tipped (18 mm OD) tubes and one or more syringe pump additions in large diameter (28 mm OD) conical-tipped tubes. Inadequate dilution mixing which produced high analyte concentration means was observed for all dilutions conducted in flat-bottomed tubes, and for dilutions requiring multiple syringe additions of diluent in small diameter round-bottomed and conical tipped tubes. Effective mixing of diluted solutions was found to depend largely upon tube diameter and liquid depth: smaller tube diameters and greater liquid depth resulted in ineffective mixing, whereas greater tube diameter and shallower liquid depth facilitated effective mixing. Two design changes for the autodiluter were suggested that would allow effective mixing to occur using any dilution scheme and tube design.
Nelson, Eliza L; Boeving, Emily R
2015-12-01
Decades of research on the hand use patterns of nonhuman primates can be aptly summarized by the following phrase: measurement matters. There is a general consensus that simple reaching is a poor indicator of handedness in most species, while tasks that constrain how the hands are used elicit individual, and in some cases, population-level biases. The TUBE task has become a popular measure of handedness, although there is variability in its administration across studies. The goal of this study was to investigate whether TUBE performance is affected by tube diameter, with the hypothesis that decreasing tube diameter would increase task complexity, and therefore the expression of handedness. We predicted that hand preference strength, but not direction, would be affected by tube diameter. We administered the TUBE task using a 1.3 cm tube to Colombian spider monkeys, and compared their performance to a previous study using a larger 2.5 cm diameter tube. Hand preference strength increased significantly on the smaller diameter tube. Hand preference direction was not affected. Notably, spider monkeys performed the TUBE task using a single digit, despite the longstanding view that this species has poor dexterity. We encourage investigators who use the TUBE task to carefully consider the diameter of the tube used in testing, and to report digit use consistently across studies. In addition, we recommend that researchers who cannot use the TUBE task try to incorporate the key features from this task into their own species appropriate measures: bimanual coordination and precise digit use. © 2015 Wiley Periodicals, Inc.
2014-03-27
between the nozzle /shroud tube interface, where the liquid is allowed to rapidly expand from the smaller diameter of the nozzle into the larger diameter...the CO2(l) freezes and agglomerates in the shroud tube, producing particles that are larger than if the liquid were expanded through a single nozzle ...Traditional seeding materials used for gas flows . . . . . . . . . . . . . . . . . 17 2.6 Example correlation peak for one IR in PIV
Hwang, Da Young; Suh, Dong Hack
2014-06-07
Unlike nanoscrolls of 2D graphene, those of 2D h-BN have not been demonstrated, except for only a few experimental reports. Nanoscrolls of h-BN with high yields and reproducibility are first synthesized by a simple solution process. Inner-tube diameters of BNSs including LCAs, N-(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide, a bile acid derivative and self-assembling material, can be controlled by adjusting the diameter of the LCA fiber which is grown by self-assembly. TEM and SEM images show that BNSs have a tube-like morphology and the inner-tube diameter of BNSs can be controlled in the range from 20 to 60 nm for a smaller diameter, up to 300 nm for a larger diameter by LCA fiber growth inside the BNSs. Finally, open cylindrical BNSs with hollow cores were obtained by dissolving LCAs inside BNSs.
Adjustable flow rate controller for polymer solutions
Jackson, Kenneth M.
1981-01-01
An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.
Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide
2012-03-22
increased temperature, and (f) beginning formation of MWCNT [23] ......................15 Figure 11 – Comparison of XPS measurements (a) before heating...cathode material to heat and thermally breakdown. 3 Research on the ideal cathode has been going on for more than half a century. Dr. John R...proportional to the diameter of the tube with a value of 0.8 eV for a 1 nm diameter tube. Because MWCNTs are formed from layers of smaller CNTs, they
Origin of Granular Capillarity Revealed by Particle-Based Simulations
NASA Astrophysics Data System (ADS)
Fan, Fengxian; Parteli, Eric J. R.; Pöschel, Thorsten
2017-05-01
When a thin tube is dipped into water, the water will ascend to a certain height, against the action of gravity. While this effect, termed capillarity, is well known, recent experiments have shown that agitated granular matter reveals a similar behavior. Namely, when a vertical tube is inserted into a container filled with granular material and is then set into vertical vibration, the particles rise up along the tube. In the present Letter, we investigate the effect of granular capillarity by means of numerical simulations and show that the effect is caused by convection of the granular material in the container. Moreover, we identify two regimes of behavior for the capillary height Hc∞ depending on the tube-to-particle-diameter ratio, D /d . For large D /d , a scaling of Hc∞ with the inverse of the tube diameter, which is reminiscent of liquids, is observed. However, when D /d decreases down to values smaller than a few particle sizes, a uniquely granular behavior is observed where Hc∞ increases linearly with the tube diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohbatzadeh, Farshad, E-mail: f.sohbat@umz.ac.ir; Nano and Biotechnology Research Group, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447, Mazandaran; Omran, Azadeh Valinataj
2014-11-15
In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100 cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130 cm was obtained by only 4 kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generatedmore » at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozana, Monna; Soaid, Nurul Izza; Lockman, Zainovia, E-mail: zainovia@usm.my
ZrO{sub 2} nanotube arrays were formed by anodizing zirconium sheet in ethylene glycol (EG) and EG added to it KOH (EG/KOH) electrolytes. The effect of KOH addition into EG electrolyte to the morphology of nanotubes and their crystallinity was investigated. It was observed that the tubes with diameter of ∼80 nm were formed in EG electrolyte with <0.1 vol % water, but the wall smoothness is rather poor. When KOH was added into EG, the wall smoothness of the nanotubes improve, but the diameter of tubes is smaller (∼40 nm). Despite smoother wall and small tube diameter, the degradation ofmore » methyl orange (MO) on the tubes made in EG/KOH is less compared to the tubes made in EG only. This could be due to the less tetragonal ZrO{sub 2} presence in the tubes made in EG/KOH.« less
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-10-05
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-01-01
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
Many Body Effects on Particle Diffusion in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Dell, Zachary E.; Schweizer, Kenneth S.
2014-03-01
Recent statistical mechanical theories of nanoparticle motion in polymer melts and networks have focused on the dilute particle limit. By combining PRISM theory predictions for microscopic structural correlations, and a new formulation of self-consistent dynamical mode coupling theory, we extend dilute theories to finite filler loading. As a minimalist model, the polymer dynamics are first assumed to be unperturbed by the presence of the nanoparticles. The long time particle diffusivity in unentangled and entangled melts is determined as a function of polymer tube diameter and radius of gyration, nanoparticle diameter, and polymer-filler attraction strength under both constant volume and constant pressure situations. The influence of nanocomposite statistical structure (depletion, steric stabilization, bridging) on dynamics is also investigated. Using recent theoretical developments for predicting tube diameters in nanocomposites, the consequences of filler-induced tube dilation on nanoparticle motion is established. In entangled melts, increasing filler loading first modestly speeds up diffusion, and then dramatically when the inter-filler separation becomes smaller than the tube diameter. At very high loadings, a filler glass transition is generically predicted.
Effect of tracheal tube cuff shape on fluid leakage across the cuff: an in vitro study.
Dave, M H; Frotzler, A; Spielmann, N; Madjdpour, C; Weiss, M
2010-10-01
This study compared the fluid leakage in the new 'tapered' shaped against the classic 'cylindrical' shaped tracheal tube cuffs when placed in different sized tracheas. The 7.5 mm internal diameter (ID) tracheal tube cuffs-Tapered Seal Guard (TSG), Standard Seal Guard (SSG), Hi-Lo, Microcuff, Ruesch, and Portex Profile-were compared in an in vitro apparatus. Vertical artificial tracheas with 16, 20, and 22 mm ID were intubated, 5 ml clear water was applied above the unlubricated tube cuffs, and fluid leakage was measured up to 60 min. Data of tapered vs non-tapered tube cuffs (16 observations) were compared for each tracheal diameter using the Mann-Whitney test. Median (range) fluid leakage (ml) at 60 min was 2.14 (0.05-4.88), 1.14 (0.00-4.84), and 0.13 (0.00-1.32), respectively, for 16, 20, and 22 mm tracheas in the TSG tube studies when compared with 4.58 (0.44-4.88), 2.21 (0.00-4.81), and 0.00 (0.00-4.81) in the SSG tube and 4.54 (1.54-4.82), 0.90 (0.00-4.49), and 4.85 (4.40-4.99) in the Microcuff tube studies. Leakage in all polyvinylchloride (PVC) tube cuffs was almost complete (5 ml) within 5 min (P<0.001). The tapered PU tube cuff was as effective as the cylindrical PU cuffs in smaller tracheal diameters and was more efficient than the cylindrical Microcuff PU tube cuff in larger tracheal diameter in preventing subglottic fluid leakage across the tube cuff tested in this in vitro study. PVC tube cuffs leaked much more and faster than PU cuffs.
The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
Feng, J; Khir, A W
2008-05-01
Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the expansion wave of the pulling action was greater than that of the pushing action.
Formation of metal clusters in halloysite clay nanotubes
NASA Astrophysics Data System (ADS)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-12-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
Formation of metal clusters in halloysite clay nanotubes.
Vinokurov, Vladimir A; Stavitskaya, Anna V; Chudakov, Yaroslav A; Ivanov, Evgenii V; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A; Lvov, Yuri M
2017-01-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
Composite propulsion feedlines for cryogenic space vehicles, volume 1
NASA Technical Reports Server (NTRS)
Hall, C. A.; Laintz, D. J.; Phillips, J. M.
1973-01-01
Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.
Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters
Lewis, Gregory S.; Hering, Susanne V.
2013-01-01
Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507
Synthesis of Multiwall Carbon Nanotubes by Inductive Heating CCVD
NASA Technical Reports Server (NTRS)
Biris, A. R.; Biris, A. S.; Lupu, D.; Trigwell, S.; Rahman, Z. U.; Aldea, N.; Marginean, P.
2005-01-01
The CCVD syntheses of MWCNTs from acetylene on Fe:Co:CaCO 3 and Fe:Co:CaO were performed using two different methods of heating: outer furnace and inductive heating. The comparative analysis of the MWCNTs obtained by the two methods show that the tubes grown in inductive heating have smaller diameters (5-25 nm), with fewer walls and aspect ratio of the order of hundreds. The ratio of outer to inner diameter (od/id) is ranging between 2 and 2.5. Inductively assisted CCVD is a very attractive method because of the major advantages that it presents, like low energetic consumption, thinner, well crystallized and more uniform tubes.
Inferring diameters of spheres and cylinders using interstitial water.
Herrera, Sheryl L; Mercredi, Morgan E; Buist, Richard; Martin, Melanie
2018-06-04
Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm -1 corresponding to a tube diameter of 180±70 μm. Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm -1 surface-to-volume ratios.
Chemical Dosimeter Tube With Coaxial Sensing Rod
NASA Technical Reports Server (NTRS)
Lueck, Dale E.
1993-01-01
Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.
The structure optimization of gas-phase surface discharge and its application for dye degradation
NASA Astrophysics Data System (ADS)
Ying, CAO; Jie, LI; Nan, JIANG; Yan, WU; Kefeng, SHANG; Na, LU
2018-05-01
A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.
Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains
NASA Astrophysics Data System (ADS)
Nahali, Negar; Rosa, Angelo
2018-05-01
We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.
Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO
NASA Astrophysics Data System (ADS)
Catanach, R. A.; Hill, L. G.
2002-07-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm (approximately failure diameter) to 205 mm, with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn, and local total curvature kappa, were generated as a function of radius R, then plotted parametrically to generate a Dn(kappa) function. The observed behavior deviates substantially from that of previous explosives, for which curves for different diameters overlay well for small kappa but diverge for large kappa, and for which kappa increases monotonically with R. For ANFO, we find that Dn(kappa) curves for individual sticks 1) show little or no overlap--with smaller sticks lying to the right of larger ones, 2) exhibit a large velocity deficit with little kappa variation, and 3) reach a peak kappa at an intermediate R.
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2016-02-12
Tomahawk cruise missiles or other payloads, such as large-diameter unmanned underwater vehicles (UUVs). The Navy’s FY2016 30-year SSN procurement plan, if...again on a smaller scale than possible with the SSGNs); covert offensive and defensive mine warfare; anti-submarine warfare (ASW); and anti...Tomahawk cruise missiles or other payloads, such as large-diameter unmanned underwater vehicles (UUVs). 17 The four additional launch tubes in the
Small Particle Driven Chain Disentanglements in Polymer Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senses, Erkan; Ansar, Siyam M.; Kitchens, Christopher L.
2017-04-01
Using neutron spin-echo spectroscopy, X-ray photon correlation spectroscopy and bulk rheology, we studied the effect of particle size on the single chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal an ≈ 25 % increase in the reptation tube diameter with addition of nanoparticles smaller than the entanglement mesh size (≈ 5 nm), at a volume fraction of 20 %. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a directmore » experimental observation of particle size driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.« less
Synthesis and characterization of Fe(III)-silicate precipitation tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmar, K.; Pramanik, A.K.; Bandyopadhya, N.R.
2010-09-15
Fe(III)-silicate precipitation tubes synthesized through 'silica garden' route have been characterized using a number of analytical techniques including X-ray diffraction, infrared spectroscopy, atomic force microscopy, scanning and transmission electron microscopy. These tubes are brittle and amorphous and are hierarchically built from smaller tubes of 5-10 nm diameters. They remain amorphous at least up to 650 {sup o}C. Crystobalite and hematite are the major phases present in Fe(III)-silicate tubes heated at 850 {sup o}C. Morphology and chemical compositions at the external and internal walls of these tubes are remarkably different. These tubes are porous with high BET surface area of 291.2more » m{sup 2}/g. Fe(III)-silicate tubes contain significant amount of physically and chemically bound moisture. They show promise as an adsorbent for Pb(II), Zn(II), and Cr(III) in aqueous medium.« less
Carbon Fiber and Tungsten Disulfide Nanoscale Architectures for Armor Applications
2012-06-01
picture of the gas gun setup. The breech is smaller cylinder on the right and the sample holder is the larger vessel on the left side of the barrel ...through the hard ceramic when impacted with a projectile travels at a different speed than in the ductile backing. While the initial shock wave compresses ...diameter and the heated length was 12 inches. A one inch outside diameter quartz tube was placed into the bore of the furnace. Stainless steel fittings
Martinell, Jordi; Kowalewski, Michał; Domènech, Rosa
2012-01-01
We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record. PMID:22496828
Acceleration induced water removal from ear canals.
NASA Astrophysics Data System (ADS)
Kang, Hosung; Averett, Katelee; Jung, Sunghwan
2017-11-01
Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.
Preliminary Results of an Experimental Investigation of the Qu Superconducting Heat Pipe
NASA Technical Reports Server (NTRS)
Blackmon, James B.; Entrekin, Sean F.
2006-01-01
This note on preliminary results of our evaluation of the so-called Qu Tube is prompted in part by recent concerns expressed to the authors by some researchers regarding the performance characteristics of the superconducting, solid-state heat pipe as described in the patents, or on the company's websites. Briefly, the company's claims include: a new type of heat transfer mechanism that is a form of solid state thermal superconductivity, which results in an effective thermal conductivity of the order of tens of thousands of times that of an equivalent solid silver bar, or, tens to hundreds of times that of liquid - vapor heat pipes. The company's website also refers to tests conducted by Stanford Research Institute that substantiate these claims, but the report is apparently not publicly available. We are conducting an investigation of the Qu Tube under a NASA Grant, and in general find that these claims have merit, but our study is not yet complete. We present some of our preliminary results in part to show that it would not be imprudent to conduct such studies, especially for possible future applications requiring exceptional thermal management performance capabilities. Working with HiTek Services, we originally acquired several Qu Tubes, including 17" long, 5/16" diameter copper tubes, one that is 7 7/8" long, 3/16" diameter, and one that is 4" long, 1" diameter. We subjected the smaller tubes to various exploratory tests, including a transient test with electrical band heaters, boiling water tests, and a series of steady state tests with electrical band heaters heating one end with free convective cooling along the remainder of the length. All results indicate a very high thermal conductivity, but the length of these tubes limited our ability to obtain accurate data on temperature gradients, necessary to determine the effective thermal conductivity. We then acquired nine Qu Tubes that are 10' long, 5/16" diameter, and we have recently conducted initial tests, which further support the claims of exceptional thermal conductivity.
Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.
2015-11-01
Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.
2015-09-01
In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm
NASA Astrophysics Data System (ADS)
Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert
We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.
Development of a dynamic pressure calibration technique
NASA Technical Reports Server (NTRS)
Vezzetti, C. F.; Hilten, J. S.; Lederer, P. S.
1975-01-01
The report deals with work continuing on the development of a method of producing sinusoidally varying pressures of at least 34 kPa zero-to-peak with amplitude variations within plus or minus 5% up to 2 kHz for the dynamic calibration of pressure transducers. Sinusoidally varying pressures of 34 kPa zero-to-peak were produced between 40 Hz and 750 Hz by vibrating a 10-cm column of a dimethyl siloxane liquid at 36gn zero-to-peak. Damping of the liquid column was accomplished by packing the fixture tube with a number of smaller diameter tubes.
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Comparison of different ligature materials used for T-tube esophageal exclusion.
Lee, Y C; Luh, S P; Tsai, C C; Hsu, H C; Chu, S H
1992-03-01
Four different ligature materials--plain catgut, chromic catgut, dexon and silk--were used for ligature of the distal arm during T-tube exclusion of the cervical esophagus in 12 dogs. Ligature by plain catgut was maintained for only a short period, but the duration of esophageal occlusion with the other three ligature materials was around 10 days. Ligated esophageal segments were examined grossly and histologically two months after the procedure. The diameter of the esophageal lumen in the ligated segments had become smaller compared with the neighboring normal esophageal lumen. The most prominent histologic changes were atrophy and fibrosis of the muscle coat, vessel congestion and inflammatory cell infiltration in the ligated segments. These tissue reactions were more severe in the chromic catgut and silk ligatures. Among the 11 evaluable dogs, four had symptoms of dysphagia after removal of the T-tube. All four dogs had a sinus discharge and granuloma formation at the T-tube esophagostoma. The diameter of the esophageal lumen was more constricted in dogs with dysphagia. Among the four ligature materials, dexon had the advantages of a long duration of occlusion, less tissue fibrosis and little sequel of esophageal stenosis, making it the most suitable for ligature during esophageal exclusion.
Zhang, Qiyang; Gong, Maojun
2014-01-01
Integrated microfluidic systems coupled with electrophoretic separations have broad application in biological and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) Interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters thus reducing flow rate by 25 fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems. PMID:24331370
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...
2017-02-16
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
Formation of metal clusters in halloysite clay nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-01-01
Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738
NASA Astrophysics Data System (ADS)
Baba, Soumei; Sawada, Kenichiro; Kubota, Chisato; Kawanami, Osamu; Asano, Hitoshi; Inoue, Koichi; Ohta, Haruhiko
Recent increase in the size of space platforms requires the management of larger amount of waste heat under high heat flux conditions and the transportation of it along a long distance to the radiator. Flow boiling applied to the thermal management system in space attracts much attention as promising means to realize high-performance heat transfer and transport because of large latent heat of vaporization. In microgravity two-phase flow phenomena are quite different from those under 1-g condition because buoyancy effects are significantly reduced and surface tension becomes dominant. By the similar reason, flow boiling characteristics in mini channels are not the same as those in channels of normal sizes. In the present stage, however, the boundary between the regimes of body force dominated and of surface tension dominated is not clear. The design of space thermal devices, operated under the conditions where no effect of gravity is expected, will improve the reliability of their ground tests, provided that the boundaries of dominant force regimes are clarified quantitatively in advance. In flow boiling in mini channels or in parallel channels, back flow could be occurred because of rapid growth of bubbles in a confined space, resulting flow rate fluctuation. Flow boiling heat transfer characteristics in mini channels can be changed considerably by the existence of inlet flow rate fluctuation. It is important to pay attention to experimental accuracy and to use a single circular mini-tube to compare heat transfer characteristics with those of normal size tubes. In the present paper, effects of tube orientations, i.e. vertical upward flow, vertical downward flow and horizontal flow, on flow boiling heat transfer characteristics is investigated for FC72 flowing in single mini-tubes with inner diameters of 0.13 and 0.51 mm to establish a reliable dominant force regime map. If the regime map is described by using dimensionless groups of Bond, Weber and Froude numbers, the boundary of dominant forces of inertia and body force is examined by using the mini-tube of the larger diameter at constant Bond number Bo = 0.51, and the boundary of inertia and surface tension by using the mini-tube of smaller diameter at Bo = 0.033. The influence of inertia is varied by the change of vapor quality, i.e. ratio of vapor mass flow rate to the total, under constant mass velocities, where the velocity of liquid-vapor mixtures is increased with increasing vapor quality. For the tube diameter of 0.51 mm, under low inertia conditions at Froude number Fr < 5, heat transfer coefficients were influenced by the tube orientation, while the heat transfer coefficients were almost independent of the orientation for Fr > 5. The results indicated that the boundary between the body force dominated and the inertia force dominated regimes was given by Froude number as Fr ˜ 5. On the other hand, for tube diameter of 0.13 mm, almost no effect of tube = orientation was observed for all combinations of mass velocity and vapor quality, and heat transfer coefficients were independent of vapor quality under low inertia conditions at Weber number We < 5, and vice versa. The results implied the boundary between the surface tension dominated and the inertia force dominated regimes was represented by We ˜ 5. = In addition, by the reflection of both results on the two-dimensional regime map, the boundary between the surface tension dominated and the body force dominated regimes was approx-imately evaluated as Bo ˜ 0.25 from the crossing point of two boundary lines. This value = located in the range of 0.033 < Bo < 0.51 is consistent with the boundaries between the sur-face tension dominated and the body force dominated regimes classified for the smaller and larger mini-tubes, respectively, under low inertia conditions.
Mills, M; Choi, J; El-Haddad, G; Sweeney, J; Biebel, B; Robinson, L; Antonia, S; Kumar, A; Kis, B
2017-12-01
To investigate the technical success rate and procedure-related complications of computed tomography (CT)-guided needle biopsy of lung lesions and to identify the factors that are correlated with the occurrence of procedure-related complications. This was a single- institution retrospective study of 867 consecutive CT-guided needle biopsies of lung lesions performed on 772 patients in a tertiary cancer centre. The technical success rate and complications were correlated with patient, lung lesion, and procedure-related variables. The technical success rate was 87.2% and the mortality rate was 0.12%. Of the 867 total biopsies 25.7% were associated with pneumothorax, and 6.5% required chest tube drainage. The haemothorax rate was 1.8%. There was positive correlation between the development of pneumothorax and smaller lesion diameter (p<0.001), longer transparenchymal distance (p<0.001), and prone position (p=0.027). There was positive correlation between the need for chest tube placement and longer transparenchymal distance (p=0.007) and smaller lesion diameter (p=0.018). Lesions in the left lower lobe had the lowest rates of pneumothorax (p=0.008) and chest tube drainage (p=0.018). Patients whose pneumothoraces were diagnosed on the follow-up chest X-ray, but not on the immediate post-procedural CT scan had significantly higher requirement for chest tube drainage (p=0.039). CT-guided lung biopsy has a high rate of technical success and a low rate of major complications. The present study has revealed several variables that can be used to identify high-risk procedures. A post-procedural chest X-ray within hours after the procedure is highly recommended to identify high-risk patients who require chest tube placement. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong
2010-07-01
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.
Study on a Single-Stage 120 HZ Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Wu, Y. Z.; Gan, Z. H.; Qiu, L. M.; Chen, J.; Li, Z. P.
2010-04-01
Miniaturization of pulse tube cryocoolers is required for some particular applications where size and mass for devices are limited. In order to pack more cooling power in a small volume, higher operating frequencies are commonly used for Stirling-type pulse tube cryocoolers. To maintain high efficiency of the regenerator with a higher frequency, a higher charging pressure, smaller hydraulic diameters of regenerator material and a shorter regenerator length should be applied. A rapid growth of research and development on pulse tube cryocoolers operating at a high frequency over 100 Hz in the last 3 years has occurred. In this study, a single stage pulse tube cryocooler with 120 Hz to provide 10 W of lift at 80 K has been developed by using the numerical model, known as REGEN 3.2. Experiments performed on this cryocooler driven by a CFIC linear compressor show that a no-load temperature of 49.6 K was achieved and the net refrigeration power at 78.5 K was 8.0 W. The effect of pulse tube orientation was tested, and the copper velvet as a regenerator matrix was proposed for high frequency operation.
Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.
Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2013-07-01
The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.
The effect of component junction tapering on miniature cryocooler performance
NASA Astrophysics Data System (ADS)
Conrad, Ted; Pathak, Mihir G.; Ghiaasiaan, S. Mostafa; Kirkconnell, Carl
2012-06-01
Due to their relatively smaller volume and available cooling power, miniature cryocoolers are likely to be more sensitive to hydrodynamic losses than their full scale counterparts. Abrupt changes in diameter between cryocooler components are a possible source of such losses as flow separation and recirculation may occur at these points. Underutilization of regions of the regenerator and heat exchanger porous matrices may also occur due to jetting of fluid into these components. Eliminating such abrupt diameter changes by tapering transitions between cryocooler components may therefore improve system performance. The effects of various tapers applied at component interfaces on the performance of miniature pulse tube cryocoolers were investigated using system-level CFD models. A miniature scale pulse tube cryocooler design whose suitability for cryocooling under ideal conditions has been theoretically demonstrated was used as the basis for these models. Transitions between different combinations of open and porous regions were considered; tapers or chamfers were applied to these component junctions and the performance predictions for the resulting systems were compared to those for a model with sharp component transitions. Visualizations of the predicted flow patterns were also used to determine the effects of the applied tapers on the flow within the pulse tube.
Mars Life? - Microscopic Tube-like Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image is a close-up of the center part of photo number S96-12301. While the exact nature of these tube-like structures is not known, one interpretation is that they may be microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.
Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica
2016-01-01
The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521
SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K; Matthews, K
2014-06-01
Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less
NASA Astrophysics Data System (ADS)
Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang
2018-02-01
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube experiment. We use coating thickness values from previous coated-wall flow tube studies to assess potential roughness effects using the δc criterion. In most studies, the coating thickness was sufficiently small to avoid complications, but some may have been influenced by surface roughness and local turbulence effects.
Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures
NASA Technical Reports Server (NTRS)
Belles, Frank E; Simon, Dorothy M
1951-01-01
An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.
Smith, Simeon L.; Titze, Ingo R.
2016-01-01
Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001
Fatkullin, Nail; Fischer, Elmar; Mattea, Carlos; Beginn, Uwe; Kimmich, Rainer
2004-06-21
A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined in nanoscopic strands, which in turn are embedded in a quasi-solid methacrylate matrix impenetrable to PEO. Both the molecular weight of the PEO and the mean diameter of the strands are variable to a certain degree. Chain dynamics of the PEO in the molten state were examined with the aid of field-gradient NMR diffusometry and field-cycling NMR relaxometry. The dominating mechanism for translational displacements in the nanoscopic strands is shown to be reptation. A formalism for the evaluation of NMR diffusometry is presented, which permits the estimation of the mean PEO strand diameter. Samples of different composition revealed diameters in the range 9-58 nm, in reasonable agreement with electron micrographs. The time scale of the diffusion measurements was 10-300 ms. On the much shorter time scale of field-cycling NMR relaxometry, 10(-9)-10(-4)s, a frequency dispersion of the spin-lattice relaxation time characteristic for reptation clearly showed up in all samples. An effective tube diameter of only 0.6 nm was found even when the strand diameter was larger than the radius of gyration of the PEO chain random coils. The finding that the tube diameter effective on the short time scale of field-cycling NMR relaxometry is much smaller than the diameter of the confining structure is termed the "corset effect", and is traced back to the lack of local free-volume fluctuation capacity under nanoscale confinements. The order of magnitude of the 'pore' diameter, at which the cross-over from confined to bulk chain dynamics is expected, is estimated.
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor)
2003-01-01
A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.
