Sample records for smaller ionic radius

  1. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.« less

  2. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  3. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE PAGES

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...

    2017-04-17

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  4. The Origin of the Ionic-Radius Ratio Rules

    ERIC Educational Resources Information Center

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the origins of the ionic-radius ratio rules and their incorrect attribution to Linus Pauling in the chemical literature and to Victor Goldschmidt in the geochemical literature. In actual fact, the ionic-radius ratio rules were first proposed within the context of the coordination chemistry…

  5. A Theoretical Study of Structural, Electronic and Vibrational Properties of Small Fluoride Clusters

    NASA Astrophysics Data System (ADS)

    Waters, Kevin; Pandey, Ratnesh; Nigam, Sandeep; He, Haiying; Pingle, Subhash; Pandey, Avinash; Pandey, Ravindra

    2014-03-01

    Alkaline earth metal fluorides are an interesting family of ionic crystals having a wide range of applications in solid state lasers, luminescence, scintillators, to name just a few. In this work, small stoichiometric clusters of (MF2)n (M = Mg, Ca Sr, Ba, n =1-6) were studied for structural, vibrational and electronic properties using first-principles methods based on density functional theory. A clear trend of structural and electronic structure evolution was found for all the alkaline earth metal fluorides when the cluster size n increases from 1 to 6. Our study reveals that these fluoride clusters mimic the bulk-like behavior at the very small size. Among the four series of metal fluorides, however, (MgF2)n clusters stands out to be different in its preference of equilibrium structures owing to the much smaller ionic radius of Mg and the higher degree of covalency in the Mg-F bonding. The calculated binding energy, highest stretching frequency, ionization potential, and HOMO-LUMO gap decrease from MgF2 to BaF2 for the same cluster size. These variations are explained in terms of the change in the ionic radius and the basicity of the metal ions.

  6. Effect of screening on the transport of polyelectrolytes through nanopores

    NASA Astrophysics Data System (ADS)

    Oukhaled, G.; Bacri, L.; Mathé, J.; Pelta, J.; Auvray, L.

    2008-05-01

    We study the transport of dextran sulfate molecules (Mw=8000 Da) through a bacterial α-hemolysin channel inserted into a bilayer lipid membrane submitted to an external electric field. We detect the current blockades induced by the molecules threading through one pore and vary the ionic strength in an unexplored range starting at 10-3 M. In the conditions of the experiment, the polyelectrolyte molecules enter the pore only if the Debye screening length is smaller than the pore radius in agreement with theory. We also observe that large potentials favour the passage of the molecules. The distribution of blockade durations suggests that a complex process governs the kinetics of the molecules. The dwelling time increases sharply as the Debye length increases and approaches the pore radius.

  7. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  8. Effects of rare earth ionic doping on microstructures and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com

    2015-06-15

    Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less

  9. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  10. Crystal structures of (Mg1-x,Fex)SiO3postperovskite at high pressures

    PubMed Central

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L.; Meng, Yue; Ganesh, P.; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J.

    2012-01-01

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg0.9Fe0.1)SiO3 and (Mg0.6Fe0.4)SiO3 at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO3-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm3) than the former (ρ = 5.694(8) g/cm3) due to both the larger amount of iron and the smaller ionic radius of Fe2+ as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe2+ also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe2+ in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. PMID:22223656

  11. Theoretical interpretation of the limiting electric conductivity in ionic solution

    NASA Astrophysics Data System (ADS)

    Fraenkel, Dan

    2017-12-01

    The physical essence of the limiting equivalent ionic conductivity in solution, λ0i, has been a continuing challenge over almost a century. Here I briefly present an ab initio theoretical treatment providing (1) a new insight into the nature of λ0i, and (2) a mathematical formula for computing λ0i. In the new treatment, one assumes that any chosen ion i is surrounded by a spherical body of oriented solvent dipoles carrying the charge of the counterion, and the bulk solvent is a continuum with no molecular detail. λ0i is thus the result of the tandem operation, at hydrodynamic equilibrium, of the dipole body's electrophoretic and relaxation forces exerted on the drifting ion. λ0i is found to be proportional to the radius of ion i, and independent of the ionic charge. From experimental λ0i's, the ion radius can be computed as 'electric radius.' An electric ion-radius scale so derived compares well with other ion-size scales. The current theory expresses λ0i using only universal constants and unitary factors of the ionic solution, and it sheds new light on the fundamental nature of ion and charge transport in a polar liquid medium.

  12. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek

    2015-02-17

    The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.

  13. Anomalously large capacitance of an ionic liquid described by the restricted primitive model

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-11-01

    We use Monte Carlo simulations to examine the simplest model of a room-temperature ionic liquid (RTIL), called the “restricted primitive model,” at a metal surface. We find that at moderately low temperatures the capacitance of the metal-RTIL interface is so large that the effective thickness of the electrostatic double layer is up to three times smaller than the ion radius. To interpret these results we suggest an approach which is based on the interaction between discrete ions and their image charges in the metal surface and which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V , producing a “bell-shaped” curve C(V) . We also consider what happens when the electrode is made from a semimetal rather than a perfect metal. In this case, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode, and we arrive at a “camel-shaped” C(V) . These predictions seem to be in qualitative agreement with experiment.

  14. Effect of rare-earth ion size on local electron structure in RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors: A positron study

    NASA Astrophysics Data System (ADS)

    Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun

    2006-02-01

    The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.

  15. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2S + (0.1 Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass formingmore » range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2S + (0.1Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2S + B 2S 3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct structural evidence that doping B 2S 3 with Na 2S creates a large fraction of tetrahedrally coordinated boron in the glass. The final section is the general conclusion of this thesis and the suggested future work that could be conducted to expand upon this research.« less

  16. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.

    1980-01-01

    Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.

  17. Crystal Field Effects and Siderophile Element Partitioning: Implications for Mars HSE Geochemistry

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Malavergne, V.; Neal, C. R.

    2007-01-01

    Analyses of martian (SNC) meteorites indicate that Pt abundances do not vary much compared to other highly siderophile elements (HSE). Therefore, Jones et al. [1] inferred that D(Pt) during basalt petrogenesis was of order unity. This inference was at odds with previously published experiments that gave a D(sub ol/liq) for Pt of approx. 0.01 [2]. Because olivine is likely to be an important constituent of any reasonable martian mantle, the implication of these findings is that minor minerals must have D(Pt) much greater than 1, which seemed improbable. However, not only did the SNC evidence point to a D(sub ol/liq) approx. equal to 1, but so did plots of D(sub ol/liq) vs. ionic radius (Onuma diagram). The ionic radius of Pt(2+) suggested that D(sub ol/liq) for Pt was of order unity, in agreement with the inferences from SNC meteorites. New experiments have failed to detect measurable Pt in olivine, even at high oxygen fugacities [3]. Therefore, some other parameter, other than ionic charge and radius, must hold sway during olivine liquid partitioning of Pt.

  18. Recent developments in the formation and structure of tin-iron oxides by laser pyrolysis

    NASA Astrophysics Data System (ADS)

    Alexandrescu, R.; Morjan, I.; Dumitrache, F.; Birjega, R.; Fleaca, C.; Soare, I.; Gavrila, L.; Luculescu, C.; Prodan, G.; Kuncser, V.; Filoti, G.

    2011-04-01

    Complex oxides demonstrate specific electric and magnetic properties which make them suitable for a wide variety of applications, including dilute magnetic semiconductors for spin electronics. A tin-iron oxide Sn 1- xFe xO 2 nanoparticulate material has been successfully synthesized by using the laser pyrolysis of tetramethyl tin-iron pentacarbonyl-air mixtures. Fe doping of SnO 2 nanoparticles has been varied systematically in the 3-10 at% range. As determined by EDAX, the Fe/Sn ratio (in at%) in powders varied between 0.14 and 0.64. XRD studies of Sn 1- xFe xO 2 nanoscale powders, revealed only structurally modified SnO 2 due to the incorporation of Fe into the lattice mainly by substitutional changes. The substitution of Fe 3+ in the Sn 4+ positions (Fe 3+ has smaller ionic radius as compared to the ionic radius of 0.69 Å for Sn 4+) with the formation of a mixed oxide Sn 1- xFe xO 2 is suggested. A lattice contraction consistent with the determined Fe/Sn atomic ratios was observed. The nanoparticle size decreases with the Fe doping (about 7 nm for the highest Fe content). Temperature dependent 57Fe Mössbauer spectroscopy data point to the additional presence of defected Fe 3+-based oxide nanoclusters with blocking temperatures below 60 K. A new Fe phase presenting magnetic order at substantially higher temperatures was evidenced and assigned to a new type of magnetism relating to the dispersed Fe ions into the SnO 2 matrix.

  19. The Thermochemical Stability of Ionic Noble Gas Compounds.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  20. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    DOE PAGES

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; ...

    2015-11-03

    We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li +. Detailed analysis of MD trajectories suggests that Li + is favorably found at the surface of the hydration layer, and the probability to find the caged Li + configuration formed by themore » PEO is lower than for the noncaged Li +-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li + hydration complexes. Moreover, performing the MD simulation with different ions (Na + and K +) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.« less

  1. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo

    2015-11-01

    The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+ . Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+ ) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  2. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.

    PubMed

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O; Jalarvo, Niina H; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S; Do, Changwoo

    2015-11-06

    The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  3. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  4. [Distribution of chemical elements in whole blood and plasma].

    PubMed

    Barashkov, G K; Zaĭtseva, L I; Kondakhchan, M A; Konstantinova, E A

    2003-01-01

    The distribution factor (Fd) of 35 elements of plasma and whole blood in 26 healthy men and women was detected by ICP-OES. Usilig this parameter the elements were subdivided in 3 pools. 9 of them have Fd higher than 1.5 ("elements of plasma"-Ag, Ca, Cu, In, Li, Na, Se, Si, Sr); 6 have lower than 0.5 ("elements of blood cells"-Fe, K, Mn, Ni, V, Zn), other 20-about 1 ("blood elements"). Fd of all elements depends on ionic radius. Elements of 2nd sub-groups of all groups of Mendeleev's periodic table ("heavy metals") depend on the similar law: "with growing of ionic radius the concentration of elements in plasma enhances". In alkaline metals Fd depends on the opposite law:" with growing of ionic radius of alkaline metal the quantity of elements in blood cells enhance". Dependence of Fd on the value of atomic mass in periods or in exterior electronic cloud (s-, p-, d-, f-) was not established. The table of distribution of all detected elements in whole blood in relation to 8 macroelements (Ca, Mg, K, Na, S, P, Fe, Zn,) is presented, as a basic diagnostic criteria in metal-ligand homeostasis disturbance.

  5. Evolution of Anisotropic Displacement Parameters and Superconductivity with Chemical Pressure in BiS2-Based REO0.5F0.5BiS2 (RE = La, Ce, Pr, and Nd)

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu; Hoshi, Kazuhisa; Goto, Yosuke; Miura, Akira; Tadanaga, Kiyoharu; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2018-02-01

    In order to understand the mechanisms behind the emergence of superconductivity by the chemical pressure effect in REO0.5F0.5BiS2 (RE = La, Ce, Pr, and Nd), where bulk superconductivity is induced by the substitutions with a smaller-radius RE, we performed synchrotron powder X-ray diffraction, and analyzed the crystal structure and anisotropic displacement parameters. With the decrease of the RE3+ ionic radius, the in-plane disorder of the S1 sites significantly decreased, very similar to the trend observed in the Se-substituted systems: LaO0.5F0.5BiS2-xSex and Eu0.5La0.5FBiS2-xSex. Therefore, the emergence of bulk superconductivity upon the suppression of the in-plane disorder at the chalcogen sites is a universal scenario for the BiCh2-based superconductors. In addition, we indicated that the amplitude of vibration along the c-axis of the in-plane chalcogen sites may be related to the Tc in the BiCh2-based superconductors.

  6. Modification of the erythrocyte membrane dielectric constant by alcohols.

    PubMed

    Orme, F W; Moronne, M M; Macey, R I

    1988-08-01

    Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.

  7. Predictions of Crystal Structure Based on Radius Ratio: How Reliable Are They?

    ERIC Educational Resources Information Center

    Nathan, Lawrence C.

    1985-01-01

    Discussion of crystalline solids in undergraduate curricula often includes the use of radius ratio rules as a method for predicting which type of crystal structure is likely to be adopted by a given ionic compound. Examines this topic, establishing more definitive guidelines for the use and reliability of the rules. (JN)

  8. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  9. Non-mean-field theory of anomalously large double layer capacitance

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  10. Electrokinetic motion of a rectangular nanoparticle in a nanochannel

    NASA Astrophysics Data System (ADS)

    Movahed, Saeid; Li, Dongqing

    2012-08-01

    This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

  11. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Kargin, Yu. F.; Denisov, V. M.

    2015-08-01

    The correlation between the heat capacities of rare-earth cuprates, orthovanadates, and garnets with ionic radius R 3+ has been analyzed. It has been shown that the values of C {/p 0} change consistently depending on the radius R 3+ within the corresponding tetrads (La-Nd, Pm-Gd, Gd-Ho, Eu-Lu).

  12. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores.

    PubMed

    Kang, Yu; Zhang, Zhisen; Shi, Hui; Zhang, Junqiao; Liang, Lijun; Wang, Qi; Ågren, Hans; Tu, Yaoquan

    2014-09-21

    Because biological ionic channels play a key role in cellular transport phenomena, they have attracted extensive research interest for the design of biomimetic nanopores with high permeability and selectivity in a variety of technical applications. Inspired by the structure of K(+) channel proteins, we designed a series of oxygen doped graphene nanopores of different sizes by molecular dynamics simulations to discriminate between K(+) and Na(+) channel transport. The results from free energy calculations indicate that the ion selectivity of such biomimetic graphene nanopores can be simply controlled by the size of the nanopore; compared to K(+), the smaller radius of Na(+) leads to a significantly higher free energy barrier in the nanopore of a certain size. Our results suggest that graphene nanopores with a distance of about 3.9 Å between two neighboring oxygen atoms could constitute a promising candidate to obtain excellent ion selectivity for Na(+) and K(+) ions.

  13. Optical Experiments With Manganese Doped Yttrium Orthoaluminate, a Potential Material for Holographic Recording and Data Storage

    NASA Technical Reports Server (NTRS)

    Warren, Matthew E.; Loutts, George

    1998-01-01

    The YAlO3 host crystal has a distorted perovskite structure that belongs to the orthorhombic centrosymmetric Pbnm space group. The cationic sites in the structure available for Mn substitution are the relatively large strongly distorted YO12 polyhedral (Y3+ ionic radius R(sub Y) = 1.02 A) and the smaller nearly ideal AlO6 octahedra R(sub Al) = 0.53 A). Manganese may enter YAlO3 in the form of Mn2+ ions (R(sub Mn)= 0.96 A), substituting most likely Y3+ ions, and Mn3+ ions (R(sub Mn) = 0.65 A) or Mn4+ ions (R(sub Mn) = 0.53 A) substituting Al3+ ions. The latter substitution is most probable because of dimensional parameters. Point defects, which are common in YAl03, may provide the charge compensation required for substitution.

  14. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    PubMed

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  15. Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.

    PubMed Central

    Santos, N C; Castanho, M A

    1996-01-01

    The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039

  16. Cr.sup.4+-doped mixed alloy laser materials and lasers and methods using the materials

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A laser medium includes a single crystal of Cr.sup.4+:Mg.sub.2-xM.sub.xSi.sub.1-yA.sub.yO.sub.4, where, where M is a bivalent ion having an ionic radius larger than Mg.sup.2+, and A is a tetravalent ion having an ionic radius larger than Si.sup.4+. In addition, either a) 0.ltoreq.x<2 and 0

  17. Phase Stabilization of Ammonium Nitrate

    DTIC Science & Technology

    2008-11-04

    substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate ions have been used...introducing another substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate...two ionic attachment points should yield a nonmigrating salt due to difficulty of having simultaneous dissociation of two ionic structures

  18. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE PAGES

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (E BP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among E BP, the anionmore » radius, and the glass transition temperature T g, we conclude that both E BP and T g in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the E BP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  19. Comparative biokinetics of trivalent radionuclides with similar ionic dimensions: promethium-147, curium-242 and americium-241.

    PubMed

    Priest, N D

    2007-09-01

    Data on the distribution and redistribution patterns in the laboratory rat of three trivalent elements with a similar ionic radius have been compared. This showed that these distributions for the two ions with the same ionic radius (111 pm), i.e., those of promethium (a lanthanoid) and curium (an actinoid), were indistinguishable and that americium, with a slightly larger ion size (111.5 pm), behaved similarly. The results are consistent with the suggestion that ion size is the only important factor controlling the deposition and redistribution patterns of trivalent lanthanoids and actinoids in rats. The result is important because it suggests that the same radiological protection dosimetry models should be used for trivalent actinoids and lanthanoids, that human volunteer data generated for lanthanoid isotopes can be used to predict the behavior of actinoids with the same ion size, and that appropriate pairs of beta-particle-emitting lanthanoid and alpha-particle-emitting actinoids could be used to study the relative toxicity of alpha and beta particles in experimental animals.

  20. Effects of ionic radius of redox-inactive bio-related metal ions on the radical-scavenging activity of flavonoids evaluated using photometric titration.

    PubMed

    Waki, Tsukasa; Kobayashi, Shigeki; Matsumoto, Ken-ichiro; Ozawa, Toshihiko; Kamada, Tadashi; Nakanishi, Ikuo

    2013-10-28

    Mg(2+) enhanced the scavenging activity of (+)-catechin and quercetin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙), while Al(3+) decreased their activity. Such effects of Mg(2+) and Al(3+) were not observed for kaempferol. Na(+) and Ca(2+) with large ionic radii showed little effect on the DPPH˙-scavenging activity of these three flavonoids.

  1. Thermoelectric Properties of the Ca1- x R x MnO3 Perovskite System (R: Pr, Nd, Sm) for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Choi, Soon-Mok; Lim, Chang-Hyun; Seo, Won-Seon

    2011-05-01

    Perovskite oxides have attracted considerable attention in the area of thermoelectrics owing to the advantages of their isotropic crystal structure and straightforward control of their electrical properties. Among the many perovskites, different types of polycrystalline Ca1- x R x MnO3 (R: Pr, Nd, Sm) were prepared by solid-state reaction in this study. Three different rare-earth dopants were substituted at the Ca-ion site at various amounts. Considering phase stability, rare-earth ions with nearly the same ionic radius as Ca2+ were selected. To assess thermoelectric performance, the electrical conductivity, Seebeck coefficient, and power factor were measured, and phase analysis was conducted. The effects of ionic radius variation on single phase formation and the effect of doping amount on carrier concentration are discussed.

  2. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-01

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim]+) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ˜30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  3. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation.

    PubMed

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-28

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim](+)) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ∼30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  4. Large enhancement of capacitance driven by electrostatic image forces

    NASA Astrophysics Data System (ADS)

    Loth, Matthew Scott

    The purpose of this thesis is to examine the role of electrostatic images in determining the capacitance and the structure of the electrostatic double layer (EDL) formed at the interface of a metal electrode and an electrolyte. Current mean field theories, and the majority of simulations, do not account for ions to form image charges in the metal electrodes and claim that the capacitance of the double layer cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments, and simulations where the images are included, the apparent width of the capacitor is substantially smaller. Monte Carlo simulations are used to examine the interface between a metal electrode and a room temperature ionic liquid (RTIL) modeled by hard spheres (the "restricted primitive model"). Image charges for each ion are included in the simulated electrode. At moderately low temperatures the capacitance of the metal/RTIL interface is so large that the effective thickness of the electrostatic double-layer is up to 3 times smaller than the ion radius. To interpret these results, an approach is used that is based on the interaction between discrete ions and their image charges, which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V, producing a "bell-shaped" C( V) curve. In the case of a semi-metal electrode, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode resulting in a "camel-shaped" C(V) curve, which is parabolic near V = 0, reaches a maximum and then decreases. These predictions are in qualitative agreement with experiment. A similarly simple model is employed to simulate the EDL of superionic crystals. In this case only small cations are mobile and other ions form an oppositely charged background. Simulations show an effective thickness of the EDL that may be 3 times smaller than the ion radius. The weak repulsion of ion-image dipoles again plays a central role in determining the capacitance in this theory, which is in reasonable agreement with experiment. Finally, the problem of a strongly charged, insulating macroion in a dilute solution of multivalent counterions is considered. While an ideal conductor does not exist in the problem, and no images are explicitly included, simulations demonstrate that adsorbed counterions form a strongly correlated liquid of at the surface of the macroion and acts as an effective metal surface. In fact, the surface screens the electric field of distant ions with a negative screening radius. The simulation results serve to confirm existing non-mean-field theories.

  5. Viscoelasticity of nano-alumina dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, B.; Fries, R.

    1996-06-01

    The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less

  6. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    PubMed

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.

  7. Electron core ionization in compressed alkali metal cesium

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  8. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    PubMed

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

  9. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  10. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of ∼190 mAh g-1 in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distribution-function (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2MnSiO4 nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (β) Li2MnSiO4 crystalline phase (space group Pmn21) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures.

  11. Effect of alcaline cations in zeolites on their dielectric properties.

    PubMed

    Legras, Benoît; Polaert, Isabelle; Estel, Lionel; Thomas, Michel

    2012-01-01

    The effect on dielectric properties of alkaline cations Li+, Na+ and K+ incorporated in a zeolite Faujasite structure X or Y, has been investigated. Two major phenomena have been proved to occur: ionic conductivity and rotational polarization of the water molecules adsorbed. The polarizability of the cation which is directly linked to its radius, affects ionic conductivity as well as rotational polarization. Li cations are more strongly Linked to the framework than K+ and Na+ and induce a lower ionic conductivity. K+ is weakly fixed and induces a ionic conductivity even at low solvation level. At low water content, the cation nature and number mainly control the free rotation of the water molecules and affect the relaxation frequency. Close to saturation, the water molecules are mainly linked together by H bonds: the cation nature and number do not really affect the global dielectric properties anymore.

  12. Structure and reactivity of a mononuclear gold(II) complex

    NASA Astrophysics Data System (ADS)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  13. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  14. Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.

    PubMed

    Tanner, Peter A; Ning, Lixin

    2013-02-21

    Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.

  15. Effect of cation size at Gd and Al site on ce energy levels in Gd3(GaAl)5O12 sintered pellets

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Meng, Fang; Darby, Kaitlyn; Koschan, Merry; Melcher, C. L.

    2013-02-01

    Radioluminescence and reflectivity measurements performed on sintered powder pellets of garnet compositions R3GaxAl5-xO12 (where R: Lu, Gd, Sc, Y) have shown that replacing "R" in these compositions with ions of larger radius shifts the excited 5d states of Ce to lower energy, while increased ionic radius at Ga/Al sites shifts these levels to higher energy. Stokes shifts were also calculated and results were verified by comparing the performance of the pellets with that of single crystals.

  16. Theory of polyelectrolytes in solvents.

    PubMed

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  17. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    PubMed

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  19. Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay

    USGS Publications Warehouse

    Hunter, Y.R.; Kuwabara, J.S.

    1994-01-01

    An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.

  20. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    NASA Astrophysics Data System (ADS)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  1. Hybrid MD-Nernst Planck Model of Alpha-hemolysin Conductance Properties

    NASA Technical Reports Server (NTRS)

    Cozmuta, Ioana; O'Keefer, James T.; Bose, Deepak; Stolc, Viktor

    2006-01-01

    Motivated by experiments in which an applied electric field translocates polynucleotides through an alpha-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson-Nemst-Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K(+) and Cl(-)) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1 M KCI solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5-7 times in comparison to bulk values. Significant statistical variations (17-45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius approx. 9A with two constriction blocks where the radius is reduced to approx. 6A. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the a-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.

  2. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    PubMed

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Role of Heavy Meromyosin in Heat-Induced Gelation in Low Ionic Strength Solution Containing L-Histidine.

    PubMed

    Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori

    2015-08-01

    The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. © 2015 Institute of Food Technologists®

  4. Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes.

    PubMed

    Audras, Matthieu; Berthon, Laurence; Berthon, Claude; Guillaumont, Dominique; Dumas, Thomas; Illy, Marie-Claire; Martin, Nicolas; Zilbermann, Israel; Moiseev, Yulia; Ben-Eliyahu, Yeshayahu; Bettelheim, Armand; Cammelli, Sebastiano; Hennig, Christoph; Moisy, Philippe

    2017-10-16

    The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am 3+ and Pu 3+ ) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H 2 O)] - , where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

  5. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents.

    PubMed

    Newby, A C; Chrambach, A

    1979-02-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins.

  6. Sticky ions in biological systems.

    PubMed Central

    Collins, K D

    1995-01-01

    Aqueous gel sieving chromatography on Sephadex G-10 of the Group IA cations (Li+, Na+, K+, Rb+, Cs+) plus NH4+ as the Cl- salts, in combination with previous results for the halide anions (F-, Cl-, Br-, I-) as the Na+ salts [Washabaugh, M.W. & Collins, K.D. (1986) J. Biol. Chem. 261, 12477-12485], leads to the following conclusions. (i) The small monovalent ions (Li+, Na+, F-) flow through the gel with water molecules attached, whereas the large monovalent ions (K+, Rb+, Cs+, Cl-, Br-, I-) adsorb to the nonpolar surface of the gel, a process requiring partial dehydration of the ion and implying that these ions bind the immediately adjacent water molecules weakly. (ii) The transition from strong to weak hydration occurs at a radius of about 1.78 A for the monovalent anions, compared with a radius of about 1.06 A for the monovalent cations (using ionic radii), indicating that the anions are more strongly hydrated than the cations for a given charge density. (iii) The anions show larger deviations from ideal behavior (an elution position corresponding to the anhydrous molecular weight) than do the cations and dominate the chromatographic behavior of the neutral salts. These results are interpreted to mean that weakly hydrated ions (chaotropes) are "pushed" onto weakly hydrated surfaces by strong water-water interactions and that the transition from strong ionic hydration to weak ionic hydration occurs where the strength of ion-water interactions approximately equals the strength of water-water interactions in bulk solution. PMID:7539920

  7. Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er3+-Lu3+) and Ba2RE2Si4O13 (RE = La3+-Ho3+).

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2017-10-01

    Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

  8. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales

    PubMed Central

    Zhang, Yonghe

    2010-01-01

    Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444

  9. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  10. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    PubMed Central

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs−1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  11. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.

    PubMed

    Chen, Guang; Das, Siddhartha

    2017-03-01

    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d 0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d 0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, Er) at high pressure

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.

    2017-12-01

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite  +  weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A/r B, the bulk moduli of stannates are comparable to those of zirconates and hafnates, which vary from titanates. Our results suggest that the cation radius ratio strongly influences the bulk moduli of stannates, as well as their overall compression response.

  13. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  14. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE PAGES

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  15. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  16. The temperature and radius of the white dwarf Stein 2051B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebert, J.

    1976-12-15

    The temperature, radius, and other atmospheric parameters are derived for the cool DC white dwarf Stein 2051B (=G175-34B=EG 180), whose mass was recently determined by Strand. New spectrophotometric scans of this star and its dwarf M companion are discussed; these and existing Stroemgren photometry are fitted to model atmospheres with hydrogen/metal deficient compositions, and a temperature of 7050 +- 400 K is determined. The resulting radius of 0.0111 +- 0.0015 R/sub sun/ is marginally smaller than that of 40 Eri B. (AIP)

  17. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  18. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  20. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  1. Conductivities of the ionic complexes of two cyclic polyethers

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Odonnell, P. M.

    1975-01-01

    The conductivities of the solid potassium thiocyanate complex of both dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 were measured at 300K (27 C). Saturated aqueous potassium thiocyanate and graphite were used as ion-transporting and ion-blocking electrodes, respectively. The ionic conductivity predominated for both samples, but it was many orders of magnitude smaller than the value previously reported. The ionic conductivity of the dicyclohexyl complex (the better conductor) was 0.000003 ohm/cm. Crown complexes, in general, do not appear promising as potassium ion solid electrolytes contrary to claims in the patent literature.

  2. Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-12-28

    Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less

  3. Studies on phase transition temperature of rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) with orthorhombic fluorite-related structure

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2017-06-01

    The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.

  4. Method and apparatus to control the lateral motion of a long metal bar being formed by a mechanical process such as rolling or drawing

    DOEpatents

    Chang, Tzyy-Shuh [Ann Arbor, MI; Huang, Hsun-Hau [Ann Arbor, MI; Lin, Chang-Hung [Ypsilanti, MI

    2011-01-04

    An apparatus to control lateral motion of a bar moving along a guidance path includes a pair of rotatable hubs each having at least first and second rollers at locations around the perimeter of the hub. The first roller has a first retaining groove of a first radius and the second roller has a second groove of a second radius smaller than the first radius. Each hub further includes at least one guiding element located between the rollers with a guide channel extending in the outer surface. A mounting system allows the hubs to be rotated between first and second positions. In the first position the first rollers oppose each other forming a guideway having a first, enlarged diameter for capturing a free end of an approaching bar. In the second position the second rollers form a second, smaller diameter to match the actual size of the bar.

  5. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  6. Insights into Mercury's interior structure from geodesy measurements and global contraction

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.

    2014-04-01

    The measurements of the gravitational field of Mercury by MESSENGER [6] and improved measurements of the spin state of Mercury [3] provide important insights on its interior structure. In particular, these data give strong constraints on the radius and density of Mercury's core [5, 2]. However, present geodesy data do not provide strong constraints on the radius of the inner core. The data allow for models with a fully molten liquid core to models which have an inner core radius that is smaller than about 1760km [5], if it is assumed that sulfur is the only light element in the core. Models without an inner core are, however, at odds with the observed internally generated magnetic field of Mercury since Mercury's dynamo cannot operate by secular cooling alone at present. The present radius of the inner core depends mainly on Mercury's thermal state and light elements inside the core. Because of the secular cooling of the planet,the temperature inside the core drops below the liquidus temperature of the core material somewhere in the core and leads to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends on the temperature decrease, on the thermal expansion of the materials inside the planet, and on the volume of crystallized liquid core alloy. In this study we use geodesy data, the recent estimate about the radial contraction of Mercury [1], and thermo-chemical evolution calculations in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface [4] indicate that Mercury formed under reducing conditions we consider models that have sulfur and silicon as light elements inside their core. Unlike sulfur, which does almost not partition into solid iron under Mercury's core pressure and temperature conditions, silicon partitions virtually equally between solid and liquid iron. As a consequence, the density difference between the liquid and the crystallized material is smaller than for sulfur as only light element inside the core and therefore, for a given inner core radius the contraction of the planet is likely smaller.