Cuppen, Inge; de Bruijn, Dagmar; Geerdink, Niels; Rotteveel, Jan J; Willemsen, Michèl A A P; van Vugt, John M G; Pasman, Jaco W; Roeleveld, Nel
2015-01-01
The aim of this retrospective study was to assess the fetal biparietal diameter (BPD) and head circumference (HC) in the second trimester of pregnancy in fetuses with open spinal dysraphism. BPD and HC were measured at 16-26 weeks in 74 fetuses with open spinal dysraphism and compared with reference values. BPD was smaller in fetuses with open spinal dysraphism. Of all cases with open spinal dysraphism, 62.2% had a BPD <3rd percentile and 79.7% had a BPD <10th percentile. Of all patients, 54.1% had an HC <3rd percentile and 74.3% had an HC <10th percentile. Almost all fetuses with open neural tube defects have a smaller BPD and HC at 16-26 weeks compared with reference values, which implicates that this is part of the phenotype of children with open spinal dysraphism instead of an independent prognostic marker for a poor cognitive outcome. © 2014 S. Karger AG, Basel.
In vivo electrode implanting system
NASA Technical Reports Server (NTRS)
Collins, Jr., Earl R. (Inventor)
1989-01-01
A cylindrical intramuscular implantable electrode is provided with a strip of fabric secured around it. The fabric is woven from a polyester fiber having loops of the fiber protruding. The end of the main cylindrical body is provided with a blunt conductive nose, and the opposite end is provided with a smaller diameter rear section with an annular groove to receive tips of fingers extending from a release tube. The fingers are formed to spring outwardly and move the fingertips out of the annular groove in order to release the electrode from the release tube when a sheath over the electrode is drawn back sufficiently. The sheath compresses the fingers of the release tube and the fabric loops until it is drawn back. Muscle tissue grows into the loops to secure the electrode in place after the sheath is drawn back. The entire assembly of electrode, release tube and sheath can be inserted into the patient's muscle to the desired position through a hypodermic needle. The release tube may be used to manipulate the electrode in the patient's muscle to an optimum position before the electrode is released.
Nuclear reactor fuel element having improved heat transfer
Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.
1982-03-03
A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.
Extrusion of small-diameter, thin-wall tungsten tubing
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Gyorgak, C. A.
1967-01-01
Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.
Vinyard, Andrew; Hansen, Kaj A; Byrd, Ross; Stuart, Douglas A; Hansen, John E
2014-01-01
We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter electron paramagnetic resonance (EPR) tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected using the fiber optic bundle and analyzed using a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 and 700 nm. Absorption intensity at 506, 525, 545, and 567 nm was found to be proportional to concentration, displaying Beer's law-like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64. These 6% smaller values we attribute to the curvature of the EPR tube and transmission/reflection losses. This system is particularly well-suited to studying the kinetics and dynamics of chemical reactions at cryogenic temperatures. The rapid response (100 ms) and multiplex advantage provided the opportunity of recording simultaneous time courses at several wavelengths following initiation of a chemical reaction with a pulsed laser source.
The fracture strength by a torsion test at the implant-abutment interface.
Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko
2015-12-01
Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.
Xu, Hongjuan; Weber, Stephen G.
2006-01-01
A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Hutchens, Thomas C; Gonzalez, David A; Irby, Pierce B; Fried, Nathaniel M
2017-01-01
The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A “fiber muzzle brake” was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 ?? ? s , and 300 Hz using a 100 - ? m -core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560 - ? m -outer-diameter, 360 - ? m -inner-diameter tube with a 275 - ? m -diameter through hole located 250 ?? ? m from the distal end. The fiber tip was recessed a distance of 500 ?? ? m . Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40 ± 4 ?? mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 ± 4 ?? s
Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity
NASA Technical Reports Server (NTRS)
Pearlman, Howard
1995-01-01
Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu g and 1g, buoyant flicker is not the mechanism which drives the pulsations. Moreover, all of the instabilities at 1g and mu g have characteristic frequencies on the O(100Hz). This value is lower than the fundamental, longitudinal acoustic frequencies of the tubes which suggests that the instabilities are not acoustically driven. The patterns formed by this reaction bear remarkable similarities with the patterns formed in most excitable media when the behavior of the system is driven by couplings between chemical reaction and diffusion (e.g., Belousov-Zhabotinsky reaction, Patterns in slime molds, spiral waves in the retina of a bird's eye). While it is recognized that the chemical mechanism associated with this premixed gas reaction is exponentially sensitive to temperature and undoubtedly different from those which govern previously observed excitable media (most are isothermal, or weakly exothermic, liquid phase reactions), similar spatial and temporal patterns should not come as a complete surprise considering heat and mass diffusion are self similar. It is concluded that this premixed gas system is a definitive example of a diffusive-thermal, gas-phase oscillator based on these experimental results and their favorable comparison with theory.
Detonation re-initiation in a concentric tube arrangement for C_2H_2/O_2/Ar mixtures
NASA Astrophysics Data System (ADS)
Wu, Y.; Lee, J. H. S.; Weng, C.
2017-05-01
Re-initiation of detonation in a concentric tube arrangement where a detonation exiting from a small diameter inner tube to a large diameter outer tube has been investigated. The outer tube diameter D is 50.8 mm and inner tube diameters d are 38, 25.4, and 12.7 mm giving diameter ratios D/d=1.34, 2, and 4. Stoichiometric C_2H_2-O_2 mixtures with argon dilution of 0, 25, 50, and 70% are used in the present study. Velocity measurements are made using photodiodes, and smoked foils downstream of the exit of the inner tube are also used to record the re-initiation process. Upon exit from the inner tube, the detonation suffers an abrupt decrease in velocity and at critical conditions, the velocity downstream of the exit is of the order of 50% of the Chapman-Jouguet velocity. It is found that re-initiation generally occurs within 10 tube diameters downstream of the exit. If re-initiation is not successful, the detonation continues to propagate at a low velocity for distances of the order of 30 tube diameters without any indication of flame acceleration of deflagration-to-detonation transition (DDT). Thus, the re-initiation process is clearly defined and distinct from the usual DDT in a smooth tube. The critical d/λ value ratio in the concentric tube is significantly lower than the usual unconfined case of d/λ =13 where λ is the detonation cell size. Thus, it is a result of re-initiation at the Mach stem of the reflected shock from the wall of the outer concentric tube. If re-initiation is not successful upon the first reflection, then subsequent multiple reflections at the tube axis and wall of the outer tube can also result in re-initiation. However, this is only observed for undiluted mixtures. For high-argon-diluted mixtures, re-initiation only occurs at the Mach stem of the first reflection.
Fernando, Edwino S.; Quimado, Marilyn O.; Doronila, Augustine I.
2014-01-01
Abstract A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3–8 cm long × 2–3 cm wide), and smaller fruits (0.6–0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g-1 of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator. PMID:24843295
Shrinking plastic tubing and nonstandard diameters
NASA Technical Reports Server (NTRS)
Ruiz, W. V.; Thatcher, C. S.
1980-01-01
Process allows larger-than-normal postshrink diameters without splitting. Tetrafluoroethylene tubing on mandrel is supported within hot steel pipe by several small diameter coil sections. Rising temperature of mandrel is measured via thermocouple so assembly can be removed without overshrinking (and splitting) of tubing.
A NEW PRINCIPLE FOR ELECTROMAGNETIC CATHETER FLOW METERS*
Kolin, Alexander
1969-01-01
An electromagnetic catheter flow meter is described in which the magnetic field is generated by two parallel bundles of wire carrying equal currents in opposite directions. The electrodes are fixed centrally to the insulated wire bundles that generate the magnetic field. The flow sensor is flexible, resembling a split catheter. The flow transducer is designed to constrict as it is introduced through a branch artery and to expand in the main artery over the span of its diameter. The principle is suitable for branch flow measurement as well as for measurement of flow in a major artery or vein by the same transducer. A special method of guiding the electrode wires results in a zero base line at zero flow for the entire range of diameters accommodating the field generating coil. The electrodes could be used in this configuration with a magnetic field generated by coils external to the patient for blood flow measurements with a catheter of reduced gauge. The transducer can be made smaller in circumference than those employed in other electromagnetic flow measuring catheter devices. This feature is of special value for envisaged clinical uses (percutaneous introduction) to minimize surgical intervention. The velocity sensitivity of the flow transducer is a logarithmic function of the tube diameter. The flow throughout the entire tube cross section contributes to the flow signal. It is sufficient to calibrate the transducer by one measurement in a dielectric conduit of less than maximum diameter. The sensitivity at other diameters follows from a logarithmic plot. The diameter of the blood vessel is outlined by the transducer in radiograms, thus obviating the need for radiopaque materials. The principle was demonstrated by measurements in vitro. Experiments in vivo, derivation of equations, and construction details will be published elsewhere. Images PMID:5257127
Premixed direct injection nozzle for highly reactive fuels
Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang
2013-09-24
A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography
Meyer, Wolfdietrich; Engelhardt, Sascha; Novosel, Esther; Elling, Burkhard; Wegener, Michael; Krüger, Hartmut
2012-01-01
Synthesis of a homologous series of photo-polymerizable α,ω-polytetrahydrofuranether-diacrylate (PTHF-DA) resins is described with characterization by NMR, GPC, DSC, soaking and rheometrical measurements. The curing speeds of the resins are determined under UV light exposure. Young’s modulus and tensile strength of fully cured resins show flexible to soft material attributes dependent on the molar mass of the used linear PTHF-diacrylates. Structuring the materials by stereo lithography (SL) and multiphoton polymerization (MPP) leads to tubes and bifurcated tube systems with a diameter smaller than 2 mm aimed at small to smallest supplying systems with capillary dimensions. WST-1 biocompatibility tests ofm polymer extracts show nontoxic characteristics of the adapted polymers after a washing process. Some polymers show shape memory effect (SME). PMID:24955530
Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell
1995-01-01
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.
Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.
1995-07-18
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.
Displacer Diameter Effect in Displacer Pulse Tube Refrigerator
NASA Astrophysics Data System (ADS)
Zhu, Shaowei
2017-12-01
Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.
Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, S.L.; Harben, P.E.
1997-01-07
The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less
NASA Astrophysics Data System (ADS)
Zhou, Rui; Yu, Liu; Xie, Huangjun; Qiu, Limin; Zhi, Xiaoqin; Zhang, Xiaobin
2018-07-01
The theoretical approach for the prediction of flooding velocity based on the concept of hyperbolicity breaking was evaluated in the counter-current two-phase flow. Detailed mathematical derivations of neutral stability condition together with the correlation of the void fraction are presented. The flooding velocity is obtained by assuming that the wavelength at flooding is proportional to the wavelength of the fastest-growing wave at Helmholtz instability. Some available experimental data for different fluid pair flow in inclined tubes is adopted for comparison with the theoretical calculations, which includes the data of water/air, aqueous oleic acid natrium solution/air, Aq. butanol 2%/air and kerosene/air in the published papers, as well as the liquid nitrogen/vapor nitrogen by the present authors. The comparison of flooding velocity proves that the approach can predict the flooding velocity with accepted accuracy for the water/air and liquid nitrogen/vapor nitrogen flow if the tube diameter is greater than 9 mm. While the diameter is smaller than 9 mm, regardless of the inclinations and the fluid pairs, the error becomes larger relative to the cases of diameter larger than 9 mm. The calculations for small diameter cases also fail to predict the critical liquid velocity at which the flooding velocity of gas reaches the maximum value, as revealed by the experiments. The reasons for the increased errors were qualitatively explained.
Effect of wall heat transfer on shock-tube test temperature at long times
NASA Astrophysics Data System (ADS)
Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.
2011-02-01
When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock-tube flow field and heat transfer at long test times was also performed for one typical condition (800 K, 1 atm, Ar), the results of which indicate that the simpler analytical conduction model is realistic but somewhat conservative in that it over predicts the mean temperature loss by a few Kelvins. This paper presents the first comprehensive study on the effects of long test times on the average test gas temperature behind the reflected shock wave for conditions representative of chemical kinetics experiments.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.
2008-12-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.
Mortelliti, Caroline L; Mortelliti, Anthony J
2016-08-01
To elucidate the relatively large incremental percent change (IPC) in cross sectional area (CSA) in currently available small endotracheal tubes (ETTs), and to make recommendation for lesser incremental change in CSA in these smaller ETTs, in order to minimize iatrogenic airway injury. The CSAs of a commercially available line of ETTs were calculated, and the IPC of the CSA between consecutive size ETTs was calculated and graphed. The average IPC in CSA with large ETTs was applied to calculate identical IPC in the CSA for a theoretical, smaller ETT series, and the dimensions of a new theoretical series of proposed small ETTs were defined. The IPC of CSA in the larger (5.0-8.0 mm inner diameter (ID)) ETTs was 17.07%, and the IPC of CSA in the smaller ETTs (2.0-4.0 mm ID) is remarkably larger (38.08%). Applying the relatively smaller IPC of CSA from larger ETTs to a theoretical sequence of small ETTs, starting with the 2.5 mm ID ETT, suggests that intermediate sizes of small ETTs (ID 2.745 mm, 3.254 mm, and 3.859 mm) should exist. We recommend manufacturers produce additional small ETT size options at the intuitive intermediate sizes of 2.75 mm, 3.25 mm, and 3.75 mm ID in order to improve airway management for infants and small children. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Metal tube reducer is inexpensive and simple to operate
NASA Technical Reports Server (NTRS)
Mayfield, R. M.
1967-01-01
Low-cost metal tube reducer accepts tubing up to 1 inch outer diameter and can reduce this diameter to less than 1/2 inch with controlled wall thickness. This device can reduce all of the tube without waste. It produces extremely good surface finishes.
Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen
2006-11-02
NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.
Leakproof Swaged Joints in Thin-Wall Tubing
NASA Technical Reports Server (NTRS)
Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.
1986-01-01
Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.
Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil
NASA Astrophysics Data System (ADS)
Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.
2017-12-01
The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to orientation of the Ponta Grossa swarm feeder dikes (NW). The drained lava lobes show variable dimensions, typical lobate morphology and form sub-crustal caves. The smaller are up to 1.5 m high, 10 m wide and 15 long; the majors are up to 6m high, 20 m wide and 25 m long. Collapsed roofs are observed in big caves and collapses of overlying thin pahoehoe lobes are common in smaller lobes.
Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method
NASA Astrophysics Data System (ADS)
Kamada, Kei; Murakami, Rikito; Kochurikhin, Vladimir V.; Luidmila, Gushchina; Jin Kim, Kyoung; Shoji, Yasuhiro; Yamaji, Akihiro; Kurosawa, Shunsuke; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira
2018-06-01
This paper addresses several aspects of the μ-PD growth technology as applied to submillimeter diameter sapphire tubes for UFD application. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. A compound crucible made possible the growth of single crystal sapphire tube as small as around 0.70-0.72 mm in outer diameter and 0.28-0.29 in inner diameter over 160 mm in length at growth rate of 2-4 mm/min along 〈0 0 1〉 direction. An Ir crucible with a die composed of an equivalent hole and Ir wire was heated by RF coil in N2 atmosphere. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. Grown crystal tube showed good XRC value of 30.2 arcsec.
Torsional Stability of Aluminum Alloy Seamless Tubing
NASA Technical Reports Server (NTRS)
Moore, R L; Paul, D A
1939-01-01
Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H; Hu, Y; Hwang, Y
Purpose: This study was to investigate size-specific dose estimates (SSDE) for routine adult abdominal CT examinations in Taiwan. Methods: A national survey was conducted in Taiwan in 2014 to investigate SSDEs for routine adult abdominal CT examinations. The hospitals involved in this study provided CT images of their typical patients. The CT image in the level of the middle liver was selected to record the corresponding tube current, slice mAs or effective mAs. The image was also used to estimate the dimensions of patient as measuring the lengths in the anterior to posterior (AP) and lateral (LAT) directions. The effectivemore » diameter was then calculated from AP and LAT, and used to look up conversion factors in the AAPM 204 report. The volume CTDI (CTDIvol) for each CT unit was measured on sites using a 32-cm cylindrical standard dose phantom and a calibrated pencil-type ionization chamber. Individual patient’s SSDEs were then calculated from the corresponding SSDE conversion factor and the CTDIvol. Results: The study cohort included 111 CT units. The ratio of turning on automatic tube current modulation (ATCM) or not is 88:23. Effective diameters are 258.7±25.1 mm (167–366 mm). 99.3% of typical patients selected by each hospital have smaller effective diameter than the 32-cm dosimetry phantom. Adult abdomenal SSDE is 17.5 ± 8.8 mGy (1.9-58 mGy). The SSDE seems to decrease as the effective diameter increases as the ATCM turns off, and independent with the effective diameter as the ATCM turns on. Conclusion: The SSDE for typical patients in Taiwan was investigated. We continue to complete this investigation in 2015 to include more valid data to establish SSDE reference level in Taiwan. This study was financially supported by the Atomic Energy Council in Taiwan.« less
Adsorption of multilamellar tubes with a temperature tunable diameter at the air/water interface.
Fameau, Anne-Laure; Douliez, Jean-Paul; Boué, François; Ott, Frédéric; Cousin, Fabrice
2011-10-15
The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature. Copyright © 2011 Elsevier Inc. All rights reserved.
Johnson, Alfred A.; Carleton, John T.
1978-05-02
A graphite-moderated, water-cooled nuclear reactor including graphite blocks disposed in transverse alternate layers, one set of alternate layers consisting of alternate full size blocks and smaller blocks through which cooling tubes containing fuel extend, said smaller blocks consisting alternately of tube bearing blocks and support block, the support blocks being smaller than the tube bearing blocks, the aperture of each support block being tapered so as to provide the tube extending therethrough with a narrow region of support while being elsewhere spaced therefrom.
Cost-effective single-step carbon nanotube synthesis using microwave oven
NASA Astrophysics Data System (ADS)
Algadri, Natheer A.; Ibrahim, K.; Hassan, Z.; Bououdina, M.
2017-08-01
This paper reports the characterization of carbon nanotubes (CNTs) synthesised using a conventional microwave oven method, offering several advantages including fast, simple, low cost, and solvent free growth process. The procedure involves flattening of graphite/ferrocene mixture catalyst inside the microwave oven under ambient conditions for a very short duration of 5 s, which inhibits the loss factor of graphite and ferrocene. The effect of graphite/ferrocene mixture ratio for the synthesis of CNTs is investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), Raman spectroscopy and UV-NIR-Vis measurements. The samples produced using the different ratios contain nanotubes with an average diameter in the range 44-79 nm. The highest yield of CNTs is attained with graphite/ferrocene mixture ratio of 70:30. The lowest I D/I G ratio intensity as identified by Raman spectroscopy for 70:30 ratio indicates the improved crystallinity of CNTs. Due to the capillary effect of CNTs, Fe nanoparticles are found to be encapsulated inside the tubes at different positions along the tube length. The obtained results showed that the smaller the diameter of graphite and ferrocene favors the synthesis of graphene oxide upon microwave radiation.
Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid
2012-07-01
Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.
Echocardiographic evaluation during weaning from mechanical ventilation.
Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio
2011-01-01
Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients.
New latent heat storage system with nanoparticles for thermal management of electric vehicles
NASA Astrophysics Data System (ADS)
Javani, N.; Dincer, I.; Naterer, G. F.
2014-12-01
In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.
2006-01-01
A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.
NASA Astrophysics Data System (ADS)
Li, H; Yang, H; Zhan, M
2009-04-01
Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.
Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger
NASA Astrophysics Data System (ADS)
Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay
2017-12-01
Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.
Suami, Hiroo; Taylor, G Ian; O'Neill, Jennifer; Pan, Wei-Ren
2007-07-01
The authors previously reported a new technique with which to delineate the lymphatic vessels, using hydrogen peroxide to identify them and a lead oxide suspension to demonstrate them on radiographs. This technique provided excellent studies of the lymph vessels in human cadavers, but there was still room for improvement. Lymph collecting vessels run superficially in some regions, where they may be damaged while the surgeon is attempting to find them. Vessels smaller than 0.3 mm in diameter could not be cannulated with a 30-gauge needle, which was the smallest the authors had available, and the lead oxide suspension often blocked this cannula. The authors also encountered problems holding the cannula steady. The authors solved these problems by using a mixture of hydrogen peroxide and ink to better identify the lymphatics, an extruded glass tube instead of a metal needle to cannulate them, an agate pestle and mortar to grind the lead oxide into finer particles, powdered milk to suspend the lead oxide, and a micromanipulator to facilitate accurate and steady cannulation of the vessels. This study developed these modifications to focus on tributaries of the collecting lymphatic channels that are smaller than 0.3 mm in diameter.
Design with constructal theory: Steam generators, turbines and heat exchangers
NASA Astrophysics Data System (ADS)
Kim, Yong Sung
This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.
Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy
2003-10-01
To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P <.001). The effective radiation dose, calculated with a Monte Carlo simulation, was 1.4-10.0 mSv. Detection of small polyps (<5 mm) with multi-detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003
Sap volume flow as influenced by tubing diameter and slope percent
H. Clay Smith
1971-01-01
The amount of sugar maple sap that can move through plastic tubing is controlled by several factors. The most important are tubing diameter and slope percent. Estimates are given of the number of tapholes that can be used with combinations of these variables.
Reduction of noise radiated from open pipe terminations
NASA Astrophysics Data System (ADS)
Davis, M. R.
1989-07-01
A modified Quincke tube has been tested to determine the extent to which sound radiation from an open tube end can be reduced by conversion of the monopole source into a dipole form. It has been found that directivity patterns of the dipole with approximately 20 dB variation can be achieved provided that the out-of-phase tube ends are not too closely spaced. Very large spacings also reduce the effectiveness of the arrangement in reducing radiated power since the source system does not then approximate a simple dipole. Consideration has been given to compact designs which achieve path length differentials by the use of four concentric tubes. The relative size of the two acoustic paths has to be adjusted to allow for the size effect on radiation, requiring a somewhat larger area for the smaller tube. Through flow would require an opposite adjustment of the smaller tube area in this case if the smaller tube presented a smaller resistance to flow, as is likely since it involves straight-through flow. Flow through the system would increase the tuned operating frequency.
Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide.
Abdullayev, Elshad; Joshi, Anupam; Wei, Wenbo; Zhao, Yafei; Lvov, Yuri
2012-08-28
Halloysite clay tubes have 50 nm diameter and chemically different inner and outer walls (inner surface of aluminum oxide and outer surface of silica). Due to this different chemistry, the selective etching of alumina from inside the tube was realized, while preserving their external diameter (lumen diameter changed from 15 to 25 nm). This increases 2-3 times the tube lumen capacity for loading and further sustained release of active chemical agents such as metals, corrosion inhibitors, and drugs. In particular, halloysite loading efficiency for the benzotriazole increased 4 times by selective etching of 60% alumina within the tubes' lumens. Specific surface area of the tubes increased over 6 times, from 40 to 250 m(2)/g, upon acid treatment.
Miyake, Fuyu; Suga, Rika; Akiyama, Takahiro; Namba, Fumihiko
2018-04-06
Neonates, particularly premature babies, are often managed with endotracheal intubation and subsequent mechanical ventilation to maintain adequate pulmonary gas exchange. There is no consensus on the standard length of endotracheal tube. Although a short tube reduces resistance and respiratory dead space, it is believed to increase the risk of accidental extubation. There are not entirely coherent data regarding the effect of endotracheal tube length on work of breathing in infants. The aim of this study was to evaluate the impact of neonatal endotracheal tube diameter and length on the work of breathing using an infant in vitro lung model. We assessed the work of breathing index and mechanical ventilation settings with various endotracheal tube diameters and lengths using the JTR100 in vitro infant lung model. The basic parameters of the model were breathing frequency of 20 per minutes, inspiratory-expiratory ratio of 1:3, and positive end-expiratory pressure of 5 cmH 2 O. In addition, the diaphragm driving pressure to maintain the set tidal volume was measured as the work of breathing index. The JTR100 was connected to the Babylog 8000plus through the endotracheal tube. Finally, we monitored the peak inspiratory pressure generated during assist-control volume guarantee mode with a targeted tidal volume of 10-30 mL. The diaphragm driving pressure using a 2.0-mm inner diameter tube was twice as high as that using a 4.0-mm inner diameter tube. To maintain the targeted tidal volume, a shorter tube reduced both the diaphragm driving pressure and ventilator-generated peak inspiratory pressure. The difference in the generated peak inspiratory pressure between the shortest and longest tubes was 5 cmH 2 O. In our infant lung model, a shorter tube resulted in a lower work of breathing and lower ventilator-generated peak inspiratory pressure. © 2018 John Wiley & Sons Ltd.
1990-01-01
Uncuffed Endotracheal Tube Size, the Diameter of the Distal Digit of the Little Finger and the Penlington Formula 12. PERSONAL AUTHOR(S) Roy H. Fukuoka 13a...BETWEEN ACTUAL UNCUFFED ENDOTRACHEAL TUBE SIZE, THE DIAMETER OF THE DISTAL DIGIT OF THE LITTLE FINGER AND THE PENLINGTON FORMULA By Roy H. Fukuoka May... PENLINGTON FORMULA A THESIS PROPOSAL Presented to the Department of Nursing California State University, Long Beach In Partial Fulfillment of the
Experimental and analytical studies in fluids
NASA Technical Reports Server (NTRS)
Goglia, Gene L.; Ibrahim, Adel
1984-01-01
The first objective was to analyze and design a true airspeed sensor which will replace the conventional pitot-static pressure transducer for small commercial aircraft. The second objective was to obtain a numerical solution and predict the frequency response which is generated by the vortex whistle at a certain airspeed. It was concluded flow rate measurements indicate that the vortex tube sound frequency is linearly proportional to the frequency response. The vortex tube whistle frequency is dependent upon geometrical parameters to such an extent that: an increase in vortex tube length produces a decrease in frequency response and that an increase in the exhaust nozzle length produces an increase in the frequency precession. An increase in the vortex tube diameter produces a decrease in frequency precession. An increase in swirler diameter produces a decrease in frequency. An increase in the location distance of the microphone pickup signal point from the inside edge of the exit nozzle produces an increase in frequency response. The experimental results indicate that those parameters most significantly effecting frequency are in descending order of importance microphone location, vortex tube diameter, exit nozzle length, vortex tube length, and swirler diameter.
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
NASA Astrophysics Data System (ADS)
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space
NASA Astrophysics Data System (ADS)
Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.
2018-01-01
Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.
Echocardiographic evaluation during weaning from mechanical ventilation
Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio
2011-01-01
INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T‐tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T‐tube. Pressure support ventilation vs. T‐tube and weaning success vs. failure were compared using ANOVA and Student's t‐test. The level of significance was p<0.05. RESULTS: Twenty‐four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T‐tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T‐tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients. PMID:21437445
Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
Nelson, Tammie R; Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V
2010-04-08
The rates and magnitudes of vibrational energy transfer between single-wall carbon nanotubes (CNTs) and water are investigated by classical molecular dynamics. The interactions between the CNT and solvent confined inside of the tube, the CNT and solvent surrounding the tube, as well as the solvent inside and outside of the tube are considered for the (11,11), (15,15), and (19,19) armchair CNTs. The vibrational energy transfer exhibits two time scales, subpicosecond and picosecond, of roughly equal importance. Solvent molecules confined within CNTs are more strongly coupled to the tubes than the outside molecules. The energy exchange is facilitated by slow collective motions, including CNT radial breathing modes (RBM). The transfer rate between CNTs and the inside solvent shows strong dependence on the CNT diameter. In smaller tubes, the transfer is faster and the solvent coupling to RBMs is stronger. The magnitude of the CNT-outside solvent interaction scales with the CNT surface area, while that of the CNT-inside solvent exhibits scaling that is intermediate between the CNT volume and surface. The Coulomb interaction between the solvent molecules inside and outside of the CNTs is much weaker than the CNT-solvent interactions. The results indicate that the excitation energy supplied to CNTs in chemical and biological applications is rapidly deposited to the active molecular agents and should remain localized sufficiently long in order to perform the desired function.
A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herer, C.; Souyri, A.; Garnier, J.
1995-09-01
Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to themore » annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.« less
Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirahara, Kaori; Bandow, Shunji; Kociak, Mathieu
2006-05-15
Structural correlation between two adjacent graphitic layers in double-wall carbon nanotubes (DWNTs) was systematically examined by using electron diffraction. Chiral angles and tube diameters were carefully measured, and the chiral indices of individual DWNTs were accurately determined. As a result, it was found that the interlayer distances of DWNTs were widely distributed in the range between 0.34 and 0.38 nm. Chiralities of the inner and outer tubes tended to be distributed at higher chiral angles, approaching 30 deg., for the tubes with diameter D<{approx}3 nm. On the other hand, for the tubes with D>{approx}3 nm, the chiral angles were widelymore » distributed, covering the chiral map entirely. Therefore, we consider that tubes with small diameters have a tendency to form armchair type. Correlation of chiralities between the inner and outer tubes was found to be random.« less
Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi
2003-01-01
The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.
Two-phase damping and interface surface area in tubes with vertical internal flow
NASA Astrophysics Data System (ADS)
Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.
2009-01-01
Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.
NASA Astrophysics Data System (ADS)
Zhao, W.; Sun, Z.; Tang, Z.; Liaw, P. K.; Li, J.; Liu, R. P.; Li, Gong
2014-05-01
2D finite element analysis was conducted on the temperature field to create an amorphous ingot by vacuum water quenching. An optimized analysis document was then written by ANSYS parametric design language, and the optimal design modules of ANSYS were used to study the inside diameter and wall thickness of the quartz tube, as well as the water temperature. The microstructure and the phase structure of the amorphous ingot were evaluated by scanning electron microscopy and X-ray diffraction, respectively. Results show that during the cooling process, the thinner wall thickness, smaller diameter of the ingot, or lower temperature of the water environment can result in higher cooling rate at a given temperature. Besides, the gap between the different cooling rates induced by wall thickness or diameter of the ingot narrows down as the temperature decreases, and the gap between the different cooling rates induced by temperature of the water environment remains constant. The process parameters in creating an amorphous ingot, which is optimized by the finite element analysis on the temperature field, are reliable.
NASA Astrophysics Data System (ADS)
Punia, Sanjeev Singh; Singh, Jagdev
2015-11-01
This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.
Behavior of fragmentation front in a porous viscoelastic material
NASA Astrophysics Data System (ADS)
Ichihara, M.; Takayama, K.
2002-12-01
We are developing laboratory experiments to investigate dynamics of magma fragmentation during explosive volcanic eruptions. Fragmentation of such a mixture as magma consisting of viscoelastic melt, bubbles and solid particles, is not known yet, and experiments are necessary to establish a mathematical model. It has been shown that viscoelastic silicone compound (Dow Corning 3179) is a useful analogous material to simulate magma fragmentation. In the previous work, a porous specimen made of the compound was rapidly decompressed and development of brittle fragmentation was observed. However, there were arguments that the experiment was different from actual processes which produce fragments as small as volcanic ash, because in the experiment the specimen was broken into only several pieces. This time, results of the improved experiments are presented. The experimental apparatus is a kind of a vertical shock tube, which mainly consists of a high pressure test section and low pressure chambers. The test section is made of acrylic tube of which inner diameter is 25 mm. The internal phenomenon is recorded by a high-speed video camera. Pressure is measured in the gas above and beneath the specimen by piezoelectric transducers. The specimen is prepared in the following way. First, an acrylic tube filled with the compound is put in a nitrogen tank and kept at 45 bar for more than 8 hours. The compound absorbs the gas and equilibrates with the nitrogen. Next, the tank is decompressed back to the atmospheric pressure slowly. Nitrogen exsolves and bubbles are formed in the compound quite uniformly. Finally, the expanded compound sticking out of both ends of the tube is cut down, and the tube containing the specimen is attached to the shock tube. The specimen is rapidly decompressed by 24, 16, and 8 bars. The high-speed video images demonstrate a sequence of the fragmentation process. We observe propagation of a clear fracture front at 50 m/s for 24 bar of decompression and at smaller speed for smaller decompression. The pressure change associated with development of the fragmentation is analyzed and effects of over pressure in the pores and permeable gas flow on fragmentation behavior are discussed.
Shiqing, Liu; Wenxu, Qi; Jin, Zhang; Youjing, Dong
2018-04-01
The aims of this study were to measure diameters of the cricoid ring and left main bronchus in Asian adult patients and to assess the accuracy of double lumen tube size selected according to cricoid and left main bronchus diameter, respectively. Retrospective observational study. Academic, tertiary care hospital. Preoperative CT scans from 87 men and 94 women who had undergone general anesthesia for lung operations. No intervention. The diameters of the cricoid ring and left main bronchus were measured from thoracic computed tomography images after correction of slant. The "best-fit" size of double lumen tube was determined by comparing diameter of the left main bronchus and cricoid ring with the diameter of the double lumen tube. Diameters of the cricoid ring and left main bronchus were both significantly greater in men compared with women (p < 0.0001). Shapes of cricoid rings were different between genders (p < 0.0001), while shapes of the left main bronchus were not significant different (p = 0.343). With reference to the "best fit" size, the rate of agreement of cricoid ring size, left main bronchus size, and height size for men were 100%, 100%, and 94.3%. For women, the rate of agreement of cricoid ring size, left main bronchus size, and height size were 94.7%, 63.8%, and 51.1%. The "best fit" size of a double lumen tube should be decided by a combination of diameters of the cricoid ring and the left main bronchus. Copyright © 2017 Elsevier Inc. All rights reserved.
PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
Mo, X; Weber, H-J; Ramakrishna, S
2006-08-01
The objective of this paper was to fabricate a biodegradable tubular scaffold for small diameter (d<6 mm) blood vessel tissue engineering. The tube scaffold needed a porous wall for cell attachment, proliferation and tissue regeneration with its degradation. A novel method given in this paper was to coat a porous layer of poly (epsilon-caprolactone) (PCL) on the outside of a poly (glycolic-co-lactic acid) (PGLA with GA:LA=90:10) fiber braided tube to give a PCL-PGLA composite. The PGLA tube was fabricated using a braiding machine by inserting a Teflon tube with the desired diameter in center of the 20 spindles, which are the carriers of PGLA fibers. Changing the diameter of the Teflon tube can vary the inner diameter of a braided PGLA tube. Thermally induced phase separation method was used for PCL solution coating on the surface of the PGLA braided tube. Controlling the polymer concentration, non-solvent addition and quenching temperature generated the pore structures, with pore sizes ranging from 10-30 microm. The fibroblast cells were seeded on the tubular scaffold and cultured in vitro for the biocompatibility investigation. Histology results showed that the fibroblast cells proliferated on the interconnected pore of the PCL porous layer in 1 week.
Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2012-07-13
The structure, stability, and catalytic activity of a number of single- and double-wall platinum (n,m) nanotubes ranging in diameter from 0.3 to 2.0 nm were studied using plane-wave based density functional theory in the gas phase and water environment. The change in the catalytic activity toward the oxygen reduction reaction (ORR) with the size and chirality of the nanotube was studied by calculating equilibrium adsorption potentials for ORR intermediates and by constructing free energy diagrams in the ORR dissociative mechanism network. In addition, the stability of the platinum nanotubes is investigated in terms of electrochemical dissolution potentials and by determiningmore » the most stable state of the material as a function of pH and potential, as represented in Pourbaix diagrams. Our results show that the catalytic activity and the stability toward electrochemical dissolution depend greatly on the diameter and chirality of the nanotube. On the basis of the estimated overpotentials for ORR, we conclude that smaller, approximately 0.5 nm in diameter single-wall platinum nanotubes consistently show a huge, up to 400 mV larger overpotential than platinum, indicating very poor catalytic activity toward ORR. This is the result of substantial structural changes induced by the adsorption of any chemical species on these tubes. Single-wall n = m platinum nanotubes with a diameter larger than 1 nm have smaller ORR overpotentials than bulk platinum for up to 180 mV and thus show improved catalytic activity relative to bulk. We also predict that these nanotubes can endure the highest cell potentials but dissolution potentials are still for 110 mV lower than for the bulk, indicating a possible corrosion problem.« less
Observation of Possible Lava Tube Skylights by SELENE cameras
NASA Astrophysics Data System (ADS)
Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn
We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.
Role of surfactants in carbon nanotubes density gradient separation.
Carvalho, Elton J F; dos Santos, Maria Cristina
2010-02-23
Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 A, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 A. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Harris, William G.
1985-01-01
A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.
Devices to protect seedlings from deer browsing
David A. Marquis
1977-01-01
Studies on the Allegheny Plateau of Pennsylvania have shown that several types of wire or plastic tubes can be erected around tree seedlings to protect them from deer browsing. The two most promising devices are a 4- to 6-inch diameter plastic tube with small mesh and a 12-inch diameter tube constructed of chicken wire. Both types need to be at least 5 feet tall to...
Microvolume index of refraction determinations by interferometric backscatter
NASA Astrophysics Data System (ADS)
Bornhop, Darryl J.
1995-06-01
A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.
NASA Technical Reports Server (NTRS)
Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.
1983-01-01
The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.
NASA Astrophysics Data System (ADS)
Bae, Kyung Jin; Cha, Dong An; Kwon, Oh Kyung
2016-11-01
The objectives of this paper are to develop correlations between heat transfer and pressure drop for oval finned-tube heat exchanger with large diameters (larger than 20 mm) used in a textile machine dryer. Numerical tests using ANSYS CFX are performed for four different parameters; tube size, fin pitch, transverse tube pitch and longitudinal tube pitch. The numerical results showed that the Nusselt number and the friction factor are in a range of -16.2 ~ +3.1 to -7.7 ~ +3.9 %, respectively, compared with experimental results. It was found that the Nusselt number linearly increased with increasing Reynolds number, but the friction factor slightly decreased with increasing Reynolds number. It was also found that the variation of longitudinal tube pitch has little effect on the Nusselt number and friction factor than other parameters (below 2.0 and 2.5 %, respectively). This study proposed a new Nusselt number and friction factor correlation of the oval finned-tube heat exchanger with large diameters for textile machine dryer.
Hexagonal Hollow Tube Based Energy Absorbing Crash Buffers for Roadside Fixed Objects
NASA Astrophysics Data System (ADS)
Uddin, M. S.; Amirah Shafie, Nurul; Zivkovic, Grad
2017-03-01
The purpose of this study was to investigate the deformation of the energy absorbing hexagonal hollow tubes in a lateral compression. The aim is to design cost effective and high energy-absorbing buffer systems, which are capable of controlling out-of-control vehicles in high-speed zones. A nonlinear quasi-static finite element analysis was applied to determine the deformation and energy absorption capacity. The main parameters in the design were diameter and wall thickness of the tubes. Experimental test simulating the lateral compressive loading on a single tube was performed. Results show that as the diameter and the thickness increase, the deformation strength increases. Hexagonal tube with diameter of 219 mm and thickness of 4 mm is shown to have the highest energy absorption capability. Compared to existing cylindrical and octagonal shapes, the hexagonal tubes show the highest energy absorption capacity. Hexagonal tubes therefore can be regarded as a potential candidate for buffer designs in high speed zones. In addition, they would be compact, cost effective and facilitate ease of installation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asako, Y.; Nakamura, H.; Faghri, M.
1990-08-01
Natural convection is often a convenient and inexpensive mode of heat transfer. It is commonly employed in the cooling of electronic equipment and many other applications. Since the initial work by Bodoia and Osterle (1962) on finite difference solutions of natural convection between vertical isothermal plates, many other researchers have studied natural convection in vertical channels. Specifically Davis and Perona (1971) studied natural convection in vertical heated tubes. A thermally insulated chimney attached to a vertical heated channel induces an increase in the natural convection in the channel and leads to a higher heat transfer rate. This is the well-knownmore » chimney effect discussed in the paper by Haaland and Sparrow (1983). If the chimney diameter is larger than the heated tube diameter, the friction loss in the chimney region decreases with increasing chimney diameter. This induces an increase in the mass flow rate and leads to a higher heat transfer rate than the case for a chimney of the same diameter. However, from a geometric consideration it is evident that the chimney effect diminishes in the limiting case of an extremely large chimney diameter compared with its height. Therefore, there exists an optimum diameter where the heat transfer is maximum. To investigate the chimney effect computations are carried out for a Rayleigh number of 12.5, based on the heated tube radius, and for a Prandtl number of 0.7. The numerical results are based on a control volume finite difference method. The average Nusselt number results are compared with the numerical results obtained for a chimney attached to a tube of the same diameter.« less
NASA Astrophysics Data System (ADS)
MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.
2018-05-01
We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.
New high-precision drift-tube detectors for the ATLAS muon spectrometer
NASA Astrophysics Data System (ADS)
Kroha, H.; Fakhrutdinov, R.; Kozhin, A.
2017-06-01
Small-diameter muon drift tube (sMDT) detectors have been developed for upgrades of the ATLAS muon spectrometer. With a tube diameter of 15 mm, they provide an about an order of magnitude higher rate capability than the present ATLAS muon tracking detectors, the MDT chambers with 30 mm tube diameter. The drift-tube design and the construction methods have been optimised for mass production and allow for complex shapes required for maximising the acceptance. A record sense wire positioning accuracy of 5 μm has been achieved with the new design. In the serial production, the wire positioning accuracy is routinely better than 10 μm. 14 new sMDT chambers are already operational in ATLAS, further 16 are under construction for installation in the 2019-2020 LHC shutdown. For the upgrade of the barrel muon spectrometer for High-Luminosity LHC, 96 sMDT chambers will be contructed between 2020 and 2024.
NASA Astrophysics Data System (ADS)
de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.
2010-09-01
Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.
NASA Astrophysics Data System (ADS)
Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.
2017-01-01
The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Meso and Micro Scale Propulsion Concepts for Small Spacecraft
2005-06-14
the inner diameter of the fuel jet tube was 500 gm, while the inner diameter of the air jet tube was 760 pim. Figure 2. Meso-scale whirl combustion of...decomposition. This mechanism was developed by comparison of model predictions with experimental data obtained from shock tube and static reactor...relative to the true gas phase temperature. Air on for exhaust tube cooling•" 2500 0L- CH3 NO 2 off Air off CH3NO 2 on H2 off T Ŕ 1000 S500 Air
NASA Technical Reports Server (NTRS)
Pessin, R.
1983-01-01
Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.
NASA Astrophysics Data System (ADS)
Kitazaki, Satoshi; Hayashi, Nobuya
2009-10-01
Oxygen and water vapor plasmas inside a narrow long tube were produced using an AC HV glow discharge at low pressure in order to sterilize the inner surface of a tube. In order to produce plasma inside a narrow tube, an AC high voltage was adopted. The material of the tube used in this experiment was silicon rubber. The length and diameter of the tubes ranged from 300 to 1,000 mm and from 1 to 4 mm, respectively. The tube was placed in a stainless steel vacuum chamber and was evacuated to 10 Pa using a rotary pump. The material gas for plasma and radical productions was pure oxygen or water vapor, which was introduced to the chamber from a gas cylinder or water reservoir. Light emission spectral lines of oxygen and OH radicals were observed at 777 nm and 306 nm, respectively. The chemical indicator was inserted into the tube and turned to a yellowish color (from the original red) after a treatment, which indicates the generation of sufficient oxygen on OH radicals for sterilization. A tube with the length of 500 mm and diameter of 4 mm is sterilized using oxygen plasma by 10 minutes treatment. Also a tube with the length of 300 mm and diameter of 2 mm is sterilized using water vapor plasma by 5 minutes treatment.
Sternberg, Eleanore D; Ng'habi, Kija R; Lyimo, Issa N; Kessy, Stella T; Farenhorst, Marit; Thomas, Matthew B; Knols, Bart G J; Mnyone, Ladslaus L
2016-09-01
Presented here are a series of preliminary experiments evaluating "eave tubes"-a technology that combines house screening with a novel method of delivering insecticides for control of malaria mosquitoes. Eave tubes were first evaluated with overnight release and recapture of mosquitoes in a screened compartment containing a hut and human sleeper. Recapture numbers were used as a proxy for overnight survival. These trials tested physical characteristics of the eave tubes (height, diameter, angle), and different active ingredients (bendiocarb, LLIN material, fungus). Eave tubes in a hut with closed eaves were also compared to an LLIN protecting a sleeper in a hut with open eaves. Eave tubes were then evaluated in a larger compartment containing a self-replicating mosquito population, vegetation, and multiple houses and cattle sheds. In this "model village", LLINs were introduced first, followed by eave tubes and associated house modifications. Initial testing suggested that tubes placed horizontally and at eave height had the biggest impact on mosquito recapture relative to respective controls. Comparison of active ingredients suggested roughly equivalent effects from bendiocarb, LLIN material, and fungal spores (although speed of kill was slower for fungus). The impact of treated netting on recapture rates ranged from 50 to 70 % reduction relative to controls. In subsequent experiments comparing bendiocarb-treated netting in eave tubes against a standard LLIN, the effect size was smaller but the eave tubes with closed eaves performed at least as well as the LLIN with open eaves. In the model village, introducing LLINs led to an approximate 60 % reduction in larval densities and 85 % reduction in indoor catches of host-seeking mosquitoes relative to pre-intervention values. Installing eave tubes and screening further reduced larval density (93 % relative to pre intervention values) and virtually eliminated indoor host-seeking mosquitoes. When the eave tubes and screening were removed, larval and adult catches recovered to pre-eave tube levels. These trials suggest that the "eave tube" package can impact overnight survival of host-seeking mosquitoes and can suppress mosquito populations, even in a complex environment. Further testing is now required to evaluate the robustness of these findings and demonstrate impact under field conditions.
Probe for Sampling of Interstitial Fluid From Bone
NASA Technical Reports Server (NTRS)
Janle, Elsa M.
2004-01-01
An apparatus characterized as both a membrane probe and a bone ultrafiltration probe has been developed to enable in vivo sampling of interstitial fluid in bone. The probe makes it possible to measure the concentration of calcium and other constituents of the fluid that may be relevant to bone physiology. The probe could be especially helpful in experimental studies of microgravitational bone loss and of terrestrial bone-loss disease states, including osteoporosis. The probe can be implanted in the bone tissue of a living animal and can be used to extract samples of the interstitial bone fluid from time to time during a long-term study. The probe includes three 12-cm-long polyacrylonitrile fibers configured in a loop form and attached to polyurethane tubing [inside diameter 0.025 in. (0.64 mm), outside diameter 0.040 in. (1 mm)]; the attachment is made by use of a 1-cm-long connecting piece of polyurethane tubing [inside diameter 0.035 0.003 in. (0.89 0.08 mm), outside diameter 0.060 0.003 in. (1.52 0.08 mm)]. At the distal end, a 2-cm-long piece of polyurethane tubing of the same inner and outer diameters serves as a connector to a hub. A 1-cm long piece of expanded poly (tetrafluoroethylene) tubing over the joint between the fibers and the connecting tubing serves as a tissue-in-growth site.
Gurses, Burak K; Smaldone, Gerald C
2003-01-01
Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and may reduce the diameters of particles entering the patient. This effect is more significant for nebulizers producing large particles. Changes in ambient temperature did not affect these observations.
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartvigsen, Joseph J; Dimick, Paul; Laumb, Jason D
Ceramatec Inc, in collaboration with IntraMicron (IM), the Energy & Environmental Research Center (EERC) and Sustainable Energy Solutions, LLC (SES), have completed a three-year research project integrating their respective proprietary technologies in key areas to demonstrate production of a jet fuel from coal and biomass sources. The project goals and objectives were to demonstrate technology capable of producing a “commercially-viable quantity” of jet fuel and make significant progress toward compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements. The Ceramatec led team completed the demonstration of nominalmore » 2 bbl/day Fischer-Tropsch (FT) synthesis pilot plant design, capable of producing a nominal 1 bbl/day in the Jet-A/JP-8 fraction. This production rate would have a capacity of 1,000 gallons of jet fuel per month and provide the design basis of a 100 bbl/day module producing over 2,000 gallons of jet fuel per day. Co-gasification of coal-biomass blends enables a reduction of lifecycle greenhouse gas emissions from equivalent conventional petroleum derived fuel basis. Due to limits of biomass availability within an economic transportation range, implementation of a significant biomass feed fraction will require smaller plants than current world scale CTL and GTL FT plants. Hence a down-scaleable design is essential. The pilot plant design leverages Intramicron’s MicroFiber Entrapped Catalyst (MFEC) support which increases the catalyst bed thermal conductivity two orders of magnitude, allowing thermal management of the FT reaction exotherm in much larger reactor tubes. In this project, single tube reactors having 4.5 inch outer diameter and multi-tube reactors having 4 inch outer diameters were operated, with productivities as high as 1.5 gallons per day per linear foot of reactor tube. A significant reduction in tube count results from the use of large diameter reactor tubes, with an associated reduction in reactor cost. The pilot plant was designed with provisions for product collection capable of operating with conventional wax producing FT catalysts but was operated with a Chevron hybrid wax-free FT catalyst. Process simplification enabled by elimination of the wax hydrocracking process unit provides economic advantages in scaling to biomass capable plant sizes. Intramicron also provided a sulfur capture system based on their Oxidative Sulfur Removal (OSR) catalyst process. The integrated sulfur removal and FT systems were operated with syngas produced by the Transport Reactor Development Unit (TRDU) gasifier at the University of North Dakota EERC. SES performed modeling of their cryogenic carbon capture process on the energy, cost and CO2 emissions impact of the Coal-biomass synthetic fuel process.« less
A new disruption mitigation valve (DMV) and gas flow in guiding tubes of different diameter
NASA Astrophysics Data System (ADS)
Finken, K. H.; Lehnen, M.; Bozhenkov, S. A.
2011-03-01
A new disruption mitigation valve, the DMV-30, has been developed and tested. The orifice output area of the valve is a factor of 2.4 and 12.25 times larger than that of its predecessors, DMV-20 and DMV-10, and the gas reservoir amounts to 1.3 L while the older version used at JET had only 0.65 L. The coil which provides the magnetic field pulse for the activation of the piston by an eddy current is outside of the working gas volume such that all gas volumes are now made of stainless steel. The valve has the advantages of the previous developments: it is robust and reproducible, opens fully within 3 ms and releases 50% of the gas within about 5 ms (He) to 10 ms (Ar). The valve is attached subsequently to two different guiding tubes, one with an inner diameter of 38 mm as used presently at JET and one with 102 mm inner diameter; the aim of this paper is the analysis of the gas flows for different diameters. The front of the gas pulse propagates with a Mach number of about 2.5 through the tubes, independent of the two diameters. This high speed agrees with theoretical expectations of flow expansion of a half infinite tube in vacuum. In the quasi-stationary phase of the expansion, the gas flows with about sound speed in the 102 mm tube and with about half of the sound speed in the 38 mm tube.
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1993-01-01
Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.
NASA Astrophysics Data System (ADS)
Wang, H. S.; Honda, Hiroshi
A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.
High-definition computed tomography for coronary artery stent imaging: a phantom study.
Yang, Wen Jie; Chen, Ke Min; Pang, Li Fang; Guo, Ying; Li, Jian Ying; Zhang, Huang; Pan, Zi Lai
2012-01-01
To assess the performance of a high-definition CT (HDCT) for imaging small caliber coronary stents (≤ 3 mm) by comparing different scan modes of a conventional 64-row standard-definition CT (SDCT). A cardiac phantom with twelve stents (2.5 mm and 3.0 mm in diameter) was scanned by HDCT and SDCT. The scan modes were retrospective electrocardiography (ECG)-gated helical and prospective ECG-triggered axial with tube voltages of 120 kVp and 100 kVp, respectively. The inner stent diameters (ISD) and the in-stent attenuation value (AV(in-stent)) and the in-vessel extra-stent attenuation value (AV(in-vessel)) were measured by two observers. The artificial lumen narrowing (ALN = [ISD - ISD(measured)]/ISD) and artificial attenuation increase between in-stent and in-vessel (AAI = AV(in-stent) - AV(in-vessel)) were calculated. All data was analyzed by intraclass correlation and ANOVA-test. The correlation coefficient of ISD, AV(in-vessel) and AV(in-stent) between the two observers was good. The ALNs of HDCT were statistically lower than that of SDCT (30 ± 5.7% versus 35 ± 5.4%, p < 0.05). HDCT had statistically lower AAI values than SDCT (15.7 ± 81.4 HU versus 71.4 ± 90.5 HU, p < 0.05). The prospective axial dataset demonstrated smaller ALN than the retrospective helical dataset on both HDCT and SDCT (p < 0.05). Additionally, there were no differences in ALN between the 120 kVp and 100 kVp tube voltages on HDCT (p = 0.05). High-definition CT helps improve measurement accuracy for imaging coronary stents compared to SDCT. HDCT with 100 kVp and the prospective ECG-triggered axial technique, with a lower radiation dose than 120 kVp application, may be advantageous in evaluating coronary stents with smaller calibers (≤ 3 mm).
Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes
NASA Astrophysics Data System (ADS)
Kim, Nae-Hyun
2018-02-01
Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.
NASA Astrophysics Data System (ADS)
Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.
2017-10-01
There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.
Controlled growth of well-aligned carbon nanotubes with large diameters
NASA Astrophysics Data System (ADS)
Wang, Xianbao; Liu, Yunqi; Zhu, Daoben
2001-06-01
Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.
Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael
2015-01-01
The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.
Iepsen, Ulrik Winning; Ringbæk, Thomas
2013-06-01
The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). This was a retrospective study of 104 cases (94 patients) of non-traumatic PT treated with chest tubes - either by pulmonary physicians (daytime and weekdays) using small-bore chest tubes, or by orthopaedic surgeons (remaining time slots) using large-bore chest tubes. A total of 62 had primary spontaneous PT, 30 had secondary spontaneous PT and 12 had iatrogenic PT. A total of 62 patients were treated with large-bore (20-28 Fr) chest tubes placed with traditional thoracotomy, 42 patients were treated by a pulmonary physician, and in 30 of these cases a True-Close thoracic vent (11-13 Fr) was inserted. Patients treated with surgical chest tubes were comparable with patients treated with smaller chest tubes in terms of demographic data and type and size of PT. Compared with patients treated with smaller chest tubes, patients with surgical large-bore tubes had more complications (27.4% versus 9.5%; p = 0.026), a lower success rate (56.5% versus 85.7%; p = 0.002), and longer duration of chest tube (8.3 versus 4.9 days; p = 0.001) and of hospitalisation (11.8 versus 6.9 days; p = 0.004). We found small chest tubes to be superior to large-bore chest tubes with regard to short-term outcomes in the treatment of non-traumatic PT. not relevant. The project was approved by the Danish Data Protection Agency, file no. 2012-41-0554.
NASA Astrophysics Data System (ADS)
Yilmaz, Hulusi
A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Gilyard, Glenn B.
1989-01-01
A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.
NASA Astrophysics Data System (ADS)
Trejo, Adrian
Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier) and 106 respectively. Heat transfer predictions applied to the data yielded theoretical correlations within 40% of the experimental data. However, typical theoretical values fall within 10%-15% of the experimental values showing agreeable correlations and supporting theories stated in the present study.
21 CFR 864.6150 - Capillary blood collection tube.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...
21 CFR 864.6150 - Capillary blood collection tube.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...
21 CFR 864.6150 - Capillary blood collection tube.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...
21 CFR 864.6150 - Capillary blood collection tube.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...
21 CFR 864.6150 - Capillary blood collection tube.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...
Changing the Diameter of a Viewing Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…
Growth of High Quality Carbon Nanotubes on Free Standing Diamond Substrates
2010-01-01
CNTs forming a mat of ~5 µm thickness and consisting of ~20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor...with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also discussed by Zhu...using a 1 inch diameter quartz tube in a horizontal furnace. Initially, the tube furnace was evacuated by using a rough pump and then purged with Ar
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
Shock-initiated Combustion of a Spherical Density Inhomogeneity
NASA Astrophysics Data System (ADS)
Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo
2010-11-01
A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 < M < 2.8). The mismatch of acoustic impedances results in shock-focusing at the downstream pole of the bubble. The shock focusing results in localized temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.
A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas
2017-04-01
Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir
2014-09-22
Four helium-3 ( 3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.