  7. Interaction of Cellulose Chains with Ionic Liquids and Water via MD simulations

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Rabideau, Brooks

    2012-02-01

    One promising route for combustible fuel sources which are both renewable and have a low environmental impact is the conversion of waste biomass into tailor-made fuels. An important aspect of this process is the low-energy separation of cellulose from the biomass. Ionic liquids (ILs) have proven to be very good in dissolving cellulose with the added benefit of being essentially non-volatile making them ideal for ``green'' processing. IL research, however, remains relatively new, with many parts of this dissolution process remaining uncertain. We examine the behavior of cellulose with the ionic liquids [BMIM]Cl, [EMIM]Ac and [DMIM]DMP as well as water via MD simulation. All three ionic liquids have been observed to dissolve cellulose quite well yet have differently sized anions. We explore these differences and the impacts they have on their interactions with cellulose. First we examine the dynamics of a single cellulose strand in these ionic liquids. We determine the radius of gyration and the hydrogen bonds that are formed between the anions and cellulose. Next, we probe the dissolution mechanism of multiple, bound cellulose strands examining of multiple, bound cellulose strands examining interactions at the IL/cellulose interface and the breakup of inter-cellulose hydrogen bonds.

  8. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  9. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents

    PubMed Central

    Newby, Andrew C.; Chrambach, Andreas

    1979-01-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins. ImagesFig. 3. PMID:435255

  10. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  11. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitoma, Nobuhiko, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  12. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.

    PubMed

    Qin, Yan; Yang, Huajun; Jiang, Ping; Gui, Fengji; Caiyang, Weinan; Cao, Biao

    2018-05-10

    In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000  μm 2 when the bending radius is ≥10  cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 3 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

  13. An Investigation of Ionic Wind Propulsion

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Perkins, Hugh D.; Thompson, William K.

    2009-01-01

    A corona discharge device generates an ionic wind and thrust, when a high voltage corona discharge is struck between sharply pointed electrodes and larger radius ground electrodes. The objective of this study was to examine whether this thrust could be scaled to values of interest for aircraft propulsion. An initial experiment showed that the thrust observed did equal the thrust of the ionic wind. Different types of high voltage electrodes were tried, including wires, knife-edges, and arrays of pins. A pin array was found to be optimum. Parametric experiments, and theory, showed that the thrust per unit power could be raised from early values of 5 N/kW to values approaching 50 N/kW, but only by lowering the thrust produced, and raising the voltage applied. In addition to using DC voltage, pulsed excitation, with and without a DC bias, was examined. The results were inconclusive as to whether this was advantageous. It was concluded that the use of a corona discharge for aircraft propulsion did not seem very practical.

  14. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    PubMed

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  15. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. Themore » extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)« less

  17. Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers.

    PubMed

    Karbasi, Salman; Mirr, Craig R; Frazier, Ryan J; Yarandi, Parisa Gandomkar; Koch, Karl W; Mafi, Arash

    2012-08-13

    We recently reported the observation of transverse Anderson localization as the waveguiding mechanism in optical fibers with random transverse refractive index profiles [Opt. Lett. 37, 2304 (2012)]. Here, we explore the impact of the design parameters of the disordered fiber on the beam radius of the propagating transverse localized beam. We show that the optimum value of the fill-fraction of the disorder is 50% and a lower value results in a larger beam radius. We also explore the impact of the average size of the individual random features on the value of the localized beam radius and show how the boundary of the fiber can impact the observed localization radius. A larger refractive index contrast between the host medium and the disorder sites results in smaller value of the beam radius.

  18. Compositional and Ionic-Size Controls on the Diffusion of Divalent Cations in Garnet: Insights from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.

    2012-12-01

    Divalent cations in garnet (Mg, Fe, Mn, Ca) diffuse at rates that depend strongly on the host-crystal composition and on the ionic radius of the diffusant. Understanding of the nanoscale basis for these behaviors comes from atomistic simulations that calculate energies in the static limit for the defects and transition-state configurations associated with each diffusive step. Diffusion of divalent cations requires (a) creation of a cation-vacancy defect in a dodecahedral site and of a charge-compensating oxygen-vacancy defect that may or may not be in close spatial association; (b) except in the case of self-diffusion, creation of an impurity defect in which a foreign atom replaces the normal atom in a dodecahedral site adjacent to the vacancy; and (c) during the diffusive process, motion of the diffusing atom to a 'saddlepoint' position that represents the transition-state configuration. Comparisons of the system's energy in these various states, in structures of different composition and for ions of different ionic size, allows assessment of the nanoscale controls on diffusion kinetics. Molecular-statics calculations quantify defect energies and identify the transition-state configuration: the maximum energy along the diffusion path between two adjacent dodecahedral sites results when the diffusing ion is surrounded symmetrically by the six oxygen atoms that lie between the two sites. Across the range of end-member compositions, self-diffusion coefficients measured at identical conditions, and the tracer diffusivity of a single ion measured at identical conditions, can each vary by five orders of magnitude or more. Measured activation energies for these motions, however, are all equivalent to within ±6%. Calculated activation energies are in agreement with observations, in that they vary by only ±10%. Calculated vacancy-formation energies, on the other hand, are significantly larger in expanded structures; for example, that energy is greater for Prp than for Grs by ~ 470 kJ/mol. Thus in expanded structures, much higher vacancy concentrations can be produced at the same energetic cost, greatly enhancing rates of diffusion. The primary explanation for the more rapid diffusion of divalent cations in structures with larger cell dimensions therefore comes not from reduced saddlepoint strain energies in more compliant structures, but instead from the smaller energy required to create vacancy defects. Diffusivities of divalent cations exhibit a curious parabolic dependence on ionic size: for each structure, an optimally-sized ion exists, close in size to the dominant ion, that exhibits the fastest diffusion. Larger ions — and enigmatically, smaller ions — both diffuse more slowly. Calculated impurity-defect energies show that undersized impurity ions are bound more tightly in their sites, but the effects are too small in comparison to corresponding reductions in strain energy for the transition-state configuration to account for observed rate differences. Calculated vacancy-association energies reveal a slight tendency for vacancies to associate preferentially with larger impurity ions, but again the effect appears to be too small to provide a full explanation for observed behaviors.

  19. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    NASA Astrophysics Data System (ADS)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  20. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  1. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed Central

    Huang, Xiaokun; Zhang, Weiyi

    2016-01-01

    The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119

  2. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed

    Huang, Xiaokun; Zhang, Weiyi

    2016-11-30

    The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.

  3. Molecular modeling of field-driven ion emission from ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; He, Yadong; Qiao, Rui

    2017-11-01

    Traditionally, operating electrosprays in the purely ionic mode is challenging, but recent experiments confirmed that such operation can be achieved using room-temperature ionic liquids as working electrolytes. Such electrosprays have shown promise in applications including chemical analysis, nanomanufacturing, and space propulsion. The mechanistic and quantitative understanding of such electrosprays at the molecular level, however, remain limited at present. In this work, we simulated ion emission from EMIM-PF6 ionic liquid films using the molecular dynamics method. We show that, when the surface electric field is smaller than 1.5V/nm, the ion emission current predicted using coarse-grained ionic liquid model observes the classical scaling law by J. V. Iribarne and B. A. Thomson, i.e., ln(Je/ σ) En1/2. These simulations, however, cannot capture the co-emission of cations and anions from ionic liquid surface observed in some experiments. Such co-emission was successfully captured when united-atom models were adopted for the ionic liquids. By examining the co-emission events with picosecond, sub-angstrom resolution, we clarified the origins of the co-emission phenomenon and delineate the molecular events leading to ion emission.

  4. The effect of temperature and chitosan concentration during storage on the growth of chitosan nanoparticle produced by ionic gelation method

    NASA Astrophysics Data System (ADS)

    Handani, Wenny Rinda; Sediawan, Wahyudi Budi; Tawfiequrrahman, Ahmad; Wiratni, Kusumastuti, Yuni

    2017-05-01

    The objective of this research was to get the mechanism of nano size chitosan particle growth during storage by observing the effect of temperature and initial concentration of chitosan. The products were analyzed using PSA to have the average of particle radius. Nanochitosan solution was prepared by ionic gelation method. This method is described as an electrostatic interaction between positively charged amine with negatively charged polyanion, such as tripolyphosphate (TPP). Chitosan was dissolved in 1% acetic acid and was stirred for 30 minutes. Tween 80 was added to avoid agglomeration. TPP was prepared by dissolving 0.336 g into distilled water. The nano size chitosan was obtained by mixing TPP and chitosan solution dropwise while stirring for 30 minutes. This step was done at 15°C and ambient temperature (about 30°C) and chitosan concentration 0.2%, 0.4% and 0.6%. The results show that temperature during ionic gelation process (15°C and 30°C) does not affect the initial size of the nanoparticles produced as well as the growth of the nanoparticles during storage. On the other hand, initial chitosan concentration strongly affects initial size of the nanoparticles produced and the growth of the nanoparticles during storage. The concentration of chitosan at 0.2%, 0.4%, 0.6% gave initial size of nanoparticle chitosan of 175.3 nm, 337.9 nm, 643.3 nm respectively. On the other hand, the growth mechanism of chitosan nanoparticle depended on its radius(R). At R<500 nm, the growth rate of nanoparticles is controlled by adsorption at the surface of the particles, while at R>500 nm, it is controlled by diffusion in the liquid film around the particles.

  5. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.

    PubMed

    Yang, Yu; Jin, Shu; Medvedeva, Julia E; Ireland, John R; Metz, Andrew W; Ni, Jun; Hersam, Mark C; Freeman, Arthur J; Marks, Tobin J

    2005-06-22

    A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on single-crystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CYO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Y doping widens the optical band gap from 2.86 to 3.27 eV via a Burstein-Moss shift. Room temperature thin film conductivities of 8,540 and 17,800 S/cm on glass and MgO(100), respectively, are obtained at an optimum Y doping level of 1.2-1.3%. Finally, electronic band structure calculations are carried out to systematically compare the structural, electronic, and optical properties of the In-, Sc-, and Y-doped CdO systems. Both experimental and theoretical results reveal that dopant ionic radius and electronic structure have a significant influence on the CdO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii in the order Y (1.09 A) < In (0.94 A) < Sc (0.89 A); (2) the carrier mobilities and doping efficiencies decrease in the order In > Y > Sc; (3) the dopant d state has substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.

  6. Polarographic determination of lead hydroxide formation constants at low ionic strength

    USGS Publications Warehouse

    Lind, Carol J.

    1978-01-01

    Values of formation constants for lead hydroxide at 25 ??C were calculated from normal pulse polarographic measurements of 10-6 M lead in 0.01 M sodium perchlorate. The low concentrations simulate those found in many freshwaters, permitting direct application of the values when considering distributions of lead species. The precise evaluation of species distribution in waters at other ionic strengths requires activity coefficient corrections. As opposed to much of the previously published work done at high ionic strength, the values reported here were obtained at low ionic strength, permitting use of smaller and better defined activity coefficient corrections. These values were further confirmed by differential-pulse polarography and differential-pulse anodic stripping voltammetry data. The logs of the values for ??1??? ??2???, and ??3??? were calculated to be 6.59, 10.80, and 13.63, respectively. When corrected to zero ionic strength these values were calculated to be 6.77, 11.07, and 13.89, respectively.

  7. The Sun's Seismic Radius as Measured from the Fundamental Modes of Oscillations and Its Implications for the TSI Variations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, S. C.; Hill, F.

    2018-05-01

    In this Letter we explore the relationship between the solar seismic radius and total solar irradiance (TSI) during the last two solar cycles using the uninterrupted data from space-borne instruments on board the Solar and Heliospheric Observatory (SoHO) and the Solar Dynamics Observatory (SDO). The seismic radius is calculated from the fundamental (f) modes of solar oscillations utilizing the observations from SoHO/Michelson Doppler Imager (MDI) and SDO/Helioseismic and Magnetic Imager (HMI), and the TSI measurements are obtained from SoHO/VIRGO. Our study suggests that the major contribution to the TSI variation arises from the changes in magnetic field, while the radius variation plays a secondary role. We find that the solar irradiance increases with decreasing seismic radius; however, the anti-correlation between them is moderately weak. The estimated maximum change in seismic radius during a solar cycle is about 5 km, and is consistent in both solar cycles 23 and 24. Previous studies ;suggest a radius change at the surface of the order of 0.06 arcsec to explain the 0.1% variation in the TSI values during the solar cycle; however, our inferred seismic radius change is significantly smaller, hence the TSI variations cannot be fully explained by the temporal changes in seismic radius.

  8. Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.

    The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement withmore » theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).« less

  9. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimura, Gen, E-mail: shimura.gen@b.mbox.nagoya-u.ac.jp; Shirako, Yuichi; Niwa, Ken

    ABSTRACT: The synthesis of multicomponent perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Y) have been investigated using a high-pressure and high-temperature (6 GPa, 1175 °C) technique. When Ln{sup 3+} is larger La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, the A-site ordered perovskites, LnMn{sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} in Im-3, have been successfully synthesized. The A-site partially disordered one, (Sm{sub 0.80}Mn{sub 0.20})(Sm{sub 0.07}Mn{sub 0.93}){sub 3}(Al{sub 0.25}Ti{sub 0.75}){sub 4}O{sub 12} is also obtained. In the case of smaller Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, we have obtained no single phase but two decomposed perovskite phases.more » When Ln{sup 3+} is much smaller Y{sup 3+}, it is crystallized as an A-site disorder one in Pnma. The Rietveld structural refinements of the A-site ordered and partially disordered perovskites indicate that the tilting of (Al/Ti)O{sub 6} octahedrons for the A-site ions ordering is correlated with the (Al/Ti)–O and Ln–O bond lengths to optimize the coordination of the A- and A′-sites. The phase stability of the A-site ordered perovskites is discussed from the viewpoint of this correlation. - Graphical abstract: Ln{sup 3+} (VIII) ionic radius dependence of BO{sub 6} octahedron tilt angle and A/B–O distance of Im-3 perovskites (Ln{sub 0.25}Mn{sub 0.75})(Al{sub 0.25}Ti{sub 0.75})O{sub 3} (Ln=La-Sm).« less

  11. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  12. Infrared Chemiluminescence Studies of Ion-Molecule Reactions in a Flowing Afterglow.

    DTIC Science & Technology

    1982-01-01

    reaction rate constants and branching ratios have been addressed in drift tubes and flow drift systems, and the translational energy distribution of atomic...composed of about 40 thin cylindrical sections of flow tube , separated by mylar spacers and connected by precision resistors. In the region of LIF... tube radius (Albritton, 1967). For proper operation of a drift tube , ionic species of only one polarity can be present. Efficient separation of

  13. Allometric relationship of postmolt net ion uptake, ventilation, and circulation in the freshwater crayfish Procambarus clarkii: intraspecific scaling.

    PubMed

    Zanotto, F P; Wheatly, M G; Reiber, C L; Gannon, A T; Jalles-Filho, E

    2004-01-01

    There are few intraspecific studies relating physiological parameters to body mass. This study relates scaling of ionic regulation and respiratory parameters with body mass in crayfish (Procambarus clarkii). These animals were chosen because of their direct development, spanning four orders of magnitude in body mass. Usually, these animals are hyperregulators and must maintain hemolymph electrolyte levels above those in the ambient freshwater. This is especially important in the postmolt, when ion imbalance can occur. Maintaining hemolymph ion levels above ambient involves active processes that are independently related to metabolic rate, ventilation, and circulation. Therefore, this study investigates relationships among size and ionic regulation, heart rate, and ventilation in crayfish, spanning a size range of 0.003-24 g. Postmolt net ion uptake of Ca, titratable base, Na, Cl, and NH4 increase with body mass (positive allometry) with slopes of 0.92, 0.79, 0.90, 0.84, and 0.87, respectively. Between 72% and 97% of variation in ionic regulation was related to body mass. The slopes differed from each other for Ca and titratable base but not for Na, Cl, and NH4. For heart rate and ventilation rate, different relationships were derived for animals smaller and larger than 0.01 g (between first and third instar). Animals larger than 0.01 g show a negative allometric relationship between heart rate and body size ([body mass](0.15)), while smaller animals show positive allometry with body size, but only 29% of variation in heart rate is explained by body size alone. For ventilation rates, the negative allometry with body size for animals larger than 0.01 g is present, but less than 15% of variation in ventilation rate is explained by size, while for smaller animals the size dependency disappears. Based on these results, predictions of physiological parameters such as ionic regulation based on body size are useful in crayfish, but estimates of respiratory parameters and body size should be used with caution.