Plumbing Fixture for a Microfluidic Cartridge
NASA Technical Reports Server (NTRS)
Francis, Kevin
2007-01-01
A fixture has been devised for making the plumbing connections between a microfluidic device in a replaceable cartridge and an external fluidic system. The fixture includes a 0.25-in. (6.35-mm) thick steel plate, to which the cartridge is fastened by two 10-32 thumb screws. The plate holds one plumbing fitting for the inlet and one for the outlet of the microfluidic device. Each fitting includes a fused-silica tube of 0.006-in. (approx.0.15-mm) inside diameter within a fluorinated ethylene-propylene (FEP) tube of 0.0155-in. (approx.0.39-mm) inside diameter and 0.062- in. (approx.1.57-mm) outside diameter. The FEP tube is press-fit through the steel plate so that its exposed end is flush with the surface of the plate, and the silica tube protrudes 0.03 in. (approx.0.76 mm) from the plate/FEP-tube-end surface. The cartridge includes a glass cover plate that contains 0.06-mm-wide access ports. When the cartridge is fastened to the steel plate, the silica tubes become inserted through the access ports and into the body of the cartridge, while the ends of the FEP tubes become butted against the glass cover plate. An extremely tight seal is thereby made.
Dynamics of membrane nanotubes coated with I-BAR
NASA Astrophysics Data System (ADS)
Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.
2016-07-01
Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.
NASA Astrophysics Data System (ADS)
Kuwahara, Ken; Higashiiu, Shinya; Ito, Daisuke; Koyama, Shigeru
This paper deals with the experimental study on cooling heat transfer of supercritical carbon dioxide inside micro-fin tubes. The geometrical parameters in micro-fin tubes used in the present study are 6.02 mm in outer diameter, 4.76 mm to 5.11 mm in average inner diameter, 0.15 mm to 0.24 mm in fin height, 5 to 25 in helix angle, 46 to 52 in number of fins and 1.4 to 2.3 in area expansion ratio. Heat transfer coefficients were measured at 8-10 MPa in pressure, 360-690 kg/(m2•s) in mass velocity and 20-75 °C in CO2 temperature. The measured heat transfer coefficients of micro-fin tubes were 1.4 to 2 times higher than those of the smooth tube having 4.42 in inner diameter. The predicted heat transfer coefficients using the correlation equation, which was developed for single-phase turbulent fluid flow inside micro-fin-tubes, showed large deviations to the measured values. The new correlation to predict cooling heat transfer coefficient of supercritical carbon dioxide inside micro-fin tubes was developed taking into account the shape of fins based on experimental data empirically. This correlation equation agreed within ±20% of almost all of the experimental data.
NASA Technical Reports Server (NTRS)
Kinney, George R; Abramson, Andrew E; Sloop, John L
1952-01-01
Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.
Leakage effect analysis on the performance of a cylindrical adjustable inertance tube
NASA Astrophysics Data System (ADS)
Zhou, Wenjie; Pfotenhauer, John M.; Zhi, Xiaoqin
2018-04-01
The inertance tube plays a significant role in improving the performance of the Stirling type pulse tube cryocooler by providing the desired phase angle between the mass flow and pressure wave. The phase angle is highly depended on the inertance tube geometry, such as diameter and length. A cylindrical threaded root device with variable thread depth on the outer screw and inner screw creates an adjustable inertance tube whose diameter and length can be adjusted in the real time. However, due to its geometry imperfectness, the performance of this threaded inertance tube is reduced by the leaks through the roots between the two screws. Its phase angle shift ability is decreased by 30% with the leakage clearance thickness of 15.5 μm according to both the theoretical prediction and the experimental verification.
NASA Astrophysics Data System (ADS)
Choi, Yong; Hong, Sun I.
2014-12-01
Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... and its individual members, Allied Tube & Conduit, IPSCO Tubulars, Inc., Sharon Tube Company, Western Tube & Conduit Corporation, and Wheatland Tube Company (collectively, ``Petitioner''), that the... pipes and tubes, of circular cross-section, and with an outside diameter of 0.372 inches (9.45 mm) or...
A novel design for steerable instruments based on laser-cut nitinol.
Dewaele, Frank; Kalmar, Alain F; De Ryck, Frederic; Lumen, Nicolaas; Williams, Leonie; Baert, Edward; Vereecke, Hugo; Kalala Okito, Jean Pierre; Mabilde, Cyriel; Blanckaert, Bart; Keereman, Vincent; Leybaert, Luc; Van Nieuwenhove, Yves; Caemaert, Jacques; Van Roost, Dirk
2014-06-01
Omnidirectional articulated instruments enhance dexterity. In neurosurgery, for example, the simultaneous use of 2 instruments through the same endoscopic shaft remains a difficult feat. It is, however, very challenging to manufacture steerable instruments of the requisite small diameter. We present a new technique to produce such instruments by means of laser cutting. Only 3 coaxial tubes are used. The middle tube has a cutting pattern that allows the steering forces to be transmitted from the proximal to the distal end. In this way the steering part is concealed in the wall of the tube. Large diameter articulated instruments such as for laparoscopy might benefit from the excellent tip stability provided by the same economical technology. Coaxial nitinol tubes are laser-cut with a Rofin Stent Cutter in a specific pattern. The 3 tubes are assembled by sliding them over one another, forming a single composite tube. In a surgical simulator, the neurosurgical microinstruments and laparoscopic needle drivers were evaluated on surgical convenience. Simultaneous use of 2 neurosurgical instruments (1.5 mm diameter) through the same endoscopic shaft proved to be very intuitive. The tip of the steerable laparoscopic instruments (10 mm diameter) could resist a lateral force of more than 20 N. The angle of motion for either instrument was at least 70° in any direction. A new design for steerable endoscopic instruments is presented. It allows the construction in a range from microinstruments to 10-mm laparoscopic devices with excellent tip stability. © The Author(s) 2013.
HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench
NASA Technical Reports Server (NTRS)
Bishop, John
2011-01-01
The HEXPANDO is an expanding-head hexagonal wrench designed to retain fasteners and keep them from being dislodged from the tool. The tool is intended to remove or install socket-head cap screws (SHCSs) in remote, hard-to-reach locations or in circumstances when a dropped fastener could cause damage to delicate or sensitive hardware. It is not intended for application of torque. This tool is made of two assembled portions. The first portion of the tool comprises tubing, or a hollow shaft, at a length that gives the user adequate reach to the intended location. At one end of the tubing is the expanding hexagonal head fitting with six radial slits cut into it (one at each of the points of the hexagonal shape), and a small hole drilled axially through the center and the end opposite the hex is internally and externally threaded. This fitting is threaded into the shaft (via external threads) and staked or bonded so that it will not loosen. At the other end of the tubing is a knurled collar with a through hole into which the tubing is threaded. This knob is secured in place by a stop nut. The second assembled portion of the tool comprises a length of all thread or solid rod that is slightly longer than the steel tubing. One end has a slightly larger knurled collar affixed while the other end is tapered/pointed and threaded. When the two portions are assembled, the all thread/rod portion feeds through the tubing and is threaded into the expanding hex head fitting. The tapered point allows it to be driven into the through hole of the hex fitting. While holding the smaller collar on the shaft, the user turns the larger collar, and as the threads feed into the fitting, the hex head expands and grips the SHCS, thus providing a safe way to install and remove fasteners. The clamping force retaining the SHCS varies depending on how far the tapered end is inserted into the tool head. Initial tests of the prototype tool, designed for a 5 mm or # 10SHCS have resulted in up to 8 lb (.35.6 N) of pull force to dislodge the SHCS from the tool. The tool is designed with a lead-in angle from the diameter of the tubing to a diameter the same as the fastener head, to prevent the fastener head from catching on any obstructions encountered that could dislodge the fastener during retrieval.
NASA Technical Reports Server (NTRS)
Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.
1993-01-01
Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.
A novel investigation of heat transfer characteristics in rifled tubes
NASA Astrophysics Data System (ADS)
Jegan, C. Dhayananth; Azhagesan, N.
2018-05-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
Oversized 250 GHz Traveling Wave Tube with a Photonic Band-Gap Structure
NASA Astrophysics Data System (ADS)
Rosenzweig, Guy; Shapiro, Michael A.; Temkin, Richard J.
2017-10-01
The challenge in manufacturing traveling wave tubes (TWTs) at high frequencies is that the sizes of the structures scale with, and are much smaller than, the wavelength. We have designed and are building a 250 GHz TWT that uses an oversized structure to overcome fabrication and power handling issues that result from the small dimensions. Using a photonic band-gap (PBG) structure, we succeeded to design the TWT with a beam tunnel diameter of 0.72 mm. The circuit consists of metal plates with the beam tunnel drilled down their center. Twelve posts are protruding on one side of each plate in a triangular array and corresponding sockets are drilled on the other side. The posts of each plate are inserted into the sockets of an adjacent plate, forming a PBG lattice. The vacuum spacing between adjacent plates forms the `PBG cavity''. The full structure is a series of PBG coupled cavities, with microwave power coupling through the beam tunnel. The PBG lattice provides confinement of microwave power in each of the cavities and can be tuned to give the right amount of diffraction per cavity so that no sever is needed to suppress oscillations in the operating mode. CST PIC simulations predict over 38 dB gain with 67 W peak power, using a 30 kV, 310 mA electron beam, 0.6 mm in diameter. Research supported by the AFOSR Program on Plasma and Electro-Energetic Physics and by the NIH National Institute of Biomedical Imaging and Bioengineering.
Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules
NASA Astrophysics Data System (ADS)
Saibaba, N.
2008-12-01
Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.
Simulation of adsorber tube diameter's effect on new design silica gel-water adsorption chiller
NASA Astrophysics Data System (ADS)
Nasruddin, Taufan, A.; Manga, A.; Budiman, D.
2017-03-01
A new design of silica gel-water adsorption chiller is proposed. The design configuration is composed of two sorption chambers with compact fin tube heat exchangers as adsorber, condenser, and evaporator. Heat and mass recovery were adopted in order to increase the cooling capacity. Numerical modelling and calculation were used to show the performance of the chiller with different adsorber tube diameter. Under typical condition for hot water inlet/cooling water inlet/chilled water outlet temperatures are 90/30/7°C, respectively, the simulation results showed the best average value of COP, SCP, and cooling power are 0.19, 15.88 W/kg and 279.89 W using 3/8 inch tube.
On-line measurement of diameter of hot-rolled steel tube
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin
2015-02-01
In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems
1950-05-11
available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same
Detonation propagation in a high loss configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I; Shepherd, Joseph E
2009-01-01
This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter ofmore » the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.« less
Theoretical study on a water muffler
NASA Astrophysics Data System (ADS)
Du, T.; Chen, Y. W.; Miao, T. C.; Wu, D. Z.
2016-05-01
Theoretical computation on a previously studied water muffler is carried out in this article. Structure of the water muffler is composed of two main parts, namely, the Kevlar- reinforced rubber tube and the inner-noise-reduction structure. Rubber wall of the rubber tube is assumed to function as rigid wall lined with sound absorption material and is described by a complex radial wave number. Comparison among the results obtained from theoretical computation, FEM (finite element method) simulation and experiment of the rubber tube and that of the water muffler has been made. The theoretical results show a good accordance in general tendency with the FEM simulated and the measured results. After that, parametric study on the diameter of the inner structure and that of the rubber tube is conducted. Results show that the diameter of the left inner structure has the most significant effect on the SPL of the water muffler due to its location and its effect on the diameter ratio D2/D1.
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.
2005-01-01
A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.
Experiments on a Miniature Hypervelocity Shock Tube
NASA Astrophysics Data System (ADS)
Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team
2013-06-01
A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.
Marine Surface Condenser Design Using Vertical Tubes Which Are Enhanced.
1981-06-01
hydraulic diameter. 2. Tube Wall. Heat transfer resistance through the tube wall is dependent upon tube material , wall thickness, and a scaling...B. Heat Transfer Coefficient for a Tube Wall For materials such as pure copper which have extremely high values for thermal conductivity, the...mandate the use of materials with relatively low thermal con- ductivities. The thermal resistance of the tube wall is the reciprocal of the heat
Multiple capillary biochemical analyzer
Dovichi, N.J.; Zhang, J.Z.
1995-08-08
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.
Multiple capillary biochemical analyzer
Dovichi, Norman J.; Zhang, Jian Z.
1995-01-01
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.
Hydrodynamics of interaction of particles (including cells) with surfaces
NASA Astrophysics Data System (ADS)
Duszyk, Marek; Doroszewski, Jan
The study of the phenomena related to the motion of particles flowing in the proximity of the wall is pursued for purely cognitive reason as well as for some important practical purposes in various fields of technology, biology and medicine. When small spherical rigid particles move in the direction parallel to the surface their velocity is smaller than that of the fluid and depends on the ratio of the distance from the wall to the particle radius. The velocity of a particle falling down in a vertical cylinder is maximal in an eccentric position. A sphere in contact with the wall remains stationary. Translational velocity of spherical rigid particles the dimension of which are comparable to that of the tube is only slightly dependent of their lateral position. The differences in the flow parameters of deformable particles in comparison with rigid ones depend on the particle and fluid viscosity coefficient. When the particles move perpendicularly toward the wall, their velocity decreases as the particle approaches the surface. The change of particle velocity is inversely proportional to the gap. There are several theories explaining the influence of the channel diameter on the suspension viscosity (sigma phenomenon); a modern approach is based on the analysis of rheological properties of suspensions. The explanations of the Fahraeus effect (i.e. the fact that the concentration of particles flowing in a tube linking two containers are smaller than that in the containers) are based on non-uniform particle distribution in a transverse cross section and on the differences of velocities of particles and medium. The deviation of the velocity profile of a suspension of rigid particles flowing through a tube from the parabolic shape (blunting) does not depend on the flow velocity; as concerns deformable particles, however, this effect is the smaller the greater is the flow velocity. When the Reynolds number for particles is greater than 10 -3, there appears a component of particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.
Del Mar, P.
1993-12-28
A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.
Li, Xue; Tang, Jingyu; Bao, Luhan; Chen, Lin; Hong, Feng F
2017-12-15
In order to improve property of bacterial nano-cellulose (BNC) to achieve the requirements of clinical application as small caliber vascular grafts, chitosan (CH) was deposited into the fibril network of the BNC tubes fabricated in unique Double-Silicone-Tube bioreactors. Heparin (Hep) was then chemically grafted into the BNC-based tubes using EDC/NHS crosslinking to improve performance of anticoagulation and endothelialization. Physicochemical and mechanical property, blood compatibility, and cytocompatibility were compared before and after compositing. The results indicated that strength at break was increased but burst pressure decreased slightly after compositing. Performance of the BNC tubes was improved remarkably after introducing chitosan and heparin. The EDC/NHS crosslinking catalyzed both amide bonds and ester bonds formation in the BNC/CH-Hep composites. Three-dimensional surface structure and roughness were firstly obtained and discussed in relation to the hemocompatibility of BNC-based tubes. This work demonstrates the heparinized BNC-based tubes have great potential in application as small-diameter vascular prosthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Additive manufacturing of patient-specific tubular continuum manipulators
NASA Astrophysics Data System (ADS)
Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica
2015-03-01
Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.
Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants
NASA Astrophysics Data System (ADS)
Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.
2013-03-01
Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL
Iqbal, Shams I; Molgaard, Christopher; Williamson, Christina; Flacke, Sebastian
2014-07-01
To evaluate the feasibility and efficacy of pneumothorax creation and chest tube insertion before computed tomography (CT)-guided coil localization of small peripheral lung nodules for video-assisted thoracoscopic surgical (VATS) wedge resection. From May 2011 to October 2013, 21 consecutive patients (seven men; mean age, 62 y; range, 42-76 y) scheduled for VATS wedge resection required CT-guided coil localization for small, likely nonpalpable peripheral lung lesions at a single institution. Outcomes were evaluated retrospectively for technical success and complications. There were 12 nodules and nine ground-glass opacities. Mean lesion distance from the pleural surface was 15 mm (range, 5-35 mm), and average size was 13 mm (range, 7-30 mm). A pneumothorax was successfully created in all patients with a Veress needle, and a chest tube was inserted. All target lesions were marked successfully, leaving one end of the coil within/beyond the lesion and the other end of the coil in the pleural space. The inserted chest tube was used to insufflate air to widen the pleural space during coil positioning and to aspirate any residual air before transfer of the patient to the operating room holding area. Intraparenchymal hemorrhages smaller than 7 cm in diameter developed in two patients during coil placement. All lesions were successfully resected with VATS. Histologic examinaiton revealed 13 primary adenocarcinomas, four metastases, and four benign lesions. Pneumothorax creation and chest tube placement before CT-guided coil localization of peripheral lung nodules for VATS wedge resection facilitates the deployment of the peripheral end of the coil in the pleural space and provides effective management of procedure-related pneumothorax until surgery. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Effect of Tube Diameter on The Design of Heat Exchanger in Solar Drying system
NASA Astrophysics Data System (ADS)
Husham Abdulmalek, Shaymaa; Khalaji Assadi, Morteza; Al-Kayiem, Hussain H.; Gitan, Ali Ahmed
2018-03-01
The drying of agriculture product consumes a huge fossil fuel rates that demand to find an alternative source of sustainable environmental friendly energy such as solar energy. This work presents the difference between using solar heat source and electrical heater in terms of design aspect. A circular-finned tube bank heat exchanger is considered against an electrical heater used as a heat generator to regenerate silica gel in solar assisted desiccant drying system. The impact of tube diameter on the heat transfer area was investigated for both the heat exchanger and the electrical heater. The fin performance was investigated by determining fin effectiveness and fin efficiency. A mathematical model was developed using MATLAB to describe the forced convection heat transfer between hot water supplied by evacuated solar collector with 70 °C and ambient air flow over heat exchanger finned tubes. The results revealed that the increasing of tube diameter augments the heat transfer area of both heat exchanger and electrical heater. The highest of fin efficiency was around 0.745 and the lowest was around 0.687 while the fin effectiveness was found to be around 0.998.
Comparison of numerical simulation and experimental data for steam-in-place sterilization
NASA Technical Reports Server (NTRS)
Young, Jack H.; Lasher, William C.
1993-01-01
A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.
Krishna, Senthil G; Hakim, Mumin; Sebastian, Roby; Dellinger, Heather L; Tumin, Dmitry; Tobias, Joseph D
2017-05-01
In children, the size of the cuffed endotracheal tube is based on various age-based formulas. However, such formulas may over or underestimate the size of the cuffed endotracheal tube. There are no data on the impact of different-sized cuffed endotracheal tubes (ETT) on the intracuff pressure in children. The current study measures intracuff pressure with different-sized cuffed ETT. The study was conducted in an in vitro and in vivo phase. For the in vitro phase, 10 cuffed ETT of size 4.0, 4.5, and 5 mm internal diameter (ID) each were randomly placed inside a 1.0 cm ID plastic tube (mimicking the trachea), which was in turn connected to a 1 l test lung. After inflation of the cuff using the air leak test at a continuous positive airway pressure of 20 cmH 2 O, the intracuff pressure was measured. The in vivo phase was conducted in 100 children (4-8 years) and were randomly divided into two groups to receive either a cuffed endotracheal tube based on the Khine formula (Group R) or a cuffed endotracheal tube that was a half-size (0.5 mm ID) smaller (Group S). Following the inflation of the cuff to seal the trachea, the intracuff pressure was measured. In the in vitro phase, the intracuff pressure was 45 ± 6, 23 ± 1, and 14 ± 6 cmH 2 O with size 4.0, 4.5, and 5 mm ID cuffed ETT, respectively (F-test P < 0.001 for difference among three groups). In the in vivo phase, the mean intracuff pressure in Group R was 25 ± 19 cmH 2 O vs 37 ± 35 cmH 2 O in Group S (95% CI of difference: 1, 23; P = 0.039). If the cuffed endotracheal tube is too small, the trachea can still be sealed by inflating the cuff with additional air. However, this transforms the cuff from the intended high-volume, low-pressure cuff to an undesirable high-volume, high-pressure cuff. © 2017 John Wiley & Sons Ltd.
Radiative enhancement of tube-side heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, K. H.; Ahluwalia, R. K.; Engineering Physics
1994-01-01
The potential of augmenting film coefficient by uniformly dispersing thin metallic/ceramic filaments oriented longitudinally along a tube is investigated. The purpose of the rigidly held filaments is to create a participating medium from a gas otherwise transparent to thermal radiation. The filaments absorb the thermal radiation emitted by the tube and transfer the heat convectively to the flowing gas. Wave theory shows that optical thickness > 10 can be achieved with 50 {micro}m SiC filaments at 300 cm{sup 2} number density in a 2.54 cm diameter tube. Solution of the radiation transport equation indicates that the radiative film coefficients aremore » a function of filament material, diameter and number density, and gas and surface temperatures.« less
Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers
NASA Astrophysics Data System (ADS)
Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro
2017-05-01
Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.
Final bubble lengths for aqueous foam coarsened in a horizontal cylinder
NASA Astrophysics Data System (ADS)
Sebag, V.; Roth, A. E.; Durian, D. J.
2011-12-01
We report on length statistics measured for bubbles in the equilibrium bamboo state, achieved by the coarsening of aqueous foam in long cylindrical tubes, such that the soap films are all flat and perpendicular to the axis of the tube. The average bubble length is found to be 0.88 times the tube diameter, independent of variation of the liquid filling fraction by a factor of nearly three. The actual distribution is well-approximated by a shifted Rayleigh form, with a minimum bubble size of 0.28 tube diameters. And, perhaps surprisingly, no correlations are found in the lengths of neighboring bubbles. The observed length distribution agrees with that of Fortes et al. for short bubbles, but not for long bubbles.
Method of making a composite tube to metal joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie, James C.; Leslie, II, James C.; Heard, James
A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less
NASA Astrophysics Data System (ADS)
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
NASA Technical Reports Server (NTRS)
Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard
2008-01-01
Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects
NASA Astrophysics Data System (ADS)
Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
Performance of an adjustable, threaded inertance tube
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.
2015-12-01
The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.
NASA Technical Reports Server (NTRS)
Drexel, Rober E; Mcadams, William H
1945-01-01
Report reviews published data and presents some new data on heat transfer to air flowing in round tubes, in rectangular ducts, and around finned cylinders. The available data for heat transfer to air in straight ducts of rectangular and circular cross section have been correlated in plots of Stanton number versus Reynolds number to provide a background for the study of the data for finned cylinders. Equations are recommended for both the streamlined and turbulent regions, and data are presented for the transition region between turbulent and laminar flow. Use of hexagonal ends on round tubes causes the characteristics of laminar flow to extend to high Reynolds numbers. Average coefficients for the entire finned cylinder have been calculated from the average temperature at the base of the fins and an equation which was derived to allow for the effectiveness of the fins. The available results for each finned cylinder are correlated herein in terms of graphs of Stanton number versus Reynolds number. In general, for a given Reynolds number, the Stanton number increases with increases in both spacing and width of the fins, and is apparently independent of cylinder diameter and temperature difference. For a given coefficient of heat transfer improved baffles and rough or wavy surfaces give a substantial reduction in pumping power per unit of heat transfer surface and a somewhat smaller decrease in pressure drop. (author)
Thulium fiber laser recanalization of occluded ventricular catheters in an ex vivo tissue model
NASA Astrophysics Data System (ADS)
Hutchens, Thomas C.; Gonzalez, David A.; Hardy, Luke A.; McLanahan, C. Scott; Fried, Nathaniel M.
2017-04-01
Hydrocephalus is a chronic medical condition that occurs in individuals who are unable to reabsorb cerebrospinal fluid (CSF) created within the ventricles of the brain. Treatment requires excess CSF to be diverted from the ventricles to another part of the body, where it can be returned to the vascular system via a shunt system beginning with a catheter within the ventricle. Catheter failures due to occlusion by brain tissues commonly occur and require surgical replacement of the catheter. In this preliminary study, minimally invasive clearance of occlusions is explored using an experimental thulium fiber laser (TFL), with comparison to a conventional holmium: yttrium aluminium garnet (YAG) laser. The TFL utilizes smaller optical fibers (<200-μm OD) compared with holmium laser (>450-μm OD), providing critical extra cross-sectional space within the 1.2-mm-inner-diameter ventricular catheter for simultaneous application of an endoscope for image guidance and a saline irrigation tube for visibility and safety. TFL ablation rates using 100-μm core fiber, 33-mJ pulse energy, 500-μs pulse duration, and 20- to 200-Hz pulse rates were compared to holmium laser using a 270-μm core fiber, 325-mJ, 300-μs, and 10 Hz. A tissue occluded catheter model was prepared using coagulated egg white within clear silicone tubing. An optimal TFL pulse rate of 50 Hz was determined, with an ablation rate of 150 μm/s and temperature rise outside the catheter of ˜10°C. High-speed camera images were used to explore the mechanism for removal of occlusions. Image guidance using a miniature, 0.7-mm outer diameter, 10,000 pixel endoscope was explored to improve procedure safety. With further development, simultaneous application of TFL with small fibers, miniature endoscope for image guidance, and irrigation tube for removal of tissue debris may provide a safe, efficient, and minimally invasive method of clearing occluded catheters in the treatment of hydrocephalus.
Cryogenic thermal emittance measurements on small-diameter stainless steel tubing
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-12-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of ~2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, A. E.; Tuttle, J. G.; Canavan, E. R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescoep includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of approximately 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by a running a warm gas through the lines to sublimate the water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the abosprtance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 300 K. This value leads to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Ohashi, Nobuko; Imai, Hidekazu; Seino, Yutaka; Baba, Hiroshi
2017-12-06
Determination of the appropriate tracheal tube size using formulas based on age or height often is inaccurate in pediatric patients with congenital heart disease (CHD), particularly in those with high pulmonary arterial pressure (PAP). Here, the authors compared tracheal diameters between pediatric patients with CHD with high PAP and low PAP. Retrospective clinical study. Hospital. Pediatric patients, from birth to 6 months of age, requiring general anesthesia and tracheal intubation who underwent computed tomography were included. Patients with mean pulmonary artery pressure >25 mmHg were allocated to the high PAP group, and the remaining patients were allocated to the low PAP group. The primary outcome was the tracheal diameter at the cricoid cartilage level, and the secondary goal was to observe whether the size of the tracheal tube was appropriate compared with that obtained using predictable formulas based on age or height. The mean tracheal diameter was significantly larger in the high PAP group than in the low PAP group (p < 0.01). Pediatric patients with high PAP required a larger tracheal tube size than predicted by formulas based on age or height (p = 0.04 for age and height). Pediatric patients with high PAP had larger tracheal diameters than those with low PAP and required larger tracheal tubes compared with the size predicted using formulas based on age or height. Copyright © 2017 Elsevier Inc. All rights reserved.
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
Metal halide arc discharge lamp having short arc length
NASA Technical Reports Server (NTRS)
Muzeroll, Martin E. (Inventor)
1994-01-01
A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.
A 3-D analysis of the protympanum in human temporal bones with chronic ear disease.
Pauna, Henrique F; Monsanto, Rafael C; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin
2017-03-01
Eustachian tube dysfunction is believed to be an important factor to cholesteatoma development and recurrence of disease after surgical treatment. Although many studies have described prognostic factors, evaluation methods, or surgical techniques for Eustachian tube dysfunction, they relied on the soft tissues of its structure; little is known about its bony structure-the protympanum-which connects the Eustachian tube to the tympanic cavity, and can also be affected by several inflammatory conditions, both from the middle ear or from the nasopharynx. We studied temporal bones from patients with cholesteatoma, chronic otitis media (with and without retraction pockets), purulent otitis media, and non-diseased ears, looking for differences between the volume of the protympanum, the diameter of the Eustachian tube isthmus, and the distance between the anterior tympanic annulus and the promontory. Light microscopy and 3-D reconstruction software were used for the measurements. We observed a decrease of volume in the lumen of the four middle ear diseased ears compared to the control group. We observed a significant decrease in the volume of the protympanic space in the cholesteatoma group compared to the chronic otitis media group. We also observed a decrease in the bony space (protympanum space) in cholesteatoma, chronic otitis media with retraction pockets, and purulent otitis media compared to the control group. We found a correlation in middle ear diseases and a decrease in the middle ear space. Our findings may suggest that a smaller bony volume in the protympanic area may trigger middle ear dysventilation problems.
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
Effect of Geometric Parameters on Formability and Strain Path During Tube Hydrforming Process
NASA Astrophysics Data System (ADS)
Omar, A.; Harisankar, K. R.; Tewari, Asim; Narasimhan, K.