  14. Contact Geometry and Distribution of Plasma Generated in the Vicinity of Sliding Contact

    NASA Astrophysics Data System (ADS)

    Nakayama, Keiji

    2007-09-01

    The effect of the geometry of the smaller sliding partner on plasma (triboplasma) generation has been investigated as a function of the tip radius of a diamond pin, which slides against a single crystal sapphire disk under atmospheric dry air pressure. It was found that the diameter and the total intensity of the circular triboplasma increase parabolically with an increase in the tip radius of the pin under constant normal force and sliding velocity. The plasma is most intense at the crossing point of the plasma ring and the frictional track in the plasma circle. The gap distance at the crossing point is independent of the tip radius. The ring diameter increases with an increase in the tip radius, keeping the gap distance constant and obeying Paschen’s law of gas discharge.

  15. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  16. Does bone measurement on the radius indicate skeletal status. Concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.

    1984-03-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of themore » lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal, E-mail: mbaubock@email.arizona.edu

    We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°–18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classesmore » of sources and investigate the circumstances under which the assumption of a small spot is justified.« less

  18. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  19. Effects of ionic strength on passive and iontophoretic transport of cationic permeant across human nail.

    PubMed

    Smith, Kelly A; Hao, Jinsong; Li, S Kevin

    2009-06-01

    Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Amy; Bian, Wen; Maris, Alexander

    We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to confirm the symmetry of three potexviruses, potato virus X, papaya mosaic virus, and narcissus mosaic virus, and to determine their low-resolution structures. All three viruses have slightly less than nine subunits per turn of the viral helix. Our data strongly support the view that all potexviruses have approximately the same symmetry. The structures are dominated by a large domain at high radius in the virion, with a smaller domain, which includes the putative RNA-binding site, extending to low radius.

  1. Plasma channel created by ionization of gas by a surface wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  2. F region above Kauai - Measurement, model, modification

    NASA Technical Reports Server (NTRS)

    Johnson, C. Y.; Sjolander, G. W.; Oran, E. S.; Young, T. R.; Bernhardt, P. A.; Da Rosa, A. V.

    1980-01-01

    Results of the Lagopedo II experiment conducted from Kauai, Hawaii to investigate the ionospheric modification that occurs when rocket combustion products are introduced into the O(+)-rich F region are presented. The experiment involved the detonation of a chemical explosion in the F2 peak accompanied by rocket-borne measurements of ion composition and electron content in the vicinity of the explosion. The experimental data is found to be in good agreement with the predictions of a model of the nighttime ion densities in the midlatitude laminar ionosphere, with the exception of N2(+) densities before the explosion. H2O(+) and H3O(+) currents produced by considerable H2O outgassing from the rocket are used to determine a H3O(+)/H2O(+) dissociative recombination rate averaging 1.6 to 1.08, depending on model assumptions. At the time of the explosion, an ionic void 1 km in radius is observed, the boundary of which is characterized by a steep gradient in ionic densities. Evidence of variations in the concentrations of ambient ion species, new reactant species and ionic depletion by sweeping is also obtained.

  3. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  4. Effect of water on structure and dynamics of [BMIM][PF{sub 6}] ionic liquid: An all-atom molecular dynamics simulation investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less

  5. Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.

    PubMed

    Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael

    2010-11-01

    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.

  6. Calorimetric and Neutron Scattering Studies on Glass Transitions and Ionic Diffusions in Imidazolium-based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yamamuro, O.; Kofu, M.

    2017-05-01

    Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.

  7. Geometric analysis of ruptured and nonruptured abdominal aortic aneurysms.

    PubMed

    Kimura, Masaru; Hoshina, Katsuyuki; Miyahara, Kazuhiro; Nitta, Jun; Kobayashi, Masaharu; Yamamoto, Sota; Ohshima, Marie

    2018-06-15

    The objective of this study was to use parameters to determine the geometric differences between ruptured abdominal aortic aneurysms (AAAs) and nonruptured AAAs. Computed tomography data of 38 ruptured AAAs and 215 electively repaired (nonruptured) AAAs were collected from multiple institutes. We compared the ruptured AAA group and nonruptured AAA group with 1:1 matching by using the Mahalanobis distance, which was calculated using the patient's age, sex, and AAA diameter. We selected the longitudinal AAA image in multiplanar reconstruction view, placed a hypothetical ellipse on the aneurysm's protruded curve, and placed a circle on the portion connecting the aneurysm and the aorta. We then measured the aspect ratio (the vertical diameter divided by the horizontal diameter) and fillet radius (the radius of arc). The aspect ratio was significantly lower in the ruptured group than in the nonruptured group (2.02 ± 0.53 vs 2.60 ± 1.02; P = .002), as was the fillet radius (0.28 ± 0.18 vs 0.81 ± 0.44; P < .001). Receiver operating characteristic analysis revealed that the area under the curve of the aspect ratio was 0.688, and the optimal cutoff point was 2.23, with sensitivity and specificity of 0.55 and 0.76, respectively. The area under the curve of the fillet radius was 0.933, and the optimal cutoff was 0.347, with sensitivity and specificity of 0.97 and 0.87, respectively. The geometric analysis performed in this study revealed that ruptured AAAs had a smaller fillet radius and smaller aspect ratio than nonruptured AAAs did. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    DTIC Science & Technology

    2010-06-01

    surface equipotential and a correspondes to the model sphere radius. It can also see that the applied voltage is necessary to obtain the surface ...between the tip and extractor, the equipotential line whose angle relative to the x axis is approximately 49 degrees is selected as the Taylor cone surface ...model. Then the electric field on such equipotential line is found by equation 7.5 and used for the distribution along the cone surface . This

  9. Tuning Frustration in Rare Earth Pyrochlores by Platinum Substitution

    NASA Astrophysics Data System (ADS)

    Hallas, Alannah; Gaudet, Jonathan; Sharma, Arzoo; Wilson, Murray; Cai, Yipeng; Tachibana, Makoto; Wiebe, Chris; Gaulin, Bruce; Luke, Graeme

    A successful mechanism for exploring the rich physics of rare earth pyrochlores, R2B2O7, is to substitute the non-magnetic B-site. Varying the ionic radius of the B-site induces an internal chemical pressure. Some rare earths are robust to substitutions; for example, the holmium-based pyrochlores all exhibit a dipolar spin ice state. In the case of other rare earths such as ytterbium, the ground states are remarkably fragile to chemical pressure. In this talk, I will introduce two materials with a new non-magnetic B-site: platinum. The ionic radius of platinum is comparable to that of titanium, which occupies the B-site in the most well-studied family of pyrochlores. Thus, platinum does not induce a strong chemical pressure on the lattice. Nevertheless, using Gd2Pt2O7 and Er2Pt2O7 as examples, I will show that platinum does affect a dramatic change on the magnetic properties. We trace this effect to platinum's empty eg orbitals, which mediate superexchange pathways not available in other rare earth pyrochlores. In Gd2Pt2O7, this results in a striking 160% enhancement of TN as compared to other Gd-based pyrochlores. In Er2Pt2O7, the ordering temperature is strongly suppressed and the ground state is altered.

  10. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Modeling the structure and thermodynamics of ferrocenium-based ionic liquids.

    PubMed

    Bernardes, Carlos E S; Mochida, Tomoyuki; Canongia Lopes, José N

    2015-04-21

    A new force-field for the description of ferrocenium-based ionic liquids is reported. The proposed model was validated by confronting Molecular Dynamics simulations results with available experimental data-enthalpy of fusion, crystalline structure and liquid density-for a series of 1-alkyl-2,3,4,5,6,7,8,9-octamethylferrocenium bis(trifluoromethylsulfonyl)imide ionic liquids, [CnFc][NTf2] (3 ≤ n ≤ 10). The model is able to reproduce the densities and enthalpies of fusion with deviations smaller than 2.6% and 4.8 kJ mol(-1), respectively. The MD simulation trajectories were also used to compute relevant structural information for the different [CnFc][NTf2] ionic liquids. The results show that, unlike other ILs, the alkyl side chains present in the cations are able to interact directly with the ferrocenium core of other ions. Even the ferrocenium charged cores (with relatively mild charge densities) are able to form small contact aggregates. This causes the partial rupture of the polar network and precludes the formation of extended nano-segregated polar-nonpolar domains normally observed in other ionic liquids.

  12. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  13. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    PubMed

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) < Ca(2+) < Na(+) < Sr(2+) < K(+) < Cs(+), follows cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  14. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  15. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  16. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  17. High precision measurement of the proton charge radius: The PRad experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved atmore » Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.« less

  18. Method for producing iron-based catalysts

    DOEpatents

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  19. Field Testing New Plot Designs and Methods for Determining Hydrophytic Vegetation during Wetland Delineations in the United States

    DTIC Science & Technology

    2014-03-01

    Trees and woody vines are sampled in large plots with 9 m (30 ft) radii. Saplings, shrubs , and herbs are sampled in nested smaller plots with 2 m (5 ft... woody vines in 9 m (30 ft) radius plots and saplings, shrubs , and herbaceous species in 2 m (5 ft) radius plots. In herbaceous meadows, only the 2 m (5...suggests stratifying vegetation by growth forms of trees, shrubs , herbs, and vines and sampling plant communities by using nested circular plots

  20. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  1. Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion.

    PubMed

    Ahmadian Yazdi, Alireza; Sadeghi, Arman; Saidi, Mohammad Hassan

    2015-03-15

    The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Competing Structural Instabilities in the Ruddlesden–Popper Derivatives HRTiO 4 (R = Rare Earths): Oxygen Octahedral Rotations Inducing Noncentrosymmetricity and Layer Sliding Retaining Centrosymmetricity

    DOE PAGES

    Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; ...

    2016-12-06

    We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less

  3. Superconductivity in Sm-doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 - x Sm x Fe2As2 (x = 0 ˜ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  4. Preparation of polycrystalline FeTe1- x S x ( x = 0.00-0.30) via solid-state reaction method at ambient pressure

    NASA Astrophysics Data System (ADS)

    Lim, Edmund H. H.; Liew, Josephine Y. C.; Awang Kechik, M. M.; Halim, S. A.; Chen, S. K.; Tan, K. B.; Qi, X.

    2017-06-01

    Polycrystalline samples with nominal composition FeTe1- x S x ( x = 0.00-0.30) were synthesized via solid state reaction method with intermittent grinding in argon gas flow. X-ray diffraction (XRD) patterns revealed the tetragonal structure (space group P4/nmm) of the samples with the presence of impurities Fe3O4 and FeTe2. By substitution with S, the a and c lattice parameters shrink probably due to the smaller ionic radius of S2- compared to Te2-. Scanning electron microscopy images showed that the samples developed plate-like grains with increasing S substitution. Substitution of Te with S suppresses the structural transition of the parent compound FeTe as shown by both the temperature dependence of resistance and magnetic moment measurements. All of the S-substituted samples showed a rapid drop of resistance at around 9-10 K but zero resistance down to 4 K was not observed. In addition, negative magnetic moment corresponds to diamagnetism was detected in the samples for x = 0.25 and 0.30 suggesting the coexistence of magnetic and superconducting phase in these samples. The magnetization hysteresis loops measured at room temperature showed ferromagnetic behavior for the pure and S substituted samples. However, the magnetization, rentivity and coercivity decreased with S content.

  5. Competing Structural Instabilities in the Ruddlesden–Popper Derivatives HRTiO 4 (R = Rare Earths): Oxygen Octahedral Rotations Inducing Noncentrosymmetricity and Layer Sliding Retaining Centrosymmetricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.

    We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less

  6. NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Tsuchitani, Shigeki

    2009-09-01

    Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.

  7. Estimation of electronegativity values of elements in different valence states.

    PubMed

    Li, Keyan; Xue, Dongfeng

    2006-10-05

    The electronegativities of 82 elements in different valence states and with the most common coordination numbers have been quantitatively calculated on the basis of an effective ionic potential defined by the ionization energy and ionic radius. It is found that for a given cation, the electronegativity increases with increasing oxidation state and decreases with increasing coordination number. For the transition-metal cations, the electronegativity of the low-spin state is higher than that of the high-spin state. The ligand field stabilization, the first filling of p orbitals, the transition-metal contraction, and especially the lanthanide contraction are well-reflected by the relative values of our proposed electronegativity. This new scale is useful for us to estimate some quantities (e.g., the Lewis acid strength for the main group elements and the hydration free energy for the first transition series) and predict the structure and property of materials.

  8. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  9. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone rock texture (expressed here by the pore radius r) and salinity.

  10. Effects of device size and material on the bending performance of resistive-switching memory devices fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Lee, Won-Ho; Yoon, Sung-Min

    2017-05-01

    The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.

  11. Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong

    2018-03-01

    The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.

  12. Research on the relation between the contact angle and the interface curvature radius of electrowetting liquid zoom lens

    NASA Astrophysics Data System (ADS)

    Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu

    2011-08-01

    In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.

  13. Searching for Constraints on Starobinsky's Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

    NASA Astrophysics Data System (ADS)

    Alexeyev, S. O.; Latosh, B. N.; Echeistov, V. A.

    2017-12-01

    Predictions of the f( R)-gravity model with a disappearing cosmological constant (Starobinsky's model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky's model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109 M Sun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015 M Sun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

  14. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less

  15. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  16. Binding in alkali and alkaline-earth tetrahydroborates: Special position of magnesium tetrahydroborate

    NASA Astrophysics Data System (ADS)

    Łodziana, Zbigniew; van Setten, Michiel J.

    2010-01-01

    Compounds of light elements and hydrogen are currently extensively studied due to their potential application in the field of hydrogen or energy storage. A number of new interesting tetrahydroborates that are especially promising due to their very high gravimetric hydrogen content were recently reported. However, the determination and understanding of their complex crystalline structures has created considerable debate. Metal tetrahydroborates, in general, form a large variety of structures ranging from simple for NaBH4 to very complex for Mg(BH4)2 . Despite the extensive discussion in the literature no clear explanation has been offered for this variety so far. In this paper we analyze the structural and electronic properties of a broad range of metal tetrahydroborates and reveal the factors that determine their structure: ionic bonding, the orientation of the BH4 groups, and the coordination number of the metal cation. We show, in a simple way, that the charge transfer in the metal tetrahydroborates rationally explains the structural diversity of these compounds. Being ionic systems, the metal tetrahydroborates fall into the classification of Linus Pauling. By using the ionic radius for the BH4 group as determined in this paper, this allows for structural predictions for new and mixed compounds.

  17. Experimental demonstration of scaling behavior for ionic transport and its fluctuations in individual carbon nanotube

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic; Secchi, Eleonora; Nigues, Antoine; Siria, Alessandro

    2015-11-01

    We perform an experimental study of ionic transport and current fluctuations inside individual Carbon Nanotubes (CNT) with a size ranging from 40 down to 7 nanometers in radius. The conductance exhibits a power law behavior dependence on the salinity, with an exponent close to 1/3. This is in contrast to Boron-Nitride nanotubes which exhibits a constant surface conductance. This scaling behavior is rationalized in terms of a model accounting for hydroxide adsorption at the (hydrophobic) carbon surface. This predicts a density dependent surface charge with a exponent 1/3 in full agreement with the experimental observations. Then we measure the low frequency noise of the ionic current in single CNTs. The noise exhibits a robust 1/f characteristic, with an amplitude which scales proportionaly to the surface charge measured independently. Data for the various CNT at a given pH do collapse on a master curve. This behavior is rationalized in terms of the fluctuations of the surface charge based on the adsorption behavior. This suggests that the low frequency noise takes its origin in the process occuring at the surface of the carbon nanotube.

  18. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-06-21

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  19. The infrared signature of water associated with trivalent cations in olivine

    NASA Astrophysics Data System (ADS)

    Berry, Andrew J.; O'Neill, Hugh St. C.; Hermann, Jörg; Scott, Dean R.

    2007-09-01

    Forsterite crystals were synthesised under water saturated conditions at 1400 °C and 1.5 GPa doped with trace amounts of either B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ga, Y, Zr, In, Sm, Gd, Dy, Tm, or Lu. The common and intense hydroxyl stretching bands in the infrared spectra of spinel peridotite olivine, at 3572 and 3525 cm -1, were only reproduced in the presence of Ti. Those samples where the trace element substitutes as the trivalent cation on the Mg 2+ site were identified from a systematic variation in concentration with the trivalent ionic radius. The hydroxyl region of all samples is essentially identical except for between 3300 and 3400 cm -1. This region is characterised by one or more bands, with the energy of the most intense feature being correlated with the ionic radius of the trivalent cation. The integrated intensity of these hydroxyl bands also correlates with the concentration of the trivalent cation. These correlations provide unambiguous evidence that bands, or peaks, in this region correspond to water at defect sites associated with trivalent cations. "Trivalent peaks" are sometimes observed in samples of mantle olivine and most likely indicate water associated with Fe 3+. The water at this site is not incorporated under normal mantle conditions and should not be included in estimates of the water capacity of mantle olivine. These results emphasise the importance of identifying the infrared signature of different water substitution mechanisms.

  20. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana; Murthy, P. Sriyutha; Dhara, S.; Venugopalan, V. P.; Das, A.; Tyagi, A. K.

    2013-08-01

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga3+ (ionic radius 0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe2+ (ionic radius 0.077 nm), which is essential for energy metabolism.

  1. Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging.

    PubMed

    Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor

    2017-02-01

    Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)« less

  3. Theoretical and experimental studies of water interaction in acetate based ionic liquids.

    PubMed

    Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R

    2012-12-05

    Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].

  4. Constraining the mass and radius of neutron stars in globular clusters

    NASA Astrophysics Data System (ADS)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  5. Relativistic stars in vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  6. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N.; Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Haensch, T. W.; Udem, Th.

    2018-02-01

    The core of the "proton radius puzzle" is the discrepancy of four standard deviations between the proton root mean square charge radii (rp) determined from regular hydrogen (H), and the muonic hydrogen atom (μp). We have measured the 2S-4P transition frequency in H, utilizing a cryogenic beam of H and directly demonstrate that quantum interference of neighboring atomic resonances can lead to line shifts much larger than the proton radius discrepancy. Using an asymmetric fit function we obtain rp = 0.8335(95) fm and the Rydberg constant R∞ = 10 973 731.568 076 (96) m-1. The new value for rp is 3.3 combined standard deviations smaller than the latest CODATA value, but in good agreement with the value from μp.

  7. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  8. The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system.

    PubMed

    Bruno, Giacomo; Canavese, Giancarlo; Liu, Xuewu; Filgueira, Carly S; Sacco, Adriano; Demarchi, Danilo; Ferrari, Mauro; Grattoni, Alessandro

    2016-11-10

    We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried gate electrode and the consequent variation of the electrical double layer in the nanochannel. We demonstrated control over the transport of ionic species, including two relevant hypertension drugs, atenolol and perindopril, that could benefit from such modulation. By leveraging concentration-driven diffusion, we achieve a 2 to 3 order of magnitude reduction in power consumption as compared to other electrokinetic phenomena. The application of a small gate potential (±5 V) in close proximity (150 nm) of 50 nm nanochannels generated a sufficiently strong electric field, which doubled or blocked the ionic flux depending on the polarity of the voltage applied. These compelling findings can lead to next generation, more reliable, smaller, and longer lasting drug delivery implants with ultra-low power consumption.

  9. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE PAGES

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...

    2018-04-19

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  10. Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in

    2016-05-23

    Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.

  11. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Superoscillating electron wave functions with subdiffraction spots

    NASA Astrophysics Data System (ADS)

    Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady

    2017-03-01

    Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.

  13. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  14. Variable radius cartography - History and perspectives of a new discipline

    NASA Astrophysics Data System (ADS)

    Scalera, Giancarlo

    2014-05-01

    The map that Toscanelli sent to Columbus was an unconscious application of cartography at a smaller radius than the real. The first really conscious attempts to represent the geography of Earth on globes of radius less than the current one occurred after the formulation of the concept of expanding Earth through geological time. The American chemist and geologist Richard Owen (1810-1890) in his book Key to the geology of the globe (1857) described the principles of what he himself called Anatomical Geology, with the Earth growing as a biological organism. The book contained a global paleogeographic map of the Earth that would have had a radius of about 4000 kilometers. In 1928 J.A.H. Kerkhoff (under the pseudonym Aero-dilettant) published a series of paleogeographic globes on which the modern oceans disappeared. With the same artisan methods of transfer continental outlines from a sphere to a smaller one, in 1933 O.C. Hilgenberg represented three different geological epochs, and, later, for the first time mapped paleopoles with their site-pole segments of meridian. Even today the traditional method of Hilgenberg is followed by senior researchers (Klaus Vogel, 2003) and younger geologists (James Maxlow). In England Hugh Owen applied the methods of traditional cartography to the variable radius one. His Atlas of Continental Displacement was in the 70s and 80s, for this discipline, a real milestone. While in the field of constant radius paleogeography the adherents to plate tectonics created many computer codes of automatic mapping (Bullard et al., 1965; Smith & Hallam, 1970; Scotese et al., 1979; and many others), in the variable radius field few tried to reach the same task. In 1972 in United States a first very simple attempt (but was not further developed) came from a private, R.B. Perry, followed by the still not-computerized Atlas of Owen, and both them constituted inspiration for the construction of a FORTRAN variable radius mapping code at INGV, with which it is now possible to represent paleopoles, their uncertainty ellipses, and site-pole segments of meridian (Scalera, 1988, 1990). In all paleogeographic reconstructions of the different authors, variable radius cartography is used in a way more or less complex, more or less intertwined with other disciplines and databases, not as pure representation or in the spirit of the simple fits that supported plate tectonics, but as experiments of greater complexity with a value of proof in favor of the planet expansion. Today a common feeling is that is now necessary to develop an interactive and user friendly program code, which could be distributed or used in the web. The use of variable radius mapping would be a profitable tool in the field of geodesy, where a full treatment without subtle vicious loops of an expanding globe has yet to be developed.

  15. Influence of Ionic Liquids on Thermodynamics of Small Molecule-DNA Interaction: The Binding of Ethidium Bromide to Calf Thymus DNA.

    PubMed

    Mishra, Arpit; Ekka, Mary Krishna; Maiti, Souvik

    2016-03-17

    Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.

  16. Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]).

    PubMed

    Shi, Wei; Sorescu, Dan C; Luebke, David R; Keller, Murphy J; Wickramanayake, Shan

    2010-05-20

    Classical molecular dynamics and Monte Carlo simulations are used to calculate the self-diffusivity and solubility of pure and mixed CO(2), H(2), and Ar gases absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf(2)N]). Overall, the computed absorption isotherms, Henry's law constants, and partial molar enthalpies for pure H(2) agree well with the experimental data obtained by Maurer et al. [J. Chem. Eng. Data 2006, 51, 1364] and the experimental values determined in this work. However, the agreement is poor between the simulations and the experimental data by Noble et al. [Ind. Eng. Chem. Res. 2008, 47, 3453] and Costa Gomes [J. Chem. Eng. Data 2007, 52, 472] at high temperatures. The computed H(2) permeability values are in good agreement with the experimental data at 313 K obtained by Luebke et al. [J. Membr. Sci. 2007, 298, 41; ibid, 2008, 322, 28], but about three times larger than the experimental value at 573 K from the same group. Our computed H(2) solubilities using different H(2) potential models have similar values and solute polarizations were found to have a negligible effect on the predicted gas solubilities for both the H(2) and Ar. The interaction between H(2) and the ionic liquid is weak, about three times smaller than between the ionic liquid and Ar and six times smaller than that of CO(2) with the ionic liquid, results that are consistent with a decreasing solubility from CO(2) to Ar and to H(2). The molar volume of the ionic liquid was found to be the determining factor for the H(2) solubility. For mixed H(2) and Ar gases, the solubilities for both solutes decrease compared to the respective pure gas solubilities. For mixed gases of CO(2) and H(2), the solubility selectivity of CO(2) over H(2) decreases from about 30 at 313 K to about 3 at 573 K. For the permeability, the simulated values for CO(2) in [hmim][Tf(2)N] are about 20-60% different than the experimental data by Luebke et al. [J. Membr. Sci. 2008, 322, 28].

  17. Gravitational Potential: Real-life Results

    DTIC Science & Technology

    2016-01-01

    the surface and thus locations of larger g correspond to smaller h. However, that would not happen in real life . If the earth were covered with water...spherical nonrotating planet of mass M and radius R. The density of the planet can vary radi- ally, but assume it does not vary in the angular

  18. Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Putri, Yulia Eka; Said, Suhana Mohd; Refinel, Refinel; Ohtaki, Michitaka; Syukri, Syukri

    2018-04-01

    The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

  19. Light-emitting dendrimer film morphology: A neutron reflectivity study

    NASA Astrophysics Data System (ADS)

    Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, Giovanna

    2010-06-01

    We have used neutron reflectivity (NR) measurements to probe the physical structure of phosphorescent dendrimer films. The dendrimers consisted of fac-tris(2-phenylpyridyl)iridium(III) cores, biphenyl-based dendrons (first or second generation), and perdeuterated 2-ethylhexyloxy surface groups. We found that the shape and hydrodynamic radius of the dendrimer were both important factors in determining the packing density of the dendrimers. "Cone" shaped dendrimers were found to pack more effectively than "spherical" dendrimers even when the latter had a smaller radius. The morphology of the films determined by NR was consistent with the measured photoluminescence and charge transporting properties of the materials.

  20. Kinematic stability of roller pairs in free rolling contact

    NASA Technical Reports Server (NTRS)

    Savage, M.; Loewenthal, S. H.

    1976-01-01

    A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices.

  1. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  2. Impact of constrained rewiring on network structure and node dynamics

    NASA Astrophysics Data System (ADS)

    Rattana, P.; Berthouze, L.; Kiss, I. Z.

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  3. Analytical expressions for the closure probability of a stiff wormlike chain for finite capture radius.

    PubMed

    Guérin, T

    2017-08-01

    Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula for the probability η(r_{c}) that the distance between the chain extremities is smaller than some capture radius r_{c}. The formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a vanishing capture radius and of nearly fully extended chains.

  4. Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6

    NASA Astrophysics Data System (ADS)

    Lan, Yaohai; Feng, Xiaomei; Zhang, Xin; Shen, Yifu; Wang, Ding

    2016-08-01

    A new series of double perovskite compounds Sr2 - δBixFeMoO6 have been synthesized by solid-state reaction. δ refers to the nominal doping content of Bi (δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5), while the Bi content obtained by the Rietveld refinement is x = 0, 0.01, 0.05, 0.08, 0.10 and 0.12. Their crystal structure and magnetic properties are investigated. Rietveld analysis of the room temperature XRD data shows all the samples crystallize in the cubic crystal structure with the space group Fm 3 ‾ m and have no phase transition. SEM images show that substituted samples present a denser microstructure and bigger grains than Sr2FeMoO6, which is caused by a liquid sintering process due to the effumability of Bi. The unit cell volume increases with augment of Bi3+ concentration despite the smaller ionic radius Bi3+ compared with the Sr2+, which is attributed to the electronic effect. The degree of Fe/Mo order (η) increases first and then decreases to almost disappearance with augment of Bi doping, which is the result of contribution from electronic effect. Calculated saturation magnetization Ms(3) according to our phase separation likeness model matches well with the experimental ones. The observed variations of magnetoresistance (MR) are consistent with the Fe/Mo order (η) due to the internal connection with anti-site defect (ASD).

  5. Atomic and electronic structures of an extremely fragile liquid.

    PubMed

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  6. Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

    NASA Astrophysics Data System (ADS)

    Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.

    2018-05-01

    We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

  7. Atomic and electronic structures of an extremely fragile liquid

    PubMed Central

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-01-01

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236

  8. Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.

    2017-07-01

    The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.

  9. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizos, Apostolos K.; Baritaki, Stavroula; Department of Virology, Medical School, University of Crete, Heraklion, Crete

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus productionmore » in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.« less

  10. Membrane rejection of nitrogen compounds

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  11. Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Li, Song; Atchison, Jennifer S.

    2013-04-12

    Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreementmore » with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.« less

  12. Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure

    DOE PAGES

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...

    2017-04-10

    The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less

  13. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  14. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGES

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; ...

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor F W(more » $$\\bar{q}$$), the weak charge radius R W, and the point neutron radius R n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm -1. We find F W($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from F W($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R n = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from R W. Here there is only a very small error (strange) from possible strange quark contributions. We find R n to be slightly smaller than R W because of the nucleon's size. As a result, we find a neutron skin thickness of R n-R p = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R p is the point proton radius.« less

  15. Increased cortical area and thickness in the distal radius in subjects with SHOX-gene mutation.

    PubMed

    Frederiksen, A L; Hansen, S; Brixen, K; Frost, M

    2014-12-01

    Short-stature homeobox (SHOX) gene haploinsufficiency may cause skeletal dysplasia including Léri-Weill Dyschondrosteosis (LWD), a clinical entity characterised by the triad of low height, mesomelic disproportion and Madelung's deformity of the wrist. Bone microarchitecture and estimated strength in adult SHOX mutation carriers have not been examined. Twenty-two subjects with a SHOX mutation including 7 males and 15 females with a median age of 38.8 [21.1-52.2] years were recruited from five unrelated families. The control group consisted of 22 healthy subjects matched on age and sex. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone geometry, volumetric density, microarchitecture and finite element estimated (FEA) bone strength were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). A full region of interest (ROI) image analysis and height-matched ROI analyses adjusting for differences in body height between the two groups were performed. Areal BMD and T-scores showed no significant differences between cases and controls. Total radius area was smaller in cases than controls (207 [176-263] vs. 273 [226-298] mm, p<0.01). Radius cortical bone area (74 ± 20 vs. 58 ± 17 mm(2), p=0.01) and thickness (1.16 ± 0.30 vs. 0.84 ± 0.26 mm, p<0.01) as well as total density (428 ± 99 vs. 328 ± 72 mg/cm(3), p<0.01) were higher in SHOX mutation carriers compared to controls. Radius trabecular bone area (119 [103-192] vs. 202 [168-247] mm(2), p<0.01) and trabecular number (1.61 [1.46-2.07] vs. 1.89 [1.73-2.08] mm(-1), p=0.01) were smaller in SHOX mutation carriers. Tibia trabecular thickness was lower in cases (0.067 ± 0.012 vs. 0.076 ± 0.012 mm, p=0.01). These results remained significant after adjustment for differences in body height and when restricting analyses to females. There were no differences in BMD, radius and tibia cortical porosity or FEA failure load between groups. A segment of cortical bone defect was identified in the distal radius adjacent to ulna in five unrelated SHOX mutation carriers. Subjects with a SHOX mutation presented with a different bone geometry in radius and tibia while there were no differences in BMD or failure load compared to controls, suggesting that mutations in SHOX gene may have an impact on bone microarchitecture albeit not bone strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications

    NASA Astrophysics Data System (ADS)

    Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés

    2017-10-01

    The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].