2016-08-01
Forming limit diagram (FLD) is an important tool to measure the material's formability for metal forming processes. In order to successfully manufacture a component through tube hydroforming process it is very important to know the effect of material properties, process and geometrical parameters on the outcome of finished product. This can be obtained by running a finite element code which not only saves time and money but also gives a result with considerable accuracy. Therefore, in this paper the mutual effect of diameter as well as thickness has been studied. Firstly the finite element based prediction is carried out to assess the formability of seamless and welded tubes with varying thickness. Later on, effect of varying diameter and thickness on strain path is predicted using statistical based regression analysis. Finally, the mutual effect of varying material property alongwith varying thickness and diameter on constraint factor is studied.
NASA Astrophysics Data System (ADS)
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
SHEATHED TUBE AND APPARATUS AND METHOD OF PRODUCTION THEREOF
Ohlinger, L.A.
1959-08-18
A tubular fuel element covered inside and out by a unitary covering tube originally about twice its length and of small enough diameter to fit snugly inside the fuel tube is described. The covering tube is then reentrantly folded back by a pressure-die mechanism over both ends of the fuel tube and againsts outside until the folded back ends of the covering tube meet where they are welded in a single seam running circumferentially around the middle of the resulting assembly.
Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2003-01-01
The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.
Phelan, Michael P; Reineks, Edmunds Z; Berriochoa, Jacob P; Schold, Jesse D; Hustey, Fredric M; Chamberlin, Janelle; Kovach, Annmarie
2017-10-01
Hemolyzed blood samples commonly occur in hospital emergency departments (EDs). Our objective was to determine whether replacing standard large-volume/high-vacuum sample tubes with low-volume/low-vacuum tubes would significantly affect ED hemolysis. This was a prospective intervention of the use of small-volume/vacuum collection tubes. We evaluated all potassium samples in ED patients and associated hemolysis. We used χ2 tests to compare hemolysis incidence prior to and following utilization of small tubes for chemistry collection. There were 35,481 blood samples collected during the study period. Following implementation of small-volume tubes, overall hemolysis decreased from a baseline of 11.8% to 2.9% (P < .001) with corresponding reductions in hemolysis with comment (8.95% vs 1.99%; P < .001) gross hemolysis (2.84% vs 0.90%; P < .007). This work demonstrates that significant improvements in ED hemolysis can be achieved by utilization of small-volume/vacuum sample collection tubes. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Spicher, G; Borchers, U
1984-10-01
The series of tests described in a preceding publication (Spicher and Borchers, 1983) has been continued in a modified way. This time, the dependency of the microbiological test results of a formaldehyde gas sterilization procedure on length and inner diameter of the tubes serving as test pieces was examined. The tubes were 1 or 2 m in length with an inner diameter of 1 or 2 mm. The tests were performed with four different preparations of bioindicators. Spores of Bac. stearothermophilus served as test germs. The preparations differed in the type of suspension used for the preparation of the bioindicators: distilled water, diluted blood (10%), undiluted blood, 10% albumin solution. The spore suspensions had been dried on linen thread. During the test procedure, the bioindicators were located near the sealed end of the tube. After completion of the sterilization procedure, the bioindicators were examined for viable germs. In tubes of identical length, the frequency of indicators carrying viable germs was always higher in those of 1 mm than in those of 2 mm inner diameter. In tubes of identical inner diameter, the frequency of indicators carrying viable germs in those of 2 m length was always higher than in those of 1 m length. This regularity was independent of the type of bioindicators used. The bioindicators for the preparation of which a 10% albumin solution had been employed showed the highest resistance. A somewhat lower resistance was found for the bioindicators prepared with undiluted blood. The bioindicators for which the spores had been suspended in diluted blood proved to have the lowest resistance. If the spores had been suspended in distilled water, the resistance of the bioindicators was a little lower than that of those suspended in undiluted blood, but was higher than that of the dried spores with diluted blood. The test results confirm the effectiveness of the method proposed earlier, i.e. to deposit the bioindicators in special test pieces (e.g. tubes or sounds) for the microbiological testing of formaldehyde gas sterilization procedures. These test pieces must be at least as long and as narrow as the longest and narrowest cavity of the object to be sterilized (tubes, catheters). In order to standardize the microbiological testing of formaldehyde gas sterilization procedures and to guarantee a certain minimum efficiency, the bioindicator as well as the test piece and its size (length and inner diameter) should be standardized.(ABSTRACT TRUNCATED AT 400 WORDS)
Pulsed Ejector Thrust Amplification Tested and Modeled
NASA Technical Reports Server (NTRS)
Wilson, Jack
2004-01-01
There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.
A new Doppler-echo method to quantify regurgitant volume.
Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J
1992-01-01
An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.
Projectile Combustion Effects on Ram Accelerator Performance
NASA Astrophysics Data System (ADS)
Chitale, Saarth Anjali
University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement with projectiles operating in methane/oxygen/nitrogen propellants. Effects of projectile surface to volume ratio are also explored by applying the model to experimental results from smaller (Tohoku University, 25-mm-bore) and larger (Institute of Saint-Louis 90-mm-bore) bore ram accelerators. Due to lower surface-to-volume ratio, large diameter projectiles are predicted to need to reach higher Mach numbers than smaller diameter projectiles before thrust enhancement due to metal ablation and burning would be experienced. This proposition was supported by published experimental data. The theoretical modeling of projectile ablation, metal combustion, and subsequent ram accelerator thrust characteristics are presented along comparisons to experiments from three different sized ram accelerator facilities.
NASA Astrophysics Data System (ADS)
Shikida, M.; Naito, J.; Yokota, T.; Kawabe, T.; Hayashi, Y.; Sato, K.
2009-10-01
We developed a novel catheter-type flow sensor for measuring the aspirated- and inspired-air characteristics trans-bronchially. An on-wall in-tube thermal flow sensor is mounted inside the tube, and it is used as a measurement tool in a bronchoscope. The external diameter of the tube is less than a few mm, and therefore, it can evaluate the flow characteristics in the small bronchial region. We newly developed a fabrication process to miniaturize it to less than 2.0 mm in the external diameter by using a heat shrinkable tube. A film sensor fabricated by photolithography was inserted into the tube by hand. By applying a heat shrinking process, the film was automatically mounted on the inner wall surface, and the outer size of the tube was miniaturized to almost half its original size. The final inner and outer diameters of the tube were 1.0 mm and 1.8 mm, respectively. The relationship between the input power of the sensor and the flow rate obeyed King's equation in both forward and reverse flow conditions. The sensor output dependence on ambient temperature was also studied, and the curve obtained at 39.2 °C was used as the calibration curve in animal experiments. The sensor characteristics under reciprocating flow were studied by using a ventilator, and we confirmed that the sensor was able to measure the reciprocating flow at 2.0 Hz. Finally, we successfully measured the aspirated- and inspired-air characteristics in the air passage of a rat.
Performance evaluation of cross-flow single-phase liquid-to-gas polymer tube heat exchanger
NASA Astrophysics Data System (ADS)
Dewanjee, Sujan; Hossain, Md. Rakibul; Rahman, Md. Ashiqur
2017-06-01
Reduced core weight and material cost, higher corrosion resistance are some of the major eye catching properties to study polymers over metal in heat exchanger applications in spite of the former's relatively low thermal conductivity and low strength. In the present study, performance of polymer parallel thin tube heat exchanger is numerically evaluated for cross flow liquid to air applications for a wide range of design and operating parameters such as tube diameter, thickness, fluid velocity and temperature, etc. using Computational Fluid Dynamics (CFD). Among a range of available polymeric materials, those with a moderate to high thermal conductivity and strength are selected for this study. A 90 cm × 1 cm single unit of polymer tubes, with appropriate number of tubes such that at least a gap of 5 mm is maintained in between the tubes, is used as a basic unit and multiple combination in the transverse direction of this single unit is simulated to measure the effect. The tube inner diameter is varied from 2 mm to 4 mm and the pressure drop is measured to have a relative idea of pumping cost. For each inner diameter the thickness is varied from .5 mm to 2.5 mm. The water velocity and the air velocity are varied from 0.4 m/s to 2 m/s and 1 m/s to 5 m/s, respectively. The performance of the polymer heat exchanger is compared with that of metal heat exchanger through and an optimum design for polymer heat exchanger is sought out.
Unsteady Ejector Performance: An Experimental Investigation Using a Resonance Tube Driver
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
2002-01-01
A statistically designed experiment to characterize thrust augmentation for unsteady ejectors has been conducted at the NASA Glenn Research Center. The variable parameters included ejector diameter, length, and nose radius. The pulsed jet driving the ejectors was produced by a shrouded resonance (or Hartmann-Sprenger) tube. In contrast to steady ejectors, an optimum ejector diameter was found, which coincided with the diameter of the vortex ring created at the pulsed jet exit. Measurements of ejector exit velocity using a hot-wire permitted evaluation of the mass augmentation ratio, which was found to correlate to thrust augmentation following a formula derived for steady ejectors.
Eustachian tube diameter: Is it associated with chronic otitis media development?
Paltura, Ceki; Can, Tuba Selçuk; Yilmaz, Behice Kaniye; Dinç, Mehmet Emre; Develioğlu, Ömer Necati; Külekçi, Mehmet
To evaluate the effect of ET diameter on Chronic Otitis Media (COM) pathogenesis. Retrospective. Patients with unilateral COM disease are included in the study. The connection between fibrocartilaginous and osseous segments of the Eustachian Tube (ET) on axial Computed Tomography (CT) images was defined and the diameter of this segment is measured. The measurements were carried out bilaterally and statistically compared. 154 (76 (49%) male, 78 (51%) female patients were diagnosed with unilateral COM and included in the study. The mean diameter of ET was 1947mm (Std. deviation±0.5247) for healthy ears and 1788mm (Std. deviation±0.5306) for diseased ears. The statistical analysis showed a significantly narrow ET diameter in diseased ear side (p<0.01). The dysfunction or anatomical anomalies of ET are correlated with COM. Measuring of the bony diameter of ET during routine Temporal CT examination is recommended for our colleagues. Copyright © 2017 Elsevier Inc. All rights reserved.
The vascularization of a gastric tube as a substitute for the esophagus is affected by its diameter.
Pierie, J P; de Graaf, P W; van Vroonhoven, T J; Obertop, H
1998-10-01
The stomach is used for reconstruction of the upper gastrointestinal tract after esophageal resection for cancer. The whole stomach can be used, but also a wide or narrow gastric tube can be constructed. Short-term functional results are superior after use of a narrow tube. Healing of the cervical esophagogastrostomy can be impaired, leading to leakage and stricture. The decreased vascularization at the site of the anastomosis may be one reason. It was hypothesized that the quality of the vascularization of the gastric tube, used as a substitute for the oesophagus after esophagectomy, depends on its diameter. The vascularization of postmortem specimens was studied using angiography. Whole stomachs (3), wide (3) and narrow gastric tubes (3) were constructed. In a patient with an anastomotic stricture of a narrow tube with a cervical esophagogastrostomy vascularisation was evaluated by angiography. After infusion of contrast through the supplying arteries, the whole stomachs and wide gastric tubes showed adequate vascularization, whereas the narrow gastric tube showed poor vascularization especially at the site of the anastomosis. In narrow gastric tubes, the right gastroepiploic artery was the only feeding artery. In the patient's angiography, a limited contrast visualization of the proximal end of the gastric tube could be demonstrated. Although a narrow gastric tube is favoured by some surgeons, the use of whole stomach or a type of gastric tube with preservation of the right gastric artery may lead to a better anastomotic healing.
NASA Technical Reports Server (NTRS)
Thompson, J. A.
1977-01-01
Lightweight device automatically alines stainless-steel tubing and fittings, regardless of differing diameters, prior to joining via induction brazing. Device is useful in remote areas where existing supports or walls cannot be used to anchor tubing holder.
Shape optimized headers and methods of manufacture thereof
Perrin, Ian James
2013-11-05
Disclosed herein is a shape optimized header comprising a shell that is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and tubes; wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell. Disclosed herein is a method comprising fixedly attaching tubes to a shell; wherein the shell is operative for collecting a fluid; wherein an internal diameter and/or a wall thickness of the shell vary with a change in pressure and/or a change in a fluid flow rate in the shell; and wherein the tubes are in communication with the shell and are operative to transfer fluid into the shell.
An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Patel, D. K.
1974-01-01
Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.
Experimental Study on Flow Boiling of Carbon Dioxide in a Horizontal Microfin Tube
NASA Astrophysics Data System (ADS)
Kuwahara, Ken; Ikeda, Soshi; Koyama, Shigeru
This paper deals with the experimental study on flow boiling heat transfer of carbon dioxide in a micro-fin tube. The geometrical parameters of micro-fin tube used in this study are 6.07 mm in outer diameter, 5.24 mm in average inner diameter, 0.256 mm in fin height, 20.4 in helix angle, 52 in number of grooves and 2.35 in area expansion ratio. Flow patterns and heat transfer coefficients were measured at 3-5 MPa in pressure, 300-540 kg/(m2s) in mass velocity and -5 to 15 °C in CO2 temperature. Flow patterns of wavy flow, slug flow and annular flow were observed. The measured heat transfer coefficients of micro-fin tube were 10-40 kW/(m2K). Heat transfer coefficients were strongly influenced by pressure.
On the formation of vortex rings in coaxial tubes
NASA Astrophysics Data System (ADS)
Gan, Lian
2011-11-01
The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.
Some considerations on instability of combined loaded thin-walled tubes with a crack
NASA Astrophysics Data System (ADS)
Shariati, M.; Akbarpour, A.
2016-05-01
Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.
NASA Astrophysics Data System (ADS)
Macphee, Andrew; Casey, Daniel; Clark, Daniel; Field, John; Haan, Steven; Hammel, Bruce; Kroll, Jeremy; Landen, Otto; Martinez, David; Milovich, Jose; Nikroo, Abbas; Rice, Neal; Robey, Harry; Smalyuk, Vladimir; Stadermann, Michael; Weber, Christopher; Lawrence Livermore National Laboratory Collaboration; Atomics Collaboration, General
2016-10-01
Features associated with the target support tent and deuterium-tritium fuel fill tube and support rods can seed hydrodynamic instabilities leading to degraded performance for inertial confinement fusion (ICF) experiments at the National Ignition Facility. We performed in-flight radiography of ICF capsules in the vicinity of the capsule support tent and fill tube surrogates to investigate instability growth associated with these features. For both plastic and high density carbon ablators, the shadow of the 10 μm diameter glass fill-tube cast by the x-ray spots on the hohlraum wall were observed to imprint radial instabilities around the fill tube/capsule interface. Similarly, instability growth was observed for the shadow cast by 12 μm diameter silicon carbide capsule support rods mounted orthogonal to the fill tube as a tent alternative for a plastic ablator. The orientation of the shadows is consistent with raytracing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Strength of a Ceramic Sectored Flexure Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Duffy, Stephen F; Baker, E. H.
2008-01-01
A new test specimen, defined here as the "sectored flexure strength specimen", was developed to measure the strength of ceramic tubes specifically for circumstances when flaws located at the tube's outer diameter are the strength-limiter and subjected to axial tension. The understanding of such strength-limitation is relevant for when ceramic tubes are subjected to bending or when the internal temperature is hotter than the tube's exterior (e.g., heat exchangers). The specimen is both economically and statistically attractive because eight specimens (eight in the case of this project - but the user is not necessarily limited to eight) were extracted outmore » of each length of tube. An analytic expression for maximum or failure stress, and relationships portraying effective area and effective volume as a function of Weibull modulus were developed. Lastly, it was proven from the testing of two ceramics that the sectored flexure specimen was very effective at producing failures caused by strength-limiting flaws located on the tube's original outer diameter. Keywords: ceramics, strength, sectored flexure specimen, effective area, effective volume, finite-element analysis, Weibull distribution, and fractography.« less
Thulium fiber laser lithotripsy using a muzzle brake fiber tip
NASA Astrophysics Data System (ADS)
Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.
2017-02-01
The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.
A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul
2013-01-14
We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie, James C.; Leslie, II, James C.; Heard, James
A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less
Increase of stagnation pressure and enthalpy in shock tunnels
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Cambier, Jean-Luc
1992-01-01
High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.
Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J
2016-12-20
Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.
NASA Astrophysics Data System (ADS)
Son, Chang-Hyo; Oh, Hoo-Kyu
2012-11-01
The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.
Novel Laser-Based Technique for Measurements of Primary Atomization Characteristics of Liquid Jets
2012-08-22
worth noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios smaller than 3. This...noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios smaller than 3. This...breakup. It is worth noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios
Preparation of nitrogen-doped carbon tubes
Chung, Hoon Taek; Zelenay, Piotr
2015-12-22
A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.
Del Mar, Peter
1995-01-01
A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.
Mar, Peter D.
1994-01-01
A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.
NASA Astrophysics Data System (ADS)
Furushima, Tsuyoshi; Sakai, Takashi; Manabe, Ken-ichi
2004-06-01
Dieless drawing is a unique deformation process without conventional dies, which can achieve a great reduction of wire and tube metals in single pass by means of local heating and cooling approach. In this study, for microtube forming, the dieless drawing process applying superplastic behavior was analyzed by finite element method (FEM) in order to clarify the effect of dieless tube drawing conditions such as tensile speed, moving speed of heating and cooling system, and material properties on deformation behavior of the tube. In the calculation, the material properties were dealt in a special subroutine, whose constitutive equation was defined as σ = Kɛnɛ˙m, and was linked to the solver. A coupled thermo-mechanical analysis was performed for the dieless tube drawing using the FEM. In the thermal analysis of dieless tube drawing, heat transfer was introduced to calculate the heat flux between heating coil and tube surface, and heat conduction in a tube. The influence of dieless tube drawing conditions on deformation behavior was clarified. As a result, for the strain rate sensitive material, the maximum reduction of area and the minimum outer diameter in single pass attain to 90.9% and 2.56mm, respectively. From the result, it is concluded that the dieless tube drawing is essential to produce an extrafine microtube by reason of keeping cylindrical tube diameter ratio constant with extremely high reduction.
A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters
NASA Astrophysics Data System (ADS)
Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh
2012-05-01
A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.
Novel Crystal Structure C60 Nanowire
NASA Astrophysics Data System (ADS)
Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex
2003-03-01
We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.
2010-09-01
Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA Monitored natural attenuation...consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end...be constructed from small- diameter LDPE tubing that fits into small-diameter wells. These polyethylene diffusion bag (PDB) samplers have been
2011-10-01
Regulatory Council LDPE low-density polyethylene MDL minimum detection limit NAVFAC ESC Naval Facilities Engineering Command Engineering Service...membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is...requirements, and can be constructed from small-diameter LDPE tubing that fits into small- 4 diameter wells. These polyethylene diffusion bag
2010-04-01
LDPE low-density polyethylene LF low-flow purging LRL laboratory reporting level MDL minimum detection limit MNA monitored natural attenuation...shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end, filled with high...from small- diameter LDPE tubing that fits into small-diameter wells. These PDB samplers have been shown to be useful only for collection of VOCs
Growth of High-Quality Carbon Nanotudes on Free-Standing Diamond Substrates (Postprint)
2010-03-01
thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor, Transmission electron microscopy...multi walled CNTs forming a mat of 5 lm thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2...desired devices. For example, chip cooling with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal
Elastica solution for a nanotube formed by self-adhesion of a folded thin film
NASA Astrophysics Data System (ADS)
Glassmaker, N. J.; Hui, C. Y.
2004-09-01
Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.
NASA Technical Reports Server (NTRS)
Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.
1982-01-01
A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.
Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir
NASA Astrophysics Data System (ADS)
Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.
2010-04-01
Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.
Effect of buoyancy on the motion of long bubbles in horizontal tubes
NASA Astrophysics Data System (ADS)
Atasi, Omer; Khodaparast, Sepideh; Scheid, Benoit; Stone, Howard A.
2017-09-01
As a confined long bubble translates along a horizontal liquid-filled tube, a thin film of liquid is formed on the tube wall. For negligible inertial and buoyancy effects, respectively, small Reynolds (Re) and Bond (Bo) numbers, the thickness of the liquid film depends only on the flow capillary number (Ca). However, buoyancy effects are no longer negligible as the diameter of the tube reaches millimeter length scales, which corresponds to finite values of Bo. We perform experiments and theoretical analysis for a long bubble in a horizontal tube to investigate the effect of Bond number (0.05
Double wall vacuum tubing and method of manufacture
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1989-01-01
An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.
Patient-specific Radiation Dose and Cancer Risk for Pediatric Chest CT
Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.
2011-01-01
Purpose: To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. Materials and Methods: The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0–16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDIvol) or dose–length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Results: Organ dose normalized by tube current–time product or CTDIvol decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current–time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current–time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (<10% variation). Conclusion: The correlations of dose and risk with patient size and age can be used to estimate patient-specific dose and risk. They can further guide the design and optimization of pediatric chest CT protocols. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1 PMID:21467251
Patient-specific radiation dose and cancer risk for pediatric chest CT.
Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P
2011-06-01
To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (<10% variation). The correlations of dose and risk with patient size and age can be used to estimate patient-specific dose and risk. They can further guide the design and optimization of pediatric chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011
MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant
2014-01-01
Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurationsmore » are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.« less
Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor
NASA Astrophysics Data System (ADS)
Urban, Brook
Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of the initial feed mass was recovered as bio-oil. However, the mass of high calorific lipid-derived components in the collected bio-oils remained nearly constant at reaction temperatures above 415°C; between 80-90% of the feedstock lipids were recovered in the bio-oil fraction. In addition, multi-step fractional flash pyrolysis experiments were performed to assess the possibility of producing higher quality bio-oils since a large fraction of protein and carbohydrates degrade at lower temperatures (320-400°C). A low temperature pyrolysis step was first performed and was followed by pyrolysis of the residues at higher temperature. This fractional pyrolysis approach which produced higher quality bio-oil with low water- and nitrogen- content from the higher temperature steps.
NASA Technical Reports Server (NTRS)
Stein, J. A.
1974-01-01
Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.
NASA Astrophysics Data System (ADS)
Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam
2017-04-01
Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.
Wistbacka, Greta; Andrade, Pedro Amarante; Simberg, Susanna; Hammarberg, Britta; Södersten, Maria; Švec, Jan G; Granqvist, Svante
2018-01-01
Resonance tube phonation with tube end in water is a voice therapy method in which the patient phonates through a glass tube, keeping the free end of the tube submerged in water, creating bubbles. The purpose of this experimental study was to determine flow-pressure relationship, flow thresholds between bubble types, and bubble frequency as a function of flow and back volume. A flow-driven vocal tract simulator was used for recording the back pressure produced by resonance tubes with inner diameters of 8 and 9 mm submerged at water depths of 0-7 cm. Visual inspection of bubble types through video recording was also performed. The static back pressure was largely determined by the water depth. The narrower tube provided a slightly higher back pressure for a given flow and depth. The amplitude of the pressure oscillations increased with flow and depth. Depending on flow, the bubbles were emitted from the tube in three distinct types with increasing flow: one by one, pairwise, and in a chaotic manner. The bubble frequency was slightly higher for the narrower tube. An increase in back volume led to a decrease in bubble frequency. This study provides data on the physical properties of resonance tube phonation with the tube end in water. This information will be useful in future research when looking into the possible effects of this type of voice training. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Ion plated electronic tube device
Meek, T.T.
1983-10-18
An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Radtke; David Glowka; Man Mohan Rai
2008-03-31
Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less
Force Dental Facility Design Guidance (AFDFDG).
1998-06-01
8217 Note: "A" designates 24"x48" drop in fluorescent light fixture having tubes with color rendering index greater than 90 (CRI...90). Since there are a varity of tube types to select from and varying lighting design concepts, certain tubes may be...terminated in utility center with 5/8" outside diameter (O.D.) tube . GRAVITY DRAIN, 1-1/2" nominal pipe protruding 1" from bottom of box. NOTE: Place
[Experimental study of an intratracheal stent made of shape memory alloy].
Yoshimura, M; Tsugawa, C; Tsubota, N
1994-11-01
To develop a new prosthesis for treating tracheal stenosis and tracheobronchomalacia, we examined the usefulness of an intratracheal stent made of shape memory alloy (SMA), a titanium-nickel alloy composed of 50% of each metal. At its recovery temperature (37 degrees C), the SMA stent was designed to recall the memorized shape of a coil with a diameter of 5 or 6 mm and a length of 10 mm. For the present experiment, it was transformed to a smaller coil 3 mm in diameter at a low temperature (-50 degrees C) and then loaded into the prosthesis introducer tube. An experimental model of potentially fatal tracheomalacia was made surgically by cutting and fracturing the tracheal cartilages of rabbits and tracheal collapse was confirmed by rigid bronchoscope. The introducer tube with the SMA stent was inserted and then the prosthesis was advanced into the collapsed segment of the trachea using the stent pusher. The SMA stent warmed bo body temperature and recovered its memorized shape after 1-2 min. In 3 out of 8 rabbits, follow-up bronchoscopy performed at 6, 8, and 10 months after implantation revealed satisfactory patency of the SMA stent and the trachea. After follow-up, 3 animals were sacrificed for histological observation, which showed little proliferation of granulation tissue and no dislocation of the SMA stent from the malacic portion. The remaining 5 rabbits have been followed for 18-24 months and are doing well. We conclude that the SMA stent maintains good tracheal patency, causes little reaction in the tracheal wall, and is easy to handle. Thus, it shows the potential for clinical application.
Ende, J F; Huda, W; Ros, P R; Litwiller, A L
1999-04-01
To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.
Li, Li-Hua; Liang, Yi-Lin; Li, Yu; Xu, Ming-Peng; Li, Wen-Tao; Liu, Guang-Nan
2018-03-01
To compare the safety and efficacy between using a small-diameter tube-assisted bronchoscopic balloon dilatation (BBD) and the traditional BBD in the treatment of benign tracheal stenosis. A retrospective study included 58 patients with benign tracheal stenosis from August 2009 to December 2014 was made. The patients who underwent traditional BBD were divided into group A, and who underwent a small-diameter tube-assisted BBD were divided into group B. The tracheal diameter, dyspnea index and blood gas analysis results were detected before and after BBD. Efficacy and complications were evaluated after BBD. There were significant differences in oxygen saturation (PaO 2 ) during the operations comparing with before and after operations in group A (P = .005), while there was no significant difference in group B (P = .079). The tracheal diameter obviously increased (in group A, from 4.16 ± 1.43 mm to 12.47 ± 1.41 mm, P = .000; in group B: from 4.94 ± 1.59 mm to 12.61 ± 1.41 mm, P = .000). Dyspnea index obviously decreased (group A: from 3.21 ± 0.93 to 0.50 ± 0.59, P = .000; group B: from 3.24 ± 0.89 to 0.65 ± 0.69, P = .000). The immediately cure rate in both groups was 100%. Long-term effect was significantly better in group B than that in group A (85.3% vs 59.1%, P = .021), at the end of the follow-up period. Small-diameter tube-assisted BBD obtains better safety and long-term efficacy than the traditional BBD in the treatment of benign tracheal stenosis. However, close attention should be given to the risk of the adverse effects caused by carbon dioxide retention. © 2017 John Wiley & Sons Ltd.
Catalyzed Ignition of Bipropellants in Microtubes
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Boyarko, George A.; Sung, Chih-Jen
2003-01-01
This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations to more carefully characterize the measured heat transfer and pressure losses for validation purposes. Experimentally, we investigate the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter micro-tubes, with special emphases on ignition and extinction processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rises in resistively heated platinum and palladium micro-tubes are used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented.
Optical properties of carbon nanotubes
NASA Astrophysics Data System (ADS)
Chen, Gugang
This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.
Gas sampling system for a mass spectrometer
Taylor, Charles E; Ladner, Edward P
2003-12-30
The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
Modification of one man life raft
NASA Technical Reports Server (NTRS)
Soter, E. J. (Inventor)
1974-01-01
A one man inflatable life raft is described. The raft has an inflatable tube perimetrically bounding the occupant receiving space with a flexible floor member. A zippered opening in the floor allows entry and facilitates the use of a constant diameter tube. An airtight fabric bulkhead divides the peripheral tube longitudinally into inflatable tube sections, where if either tube section were punctured, the bulkhead would move into the punctured section to substitute for the punctured wall portion and maintain the inflatable volume of the tube. The floor member is attached to the central portion of the tube wall so that either side of the raft can be the up side.
Network dynamics in nanofilled polymers
NASA Astrophysics Data System (ADS)
Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.
2016-04-01
It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.
Emergent patterns of collective cell migration under tubular confinement.
Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee
2017-11-15
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
Hutter, Ernest
1986-01-01
A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.
Sera, Toshihiro; Fujioka, Hideki; Yokota, Hideo; Makinouchi, Akitake; Himeno, Ryutaro; Schroter, Robert C; Tanishita, Kazuo
2004-05-01
Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.
Stacked Buoyant Payload Launcher
2013-05-14
unit, the signal ejector , or through the escape hatch lockout trunk. Each of these deployment methods has disadvantages. [0005] Torpedo tubes are... ejector tube can accommodate payloads approximately three inches in diameter. Thus, payload size is extremely limited. The escape hatch lockout trunk...signal ejector tube. Additionally, the system 10 can launch multiple payloads during one launch sequence, or can provide multiple launches at
Free-surface entrainment into a rimming flow containing surfactants
NASA Astrophysics Data System (ADS)
Thoroddsen, S. T.; Tan, Y.-K.
2004-02-01
We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.
Leakage of fluid in different types of tracheal tubes.
Winklmaier, U; Wüst, K; Schiller, S; Wallner, F
2006-10-01
The aim of this study was to evaluate leakage of liquids, i.e., water and saliva, past low-pressure cuffs of tracheostomy tubes. Three different types of tracheostomy tubes, TRACOE vario (TRACOE Medical GmbH, Germany), Rüsch Ultra-Tracheoflex (Rüsch GmbH, Germany), and Portex Blue Line Ultra (Smiths Medical, UK) were tested in isolated pig tracheas. Sixty samples (10 tubes each of 7- and 8-mm inner diameter of each type) were used. Four different experiments were devised: type 1 (water and artificial ventilation), type 2 (water and no artificial ventilation), type 3 (saliva and artificial ventilation), and type 4 (saliva and no artificial ventilation). Six milliliters of water or artificial saliva were infused over the cuff and the volume of fluid that leaked past the cuff was measured after 5, 10, and 15 min. Intracuff pressure was also measured three times. The saliva experiments resulted in less leakage than the water experiments. Leakage after treatment with water or artificial saliva is higher without artificial ventilation than with ventilation. The amount of leakage among the tubes with respect to manufacturer showed statistically significant results. However, there were no differences among tracheostomy tubes with respect to internal diameter.
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
NASA Astrophysics Data System (ADS)
Haga, Yoichi; Muyari, Yuta; Goto, Shoji; Matsunaga, Tadao; Esashi, Masayoshi
This paper reports micro-fabrication techniques using laser processing on cylindrical substrates for the realization of high-performance multifunctional minimally invasive medical tools with small sizes. A spring-shaped shape memory alloy (SMA) micro-coil with a square cross section has been fabricated by spiral cutting of a Ti-Ni SMA tube with a femtosecond laser. Small diameter active bending catheter which is actuated by hydraulic suction mechanism for intravascular minimally invasive diagnostics and therapy has also been developed. The catheter is made of a Ti-Ni super elastic alloy (SEA) tube which is processed by laser micromachining and a silicone rubber tube which covers the outside of the SEA tube. The active catheter is effective for insertion in branch of blood vessel which diverse in acute angle which is difficult to proceed. Multilayer metallization and patterning have been performed on glass tubes with 2 and 3 mm external diameters using maskless lithography techniques using a laser exposure system. Using laser soldering technique, a integrated circuit parts have been mounted on a multilayer circuit patterned on a glass tube. These fabrication techniques will effective for realization of high-performance multifunctional catheters, endoscopic tools, and implanted small capsules.
dc-plasma-sprayed electronic-tube device
Meek, T.T.
1982-01-29
An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
Max Tech and Beyond: Fluorescent Lamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholand, Michael
2012-04-01
Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicatedmore » that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp contains less material (i.e., glass, fill gas and phosphor), and has a higher luminance, enabling fixtures to take advantage of the smaller lamp size to improve the optics and provide more efficient overall system illuminance. In addition to offering the market a high-quality efficacious light source, another strong value proposition of fluorescent lighting is its long operating life. In today's market, one manufacturer is offering fluorescent lamps that have a rated life of 79,000 hours - which represents 18 years of service at 12 hours per day, 365 days per year. These lamps, operated using a long-life ballast specified by the manufacturer, take advantage of improvements in cathode coatings, fill gas chemistry and pressure to extend service life by a factor of four over conventional fluorescent lamps. It should be noted that this service life is also longer (approximately twice as long) as today's high-quality LED products. The fluorescent market is currently focused on the T5 and T8 lamp diameters, and it is not expected that other diameters would be introduced. Although T8 is a more optimal diameter from an efficacy perspective, the premium efficiency and optimization effort has been focused on T5 lamps because they are 40% smaller than T8, and are designed to operate at a higher temperature using high-frequency electronic ballasts. The T5 lamp offers savings in terms of materials, packaging and shipping, as well as smaller fixtures with improved optical performance. Manufacturers are actively researching improvements in four critical areas that are expected to yield additional efficacy improvements of approximately 10 to 14 percent over the next five years, ultimately achieving approximately 130 lumens per watt by 2015. The active areas of research where these improvements are anticipated include: (1) Improved phosphors which continue to be developed and patented, enabling higher efficacies as well as better color rendering and lumen maintenance; (2) Enhanced fill gas - adjusting proportions of argon, krypton, neon and xenon to optimize performance, while also minimizing the mercury dose; (3) Improved cathode coatings to enhance electron emissivity and extend lamp life; and (4) UV-reflective glass coatings deposited between the layer of phosphor and the glass tube, to reflect any UV light back into the phosphor layer for down-conversion.« less
Condensation Heat-Transfer Measurements of Refrigerants on Externally Enhanced Tubes.
1987-06-01
Pf Density of condensate at Tf (kgjm3 ) e Insulated angle em Rotation angle of normal to fin surface Of Surface tension of condensate (N/m) a Nusselt ...reported data for the condensation of steam at near atmospheric pressure on smooth tubes and roped tubes with and without a helical , external wrap of...Their model, a Nusselt -type equation based on the equivalent diameter of the finned tube, lives the average condensing coefficient by the following
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.
2014-06-15
Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, andmore » B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.« less
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-07-01
In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.
NASA Technical Reports Server (NTRS)
Robertson, Glen A. (Inventor)
1993-01-01
A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.
Influence of the bound polymer layer on nanoparticle diffusion in polymer melts
Griffin, Philip J.; Bocharova, Vera; Middleton, L. Robert; ...
2016-09-23
We measure the center-of-mass diffusion of silica nanoparticles (NPs) in entangled poly(2-vinylpyridine) (P2VP) melts using Rutherford backscattering spectrometry. While these NPs are well within the size regime where enhanced, nonhydrodynamic NP transport is theoretically predicted and has been observed experimentally (2R NP/d tube ≈ 3, where 2R NP is the NP diameter and d tube is the tube diameter), we find that the diffusion of these NPs in P2VP is in fact well-described by the hydrodynamic Stokes–Einstein relation. The effective NP diameter 2R eff is significantly larger than 2R NP and strongly dependent on P2VP molecular weight, consistent with themore » presence of a bound polymer layer on the NP surface with thickness h eff ≈ 1.1R g. Our results show that the bound polymer layer significantly augments the NP hydrodynamic size in polymer melts with attractive polymer–NP interactions and effectively transitions the mechanism of NP diffusion from the nonhydrodynamic to hydrodynamic regime, particularly at high molecular weights where NP transport is expected to be notably enhanced. Lastly, these results provide the first experimental demonstration that hydrodynamic NP transport in polymer melts requires particles of size ≳5d tube, consistent with recent theoretical predictions.« less
Wu, Yun; Li, Qing-Jun
2017-10-01
Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.
Do Indo-Asians have smaller coronary arteries?
Lip, G Y; Rathore, V S; Katira, R; Watson, R D; Singh, S P
1999-08-01
There is a widespread belief that coronary arteries are smaller in Indo-Asians. The aim of the present study was to compare the size of atheroma-free proximal and distal epicardial coronary arteries of Indo-Asians and Caucasians. We analysed normal coronary angiograms from 77 Caucasians and 39 Indo-Asians. The two groups were comparable for dominance of the coronary arteries. Indo-Asian patients had generally smaller coronary arteries, with a statistically significant difference in the mean diameters of the left main coronary artery, proximal, mid and left anterior descending, and proximal and distal right coronary artery segments. There was a non-significant trend towards smaller coronary artery segment diameters for the distal left anterior descending, proximal and distal circumflex, and obtuse marginal artery segments. However, after correction for body surface area, none of these differences in size were statistically significant. Thus, the smaller coronary arteries in Indo-Asian patients were explained by body size alone and were not due to ethnic origin per se. This finding nevertheless has important therapeutic implications, since smaller coronary arteries may give rise to technical difficulties during bypass graft and intervention procedures such as percutaneous transluminal coronary angioplasty, stents and atherectomy. On smaller arteries, atheroma may also give an impression of more severe disease than on larger diameter arteries.
Choi, Seunghee; Coon, Joshua J.; Goggans, Matthew Scott; Kreisman, Thomas F.; Silver, Daniel M.; Nesson, Michael H.
2016-01-01
Many of the materials that are challenging for large animals to cut or puncture are also cut and punctured by much smaller organisms that are limited to much smaller forces. Small organisms can overcome their force limitations by using sharper tools, but one drawback may be an increased susceptibility to fracture. We use simple contact mechanics models to estimate how much smaller the diameter of the tips or edges of tools such as teeth, claws and cutting blades must be in smaller organisms in order for them to puncture or cut the same materials as larger organisms. In order to produce the same maximum stress when maximum force scales as the square of body length, the diameter of the tool region that is in contact with the target material must scale isometrically for punch-like tools (e.g. scorpion stings) on thick targets, and for crushing tools (e.g. molars). For punch-like tools on thin targets, and for cutting blades on thick targets, the tip or edge diameters must be even smaller than expected from isometry in smaller animals. The diameters of a small sample of unworn punch-like tools from a large range of animal sizes are consistent with the model, scaling isometrically or more steeply (positively allometric). In addition, we find that the force required to puncture a thin target using real biological tools scales linearly with tip diameter, as predicted by the model. We argue that, for smaller tools, the minimum energy to fracture the tool will be a greater fraction of the minimum energy required to puncture the target, making fracture more likely. Finally, energy stored in tool bending, relative to the energy to fracture the tool, increases rapidly with the aspect ratio (length/width), and we expect that smaller organisms often have to employ higher aspect ratio tools in order to puncture or cut to the required depth with available force. The extra stored energy in higher aspect ratio tools is likely to increase the probability of fracture. We discuss some of the implications of the suggested scaling rules and possible adaptations to compensate for fracture sensitivity in smaller organisms. PMID:27274804
Earth boring apparatus with multiple welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, J.B.; Crews, S.T.
1981-06-16
A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less
Review on drop towers and long drop tubes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.
1987-01-01
A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.
NASA Astrophysics Data System (ADS)
Wagner, Manfred Hermann; Rolón-Garrido, Víctor Hugo
2015-04-01
An extended interchain tube pressure model for polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τR, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube, which is proportional to the 3rd power of stretch (G. Marrucci and G. Ianniruberto. Macromolecules 37, 3934-3942, 2004). In the extended interchain tube pressure (EIP) model, it is assumed that chain stretch is balanced by interchain tube pressure in the lateral direction, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. The scaling relations established for the relaxation modulus of concentrated solutions of polystyrene in oligomeric styrene (M. H. Wagner, Rheol. Acta 53, 765-777, 2014, M. H. Wagner, J. Non-Newtonian Fluid Mech. http://dx.doi.org/10.1016/j.jnnfm.2014.09.017, 2014) are applied to the solutions of polystyrene (PS) in diethyl phthalate (DEP) investigated by Bhattacharjee et al. (P. K. Bhattacharjee et al., Macromolecules 35, 10131-10148, 2002) and Acharya et al. (M. V. Acharya et al. AIP Conference Proceedings 1027, 391-393, 2008). The scaling relies on the difference ΔTg between the glass-transition temperatures of the melt and the glass-transition temperatures of the solutions. ΔTg can be inferred from the reported zero-shear viscosities, and the BSW spectra of the solutions are obtained from the BSW spectrum of the reference melt with good accuracy. Predictions of the EIP model are compared to the steady-state elongational viscosity data of PS/DEP solutions. Except for a possible influence of solvent quality, linear and nonlinear viscoelasticity of entangled polystyrene solutions can thus be obtained from the linear-viscoelastic characteristics of a reference polymer melt and the shift of the glass transition temperature between melt and solution.
Combuster. [low nitrogen oxide formation
NASA Technical Reports Server (NTRS)
Mckay, R. A. (Inventor)
1978-01-01
A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.
Saito, Masatoshi
2009-08-01
Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the balanced filter method for clinical use.
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin
2010-03-01
The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained ψ(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.
Ryan, T.M.
1962-04-01
A steel or aluminum small diameter (1/4 in.) tube-type neutron detector containing an inert atmosphere and having a coating of fissionable material on its inner circumference is described. A conducting wire, positioned along the axis of the tube by spaced insulators, is connected to a power source. The coating of fissionable material is brushed onto a nickel foil which is inserted into the tube and supported between the insulators. (AEC)
Eddy current signal comparison for tube identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, S. W., E-mail: Bill.Glass@areva.com, E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R., E-mail: Bill.Glass@areva.com, E-mail: Ratko.Vojvodic@areva.com
2015-03-31
Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been somemore » instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.« less
Drift chambers on the basis of Mylar tube blocks
NASA Astrophysics Data System (ADS)
Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.
1993-06-01
Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.
Long Elastic Open Neck Acoustic Resonator for low frequency absorption
NASA Astrophysics Data System (ADS)
Simon, Frank
2018-05-01
Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.
NASA Astrophysics Data System (ADS)
Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.
2014-09-01
Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.
NASA Astrophysics Data System (ADS)
Karas, Kristoffer Jason
Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.
NASA Astrophysics Data System (ADS)
Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.
2015-07-01
We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.
Tool and process for miniature explosive joining of tubes
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)
1987-01-01
A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.; ...
2018-02-25
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
On the propagation mechanism of a detonation wave in a round tube with orifice plates
NASA Astrophysics Data System (ADS)
Ciccarelli, G.; Cross, M.
2016-09-01
This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
NASA Astrophysics Data System (ADS)
Yang, Peng; Chen, Hui; Liu, Yingwen
2017-06-01
In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."
Influence of dimension parameters of the gravity heat pipe on the thermal performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosa, Ľuboš, E-mail: lubos.kosa@fstroj.uniza.sk; Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Jobb, Marián, E-mail: marian.jobb@fstroj.uniza.sk
Currently the problem with the increasing number of electronic devices is a problem with the outlet Joule heating. Joule heating, also known as ohmic heating and resistive heating, is the process by which the passage of an electric current through a conductor releases heat. Perfect dustproof cooling of electronic components ensures longer life of the equipment. One of more alternatives of heat transfer without the using of mechanical equipment is the use of the heat pipe. Heat pipes are easy to manufacture and maintenance of low input investment cost. The advantage of using the heat pipe is its use inmore » hermetic closed electronic device which is separated exchange of air between the device and the environment. This experiment deals with the influence of changes in the working tube diameter and changing the working fluid on performance parameters. Changing the working fluid and the tube diameter changes the thermal performance of the heat pipe. The result of this paper is finding the optimal diameter with ideal working substance for the greatest heat transfer for 1cm{sup 2} sectional area tube.« less
Northern view of inside diameter welding station of the saw ...
Northern view of inside diameter welding station of the saw line in bay9 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA
High-Temperature Helical-Tube Solar Receiver
NASA Technical Reports Server (NTRS)
Robertson, C. S., Jr.; Mccreight, L.
1984-01-01
Solar-thermal receiver used with circular parabolic concentrator to supply about 58 kW thermal power to Brayton engine or industrial process. Solar radiation focused into open end of cylindrical ceramic thermal inertial sleeve 8 in. in diameter that reradiates energy to helical heatexchanger tube surrounding sleeve.
A study of the rheological properties of endodontic sealers.
Lacey, S; Pitt Ford, T R; Watson, T F; Sherriff, M
2005-08-01
To test the hypothesis that there would be no statistically significant difference in viscosity-related measures of endodontic sealers or change in these with strain rate, internal diameter or powder : liquid ratio in a capillary system. Materials used were Apexit, Tubliseal EWT, Grossman's sealer and Ketac-endo. Viscosity-related measures were tested in a two-plate test, and in a capillary rheometer. The mean values (n = 12) for thickness and diameter of material formed between two glass plates were tested with one-way analysis of variance. Pressure was applied to a capillary rheometer at strain rates 5 and 10 mm min(-1) in tubes of internal diameter 0.6 and 1.2 mm. Tubliseal EWT had a thinner film thickness than the other sealers (alpha = 0.05). The difference in diameter between Tubliseal EWT and the other sealers was significant apart from Apexit. Increased strain rate gave a significant increase (alpha = 0.05) in the flow of all sealers. Narrower tubes produced increased velocity, which was significant for all sealers, and reduced volumetric flow, which was significant for all sealers except Grossman's 2 : 1 (Wilcoxon signed rank test). Reduction in powder : liquid ratio of Grossman's significantly increased flow in narrow tubes and at higher strain rate (Mann-Whitney test). There was a significant difference between the flow of Tubliseal EWT and the other sealers tested in the two-plate test; capillary flow was affected by sealer, internal diameter, strain rate and powder : liquid ratio. The null hypotheses were rejected.
Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng
2018-03-01
To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.
The structure of untwisted magnetic flux tubes. [solar magnetic field distribution
NASA Technical Reports Server (NTRS)
Browning, P. K.; Priest, E. R.
1982-01-01
While most previous investigations have concentrated on slender flux tubes, the present study of the equilibrium structure of an axisymmetric magnetic flux tube, confined by an external pressure that varies along the length of the tube, explores the properties of thick tubes in order to establish the degree to which slender tube theory is valid. It is found that slender flux tube results may in some cases give no indication of thick tube behavior in a nonuniform atmosphere. Depending on boundary conditions applied at the ends of the tube, it may expand or contract upon entering a region of increasing pressure. Rather than expanding indefinitely, the tube surface may form a cusped shape when a point of external pressure on the tube surface falls to equality with the internal pressure. Numerical solutions for an initially uniform tube give smaller expansions than would be expected from slender tube theory.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Jeličić, Aleksandra; Friedrich, Alwin; Jeremić, Katarina; Siekmeyer, Gerd; Taubert, Andreas
2009-01-01
One of the main issues with the use of nickel titanium alloy (NiTi) implants in cardiovascular implants (stents) is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes.
Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes
NASA Technical Reports Server (NTRS)
Nitschke, P.
1984-01-01
Turbulent flow in tubes with and without longitudinal grooves is examined. The discovery of fine grooves forming a sort of streamline pattern on the body of sharks led to the expectation that the grooves on a surface reduce the momentum change, and thus the drag. To test this thesis, drag law, velocity profile and the profile of the velocity fluctuation were determined. Results show that for moderate Reynolds numbers the drag coefficient for grooved tubes is about 3 percent smaller than that of the smooth tubes. At higher Reynolds numbers, however, the drag coefficient for grooved tubes becomes larger than that for smooth tubes. No significant differences in the velocity profiles between grooved tubes and smooth tubes are found.
NASA Astrophysics Data System (ADS)
Turner, Peter
2016-05-01
A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.
Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases
NASA Astrophysics Data System (ADS)
Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.
2006-09-01
Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun
2015-02-15
Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less
1980-11-12
Range : 660,000 kilometers (400,000 miles) Time : 5:05 am PST This Voyager 1 picture of Mimas shows a large impact structure at 110 degrees W Long., located on that face of the moon which leads Mimas in its orbit. The feature, about 130 kilometers in diameter (80 miles), is more than 1/4 the diameter of the entire moon. This is a particularly interesting feature in view of its large diameter compared with the size of the satellite, and may have the largest crater diameter/satillite diameter ratio in the solar system. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15-45 kilometers in diameter, can be seen scattered across the surface, particularly alon the terminator. Mimas is one of the smaller Saturnian satellites with a low density implying its chief component is ice.
Condensation of Refrigerants on Small Tube Bundles
1988-12-01
first comprehensive condensation model was developed by Nusselt in 1916 [Ref. 4] based on the assumption that a quiescent vapor at saturation...vapor is condensed by an auxiliary condenser . The auxiliary condenser is composed of five helically wound copper tubes of 9.53 mm diameter suspended...copper tubing located in the top center of the condenser chamber. The vapor is condensed in the storage cylinder by means of a helical copper coil
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 431.75) you must locate one or two sampling tubes within six inches downstream from the flue....75). If you use an open end tube, it must project into the flue one-third of the chimney connector diameter. If you use other methods of sampling CO2, you must place the sampling tube so as to obtain an...
Creep-rupture tests of internally pressurized Inconel 702 tubes
NASA Technical Reports Server (NTRS)
Gumto, K. H.
1973-01-01
Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.
Retractor Tool for Brain Surgery
NASA Technical Reports Server (NTRS)
Helms, R.; Hayes, T.
1982-01-01
Proposed brain-surgery tool has an octogonal fixture for positioning latex tube over incision. Eight stainless-steel wires embedded in latex extend to hold positioning fixture. Another eight are also embedded in the latex. Concentric sleeves are successively inserted into expandable latex tube. The first sleeve is placed over a solid rod. Last sleeve is a stainless-steel tube 1 inch in diameter. It is overcoated with Teflon (or equivalent) material.
Self-monitoring high voltage transmission line suspension insulator
Stemler, Gary E.; Scott, Donald N.
1981-01-01
A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.
Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects
2014-11-20
automobile, rail, and air traffic, and wind background noise. 4.1.1 Targets Six braided nylon cords with diameters 3.2, 4.8, 6.4, 9.5 12.9 and 15.9mm (1/8, 3...fibers, (center) six braided nylon cords of increasing diameter (left) folded aluminum retroreflector. 0 ·5 ·5 ·10 ·10 ·15 $ 53’ ., ·15 ’-’ :s...impedance tube, here show in a vertical orientation has a speaker hosed at the top, two microphones flush mounted the the inner wall of the tube, and a
NASA Astrophysics Data System (ADS)
Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng
2003-11-01
Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.
Performance optimization of evacuated tube collector for solar cooling of a house in hot climate
NASA Astrophysics Data System (ADS)
Ghoneim, Adel A.
2018-02-01
Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.
General view of outside diameter welding stations of the saw ...
General view of outside diameter welding stations of the saw line in bay 8 of the main pipe mill building looking northwest. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian
2017-10-01
Rock populations can supply fundamental geological information about origin and evolution of a planet. In this paper, we used Lunar Reconnaissance Orbiter (LRO) narrow-angle camera (NAC) images to identify rocks at the lunar landing sites (including Chang'e 3 (CE-3), Apollo and Surveyor series). The diameter and area of each identified rock were measured to generate distributions of rock cumulative fractional area and size-frequency on a log-log plot. The two distributions both represented the same shallow slopes at smaller diameters followed by steeper slopes at larger diameters. A reasonable explanation for the lower slopes may be the resolution and space weathering effects. By excluding the smaller diameters, rock populations derived from NAC images showed approximately linear relationships and could be fitted well by power laws. In the last, the entire rock populations derived from both NAC and in-situ imagery could be described by one power function at the lunar landing sites except the CE-3 and Apollo 11 landing sites. This may be because that the process of a large rock breaking down to small rocks even fine particles can be modeled by fractal theories. Thus, rock populations on lunar surfaces can be extrapolated along the curves of rock populations derived from NAC images to smaller diameters. In the future, we can apply rock populations from remote sensing images to estimate the number of rocks with smaller diameters to select the appropriate landing sites for the CE-4 and CE-5 missions.
Numerical Investigation of Cavitation Improvement for a Francis Turbine
NASA Astrophysics Data System (ADS)
Yao, Zhifeng; Xiao, Ruofu; Wang, Fujun; Yang, Wei
2015-12-01
Cavitation in hydraulic machine is undesired due to its negative effects on performances. To improve cavitation performance of a Francis turbine without the change of the best efficiency point, a model runner geometry optimization was carried out. Firstly, the runner outlet diameter was appropriately increased to reduce the flow velocity at runner outlet region. Then, to avoid the change of the flow rate at the best efficiency point, the blade shapes were carefully adjusted by decreasing the blade outlet angles and increasing the blade wrap angles. A large number of the modified runners were tested by computational fluid dynamic (CFD) method. Finally the most appropriate one was selected, which has the runner outlet diameter 10% larger, the blade outlet angles 3 degrees smaller and the blade wrap angles 5 degrees larger. The results showed that the critical cavitation coefficient of the model runner decreased at every unit rotational speed after the optimization, and the effect was much remarkable at relative high flow rate. Besides, by analysing the internal flow field, it was found that the zone of the low pressure on pressure surface of the optimized turbine blades was reduced, the backflow and vortex rope in draft tube were reduced, and the cavitation zone was reduced obviously.
Non-destructive X-ray examination of weft knitted wire structures
NASA Astrophysics Data System (ADS)
Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.
2016-07-01
Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.
Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S
2014-11-26
Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Dean, W. G.; Karu, Z. S.
1976-01-01
The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.
NASA Astrophysics Data System (ADS)
Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong
2010-10-01
Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.
Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong
2010-10-08
Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.
Influence of some design parameters on the thermal performance of domestic refrigerator appliances
NASA Astrophysics Data System (ADS)
Rebora, Alessandro; Senarega, Maurizio; Tagliafico, Luca A.
2006-07-01
This paper presents a thermal study on chest-freezers, the small refrigerators used in domestic and supermarket applications. A thermal and energy model of a particular kind of these refrigerators, the “hot-wall” (or “skin condenser”) refrigerator, is developed and used to perform sensitivity and design optimisation analysis for given working temperatures and useful volume of the refrigerated cell. A finite-element heat transfer model of the refrigerator box is coupled to the complete thermodynamic model of the refrigerating plant, including real working conditions (compressor efficiency, friction pressure losses and so on). A sensitivity study of the main design parameters affecting the global refrigerator performance has been developed (for fixed working temperatures) with reference to the thickness of the metallic plates, to the evaporator and condenser tube diameters and to the evaporator tube pitch (with fixed evaporator-to-condenser tube pitch ratio). The results obtained show that the proposed sensitivity analysis can yield quite reliable results (in comparison with much more complex, albeit more accurate mathematical optimisation algorithms) using small computational resources. The great importance of 2-D heat conduction in the metallic plates is shown, evidencing how the plate thickness and the evaporator and condenser tube diameters affect the global performance of the system according to the well-known “fin efficiency” effect. The influence of the evaporator and condenser tube diameters on the friction pressure losses is also outlined. Some practical suggestions are made in conclusion, regarding the criteria which should be adopted in the thermal design of a hot-wall refrigerator.
Gordon, Robert; Miller, John; Collins, Noel
2015-12-01
YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed.
Large diameter lasing tube cooling arrangement
Hall, Jerome P [Livermore, CA; Alger, Terry W [Tracy, CA; Anderson, Andrew T [Livermore, CA; Arnold, Phillip A [Livermore, CA
2004-05-18
A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17, 31) and mounting members (18, 34) that position the metal members (17, 31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).
Large Diameter Lasing Tube Cooling Arrangement
Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.
2004-05-18
A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).
Ceramic tube seals cut heat loss, achieve six month payback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-11-01
The methane reformer at the Celanese Chemical Company's Bishop, TX plant operates at approximately 1900/sup 0/F. The reformer has 32 tubes (9'' diameter) that pass through the firebox. Openings around the tubes measure 11'' in diameter to accommodate horizontal and vertical thermal expansion and movement as well as to facilitate tube removal. The gaps around the tubes permitted cool air to be drawn into the firebox (caused by slight negative pressure) and also allowed radiant heat to escape causing the reformer to operate at a lower than desired level of thermal efficiency. Celanese contracted to retrofit the old rigid firebrickmore » roof in the methane reformer with a 10'' thick ceramic fiber module lining. The gaps around the tubes were sealed by using a special tube seal made from Nextel woven ceramic fiber fabric, a 1984 CHEMICAL PROCESSING Vaaler Award winner (Mid-November 1984, p.52). The Nextel fabric used in this application is a heat resistant textile that has a continuous use temperature of 2200/sup 0/F - well above the 1900/sup 0/F operating temperature of the reformer. The tube seals have been working exactly as intended, verified by observation through inspection ports. Temperatures in the penthouse area above the roof dropped from 240/sup 0/F to 150/sup 0/F. The reduction in heat losses has been attributed to the elimination of the gaps around each tube by the seals and to the improved K-factor of the ceramic module lining. The tube seals have paid for themselves within six months of installation. At that time, the seal boots were inspected and showed no signs of wear. With these results, the improved efficiency of the methane reformer promises to yield additional economic benefits.« less
NASA Astrophysics Data System (ADS)
Siadaty, Moein; Kazazi, Mohsen
2018-04-01
Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.