  17. Analysis of the wobbling effect in a lens-shaped body rotation

    NASA Astrophysics Data System (ADS)

    Kim, Minho

    2017-03-01

    We discuss the wobbling motion in a lens-shaped body rotation, focusing on the frequencies and the amplitude of nutation by filming the rotational motion and wobbling of the body. The friction coefficient of the surface is altered to examine its influence for two lenses with different curvature radii. MATLAB programs are developed to retrieve the Euler angles, which are graphed according to time. It is shown that the lens with a smaller curvature radius exhibits the wobbling effect in all cases, whereas the lens with a larger curvature radius shows such behaviour in limited circumstances. The study confirms that the friction coefficient has a negative linear correlation with the vertical axis declination amplitude with the R-squared value 0.878, showing that friction gives damping and causes smaller axis declination amplitudes. Negative linear correlation also exists with relation to the number of wobbles before the motion stops, where the R-squared value is 0.938, providing further evidence that friction and wobbling cause higher energy dissipation rates. The frequency of the wobbling motion only has a correlation with the curvature radius of the lens, showing no explicit correlation with the friction coefficient, with its R-squared value being 0.077. No losses of contact were observable in this motion. The overall process does not utilize particularly expensive apparatus and will be applicable for senior undergraduate students to experiment on and analyze the motion of a special situation regarding a rigid body that is both spinning and nutating.

  18. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    NASA Astrophysics Data System (ADS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-06-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  19. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.

    PubMed

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  20. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    NASA Astrophysics Data System (ADS)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  1. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  2. Structure and lifetimes in ionic liquids and their mixtures.

    PubMed

    Gehrke, Sascha; von Domaros, Michael; Clark, Ryan; Hollóczki, Oldamur; Brehm, Martin; Welton, Tom; Luzar, Alenka; Kirchner, Barbara

    2018-01-01

    With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.

  3. The supercritical pile gamma-ray burst model: The GRB afterglow steep decline and plateau phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultana, J.; Kazanas, D.; Mastichiadis, A., E-mail: joseph.sultana@um.edu.mt

    2013-12-10

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the 'supercritical pile' GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E {sub pk} ∼ m{sub e}c {sup 2}. We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Γ to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (∼25%)more » decrease in Γ at a radius that is smaller (depending on conditions) than the deceleration radius R{sub D} . Because of this reduction, the kinematic criticality criterion of the 'supercritical pile' is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by ∼m{sub p} /m{sub e} than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R{sub D} , the RBW internal energy continues to drive the RBW expansion at a constant (new) Γ and its X-ray luminosity remains constant until R{sub D} is reached, at which point it resumes its more conventional decay, thereby completing the 'unexpected' XRT light curve phase. If this transition occurs at R ≅ R{sub D} , the steep decline is followed by a flux decrease instead of a 'plateau,' consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R ≅ R{sub D} , thus providing novel insights into GRB phenomenology.« less

  4. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  5. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    PubMed

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% p<0.001) and 66% radius (-15% p=0.04) as well as increased total density at the 4% (+13% p=0.01) radius. For the tibia, they had a smaller bone size at the 4% (-16% p=0.005) and 14% (-38% p=0.002) sites. Also, Asians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% p<0.01) and at the 14% tibia there was increased cortical density (+5% p=0.005) in Asians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Dressed ion theory of size-asymmetric electrolytes: effective ionic charges and the decay length of screened Coulomb potential and pair correlations.

    PubMed

    Forsberg, Björn; Ulander, Johan; Kjellander, Roland

    2005-02-08

    The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.

  7. A Fluorescence Correlation Spectroscopy Study of the Cryoprotective Mechanism of Glucose on Hemocyanin

    NASA Astrophysics Data System (ADS)

    Hauger, Eric J.

    Cryopreservation is the method of preserving biomaterials by cooling and storing them at very low temperatures. In order to prevent the damaging effects of cooling, cryoprotectants are used to inhibit ice formation. Common cryoprotectants used today include ethylene glycol, propylene glycol, dimethyl sulfoxide, glycerol, and sugars. However, the mechanism responsible for the effectiveness of these cryoprotectants is poorly understood on the molecular level. The water replacement model predicts that water molecules around the surfaces of proteins are replaced with sugar molecules, forming a protective layer against the denaturing ice formation. Under this scheme, one would expect an increase in the hydrodynamic radius with increasing sugar concentration. In order to test this hypothesis, two-photon fluorescence correlation spectroscopy (FCS) was used to measure the hydrodynamic radius of hemocyanin (Hc), an oxygen-carrying protein found in arthropods, in glucose solutions up to 20wt%. FCS found that the hydrodynamic radius was invariant with increasing glucose concentration. Dynamic light scattering (DLS) results verified the hydrodynamic radius of hemocyanin in the absence of glucose. Although this invariant trend seems to indicate that the water replacement hypothesis is invalid the expected glucose layer around the Hc is smaller than the error in the hydrodynamic radius measurements for FCS. The expected change in the hydrodynamic radius with an additional layer of glucose is 1nm, however, the FCS standard error is +/-3.61nm. Therefore, the water replacement model cannot be confirmed nor refuted as a possible explanation for the cryoprotective effects of glucose on Hc.

  8. Effect of medullary cavity in cancellous bone on two-wave phenomenon

    NASA Astrophysics Data System (ADS)

    Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami

    2016-07-01

    Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.

  9. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    NASA Astrophysics Data System (ADS)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba, which like Pb also have a divalent ionic radius larger than that of Ca2+ and form carbonate minerals with the aragonite structure, did not consistently agree well with known concentrations of Sr and Ba in fluid inclusions. The ore fluid Zn concentrations predicted in the present study lie within the range of Zn concentrations typical of modern sedimentary brines and are high enough to allow deposition of the observed amounts of Zn in the Illinois-Kentucky and Central Tennessee districts within ranges of geologically reasonable times and ore fluid flow velocities. If the pH of the Illinois-Kentucky and Central pH ore fluids was as low as current evidence suggests to be possible, then these ore fluids could simultaneously have transported enough sulfide with their Zn to account for the observed amounts of sphalerite in the districts.

  10. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    PubMed

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination number for A 2+ cation than that of CF-type.

  11. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  12. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE PAGES

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi; ...

    2016-06-17

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  13. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    ERIC Educational Resources Information Center

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  14. Pyrochlore structure and spectroscopic studies of titanate ceramics. A comparative investigation on SmDyTi2O7 and YDyTi2O7 solid solutions

    NASA Astrophysics Data System (ADS)

    Garbout, A.; Férid, M.

    2018-06-01

    Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.

  15. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  16. Short-time vibrational dynamics of metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.

    2012-02-01

    In this paper we present the picosecond vibrational dynamics of a series of binary metaphosphate glasses, namely Na2O-P2O5, MO-P2O5 (M=Ba, Sr, Ca, Mg) and Al2O3-3P2O5 by means of Raman spectroscopy. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The fitting method used enables one to model the real line profiles intermediate between Lorentzian and Gaussian by an analytical function, which has an analytical counterpart in the time domain. The symmetric stretching modes νs(PO2-) and νs(P-O-P) of the PO2- entity of PØ2O2- units and of P-O-P bridges in metaphosphate arrangements have been investigated by Raman spectroscopy and we used them as probes of the dynamics of these glasses. The vibrational time correlation functions of both modes studied are rather adequately interpreted within the assumption of exponential modulation function in the context of Kubo-Rothschield theory and indicate that the system experiences an intermediate dynamical regime that gets only slower with an increase in the ionic radius of the cation-modifier. We found that the vibrational correlation functions of all glasses studied comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with increasing ionic radius of the cation indicates the deviation from the model simple liquid indicating the reduction of the coherence decay in the perturbation potential as a result of local short lived aggregates. The results are discussed in the framework of the current phenomenological status of the field.

  17. Investigation of “benign” ionic content in epoxy that induces microelectronic device failure

    Treesearch

    Gregory T. Schueneman; Jeffery Kingsbury; Edmund Klinkerch

    2011-01-01

    Microelectronics and the devices dependent upon them have the extremely challenging requirements of becoming more capable and less expensive every year. This drives the industry to pack more functions into an ever smaller footprint until the next technological revolution. Adding to this situation is the removal of lead from the bill of materials followed closely by...

  18. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  19. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  20. Core-powered mass-loss and the radius distribution of small exoplanets

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2018-05-01

    Recent observations identify a valley in the radius distribution of small exoplanets, with planets in the range 1.5-2.0 R⊕ significantly less common than somewhat smaller or larger planets. This valley may suggest a bimodal population of rocky planets that are either engulfed by massive gas envelopes that significantly enlarge their radius, or do not have detectable atmospheres at all. One explanation of such a bimodal distribution is atmospheric erosion by high-energy stellar photons. We investigate an alternative mechanism: the luminosity of the cooling rocky core, which can completely erode light envelopes while preserving heavy ones, produces a deficit of intermediate sized planets. We evolve planetary populations that are derived from observations using a simple analytical prescription, accounting self-consistently for envelope accretion, cooling and mass-loss, and demonstrate that core-powered mass-loss naturally reproduces the observed radius distribution, regardless of the high-energy incident flux. Observations of planets around different stellar types may distinguish between photoevaporation, which is powered by the high-energy tail of the stellar radiation, and core-powered mass-loss, which depends on the bolometric flux through the planet's equilibrium temperature that sets both its cooling and mass-loss rates.

  1. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Hugh F.; Militzer, Burkhard, E-mail: hughfw@gmail.com

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure,more » and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.« less

  2. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.

  3. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo12O40-An organic polyoxometalate.

    PubMed

    Ma, Yunqian; Liu, Xinpeng; Wang, Rui

    2017-06-05

    An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Annama H chondrite—Mineralogy, physical properties, cosmic ray exposure, and parent body history

    NASA Astrophysics Data System (ADS)

    Kohout, TomáÅ.¡; Haloda, Jakub; Halodová, Patricie; Meier, Matthias M. M.; Maden, Colin; Busemann, Henner; Laubenstein, Matthias; Caffee, Marc. W.; Welten, Kees C.; Hopp, Jens; Trieloff, Mario; Mahajan, Ramakant R.; Naik, Sekhar; Trigo-Rodriguez, Josep M.; Moyano-Cambero, Carles E.; Oshtrakh, Michael I.; Maksimova, Alevtina A.; Chukin, Andrey V.; Semionkin, Vladimir A.; Karabanalov, Maksim S.; Felner, Israel; Petrova, Evgeniya V.; Brusnitsyna, Evgeniia V.; Grokhovsky, Victor I.; Yakovlev, Grigoriy A.; Gritsevich, Maria; Lyytinen, Esko; Moilanen, Jarmo; Kruglikov, Nikolai A.; Ishchenko, Aleksey V.

    2017-08-01

    The fall of the Annama meteorite occurred early morning (local time) on April 19, 2014 on the Kola Peninsula (Russia). Based on mineralogy and physical properties, Annama is a typical H chondrite. It has a high Ar-Ar age of 4.4 Ga. Its cosmic ray exposure history is atypical as it is not part of the large group of H chondrites with a prominent 7-8 Ma peak in the exposure age histograms. Instead, its exposure age is within uncertainty of a smaller peak at 30 ± 4 Ma. The results from short-lived radionuclides are compatible with an atmospheric pre-entry radius of 30-40 cm. However, based on noble gas and cosmogenic radionuclide data, Annama must have been part of a larger body (radius >65 cm) for a large part of its cosmic ray exposure history. The 10Be concentration indicates a recent (3-5 Ma) breakup which may be responsible for the Annama parent body size reduction to 30-35 cm pre-entry radius.

  5. A counter-rotating vortex pair in inviscid fluid

    NASA Astrophysics Data System (ADS)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  6. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  7. Removal of organic contaminants by RO and NF membranes

    NASA Technical Reports Server (NTRS)

    Yoon, Yeomin; Lueptow, Richard M.

    2005-01-01

    Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.

  8. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  9. Internal electric fields of electrolytic solutions induced by space-charge polarization

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  10. Resolving the circumstellar environment of the B[e] star V921 Scorpii in the near-infrared with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Kreplin, A.; Kraus, S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Driebe, T.

    2012-01-01

    Aims: We study the AU-scale circumstellar environment of the unclassified B[e] star V921 Sco in the near-infrared. For interpreting the observations, we employ temperature-gradient disk models. Methods: Using the near-infrared beam combiner instrument AMBER, we recorded spectrally dispersed (spectral resolution R = 35) interferograms in the H and K bands. To obtain an improved calibration of the visibilities, we developed a method that is able to equalize the histograms of the optical path difference of target and calibrator. We fit temperature-gradient disk models to the visibilities and spectral energy distribution (SED) to analyze the circumstellar dust geometry. Results: We derived a geometric ring-fit radius of 2.10 ± 0.16 mas in the K band. If we adopt the distance of 1150 ± 150 pc reported elsewhere, we obtain a ring-fit radius of 2.4 AU, which is slightly smaller than the 3.5 AU dust sublimation radius predicted by the size-luminosity relation. The fitted H-band radius of 1.61 ± 0.23 mas (1.85 AU) is found to be more compact than the K-band radius. The best-fit temperature-gradient disk model has an inner disk radius of ~1.45 AU, an inner-edge disk temperature T0 = 1533 K, and a temperature-gradient exponent q = 0.46 suggesting a flared disk geometry. Conclusions: The distance and luminosity of V921 Sco are not well known. If we assume a distance of 1150 ± 150 pc, we derive a ring-fit radius of ~2.4 AU, which is approximately consistent with the computed temperature-gradient disk model with inner and outer ring radii of 1.45 and 8.5 AU, respectively. If the inner radius of V921 Sco is more compact than the sublimation radius, this compact observed size can be explained by emitting material (e.g., a gaseous disk) inside the dust sublimation radius, as suggested for several other B[e] stars. Based on observations made with ESO telescopes at Paranal Observatory under program ID (MPG-VISA GTO): 079.C-0212(A).

  11. The MUSIC of galaxy clusters - I. Baryon properties and scaling relations of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara

    2013-02-01

    We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) data set. It constitutes one of the largest samples of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using smoothed particle hydrodynamics (SPH) together with relevant physical processes that include cooling, UV photoionization, star formation and different feedback processes associated with supernovae explosions. In this first paper we focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC data set as a function of both aperture radius and redshift. The results from our simulations are compared with a compilation of the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. We confirm, as in previous simulations, that the gas fraction is overestimated if radiative physics are not properly taken into account. On the other hand, when the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. However, we do not find a significant evolution with redshift of the gas fractions at aperture radius corresponding to overdensities smaller than 1500 with respect to critical density. At smaller radii, the gas fraction does exhibit a decrease with redshift that is related to the gas depletion due to star formation in the central region of the clusters. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested. The standard, widely used definition of radius at a fixed overdensity with respect to critical density is compared with a definition of aperture radius based on the redshift dependent overdensity with respect to background matter density: we show that the latter definition is more successful in probing the same fraction of the virial radius at different redshifts, providing a more reliable derivation of the time evolution of integrated quantities. We also present in this paper a detailed analysis of the scaling relations of the thermal Sunyaev-Zel'dovich (SZ) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M - Y counterpart which is more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter which is σlog Y ≃ 0.04 and even a smaller one (σlog M ≃ 0.03) for the inverse M-Y relation. The effects of the gas fraction on the Y-M scaling relation are also studied. At high overdensities, the dispersion of the gas fractions introduces non-negligible deviation from self-similarity, which is directly related to the fgas-M relation. The presence of a possible redshift dependence on the Y-M scaling relation is also explored. No significant evolution of the SZ relations is found at lower overdensities, regardless of the definition of overdensity used.

  12. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    PubMed

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  13. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  14. Reduced grain boundary energies in rare-earth doped MgAl 2O 4 spinel and consequent grain growth inhibition

    DOE PAGES

    Hasan, Md M.; Dholabhai, Pratik P.; Dey, Sanchita; ...

    2017-05-15

    In this paper, grain growth inhibition in MgAl 2O 4 spinel nanostructure was achieved by grain boundary (GB) segregation of rare-earth dopants. Microcalorimetric measurements showed that dense spinel compacts doped with 3 mol% of R 2O 3 (R = Y, Gd, and La) had decreased GB energies as compared to the undoped spinel, representing reduction in the driving force for grain growth. Segregation energies of the three dopants to the Σ3 (111) GB were calculated by atomistic simulation. The dopants with higher ionic radius tend to segregate more strongly to GBs. The GB energies were calculated from atomistic simulation and,more » consistent with experiments, a systematic reduction in GB energy with dopant ionic size was found. Finally, high temperature grain growth experiments revealed a significant reduction of grain growth in the doped nanostructures as compared to the undoped one, which was attributed to increased metastability or possibly also a GB dragging originated from the dopant segregation.« less

  15. Structural silicon nitride materials containing rare earth oxides

    DOEpatents

    Andersson, Clarence A.

    1980-01-01

    A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.

  16. Synthesis, morphology and electrical properties of Co2+ substituted NiCuZn ferrites for MLCI applications

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Waghmare, S. D.; Ghodake, U. R.; Suryavanshi, S. S.

    2018-04-01

    Co2+ is a fast relaxing ion which can enhance microwave properties. This work focuses on the synthesis and analysis of Ni0.25-xCoxCu0.30Zn0.45Fe2O4 (x = 0.00, 0.05, 0.01, 0.15, 0.20 and 0.25) ferrites by auto combustion method using glycine as the chelating agent. From X-ray Diffraction (XRD) spectra, the structural parameters are analysed. The lattice parameter (a) decreases due to smaller ionic radius of Co2+ (0.072 nm) which replaces Ni2+ (0.078 nm). Bulk density and porosity measurements show that there are pores and lattice imperfections. The cation distribution of the ferrites based on Neel's two sublattice model is proposed. Transmission Electron Micrographs (TEM) indicate narrow size distribution of spherical shaped nanoparticles. DC electrical resistivity (ρD.C.) is very important factor of low temperature sintered ferrites for MLCI applications. Electroplating of the devices is much affected by electrical resistivity. Maximum DC resistivity (2.89 × 106 Ω-cm) is observed for the sample with x=0.20. The dielectric parameters (ɛ', ɛ″ and tan δ) decrease as the alternating field increases which is due to space charge distribution and hopping mechanism. AC resistivity (ρAC) decreases with frequency, increased concentration of Fe2+ ions induces electron hopping: Fe3+ ↔ Fe2+ at B sites thereby reducing the resistivity. The low dielectric loss factor of 0.07 for x=0.20 ferrite indicates that the sample can be potential candidate for MLCI applications.

  17. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952

  18. Ion transport in sub-5-nm graphene nanopores.

    PubMed

    Suk, Myung E; Aluru, N R

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  19. Collapse-driven formation of depressions on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Leliwa-Kopystynski, J.

    2018-03-01

    The extremely diverse surface of comet 67P/Churyumov-Gerasimenko contains a large number of depressions or craters of very different scales. Among the most prominent are two large roughly circular depressions, each with radii of several hundred meters. In this work a model for the formation of the depressions is proposed. It is based on the theory of the deformation of a thin circular elastic plate under its own weight. The plate covers a circular cavity with a given radius. The resilience of the plate diminishes over time as a result of its thinning which is itself a consequence of sublimation. When the stress limit is achieved, a gravitational collapse occurs: the plate cracks and the remnants fall into the cavity bottom. A formula that links the radius of the plate corresponding to collapse with the plate thickness has been derived. The formula was discussed for the large intervals of the values of parameters that characterize surface layers of cometary nuclei. It was found that the surface above large cavities collapses sooner than one of a similar thickness that covers a smaller cavity. So, if the collapse mechanism theory works, that larger depressions are therefore older than smaller ones.

  20. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.

    PubMed

    Hetler, D M; Bronfenbrenner, J

    1931-05-20

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.

  1. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  2. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2007-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  3. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2006-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  4. An ionic polymer-metal composite actuator based on PSMI-incorporated PVDF with chemical stability and performance durability

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2009-07-01

    To develop artificial muscles with improved performance, a novel ionic polymer-metal composite (IPMC) actuator was developed by employing the newly-synthesized ionic networking film of poly (styrene-alt-maleimide) (PSMI)- incorporated poly (vinylidene fluoride) (PVDF). Scanning electron microscope and transmission electron microscopy revealed that much smaller and more uniform nano-sized platinum particles were formed on the surfaces of the film as well as within its polymer matrix after the electroless-plating process. Fourier transform infrared results suggested that no hydrolysis occurred for the as-prepared film actuator before and after the exposure to the elevated PH solutions at 25°C for 48h. The new actuator showed much larger tip displacement than that of a Nafion-based counterpart under the applied electrical stimulus, and overcame the back relaxation of the traditional IPMC actuator under the constant voltage. The current actuator was operated over 6.5h at high-frequency sinusoidal excitation, and its tip displacement was still comparable to that of the referenced Nafion actuator when the test was terminated. The excellent electromechanical performance is due to the inherent large ionic-exchange capacity and the unique hydrophilic nano-channels of the ionic networking film. Furthermore, the working principle of the developed IPMC actuator is thought to be based on a combination of piezoelectricity and ionic transport. The film of PSMI-incorporated PVDF has some advantages over the most widely-used Nafion-based one by diversifying niche applications in biomimetic motion, and the present study is believed to open a new avenue for the design and fabrication of the electro-active polymer film with unique functional properties.

  5. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaronmore » radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.« less

  6. Solar disc radius determined from observations made during eclipses with bolometric and photometric instruments on board the PICARD satellite

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Zhu, P.; Shapiro, A. I.; Sofia, S.; Tagirov, R.; van Ruymbeke, M.; Perrin, J.-M.; Sukhodolov, T.; Schmutz, W.

    2017-07-01

    Context. Despite the importance of having an accurate measurement of the solar disc radius, there are large uncertainties of its value due to the use of different measurement techniques and instrument calibration. An item of particular importance is to establish whether the value of the solar disc radius correlates with the solar activity level. Aims: The main goal of this work is to measure the solar disc radius in the near-UV, visible, and near-IR regions of the solar spectrum. Methods: Three instruments on board the PICARD spacecraft, namely the Bolometric Oscillations Sensor (BOS), the PREcision MOnitoring Sensor (PREMOS), and a solar sensor (SES), are used to derive the solar disc radius using the light curves produced when the Sun is occulted by the Moon. Nine eclipses, from 2010 to 2013, resulted in 17 occultations as viewed from the moving satellite. The calculation of the solar disc radius uses a simulation of the light curve taking into account the center-to-limb variation provided by the Non-local thermodynamic Equilibrium Spectral SYnthesis (NESSY) code. Results: We derive individual values for the solar disc radius for each viewed eclipse. Tests for a systematic variation of the radius with the progression of the solar cycle yield no significant results during the three years of measurements within the uncertainty of our measurements. Therefore, we derive a more precise radius value by averaging these values. At one astronomical unit, we obtain 959.79 arcseconds (arcsec) from the bolometric experiment; from PREMOS measurements, we obtain 959.78 arcsec at 782 nm and 959.76 arcsec at 535 nm. We found 960.07 arcsec at 210 nm, which is a higher value than the other determinations given the photons at this wavelength originate from the upper photosphere and lower chromosphere. We also give a detailed comparison of our results with those previously published using measurements from space-based and ground-based instruments using the Moon angular radius reference, and different methods. Conclusions: Our results, which use the Moon as an absolute calibration, clearly show the dependence of the solar disc radius with wavelength in UV, visible and near-IR. Beyond the metrological results, solar disc radius measurements will allow the accuracy of models of the solar atmosphere to be tested. Proposed systematic variations of the solar disc radius during the time of observation would be smaller than the uncertainty of our measurement, which amounts to less than 26 milliarcseconds.

  7. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, C.; Liu, K.; Van Aken, Katherine L.

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less

  8. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  9. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    DOE PAGES

    Lian, C.; Liu, K.; Van Aken, Katherine L.; ...

    2016-04-18

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less

  10. Salinity-dependent diatom biosilicification implies an important role of external ionic strength

    PubMed Central

    Vrieling, Engel G.; Sun, Qianyao; Tian, Mingwen; Kooyman, Patricia J.; Gieskes, Winfried W. C.; van Santen, Rutger A.; Sommerdijk, Nico A. J. M.

    2007-01-01

    The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components. PMID:17563373

  11. Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study

    USGS Publications Warehouse

    Bahadur, Jitendra; Ruppert, Leslie F.; Pipich, Vitaliy; Sakurovs, Richard; Melnichenko, Yuri B.

    2018-01-01

    Neutron scattering techniques were used to determine the effect of mineral matter on the accessibility of water and toluene to pores in the Devonian Marcellus Shale. Three Marcellus Shale samples, representing quartz-rich, clay-rich, and carbonate-rich facies, were examined using contrast matching small-angle neutron scattering (CM-SANS) at ambient pressure and temperature. Contrast matching compositions of H2O, D2O and toluene, deuterated toluene were used to probe open and closed pores of these three shale samples. Results show that although the mean pore radius was approximately the same for all three samples, the fractal dimension of the quartz-rich sample was higher than for the clay-rich and carbonate-rich samples, indicating different pore size distributions among the samples. The number density of pores was highest in the clay-rich sample and lowest in the quartz-rich sample. Contrast matching with water and toluene mixtures shows that the accessibility of pores to water and toluene also varied among the samples. In general, water accessed approximately 70–80% of the larger pores (>80 nm radius) in all three samples. At smaller pore sizes (~5–80 nm radius), the fraction of accessible pores decreases. The lowest accessibility to both fluids is at pore throat size of ~25 nm radii with the quartz-rich sample exhibiting lower accessibility than the clay- and carbonate-rich samples. The mechanism for this behaviour is unclear, but because the mineralogy of the three samples varies, it is likely that the inaccessible pores in this size range are associated with organics and not a specific mineral within the samples. At even smaller pore sizes (~<2.5 nm radius), in all samples, the fraction of accessible pores to water increases again to approximately 70–80%. Accessibility to toluene generally follows that of water; however, in the smallest pores (~<2.5 nm radius), accessibility to toluene decreases, especially in the clay-rich sample which contains about 30% more closed pores than the quartz- and carbonate-rich samples. Results from this study show that mineralogy of producing intervals within a shale reservoir can affect accessibility of pores to water and toluene and these mineralogic differences may affect hydrocarbon storage and production and hydraulic fracturing characteristics

  12. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman-Mackey, Daniel; Hogg, David W.; Morton, Timothy D., E-mail: danfm@nyu.edu

    No true extrasolar Earth analog is known. Hundreds of planets have been found around Sun-like stars that are either Earth-sized but on shorter periods, or else on year-long orbits but somewhat larger. Under strong assumptions, exoplanet catalogs have been used to make an extrapolated estimate of the rate at which Sun-like stars host Earth analogs. These studies are complicated by the fact that every catalog is censored by non-trivial selection effects and detection efficiencies, and every property (period, radius, etc.) is measured noisily. Here we present a general hierarchical probabilistic framework for making justified inferences about the population of exoplanets,more » taking into account survey completeness and, for the first time, observational uncertainties. We are able to make fewer assumptions about the distribution than previous studies; we only require that the occurrence rate density be a smooth function of period and radius (employing a Gaussian process). By applying our method to synthetic catalogs, we demonstrate that it produces more accurate estimates of the whole population than standard procedures based on weighting by inverse detection efficiency. We apply the method to an existing catalog of small planet candidates around G dwarf stars. We confirm a previous result that the radius distribution changes slope near Earth's radius. We find that the rate density of Earth analogs is about 0.02 (per star per natural logarithmic bin in period and radius) with large uncertainty. This number is much smaller than previous estimates made with the same data but stronger assumptions.« less

  14. Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.

    PubMed

    Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H

    1983-07-01

    The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.

  15. Characterization and prediction of meandering channel migration in the GIS environment: a case study of the Sabine River in the USA.

    PubMed

    Heo, Joon; Duc, Trinh Anh; Cho, Hyung-Sik; Choi, Sung-Uk

    2009-05-01

    This study focused on the prediction of a 22 km meandering channel migration of the Sabine River between the states of Texas and Louisiana. The meander characteristics of 12 bends, identified from seven orthophotos taken between 1974 and 2004, were acquired in a GIS environment. Based on that earlier years' data acquisition, channel prediction was performed for the two years 1996 and 2004 using least squares estimation and linear extrapolations, yielding a satisfactory agreement with the observations (the median predicted and observed migration rates were 3.1 and 3.6 [m/year], respectively). The best-predicted migration rate was found to be associated with the longest orthophoto-recorded interval. The study confirmed that channel migration is strongly correlated with bend curvature and that the maximum migration rate of the bend corresponded to a radius of curvature [bend radius (R(C))/channel width (W(C))] of 2.5. In tight bends of a smaller radius of curvature than 1.6, secondary flow scouring near the bend apex increases bend curvature. The stability index of the dimensionless bend radius was determined to be 2.45. Overall, this study proves the effectiveness of least squares estimation with historical orthophotography for characterization of meandering channel migration.

  16. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    PubMed

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  17. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  18. Enhancement of the ionic conductivity of olivine by the water incorporation based on the Mg diffusivity

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.

    2016-12-01

    Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.

  19. Evaluating point count efficiency relative to territory mapping in cropland birds

    Treesearch

    Andre Cyr; Denis Lepage; Kathryn Freemark

    1995-01-01

    Species richness, composition, and abundance of farmland birds were compared between point counts (50-m, 100-m, and 150-m radius half circles) and territory mapping on three 40-ha plots in Québec, Canada. Point counts of smaller radii tended to have larger density estimates than counts of larger radii. Territory mapping detected 10 species more than 150-m...

  20. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    NASA Astrophysics Data System (ADS)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  1. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  2. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism

    NASA Technical Reports Server (NTRS)

    Paula, S.; Volkov, A. G.; Deamer, D. W.

    1998-01-01

    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  3. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  4. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Gitelman, L.; Israeli, M.; Averbuch, A.; Nathan, M.; Schuss, Z.; Golodnitsky, D.

    2007-12-01

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  5. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE PAGES

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  6. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.

    PubMed

    Inoue, Tohru; Yamakawa, Haruka

    2011-04-15

    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.

    PubMed

    Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo

    2010-06-15

    The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.

  8. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES

    PubMed Central

    Hetler, D. M.; Bronfenbrenner, J.

    1931-01-01

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mµ in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mµ to 11.4 mµ. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium. PMID:19872604

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, R. S.; Barman, S. R.

    Ne 1s core-level photoelectron spectra from Ne nanobubbles implanted in aluminum exhibit two peaks whose binding energies and relative intensities change with implantation energy, isochronal annealing, and sputtering. These changes in the core-level spectra are manifestations of the nanometer size of the bubbles since the screening of the photohole by the Al conduction electrons depends on the bubble size. Existence of a bimodal depth and size distribution of Ne nanobubbles is demonstrated in this work: smaller bubbles of about 4 A in radius are formed close to the Al(111) surface while the larger sized bubbles of 20 A in radiusmore » exist deeper below in the beneath subsurface region. A general relation between the radius of the rare-gas bubbles and their core-level binding energies is established.« less

  10. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  11. New techniques for determining sizes of satellites and asteroids.