Issues on Fabrication and Evaluation of SiC/SiC Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2004-01-01
SiC/SiC engine components, high-modulus Sylramic-iBN SiC fiber tows were used to form nine different tubular architectural preforms with 13 mm (0.5 in.) inner diameter and lengths of approx. 75 and 230 mm (approx. 3 and approx, 9 in.). The thin-walled preforms were then coated with a BN interphase and densified with a hybrid SiC matrix using nearly the same process steps previously established for slurry-cast melt-infiltrated Sylramic-iBN/BN/SiC flat panels. The as-fabricated CMC tubes were microstructurally evaluated and tested for tensile hoop and flexural behavior, and some of the tubes were also tested in a low-pressure burner rig test with a high thru-thickness thermal gradient. To date, four general tube scale-up issues have been identified: greater CVI deposits on outer wall than inner wall; increased ply thickness and reduced fiber fraction; poor test standards for accurately determining the hoop strength of a small-diameter tube; and poor hoop strength for architectures with seams or ply ends. The underlying mechanisms and possible methods for their minimization are discussed.
Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems
Formia, Alessandra; Terranova, Salvatore; Antonaci, Paola; Pugno, Nicola Maria; Tulliani, Jean Marc
2015-01-01
The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT) having two different internal diameters (of 2 mm and 7.5 mm) were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm). The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization. PMID:28788038
Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics
NASA Astrophysics Data System (ADS)
Dufrene, Aaron T.
The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is reported over a large range of test conditions and gases, and this is attributed to the large diameter of the LENS XX driven and expansion tubes. Shock tube boundary layer growth solutions based on Mirels's theory confirm LENS XX test conditions should not be adversely affected by viscous effects. Mirels's theory is applied to both large- and small-scale expansion tube facilities to determine displacement thicknesses, and quasi one-dimensional solutions show how viscous effects become significant in long, smaller diameter facilities. In collaboration with ElectroDynamic Applications, Inc., (EDA) plasma frequency measurements are made in two different configurations using a swept microwave frequency power reflection measurement. Electric field characteristics of EDA's probe are presented and show current probe design is ideal for measuring properties of shock layers that are 1-2 cm thick. Electron density and radio frequency communication characteristics through a shock layer on the lee side of a capsule up to 8.9 km/s and in a stagnation configuration up to 5.4 km/s in air are reported.
NASA Astrophysics Data System (ADS)
Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong
2015-08-01
The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.
Wang, Shigang; Rosenthal, Tami; Kunselman, Allen R; Ündar, Akif
2015-01-01
The objective of this study is to evaluate three different diameters of arterial tubing and three diameters of arterial cannulae in terms of pressure drop, and hemodynamic energy delivery in simulated neonatal/pediatric cardiopulmonary bypass (CPB) circuits. The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator (Terumo Corporation, Tokyo, Japan), arterial tubing (1/4 in, 3/16 in, or 1/8 in × 150 cm), and a Medtronic Bio-Medicus arterial cannula (8, 10, or 12 Fr; Medtronic, Inc., Minneapolis, MN, USA). The pseudo patient's pressure was maintained at 50 mm Hg. The circuit was primed using lactated Ringer's solution and heparinized packed human red blood cells (hematocrit 30%). Trials were conducted at different flow rates and temperatures (35 and 28°C). Flow and pressure data were collected using a custom-based data acquisition system. Using 8 Fr arterial cannula at 500 mL/min, small diameter arterial tubing generated higher circuit pressure (294.6 ± 0.1 mm Hg [1/8 in], 213.5 ± 0.5 mm Hg [3/16 in], 208.4 ± 0.4 mm Hg [1/4 in] at 35°C) and arterial line pressure drop (158.3 ± 0.1 mm Hg [1/8 in], 79.6 ± 0.1 mm Hg [3/16 in], 62.1 ± 0.1 mm Hg [1/4 in] at 35°C). Using 10 Fr arterial cannula at 1000 mL/min, pre-oxygenator pressures were 266.8 ± 0.2 mm Hg (3/16 in) and 248.0 ± 0.3 mm Hg (1/4 in); arterial line pressure drops were 111.6 ± 0.0 mm Hg (3/16 in) and 74.0 ± 0.1 mm Hg (1/4 in) at 35°C. When using 12 Fr arterial cannula at 1500 mL/min, preoxygenator pressures reached 324.4 ± 0.3 mm Hg (3/16 in) and 302.5 ± 0.4 mm Hg (1/4 in); arterial line pressure drops were 154.0 ± 0.1 mm Hg (3/16 in) and 92.0 ± 0.2 mm Hg (1/4 in) at 35°C. Pressure drops across arterial line tubing were main CPB circuit pressure drops. High flow rate, hypothermia, small diameter arterial tubing. and arterial cannula created more hemodynamic energy at the preoxygenator site, but energy loss across CPB circuit also increased. Although small diameter (<1/4 in ID) arterial tubing may decrease total CPB priming volume, it also led to significantly higher circuit pressure, higher pressure drop, and more hemodynamic energy loss across CPB circuit. Larger diameter arterial cannula had less pressure drop and allowed more hemodynamic energy delivery to the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Computed Tomographic Window Setting for Bronchial Measurement to Guide Double-Lumen Tube Size.
Seo, Jeong-Hwa; Bae, Jinyoung; Paik, Hyesun; Koo, Chang-Hoon; Bahk, Jae-Hyon
2018-04-01
The bronchial diameter measured on computed tomography (CT) can be used to guide double-lumen tube (DLT) sizes objectively. The bronchus is known to be measured most accurately in the so-called bronchial CT window. The authors investigated whether using the bronchial window results in the selection of more appropriately sized DLTs than using the other windows. CT image analysis and prospective randomized study. Tertiary hospital. Adults receiving left-sided DLTs. The authors simulated selection of DLT sizes based on the left bronchial diameters measured in the lung (width 1,500 Hounsfield unit [HU] and level -700 HU), bronchial (1,000 HU and -450 HU), and mediastinal (400 HU and 25 HU) CT windows. Furthermore, patients were randomly assigned to undergo imaging with either the bronchial or mediastinal window to guide DLT sizes. Using the underwater seal technique, the authors assessed whether the DLT was appropriately sized, undersized, or oversized for the patient. On 130 CT images, the bronchial diameter (9.9 ± 1.2 mm v 10.5 ± 1.3 mm v 11.7 ± 1.3 mm) and the selected DLT size were different in the lung, bronchial, and mediastinal windows, respectively (p < 0.001). In 13 patients (17%), the bronchial diameter measured in the lung window suggested too small DLTs (28 Fr) for adults. In the prospective study, oversized tubes were chosen less frequently in the bronchial window than in the mediastinal window (6/110 v 23/111; risk ratio 0.38; 95% CI 0.19-0.79; p = 0.003). No tubes were undersized after measurements in these two windows. The bronchial measurement in the bronchial window guided more appropriately sized DLTs compared with the lung or mediastinal windows. Copyright © 2017 Elsevier Inc. All rights reserved.
Creep-rupture tests of internally pressurized Hastelloy-X tubes
NASA Technical Reports Server (NTRS)
Gumto, K. H.; Colantino, G. J.
1973-01-01
Seamless Hastelloy-X tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1400 to 1650 F and internal helium pressures from 800 to 1800 psi. Lifetimes ranged from 58 to 3600 hr. The creep-rupture strength of the tubes was from 20 to 40 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.
Filmwise Condensation on Low Integral-Fin Tubes of Different Diameter
1988-12-01
the prime mover of condensate . Therefore, the Nusselt analysis was not valid for finned tubes. They therefore divided the finned tube into two regions...the objectives of this thesis. Prior to these modifications, cooling water to the secondary condenser was con- tained in two helically wound coils made...temperature difference across condensate film (K), il = dynamic viscosity of condensate (N. s/m 2). By substituting the Nusselt - and the Sieder-Tate
An alternative method of closed silicone intubation of the lacrimal system.
Henderson, P N; McNab, A A
1996-05-01
An alternative method of closed lacrimal intubation is described, the basis of which is to place the end of a piece of silicone tubing over the end of a small-diameter metal introducer, stretch the silicone tubing back along the introducer, and then pass the introducer together with the tubing through the lacrimal system into the nasal cavity. The tubing is visualized in the inferior meatus, from where it is retrieved, and then the introducer is withdrawn. The other end of the tubing is passed in a similar fashion. The technique is easily mastered, inexpensive, and less traumatic than other described techniques.
Thermodynamic, Transport and Chemical Properties of Reference JP-8
2006-06-01
external diameter, 0.18 cm internal diameter) that are sealed on one end with a stainless steel plug welded by a clean tungsten-inert-gas ( TIG ) 15...tubing with an internal diameter of 0.02 cm, also TIG welded to the cell. Each cell and valve is capable of withstanding a pressure in excess of 105... process . Each cell is connected to a high-pressure high-temperature valve at the other end with a short length of 0.16 cm diameter 316 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan
2015-08-15
Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less
Precision heat forming of tetrafluoroethylene tubing
NASA Technical Reports Server (NTRS)
Ruiz, W. V.; Thatcher, C. S. (Inventor)
1981-01-01
An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.
Burke, Emily L; Walvekar, Rohan R; Lin, James; Hagan, Joseph; Kluka, Evelyn A
2009-12-01
To determine the efficacy of common solutions used to dissolve blood clots blocking tympanostomy tubes (TTs) of differing lengths and diameters. An ex vivo experimental study. Ear models were built by the study investigator. Tympanostomy tubes were inserted into the models and blocked with blood clots. Test solutions were applied to the blood clots, and time for clearance was recorded via microscopic visual confirmation. Richards T-tube had higher odds of unclogging than collar button tubes (odds ratio: 2.37, 95% confidence intervals 1.02-5.54, p=0.042). Vinegar and 3% hydrogen peroxide were most effective for Richards T-tubes and collar button tubes, respectively. Common solutions (vinegar and hydrogen peroxide) were more effective than antibiotic drops in clearing blood clot blocking TTs.
Tracking chamber made of 15-mm mylar drift tubes
NASA Astrophysics Data System (ADS)
Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.
2017-05-01
We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.
Evans, Robert M.
1976-10-05
1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.
1990-12-01
is constructed from stainless steel hypodermic tubing with inner and outer diameters of 0.203 mm and 0.406 mm. The five tubes were first joined by...for all channels is 256 kHz. A schematic diagram of the measurement process [Ref. 25] is given in Figure 78, and is also described below. The analog...and smoke rake. Combustion takes place inside a 40.64 cm long, 6.27 cm inside diameter (2.5 inch schedule 40) steel pipe. Inside this chamber, smoke is
Performance data of the new free-piston shock tunnel T5 at GALCIT
NASA Technical Reports Server (NTRS)
Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.
1992-01-01
A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.
Design and development of a hard tube flexible radiator system
NASA Technical Reports Server (NTRS)
Hixon, C. W.
1980-01-01
The construction and operational characteristics of an extended life flexible radiator panel is described. The radiator panel consists of a flexible fin laminate and stainless steel flow tubes designed for a 90 percent probability of surviving 5 years in an Earth orbit micrometeoroid environment. The radiator panel rejects 1.1 kW sub t of heat into an environmental sink temperature of 0 F. Total area is 170 square feet and the panel extends 25 feet in the fully deployed position. When retracted the panel rolls onto a 11.5 inch diameter by 52 inch long storage drum, for a final stored diameter of 22 inches.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
POD- Mapping and analysis of hydroturbine exit flow dynamics
NASA Astrophysics Data System (ADS)
Kjeldsen, Morten; Finstad, Pal Henrik
2012-11-01
Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.
Boiling and condensation in microfin tubes
NASA Astrophysics Data System (ADS)
Schlager, Lynn M.
A general overview of microfin tubes and their applications is presented. Manufacturing processes, commercial availability, experimental heat transfer, and pressure drop data for various refrigerants (including alternative refrigerants and refrigerant-oil mixtures), physical mechanisms of enhancement, and the incorporation of microfin tubes in common heat exchanger configurations are discussed. Microfin tubes, also known by various trade names, are characterized by numerous small fins which typically spiral down the inside wall of tubes at angles ranging from 10 to 30 degrees. The number of fins ranges from 48 to 70 with typical fin heights of 0.12 to 0.30 mm (fin height generally less than 3 percent of the inside diameter of the tube). Fin shapes may vary and the inside surface area of microfin tubes is 10 to 70 percent greater than the area of equivalent smooth tubes. Heat transfer can be enhanced by up to a factor of three with microfin tubes.
NASA Astrophysics Data System (ADS)
Martellato, E.; Foing, B. H.; Benkhoff, J.
2013-09-01
Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.
An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material
NASA Astrophysics Data System (ADS)
Yu, Huiqin; Wu, Yinong; Ding, Lei; Jiang, Zhenhua; Liu, Shaoshuai
2017-12-01
A 1.22 kg coaxial miniature pulse tube cryocooler (MPTC) has been fabricated and tested in our laboratory to provide cooling for cryogenic applications demanding compactness, low mass and rapid cooling rate. The geometrical parameters of regenerator, pulse tube and phase shifter are optimized. The investigation demonstrates that using higher mesh number and thinner wire diameter of stainless steel screen (SSS) can promote the coefficient of performance (COP) when the MPTC operates at 120 Hz. In this study, the 604 mesh SSS with 17 μm diameter of mesh wire is constructed as filler of regenerator. The experimental results show the MPTC operating at 120 Hz achieves a no-load temperature of 53.5 K with 3.8 MPa charging pressure, and gets a cooling power of 2 W at 80 K with 55 W input electric power which has a relative Carnot efficiency of 9.68%.
Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube
NASA Astrophysics Data System (ADS)
Chen, Dongsheng; Shi, Yumei
2013-10-01
An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.
Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion
NASA Astrophysics Data System (ADS)
Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.
2016-11-01
The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.
Miscible displacement of a non-Newtonian fluid in a capillary tube
NASA Astrophysics Data System (ADS)
Soori, Tejaswi; Ward, Thomas
2017-11-01
This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.
Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method
NASA Astrophysics Data System (ADS)
Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A. H.; Salem, M. K.
2017-09-01
Three steps anodization process is used to synthesize highly ordered and uniform multilayered titanium oxide (TiO2) nanotubes and effect of different anodization voltages are studied on their physical properties such as structural, morphological and optical. The crystalized structure of the synthesized tubes is investigated by X-ray diffractometer analysis. To study the morphology of the tubes, field emission scanning electron microscopy is used, which showed that the wall thicknesses and the diameters of the tubes are affected by the different anodization voltages. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes are also changed by applying different anodization voltages. In this study using physical investigations, an optimum anodization voltage is obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
MICROBIAL SOLUTION: APPLICATION OF MICROORGANISMS FOR BIOFUEL PRODUCTION AND CO2 MITIGATION
A 100 L photobioreactor for biodiesel generation from microalga Chlorella vulgaris was constructed from two parallel clear PVC 10 feet tubes (6’ diameter) with a small slope (10%). The gas mixture (5% CO2 and air) flowed up the top of the PVC tubes from the bottom as...
Pressure dependence of the radial mode frequency in carbon nanotubes
NASA Astrophysics Data System (ADS)
Venkateswaran, Uma; Masica, D.; Sumanasekara, G.; Eklund, P.
2003-03-01
Recently, an analytical expression for the radial breathing mode frequency, ω_R, was derived by considering the oscillations of a thin hollow cylinder.[1] Using this result and the experimental pressure-dependence of the elastic and lattice constants of graphite, we show that the pressure derivative of ωR depends inversely on the nanotube diameter, D. Since ωR also depends inversely on D, the above result implies that the logarithmic pressure derivative of ω_R, i.e., dlnω_R/dP should be independent of D. We have performed high-pressure Raman scattering experiments on HiPCO-SWNT bundles using different laser excitations, thereby probing the radial modes from different diameter tubes. These measurements show an increase in dlnω_R/dP with increasing D. This difference between the predictions and experiments suggests that the main contribution to ω_R's pressure dependence in SWNT bundles stems from the tube-tube interactions within the bundle and from pressure-induced distortions to the tube cross-section. [1] G.D. Mahan, Phys. Rev. B 65, 235402 (2002).
NASA Astrophysics Data System (ADS)
Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi
2016-06-01
Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.
Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole.
Abdullayev, Elshad; Price, Ronald; Shchukin, Dmitry; Lvov, Yuri
2009-07-01
Halloysite clay nanotubes were investigated as a tubular container for the corrosion inhibitor benzotriazole. Halloysite is a naturally occurring cylindrical clay mineral with an internal diameter in the nanometer range and a length up to several micrometers, yielding a high-aspect-ratio hollow tube structure. Halloysite may be used as an additive in paints to produce a functional composite coating material. A maximum benzotriazole loading of 5% by weight was achieved for clay tubes of 50 nm external diameters and lumen of 15 nm. Variable release rates of the corrosion inhibitor were possible in a range between 5 and 100 h, as was demonstrated by formation of stoppers at tube openings. The anticorrosive performance of the sol-gel coating and paint loaded with 2-5% of halloysite-entrapped benzotriazole was tested on copper and on 2024-aluminum alloy by direct exposure of the metal plates to corrosive media. Kinetics of the corrosion spot formation at the coating defects was analyzed by the scanning vibrating electrode technique, and an essential damping of corrosion development was demonstrated for halloysite-loaded samples.
Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer
NASA Astrophysics Data System (ADS)
Kroha, H.; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.
2017-02-01
ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.
Peters, Winfried S; van Bel, Aart J E; Knoblauch, Michael
2006-01-01
Forisomes are contractile protein bodies that appear to control flux rates in the phloem of faboid legumes by reversibly plugging the sieve tubes. Plugging is triggered by Ca(2+) which induces an anisotropic deformation of forisomes, consisting of a longitudinal contraction and a radial expansion. By conventional light microscopy and confocal laser-scanning microscopy, the three-dimensional geometry of the forisome-sieve element-sieve plate complex in intact sieve tubes of leaflets of Vicia faba L. was reconstructed. Forisomes were mostly located close to sieve plates, and occasionally were observed drifting unrestrainedly along the sieve element, suggesting that they might be utilized as internal markers of flow direction. The diameter of forisomes in the resting state correlated with the diameter of their sieve elements, supporting the idea that radial expansion of forisomes is the geometric basis of reversible sieve tube plugging. Comparison of the present results regarding forisome geometry in situ with previously published data on forisome reactivity in vitro makes it questionable, however, whether forisomes are capable of completely sealing sieve tubes in V. faba leaves.
Magnetic merging in colliding flux tubes
NASA Technical Reports Server (NTRS)
Zweibel, Ellen G.; Rhoads, James E.
1995-01-01
We develop an analytical theory of reconnection between colliding, twisted magnetic flux tubes. Our analysis is restricted to direct collisions between parallel tubes and is based on the collision dynamics worked out by Bogdan (1984). We show that there is a range of collision velocities for which neutral point reconnection of the Parker-Sweet type can occur, and a smaller range for which reconnection leads to coalescence. Mean velocities within the solar convection zone are probably significantly greater than the upper limit for coalescence. This suggests that the majority of flux tube collisions do not result in merging, unless the frictional coupling of the tubes to the background flow is extremely strong.
Gordon, Robert; Miller, John; Collins, Noel
2015-01-01
YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of ‘psychiatry’ during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of ‘psychiatry’ on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed. PMID:26755987
GEIGER-MULLER TYPE COUNTER TUBE
Fowler, I.L.; Watt, L.A.K.
1959-12-15
A single counter tube capable of responding to a wide range of intensities is described. The counter tube comprises a tubular cathode and an anode extending centrally of the cathode. The spacing between the outer surface of the anode and the inner surface of the cathode is varied along the length of the tube to provide different counting volumes in adjacent portions of the tube. A large counting volume in one portion adjacent to a low-energy absorption window gives adequate sensitivity for measuring lowintensity radiation, while a smaller volume with close electrode spacing is provided in the counter to make possible measurement of intense garnma radiation fields.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube...
Stripping the Sheath From Stranded Cables
NASA Technical Reports Server (NTRS)
Prisk, A. L.; Rotta, J. W.
1985-01-01
Device similar to tubing cutter removes tough plastic cover. Insulation stripper is 3 in. (7.6 cm) long and 1.5 (3.8 cm) in diameter. Two rollers are small-diameter bearings. Cutter blade journaled for rotation between pair of similar bearings. Bearings either pin or ball types of suitable dimensions.
[A simple apparatus for controllable drinking without leaks for laboratory rats].
Huber, D
1989-01-01
A simple device for watering laboratory rats is described. It has been made by using commercially available glass tubing (DURAN 50) with outside diameters of 8 mm, 6 mm, and 3 mm, respectively. The tubes were fused at their tips. The drinking tube is fitted to a rubber stopper at the top of a 250 ml soft polyethylene bottle. By this way water-soluble drugs can be administered to rats with high precision.
Novel Processing for Creating 3D Architectured Porous Shape Memory Alloy
2013-03-01
spaceholder to dissolved radially rather than axially dissolved wires. Stainless steel tubes are available commercially, so were used as the spaceholder...the stainless steel tubes, which are 400 μm in diameter and spaced by 500 μm. The frame was sintered together at 1050°C for 48 hr under argon, followed...sensitized at 600°C for 1 hr while cooling. The stainless steel tubes were electrochemically dissolved as described above, though the electrolyte
NASA Astrophysics Data System (ADS)
Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.
2017-10-01
In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.
Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe
2004-09-01
Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.
Bennett, G. R.; Herrmann, M. C.; Edwards, M. J.; ...
2007-11-13
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO 2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.
Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun
2009-09-21
Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.
Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters
NASA Astrophysics Data System (ADS)
Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan
2017-11-01
The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.
Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W
2014-09-01
The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.
Invariant Type-B characteristics of drag-reducing microalgal biopolymer solutions
NASA Astrophysics Data System (ADS)
Gasljevic, K.; Hall, K.; Chapman, D.; Matthys, E. F.
2017-05-01
The drag-reducing properties of polysaccharides from marine microalgae were investigated. They were compared to two drag-reducing additives studied extensively in the past, synthetic poly(ethylene) oxide, one of the most effective drag-reducing additives; and Xanthan Gum, another biopolymer often considered a model polymer for chemical and rheological research. Compared to Xanthan Gum, the most effective polymers from our microalgae show a higher drag-reducing efficiency in terms of necessary concentration to achieve a given level of drag reduction. In addition, they show a striking Type-B drag reduction behavior, which may be a very useful quality in most drag reduction applications, thanks to the independence of the drag reduction level on flow conditions such as velocity, shear stress, and tube diameter. With these polymers from microalgae we did not see evidence of Type-A behavior over the wide range of conditions studied (including pipe diameters up to 52 mm). Importantly, this suggests that the Drag Reduction coefficient in pipe flow for ideal drag-reducing solutions such as the polysaccharides investigated here is invariant at a given additive concentration of flow or solution parameters like ionic strength and can be used as a solution property to predict its drag reduction effectiveness over a wide range of conditions. On the contrary, Xanthan Gum showed evidence of both Type-A behavior in large diameter pipes and Type-B behavior in smaller ones. The polymers from microalgae also showed high resistance to degradation. Considering that these microalgae are very effective producers of polysaccharides (both extracellular and intracellular), they appear to be very promising additives for drag reduction applications.
Low-pressure water-cooled inductively coupled plasma torch
Seliskar, C.J.; Warner, D.K.
1984-02-16
An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.
Improvement of pump tubes for gas guns and shock tube drivers
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1990-01-01
In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.
Low-pressure water-cooled inductively coupled plasma torch
Seliskar, Carl J.; Warner, David K.
1988-12-27
An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.
Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO
NASA Astrophysics Data System (ADS)
Catanach, R. A.; Hill, L. G.
2001-06-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium nitrate-fuel oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm. (≈ failure diameter) to 200 mm., with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn and total curvature κ were generated as a function of radius R, then plotted parametrically to generate a D_n(κ) function. The resulting behavior deviates substantially from that of previous explosives,(Hill,L.G., Bdzil,J.B., and Aslam,T.D., 11^th) Detonation Symposium, 1998^,(Hill,L.G., Bdzil,J.B., Davis,W.C., and Engelke,R., Shock Compression of Condensed Matter, 1999) in which curves for different stick sizes overlay well for small κ but diverge for large κ, and for which κ increases monotonically with R to achieve a maximum value at the charge edge. For ANFO, we find that κ achieves a maximum at an intermediate R and that D_n(κ) curves for different stick sizes are widely separated with no overlap whatsoever.
Proper size of endotracheal tube for cleft lip and palate patients and intubation outcomes.
Abdollahifakhim, Shahin; Sheikhzadeh, Dariush; Shahidi, Nikzad; Nojavan, Gholamreza; Bayazian, Gholamreza; Aleshi, Hamideh
2013-05-01
The aim of the current study was to identify the proper size of endotracheal tube for intubation of cleft lip and palate patients and intubation outcomes in these patients. In this analytic cross-sectional study, 60 nonsyndromic cleft lip and palate patients were selected who had surgery between April 2010 and April 2012 at Pediatrics Hospital, Tabriz University of Medical Sciences, Iran. Demographic findings, previous admissions, and surgical history were registered. The proper tube size was measured by normal children formulas. Then tube size was confirmed by patients' minimum resistance to intubation, proper ventilation reported by anesthesiologist, and appropriate air leakage at an airway pressure of 15-20 cm H₂O. If intubation was unsuccessful then smaller size of endotracheal tube would be tried. Frequency of intubation trials and the biggest endotracheal tube size were recorded. Their average age, weight and height were 21.39 ± 4.95 months, 9.97 ± 1.18 kg and 74.30 ± 26.61 cm, respectively. The average tracheal tube size and frequency of intubation trials were 4.34 ± 0.78 and 1.63 ± 0.80, respectively. Seven cases required an endotracheal tube size smaller than the recommended size for that age including one case in unilateral cleft palate, three cases in unilateral cleft lip, one case in unilateral cleft lip and palate, and two cases in bilateral cleft lip and palate. Findings proved that considering subglottic stenosis incidence in these children, it is reasonable to determine the tube size for nonsyndromic cleft lip and palate patients by applying the currently available standards for normal children. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes.
Srivastava, Anurag; Jain, Sumit Kumar; Khare, Purnima Swarup
2014-03-01
Stability and electronic properties of zigzag (3 ≤ n ≤ 16) gallium phosphide nanotubes (GaP NTs) have been analyzed by employing a systematic ab-intio approach based on density functional theory using generalized gradient approximation with revised Perdew Burke Ernzerhoff type parameterization. Diameter dependence of bond length, buckling, binding energy, and band gap has been investigated and the analysis shows that the bond length and buckling decreases with increasing diameter of the tube, highest binding energy of (16, 0) confirms this as the most stable amongst all the NTs taken into consideration. The present GaP NTs shows direct band gap and it increases with diameter of the tubes. Using a two probe model for (4, 0) NT the I-V relationship shows an exponential increase in current on applying bias voltage beyond 1.73 volt.
Microendoscopy of the eustachian tube and the middle ear
NASA Astrophysics Data System (ADS)
Hopf, Juergen U. G.; Linnarz, Marietta; Gundlach, Peter; Scherer, Hans H.; Lutze-Koffroth, C.; Loerke, S.; Voege, Karl H.; Tschepe, Johannes; Mueller, Gerhard J.
1992-08-01
Progressive miniaturization of flexible fiberoptic instruments has made it possible to perform atraumatic endoscopy of the Eustachian tube and tympanic cavity with an intact ear drum. By means of a special set of carrier- and balloon-catheters which are partly actively steerable, flexible microendoscopes with outside diameters of 290 - 700 micrometers are inserted through the nasal cavity into the nasopharyngeal opening of the Eustachian tube and carefully advanced into the middle ear compartment under permanent direct visual control. Second generation microendoscopes with outside diameters of 750 to 1000 micrometers are equipped with a one- direction tip-steering mechanism which allows deflection up to 90 degrees. In addition to it, the use of two special types of four-function scopes (outside diameter: 1.6 mm and 1.8 mm) fitted with a one-lumen working channel are presented. This new technique of `Transnasal Tubo-Tympanoscopy' (TTT) only needs local anesthesia, normally is performed on an outpatient basis, and is indicated for the diagnosis of any disturbances of the sound conducting apparatus (ear drum and ossicular chain) like chronic otitis media and oto-sclerosis and of those sensorineural hearing disorders on which -- until today -- only the traditional surgical tympanoscopy could provide morphological information on the pathogenesis of the hearing loss, e.g., on assumed round window ruptures. By this minimal invasive and minimal traumatizing method pathological alterations of the ossicular chain as well as obstructions in the cartilaginous and the osseous part of the Eustachian tube can be directly visualized.
Low cost, high performance, self-aligning miniature optical systems
Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.
2009-01-01
The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-11-01
We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.
Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.
Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan
2017-07-18
Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.
Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; Narayanan, Suresh; Faraone, Antonio
2017-11-08
The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.
Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; ...
2017-09-28
The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath
The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less
Ultrasonic probe system for the bore-side inspection of tubes and welds therein
Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.
1977-07-26
A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.
Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.
Hatano, H
1994-01-01
A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator.
34. (Credit JTL) Front (north side) of three water tube ...
34. (Credit JTL) Front (north side) of three water tube boilers built by the Heine Safety Boiler Co. of St. Louis, Missouri in 1917; rebuilt in 1938. Front doors opened on center boiler to show water header and inspection plugs for water tubes. Smaller doors beneath open into firebox; boilers presently equipped for gas firing. Operating pressure approx. 150 psi (saturated steam). - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials
NASA Astrophysics Data System (ADS)
Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun
2016-11-01
Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.
NASA Astrophysics Data System (ADS)
Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro
2015-09-01
Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).
Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.
Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen
2015-01-01
To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.
Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.
2013-12-01
Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a rangemore » of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.« less
Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation.
Rucker, Daniel Caleb; Webster Iii, Robert J
2009-09-01
Dexterous at small diameters, continuum robots consisting of precurved concentric tubes are well-suited for minimally invasive surgery. These active cannulas are actuated by relative translations and rotations applied at the tube bases, which create bending via elastic tube interaction. An accurate kinematic model of cannula shape is required for applications in surgical and other settings. Previous models are limited to circular tube precurvatures, and neglect torsional deformation in curved sections. Recent generalizations account for arbitrary tube preshaping and bending and torsion throughout the cannula, providing differential equations that define cannula shape. In this paper, we show how to simplify these equations using Frenet-Serret frames. An advantage of this approach is the interpretation of torsional components of the preset tube shapes as "forcing functions" on the cannula's differential equations. We also elucidate a process for numerically solving the differential equations, and use it to produce simulations illustrating the implications of torsional deformation and helical tube shapes.
Conformable apparatus in a drill string
Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT
2007-08-28
An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.
Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.
2002-01-01
Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.
Flow rate of nutrient preparations through nasogastric tubes.
Skidmore, F. D.
1980-01-01
Experiments have been carried out in vitro to determine the relationships between the internal diameter of fine-bore nasogastric tubes, the viscosity of nutrient solutions, and the flow rate that can be achieved in the enteral feeding of surgical patients. It was found that such tubes are capable of delivering 3-5 l of nutrient solution in 24 h without a pump. The findings are discussed in relation to the supply of nitrogen and energy to the patient. PMID:6772081
Glass antenna for RF-ion source operation
Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.
2000-01-01
An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.
Fuel cell cooler assembly and edge seal means therefor
Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.
1980-01-01
A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.
Kirac, Mustafa; Bozkurt, Ömer Faruk; Tunc, Lutfi; Guneri, Cagri; Unsal, Ali; Biri, Hasan
2013-06-01
The aim of this study was to compare the outcomes of retrograde intrarenal surgery (RIRS) and miniaturized percutaneous nephrolithotomy (mini-PNL) in management of lower-pole renal stones with a diameter smaller than 15 mm. Between December 2009 and July 2012, the patients with the diagnosis of lower-pole stones were evaluated by ultrasonography, intravenous pyelography and computed tomography. The records of 73 evaluable patients who underwent mini-PNL (n = 37) or RIRS (n = 36) for lower-pole (LP) stones with diameter smaller than 15 mm were reviewed retrospectively. Of the 73 patients, 37 underwent mini-PNL and 36 underwent RIRS. The stone-free rates were 89.1 and 88.8 % for mini-PNL and RIRS groups, respectively. The mean operation time was 53.7 ± 14.5 in the mini-PNL group but 66.4 ± 15.8 in the RIRS group (P = 0.01). The mean fluoroscopy times and hospitalization times were significantly higher in the mini-PNL group. There was no major complication in any patient. RIRS and mini-PNL are safe and effective methods for treatment of LP calculi with a diameter smaller than 15 mm. RIRS is a non-invasive and feasible treatment option, and has also short hospitalization time, low morbidity and complication rate. It may be an alternative of mini-PNL in the treatment LP calculi with smaller than 15 mm.
Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube
NASA Astrophysics Data System (ADS)
Alok, Praveen; Sahu, Debjyoti
2018-02-01
Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.
Noncontact measurement of high temperature using optical fiber sensors
NASA Technical Reports Server (NTRS)
Claus, R. O.
1990-01-01
The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then tested on the Drop Tube at Marshall Space Flight Center. Radiation from 5 mm diameter niobium drops falling in the Drop Tube was successfully detected, and recorded for later analysis. Subsequent analysis indicated that the imaging of light output from the light pipe onto the detector active areas was not identical for both detectors.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
What You See Is What You Get: Investigations with a View Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This paper presents an investigation by pre-service secondary school teachers in a geometry class of the relationship between the perpendicular distance from the eyeball to the wall (x) and the viewable vertical distance on the wall (y) using a view tube of constant length and diameter. In undertaking the investigation, students used tabular and…
Catto, Valentina; Farè, Silvia; Cattaneo, Irene; Figliuzzi, Marina; Alessandrino, Antonio; Freddi, Giuliano; Remuzzi, Andrea; Tanzi, Maria Cristina
2015-09-01
To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID)=4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID=1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex® prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan: Extension of Time Limit for... review of the antidumping duty order on certain large diameter carbon and alloy seamless standard, line... manufacturers/exporters: JFE Steel Corporation; Nippon Steel Corporation; NKK Tubes; and Sumitomo Metal...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
Spread prediction model of continuous steel tube based on BP neural network
NASA Astrophysics Data System (ADS)
Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang
2017-07-01
According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.
Design of a new static micromixer having simple structure and excellent mixing performance.
Kamio, Eiji; Ono, Tsutomu; Yoshizawa, Hidekazu
2009-06-21
A novel micromixer with simple construction and excellent mixing performance is developed. The micromixer is composed of two stainless steel tubes with different diameters: one is an outer tube and another is an inner tube which fits in the outer tube. In this micromixer, one reactant fluid flows in the mixing zone from the inner tube and the other flows from the outer tube. The excellent mixing performance is confirmed by comparing the results of a Villermaux/Dushman reaction with those for the other micromixers. The developed micromixer has a mixing cascade with multiple means and an asymmetric structure to achieve effective mixing. The excellent mixing performance of the developed micromixer suggests that serial addition of multiple phenomena for mixing will give us an efficient micromixing.
Main Vacuum Technical Issues of Evacuated Tube Transportation
NASA Astrophysics Data System (ADS)
Zhang, Y. P.; Li, S. S.; Wang, M. X.
In the future, Evacuated Tube Transportation (ETT) would be built and faster than jets. ETT tube with diameter 2∼4m and length over 1000 km will be the largest scale vacuum equipment on earth. This paper listed some main vacuum technical issues to be solved in ETT as follow. How to build ultra-large-scale vacuum chamber like ETT tube with low cost and high reliability? How to pump gas out off the ETT tube in short time? How to release heat or reduce temperature in the vacuum tube? Hot to avoid vacuum electricity discharge? How to manufacture vehicles with airproof shells and equip the life support system? How to detect leakage and find leakage position efficiently and fast as possible? Some relative solutions and suggestions are put up.
DISCHARGE VALVE FOR GRANULAR MATERIAL
Stoughton, L.D.; Robinson, S.T.
1962-05-15
A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)
Design of a ram accelerator mass launch system
NASA Technical Reports Server (NTRS)
Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick
1988-01-01
The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael
In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less
Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael; ...
2015-07-30
In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less
Visualizing lava flow interiors with LiDAR
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Young, K.; Kruse, S.; Esmaeili, S.; Bell, E.; Paylor, R.
2017-12-01
Lava tube caves provide unprecedented access to the shallow (meters to tens of meters) interiors of lava flows. Surveying tube geometry and morphology can illuminate lava flow thermal history and emplacement mechanics. In an expedition to Lava Beds National Monument, California, our team collected ultra-high-resolution (< 10 cm) topography from the interiors of four lava tubes using a terrestrial laser scanner (TLS). More than 78 GB of point data (latitude, longitude, elevation) of the surface and interiors of Hercules Leg, Skull, Valentine and, Indian Well Caves were collected. For example, our point cloud for 50 m of Valentine Cave contains 748 million points (interior: 478 million, exterior: 270 million) from 28 TLS scans. The tubes visited range in diameter from < 1 m to > 10 m, and from 1 m to < 20 m of overburden. The interior morphology of the tubes remain pristine (i.e., un-eroded) after more than 10,000 years. The TLS data illuminate fresh-looking lava tube flow features (e.g., lava-coils, pillars, benches, and ropes) and post-emplacement deformation features (e.g., fractures, lava-drips, molded ceilings, and drop-blocks). Furthermore, the data provide context for geochemical and geophysical observations made in conjunction with the TLS survey. Lava tube morphology, observable in the TLS data, informs each tube's emplacement history. Skull cave is the largest ( 20 m in diameter) requiring a comparatively high lava discharge rate and suggesting this cave formed by roofing over a lava channel. In contrast, Valentine, Hercules Leg, and Indian Well Caves are narrower, (1 to 4 m) and have many branches, some of which rejoin the "main passage", suggesting they formed by developing a network of pathways within the lava flow. We will showcase video fly-throughs for these lava tubes, plus manipulable point clouds. The interactive eLighning presentation will encourage hands-on exploration of these unique data. We will guide them on a tour of the underground to discover and compare different morphologies of lava tubes.
NASA Astrophysics Data System (ADS)
Marakkos, Costas; Stiliaris, Efstathios; Guillen, Elena; Montenon, Alaric; Papanicolas, Costas
2017-06-01
The steam power output of a helical-col generator is both experimentally and numerically examined using Nusselt number correlations from literature. Validation studies of the correlation models examined herein are performed for a mass flux G of 84 kg.s-1.m-2, power output Q of 15.5 kW, supply pressure P of 0.81 MPa and internal tube-diameter to coil-diameter ratio Di/Dc of 0.027. Existing two-phase models applied with Newton's Law of cooling, lead to an under-prediction of the coil size, namely, the tube length requirement for a specified power output by about 20%.
Gallium-mediated growth of multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.
2003-03-01
Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.
NASA Astrophysics Data System (ADS)
Rupcich, Franco John
The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT. A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the need to run Monte Carlo simulations. The database was used to estimate breast dose for simulated CT images acquired for a reference protocol and five protocols intended to reduce breast dose. For each protocol, the performance of two tasks (detection of signals with unknown locations) was compared over a range of breast dose levels using a task-based, signal-detectability metric: the estimator of the area under the exponential free-response relative operating characteristic curve, AFE. For large-diameter/medium-contrast signals, when maintaining equivalent AFE, the 80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded protocol increased breast dose by 68%. Results for the small-diameter/high-contrast signal followed similar trends, but with smaller magnitude of the percent changes in dose. The 80 kV protocols demonstrated the greatest reduction to breast dose, however, the subsequent increase in noise may be clinically unacceptable. Tube output for these protocols can be adjusted to achieve more desirable noise levels with lesser dose reduction. The improvement in CNR of optimally projection-based and image-based weighted images relative to photon-counting was investigated for six different energy bin combinations using a bench-top energy-resolving CT system with a cadmium zinc telluride (CZT) detector. The non-ideal spectral response reduced the CNR for the projection-based weighted images, while image-based weighting improved CNR for five out of the six investigated bin combinations, despite this non-ideal response, indicating potential for image-based weighting to reduce breast dose during dedicated breast CT.
NASA Astrophysics Data System (ADS)
Shao, Jin-Yu
A versatile technique for measuring piconewton forces, based upon a micropipette manipulation system and low Reynolds number hydrodynamics, was established. Spherical cells or beads can be used directly as force transducers, and the force resolution is determined by the diameter of the micropipette that contains the transducer and the accuracy of the pressure measurements. The strength of the technique is in its simplicity and its ability to measure forces between cells without requiring the use of a solid surface. Here, it was employed to study: (1) The adhesion between human neutrophils and antibody-coated latex beads. Three antibodies, directed against three receptors on the neutrophil surface (CD62L, CD18 and CD45), were used. It was found that CD62L could be more easily extracted from the neutrophil surface than CD18, while the anchorage of CD45 was much stronger than that of CD62L or CD18. The logarithm of the adhesion lifetime showed a linear dependence upon the force applied to the adherent neutrophil. The association energy of CD62L or CD18 with the membrane and the cytoskeleton is equivalent to that for about fourteen hydrogen bonds. From the experiments with CD45, the natural lengths of neutrophil microvilli were inferred (˜0.3 mum). According to the force applied on their tips, microvilli can be either extended to constant lengths or pulled out to form membrane tethers. The characteristic time of microvillus extension is ˜0.83 s and the minimum force required to form a tether from neutrophils is ˜45 pN. (2) The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. With the aid of a theory that describes the motion of a concentric, smooth-walled, sausage-shaped body in a tube, the maximum gap width in the larger capillary tubes was calculated to be on the order of 0.1 mum, whereas the minimum gap width in the smaller capillaries was only about 0.015 mum. Maximum values for the adhesive force caused by the static friction were on the order of 80 pN. These data show that even a single white cell entirely within a capillary can cause a significant increase in the resistance to flow.
Observation of a Coulomb flux tube
NASA Astrophysics Data System (ADS)
Greensite, Jeff; Chung, Kristian
2018-03-01
In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.
Plasma channel created by ionization of gas by a surface wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru
2015-09-15
Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.
NASA Astrophysics Data System (ADS)
Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang
2014-06-01
This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.
Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J. W. A.; Geitmann, Anja
2013-01-01
Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452
Containerless crystallization of silicon
NASA Astrophysics Data System (ADS)
Kuribayashi, K.; Aoyama, T.
2002-04-01
Crystallization from undercooled melt of silicon was carried out by means of electro-magnetic levitation method under controlled undercooling. The measured growth rate vs. undercooling was categorized into three regions, I, II and III, respectively, from the point of the interface morphology. Thin plate crystals whose interface consisted of both faceted (1 1 1) plane and wavy edge plane like saw-tooth were observed in the region I where the undercooling is less than 100 K. The growth rate of the wavy edge plane was well described by the dendrite growth model. The morphology of growing crystals was abruptly changed to faceted dendrite in the region II, though there was no abrupt change in the growth rate. Seeding at temperatures in the region I changes the drop to a mono-crystalline sphere, if the growth rate along the normal direction of the thin plate crystal is controlled by step-wise growth on the faceted plane. Actually, the sample of 5 mm in diameter seeded at undercooling of 26 K was a quasi-single crystal with large grain, except for a small area where twinning and cracking are observed. The result suggests that the single crystal could be grown, if a smaller sample, 1 or 2 mm in diameter, that is difficult to be levitated by electro-magnetic force were processed with other methods such as free fall in a drop tube.
The transfer of atmospheric-pressure ionization waves via a metal wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn; School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2016-01-15
Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tubemore » 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.« less
Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth
Yu, Minrui; Huang, Yu; Ballweg, Jason; Shin, Hyuncheol; Huang, Minghuang; Savage, Donald E.; Lagally, Max G.; Dent, Erik W.; Blick, Robert H.; Williams, Justin C.
2013-01-01
In many neural culture studies, neurite migration on a flat, open surface does not reflect the three-dimensional (3D) microenvironment in vivo. With that in mind, we fabricated arrays of semiconductor tubes using strained silicon (Si) and germanium (Ge) nanomembranes and employed them as a cell culture substrate for primary cortical neurons. Our experiments show that the SiGe substrate and the tube fabrication process are biologically viable for neuron cells. We also observe that neurons are attracted by the tube topography, even in the absence of adhesion factors, and can be guided to pass through the tubes during outgrowth. Coupled with selective seeding of individual neurons close to the tube opening, growth within a tube can be limited to a single axon. Furthermore, the tube feature resembles the natural myelin, both physically and electrically, and it is possible to control the tube diameter to be close to that of an axon, providing a confined 3D contact with the axon membrane and potentially insulating it from the extracellular solution. PMID:21366271
27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING ...
27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING DRUM IN FOREGROUND. NOTE MAIN HOISTING DRUM IS A STEP DRUM, WITH TWO DIAMETERS ON DRUM. WHEN BUCKET IS IN WATER THE CABLE IS ON THE SMALLER STEP, AS PICTURED, GIVING MORE POWER TO THE LINE. THE CABLE STEPS TO LARGER DIAMETER WHEN BUCKET IS OUT OF WATER, WHERE SPEED IS MORE IMPORTANT THAN POWER. SMALLER BACKING DRUM IN BACKGROUND. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA
Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana
2017-01-01
Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.
FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS
Loeb, E.; Nicklas, J.H.
1959-02-01
A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.
High power, high frequency helix TWT's
NASA Astrophysics Data System (ADS)
Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.
The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.
Large-scale thermal energy storage using sodium hydroxide /NaOH/
NASA Technical Reports Server (NTRS)
Turner, R. H.; Truscello, V. C.
1977-01-01
A technique employing NaOH phase change material for large-scale thermal energy storage to 900 F (482 C) is described; the concept consists of 12-foot diameter by 60-foot long cylindrical steel shell with closely spaced internal tubes similar to a shell and tube heat exchanger. The NaOH heat storage medium fills the space between the tubes and outer shell. To charge the system, superheated steam flowing through the tubes melts and raises the temperature of NaOH; for discharge, pressurized water flows through the same tube bundle. A technique for system design and cost estimation is shown. General technical and economic properties of the storage unit integrated into a solar power plant are discussed.
Reconsideration of data and correlations for plate finned-tube heat exchangers
NASA Astrophysics Data System (ADS)
Otović, Milena; Mihailović, Miloš; Genić, Srbislav; Jaćimović, Branislav; Milovančević, Uroš; Marković, Saša
2018-04-01
This paper deals with heat exchangers having plain finned tubes in staggered (triangular) pattern. The objective of this paper is to provide the heat transfer and friction factor correlation which can be used in engineering practice. For this purpose, the experimental data of several (most cited) authors who deal with this type of heat exchangers are used. The new correlations are established to predict the air-side heat transfer coefficient and friction factor as a function of the Reynolds number and geometric variables of the heat exchanger - tube diameter, tube pitch, fin spacing, tube rows, etc. In those correlations the characteristic dimension in Reynolds number is calculated by using the new parameter - volumetric porosity. Also, there are given the errors of those correlations.
NASA Technical Reports Server (NTRS)
York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas
1992-01-01
Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Experimental investigations on steel-concrete composite columns for varying parameters
NASA Astrophysics Data System (ADS)
Aparna, V.; Vivek, D.; Neelima, Kancharla; Karthikeyan, B.
2017-07-01
In this study, the experimental investigations on steel tubes filled with different types of concrete are presented. Steel tubes filled with fibre reinforced concrete using lathe waste and steel tube with concerned confined with steel mesh were investigated. The combinations were compared with steel tubes with conventional concrete. A total of 4 concrete filled steel tube (CFST) combinations were made with tubes of diameter 100 mm with wall thickness 1.6 mm and a height of 300 mm. Axial compression test to examine the resisting capacity of the columns and push-out test for noting the bond strength were performed. Coupon tests were also conducted to determine the mechanical properties of steel. The structural behaviour of the composite columns was evaluated from on the test results. It was observed that steel tube filled fibre reinforced possessed better bond strength and resistance to axial load.
Allahyari, Shahriar; Behzadmehr, Amin; Sarvari, Seyed Masoud Hosseini
2011-04-26
Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.
Cating, Emma E M; Pinion, Christopher W; Christesen, Joseph D; Christie, Caleb A; Grumstrup, Erik M; Cahoon, James F; Papanikolas, John M
2017-10-11
Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump-probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor-liquid-solid (VLS) method. The surface recombination velocity (S), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship S = d/4τ from measurements of the recombination lifetime (τ) and NW diameter (d) at distinct spatial locations in individual NWs. We find that S varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of S; this indicates that τ is shorter both because of the geometrical effect of smaller d and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices.
Cryogenic vertical test facility for the SRF cavities at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Than, R.; Liaw, CJ; Porqueddu, R.
2011-03-28
A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars.more » The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.« less
Supercritical multicomponent solvent coal extraction
NASA Technical Reports Server (NTRS)
Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)
1983-01-01
The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... outlet conduits above the existing regulating tube valves and combine into a 10-foot-diameter by 68-foot... constructed downstream of the powerhouse draft tube to prevent non-native fish species from surviving Kaplan.... A copy is also available for inspection and reproduction at the address in item (h) above. m. You...
Numerical Investigation of Liquid Carryover in T-Junction with Different Diameter Ratios
NASA Astrophysics Data System (ADS)
Pao, William; Sam, Ban; Saieed, Ahmed; Tran, Cong Minh
2018-03-01
In offshore Malaysia, T-junction is installed at the production header as a compact separator to tap produced gas from reservoir as fuel gas for power generation. However, excessive liquid carryover in T-junction presents a serious operational issue because it trips the whole production platform. The primary objective of present study is to numerically investigate the liquid carryover due to formation of slug, subsequently its liquid carryover at different diameter ratio. The analyses were carried out on a model with 0.0254 m (1 inch) diameter horizontal main arm and a vertically upward side arm using Volume of Fluid Method. Three different sides to main arm diameter ratio of 1.0, 0.5 and 0.3 were investigated with different gas and liquid superficial velocities. The results showed that, while the general trend is true that smaller diameter ratio T-junction has lesser liquid take off capacity, it has a very high frequency of low liquid carryover threshold. In other words, under slug flow, smaller diameter ratio T-junction is constantly transporting liquid even though at a lesser volume in comparison to regular T-junction.
Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José
2009-06-01
A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.
Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G
2014-01-14
We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process.
NASA Astrophysics Data System (ADS)
Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.
2016-03-01
Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.
2016-09-28
pin diameters, lunette diameter, clevis end details, cross section, and overall tube length and straightness. b. Weld failures, voids, cracks...etc., should be considered failures if they are identified visually or using a nondestructive weld inspection test method, per the applicable American... Welding Society standard for the specific material being inspected. c. Broken or cracked components, or catastrophic damage should be considered
Examination of a Wear-Reducing Muzzle Device
2013-08-01
resistant material attached to the muzzle end of the gun tube. The bore diameter of the device is slightly less than the bore diameter of the gun. The...3 Figure 3. Weapon and universal bearing slide used for firings ...small caliber round of ammunition. ..........21 v List of Tables Table 1. Firing test matrix for phase 1
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
NASA Astrophysics Data System (ADS)
Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.
2017-01-01
U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustonen, K.; Laiho, P.; Kaskela, A.
We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directlymore » determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.« less
Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet.
Patil, Nagesh D; Bhardwaj, Rajneesh; Sharma, Atul
2018-06-13
Here, we investigate deposit patterns and associated morphology formed after the evaporation of an aqueous droplet containing mono- and bidispersed colloidal particles. In particular, the combined effect of substrate heating and particle diameter is investigated. We employ high-speed visualization, optical microscopy, and scanning electron microscopy to characterize the evaporating droplets, particle motion, and deposit morphology, respectively. In the context of monodispersed colloidal particles, an inner deposit and a typical ring form for smaller and larger particles, respectively, on a nonheated surface. The formation of the inner deposit is attributed to early depinning of the contact line, explained by a mechanistic model based on the balance of several forces acting on a particle near the contact line. At larger substrate temperature, a thin ring with inner deposit forms, explained by the self-pinning of the contact line and advection of the particles from the contact line to the center of the droplet due to the Marangoni flow. In the context of bidispersed colloidal particles, self-sorting of the colloidal particles within the ring occurs at larger substrate temperature. The smaller particles deposit at the outermost edge compared to the larger particles, and this preferential deposition in a stagnation region near the contact line is due to the spatially varying height of the liquid-gas interface above the substrate. The sorting occurs at a smaller ratio of the diameters of the smaller and larger particles. At larger substrate temperature and larger ratio, the particles do not get sorted and mix into each other. Our measurements show that there exists a critical substrate temperature as well as a diameter ratio to achieve the sorting. We propose regime maps on substrate temperature-particle diameter and substrate temperature-diameter ratio plane for mono- and bidispersed solutions, respectively.
Transient Heat Transfer in TCAP Coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steimke, J.L.
1999-03-09
The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would havemore » been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.« less
Transient Heat Transfer in TCAP Coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steimke, J.L.
1999-03-09
The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would havemore » been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0 tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.« less
A new large-volume metal reference standard for radioactive waste management.
Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z
2016-03-01
A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. © The Author 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, L. Y.; Hao, H. X.
2014-01-01
Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.
In vitro and in vivo lung deposition of coated magnetic aerosol particles.
Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott
2010-11-01
The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Dussenova, D.; Bilheux, H.; Radonjic, M.
2012-12-01
Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main storage of the hydrogen atom. In such case, neutron tomography does not give information of the pore structure as neutrons will strongly scatter of H and the data have low count and low statistics or low neutron transmission. Hence, as the comparison and the possible tuning technique, neutron tomography measurements are performed on a Deuterium Oxide (D2O) or heavy water samples the same dimensions, cement composition, cement/liquid content and hydration time as the H2O samples. The advantage of using heavy water is that the total neutron cross-section for Deuterium is approximately four times smaller than Hydrogen's and, thus, permits better neutron transmission, i.e. better statistics. D2O does not alter cement properties or its chemical composition; therefore, the samples are almost identical. Comparison of the measurements using water and heavy water samples and the preparation of the measurement cement samples are discussed in this
Problem in tracheostomy patient care: recognizing the patient with a displaced tracheostomy tube.
Seay, S J; Gay, S L
1997-01-01
There are times when a tracheostomy tube slips out of the trachea. A displaced tracheostomy tube can occur in any patient but is frequently seen in the patient with a full neck. In the overweight patient or patient with a full neck, the tracheostomy tube must pass through a greater amount of soft tissue. Because of this, a smaller portion of the tube is actually within the lumen of the trachea. When the patient coughs excessively or moves the head, the tube can easily slip out of the trachea and into the interstitial tissues of the neck. If the patient has complete obstruction of the upper airway, a displaced tracheostomy tube will result in immediate respiratory distress and can lead to respiratory arrest. If the patient has an intact or at least a partially open upper airway, the displaced tube may not cause an immediate problem. Therefore, displacement of the tracheostomy tube may not be obvious in the patient with a partial airway.
Pathways to dewetting in hydrophobic confinement
Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.
2015-01-01
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866
Pathways to dewetting in hydrophobic confinement.
Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J
2015-07-07
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.
Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes
NASA Astrophysics Data System (ADS)
Darzi, Milad; Park, Chanwoo
2017-05-01
Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.
Vibration isolation in a free-piston driven expansion tube facility
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.
2013-09-01
The stress waves produced by rapid piston deceleration are a fundamental feature of free-piston driven expansion tubes, and wave propagation has to be considered in the design process. For lower enthalpy test conditions, these waves can traverse the tube ahead of critical flow processes, severely interfering with static pressure measurements of the passing flow. This paper details a new device which decouples the driven tube from the free-piston driver, and thus prevents transmission of stress waves. Following successful incorporation of the concept in the smaller X2 facility, it has now been applied to the larger X3 facility, and results for both facilities are presented.
Day, Robert A.; Conti, Armond E.
1980-01-01
An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.
Method of making tapered capillary tips with constant inner diameters
Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.