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1973-01-01

    It is pointed out that until very recently not even a crude idea of the sizes was available for any but the five brightest satellites and, more marginally, the three brightest asteroids. Attention is given to three new techniques which are yielding radii for dozens of small objects and which, by virtue of their independence of angular size, are capable of extension to even smaller and fainter objects. The first new technique, and by far the most precise, is to derive the radius, and in many cases the shape as well, from timings of an occultation of a star by the small body. Both of the other new techniques are based on methods of determining surface reflectivities, since once the geometric albedo is known, the radius can be determined from the brightness.

  12. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    NASA Astrophysics Data System (ADS)

    Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.

    2012-11-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  13. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.

    PubMed

    Gay, C; Rognon, P; Reinelt, D; Molino, F

    2011-01-01

    Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams.

  14. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  15. Metal distributions out to 0.5 r {sub 180} in the intracluster medium of four galaxy groups observed with Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Toru; Matsushita, Kyoko; Sato, Kosuke, E-mail: j1213703@ed.tus.ac.jp, E-mail: matusita@rs.kagu.tus.ac.jp

    2014-01-20

    We studied the distributions of metal abundances and metal-mass-to-light ratios in the intracluster medium (ICM) of four galaxy groups, MKW 4, HCG 62, the NGC 1550 group, and the NGC 5044 group, out to ∼0.5 r {sub 180} observed with Suzaku. The iron abundance decreases with radius and is about 0.2-0.4 solar beyond 0.1 r {sub 180}. At a given radius in units of r {sub 180}, the iron abundance in the ICM of the four galaxy groups was consistent with or smaller than those of clusters of galaxies. The Mg/Fe and Si/Fe ratios in the ICM are nearly constantmore » at the solar ratio out to 0.5 r {sub 180}. We also studied systematic uncertainties in the derived metal abundances, comparing the results from two versions of atomic data for astrophysicists (ATOMDB) and single- and two-temperature model fits. Since the metals have been synthesized in galaxies, we collected K-band luminosities of galaxies from the Two Micron All Sky Survey catalog and calculated the integrated iron-mass-to-light-ratios (IMLR), or the ratios of the iron mass in the ICM to light from stars in galaxies. The groups with smaller gas-mass-to-light ratios have smaller IMLR values and the IMLR is inversely correlated with the entropy excess. Based on these abundance features, we discussed the past history of metal enrichment processes in groups of galaxies.« less

  16. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: A single-molecule study

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins. PMID:24751557

  17. Emulsified systems based on glyceryl monostearate and potassium cetyl phosphate: scale-up and characterization of physical properties.

    PubMed

    Baby, André Rolim; Santoro, Diego Monegatto; Velasco, Maria Valéria Robles; Dos Reis Serra, Cristina Helena

    2008-09-01

    Introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3], mum) and rheology profile. Transposition occurred from a batch of 500-50,000g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic.

  18. Effective on-site Coulomb interaction and electron configurations in transition-metal complexes from constraint density functional theory

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.

  19. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.

    PubMed

    Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-06-01

    Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.

  20. Capturing the effect of [PF3(C2F5)3]-vs. [PF6]-, flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: a comparative MD study.

    PubMed

    Kowsari, Mohammad H; Ebrahimi, Soraya

    2018-05-16

    Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.

  1. Superprotonic solid acids: Structure, properties, and applications

    NASA Astrophysics Data System (ADS)

    Boysen, Dane Andrew

    In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability under the highly reducing H2 gas environment of the fuel cell anode. Later experiments employing a CsH2PO4 electrolyte proved quite successful. The results of these solid acid-based fuel cell measurements suggest solid acids could serve as an alternative to current state-of-the-art fuel cell electrolytes.

  2. Selective interactions of trivalent cations Fe³⁺, Al³⁺ and Cr³⁺ turn on fluorescence in a naphthalimide based single molecular probe.

    PubMed

    Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran

    2016-01-15

    Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe(3+), Al(3+) or Cr(3+) with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu(3+), Gd(3+) and Nb(3+)) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comparing the 2,2'-Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium

    DOE PAGES

    Cross, Justin N.; Macor, Joseph A.; Bertke, Jeffery A.; ...

    2016-09-15

    Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Here in this paper, we describe the preparation of (NBu 4)Am[S 2P( tBu 2C 12H 6)] 4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd III) and an isoelectronic one (Eu III). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu III and Nd III complexes revealed subtle electronic differences between the complexes of Am III and the lanthanides.

  4. Biokinetic data and models for occupational intake of lanthanoids

    DOE PAGES

    Leggett, Richard Wayne; Ansoborlo, Eric; Bailey, Michael; ...

    2014-05-12

    The lanthanoid (or lanthanide) chemical elements comprise fifteen elements with atomic numbers 57 (lanthanum) through 71 (lutetium). This paper reviews data related to the biological behavior of these elements in the human body and proposes biokinetic models for application to occupational intake of radio-lanthanoids. Generic (element-independent) absorption rates from the respiratory and alimentary tracts to blood are proposed. The proposed systemic models are largely generic but include some element-specific parameter values to reflect regular changes with ionic radius in certain aspects of the behavior of the lanthanoids. This work was performed within the internal dosimetry task group (INDOS) of Committeemore » 2 of the International Commission on Radiological Protection (ICRP).« less

  5. Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi

    1989-04-01

    Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.

  6. Fabrication of CuAl1-xMxO2 (M = Fe, Cr)/Ni film delafossite compounds using spin coating and their microstructure and dielectric constant

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Yuwita, Pelangi Eka; Olenka, Desyana; Nasikhudin

    2014-09-01

    The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO2. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl1-xMxO2 delafossite compounds doped with Cr3+ and Fe3+ from the raw material of Cu(NO3)2˙3H2O, Al(NO3)3˙9H2O, Fe(NO3)3˙9H2O and Cr(NO3)3˙9H2O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl1-xMxO2/Ni delafossite films were successfully fabricated. The CuAl1-xFexO2 compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al3+ with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr3+ doped of CuAl1-xCrxO2 films with smaller effects.

  7. Extended source effect on microlensing light curves by an Ellis wormhole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Gong, Yungui

    2018-04-01

    We can survey an Ellis wormhole which is the simplest Morris-Thorne wormhole in our Galaxy with microlensing. The light curve of a point source microlensed by the Ellis wormhole shows approximately 4% demagnification while the total magnification of images lensed by a Schwarzschild lens is always larger than unity. We investigate an extended source effect on the light curves microlensed by the Ellis wormhole. We show that the depth of the gutter of the light curves of an extended source is smaller than the one of a point source since the magnified part of the extended source cancels the demagnified part out. We can, however, distinguish between the light curves of the extended source microlensed by the Ellis wormhole and the ones by the Schwarzschild lens in their shapes even if the size of the source is a few times larger than the size of an Einstein ring on a source plane. If the relative velocity of a star with the radius of 1 06 km at 8 kpc in the bulge of our Galaxy against an observer-lens system is smaller than 10 km /s on a source plane, we can detect microlensing of the star lensed by the Ellis wormhole with the throat radius of 1 km at 4 kpc.

  8. Startup of electrophoresis in a suspension of colloidal spheres.

    PubMed

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interaction mechanism of double bubbles in hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  10. Proton radius from electron scattering data

    NASA Astrophysics Data System (ADS)

    Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad

    2016-05-01

    Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering results and the muonic hydrogen results are consistent. It is the atomic hydrogen results that are the outliers.

  11. An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte.

    PubMed

    Jin, Ming Liang; Park, Sangsik; Kim, Jong-Seon; Kwon, Sung Hyun; Zhang, Shuye; Yoo, Min Seok; Jang, Sungwoo; Koh, Hyeong-Jun; Cho, Soo-Yeon; Kim, So Young; Ahn, Chi Won; Cho, Kilwon; Lee, Seung Geol; Kim, Do Hwan; Jung, Hee-Tae

    2018-05-01

    Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long-term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human-adaptive and skin-attachable biosensor platform for daily use and early diagnosis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hidden Criticality of Counterion Condensation Near a Charged Cylinder.

    PubMed

    Cha, Minryeong; Yi, Juyeon; Kim, Yong Woon

    2017-09-05

    Counterion condensation onto a charged cylinder, known as the Manning transition, has received a great deal of attention since it is essential to understand the properties of polyelectrolytes in ionic solutions. However, the current understanding is still far from complete and poses a puzzling question: While the strong-coupling theory valid at large ionic correlations suggests a discontinuous nature of the counterion condensation, the mean-field theory always predicts a continuous transition at the same critical point. This naturally leads to a question how one can reconcile the mean-field theory with the strong-coupling prediction. Here, we study the counterion condensation transition on a charged cylinder via Monte Carlo simulations. Varying the cylinder radius systematically in relation to the system size, we find that in addition to the Manning transition, there exists a novel transition where all counterions are bound to the cylinder and the heat capacity shows a drop at a finite Manning parameter. A finite-size scaling analysis is carried out to confirm the criticality of the complete condensation transition, yielding the same critical exponents with the Manning transition. We show that the existence of the complete condensation is essential to explain how the condensation nature alters from continuous to discontinuous transition.

  13. The effect of human microtubule-associated-protein tau on the assembly structure of microtubules and its ionic strength dependence

    NASA Astrophysics Data System (ADS)

    Choi, M. C.; Raviv, U.; Miller, H. P.; Gaylord, M. R.; Kiris, E.; Ventimiglia, D.; Needleman, D. J.; Chung, P. J.; Deek, J.; Lapointe, N.; Kim, M. W.; Wilson, L.; Feinstein, S. C.; Safinya, C. R.

    2010-03-01

    Microtubules (MTs), 25 nm protein nanotubes, are among the major filamentous elements of the eukaryotic cytoskeleton involved in intracellular trafficking, cell division and the establishment and maintenance of cell shape. Microtubule-associated-protein tau regulates tubulin assembly, MT dynamics and stability. Aberrant tau action has long been correlated with numerous neurodegenerative diseases, including Alzheimer's, and fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) Using synchrotron small angle x-ray scattering (SAXS) and binding assay, we examine the effects of tau on the assembly structure of taxol-stabilized MTs. We find that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius of MTs with increasing the tau/tubulin molar ratio. Additionally, tau-MT interactions are mediated to a large extent via electrostatic interactions: the binding affinity of tau to MTs is ionic strength dependent. Supported by DOE-BES DE-FG02-06ER46314, NSF DMR-0803103, NIH NS35010, NIH NS13560. (Ref) M.C. Choi, S.C. Feinstein, and C.R. Safinya et al. Biophys. J. 97; 519 (2009).

  14. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  15. Influence of the counteranion on the ability of 1-dodecyl-3-methyltriazolium ionic liquids to form mesophases

    DOE PAGES

    Stappert, Kathrin; Unal, Derya; Spielberg, Eike T.; ...

    2014-11-25

    The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl –, Br –, I –, I 3 –, PF 6 –, and Tf 2N – [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces themore » triazolium cation to align with it in this crystal structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. As a result, their clearing points shift with increasing anion radius to lower temperatures.« less

  16. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  17. Gravitational Instability of a Dust Layer Composed of Porous Silicate Dust Aggregates in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro

    2018-03-01

    Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.

  18. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima.

    PubMed

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C; Lammers, Laura N; Ikeda, Takashi; Sassi, Michel; Rosso, Kevin M; Machida, Masahiko

    2018-04-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study.

    PubMed

    Pidko, Evgeny A; Xu, Jiang; Mojet, Barbara L; Lefferts, Leon; Subbotina, Irina R; Kazansky, Vladimir B; van Santen, Rutger A

    2006-11-16

    A FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation. The topological analysis of the electron density distribution function of the adsorption complexes shows that when a hydrocarbon coordinates to the exchanged Mg(2+) ions, van der Waals bonds between H atoms of the alkane and basic zeolitic oxygens significantly contribute to the overall adsorption energy, whereas in case of CaY zeolite such interactions play only an indirect role. It is found that, due to the much smaller ionic radius of the Mg(2+) ion as compared to that of Ca(2+), the former ions are significantly shielded with the surrounding oxygens of the zeolitic cation site. This results in a small electrostatic contribution to the stabilization of the adsorbed molecules. In contrast, for CaY zeolite the stabilization of alkanes in the electrostatic field of the partially shielded Ca(2+) cation significantly contributes to the adsorption energy. This is in agreement with the experimentally observed lower overall absorption of C-H stretching vibrations of alkanes loaded to MgY as compared to those for CaY zeolite. The preferred conformation of the adsorbed alkanes is controlled by the bonding within the adsorption complexes that, in turn, strongly depends on the size and location of the cations in the zeolite cavity.

  20. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE PAGES

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.; ...

    2018-03-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  1. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  2. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  3. The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.

    PubMed

    Fedorova, Irina V; Safonova, Lyubov P

    2018-05-10

    Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.

  4. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  5. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media.

    PubMed

    Yang, Xinyao; Lin, Shihong; Wiesner, Mark R

    2014-01-15

    Interactions between organic matter (OM) and engineered polymer coatings as they affect the retention of polyvinylpyrrolidone (PVP) polymer-coated silver nanoparticles (AgNPs) were studied. Two distinct types of OM-cysteine representing low molecular weight multivalent functional groups, and Suwannee River Humic Acid (HA) representing high molecular weight polymers, were investigated with respect to their effects on particle stability in aggregation and deposition. Aggregation of the PVP coated AgNPs (PVP-AgNPs) was enhanced by cysteine addition at high ionic strengths, which was attributed to cysteine binding to the AgNPs and replacing the otherwise steric stabilizing agent PVP. In contrast the addition of HA did not increase aggregation rates and decreased PVP-AgNP deposition to the silica porous medium, consistent with enhanced electrosteric stabilization by the HA. Although cysteine also reduced deposition in the porous medium, the mechanisms of reduced deposition appear to be enhanced electric double layer (EDL) interaction at low ionic strengths. At higher ionic strengths, aggregation was favored leading to lower deposition due to smaller diffusion coefficients and single collector efficiencies despite the reduced EDL interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS

    NASA Astrophysics Data System (ADS)

    Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James

    2008-12-01

    Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.

  7. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N., E-mail: cockcroft@physics.mcmaster.ca, E-mail: harris@physics.mcmaster.ca, E-mail: ferguson@roe.ac.uk

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color,more » and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.« less

  8. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  9. Dynamics and fragmentation of thick-shelled microbubbles.

    PubMed

    May, Donovan J; Allen, John S; Ferrara, Katherine W

    2002-10-01

    Localized delivery could decrease the systemic side effects of toxic chemotherapy drugs. The unique delivery agents we examine consist of microbubbles with an outer lipid coating, an oil layer, and a perfluorobutane gas core. These structures are 0.5-12 microm in radius at rest. Oil layers of these acoustically active lipospheres (AALs) range from 0.3-1.5 microm in thickness and thus the agents can carry a large payload compared to nano-scale drug delivery systems. We show that triacetin-based drug-delivery vehicles can be fragmented using ultrasound. Compared with a lipid-shelled contrast agent, the expansion of the drug-delivery vehicle within the first cycle is similar, and a subharmonic component is demonstrated at an equivalent radius, frequency, and driving pressure. For the experimental conditions explored here, the pulse length required for destruction of the drug-delivery vehicle is significantly greater, with at least five cycles required, compared with one cycle for the contrast agent. For the drug-delivery vehicle, the observed destruction mechanism varies with the initial radius, with microbubbles smaller than resonance size undergoing a symmetric collapse and producing a set of small, equal-sized fragments. Between resonance size and twice resonance size, surface waves become visible, and the oscillations become asymmetrical. For agents larger than twice the resonance radius, the destruction mechanism changes to a pinch-off, with one fragment containing a large fraction of the original volume.

  10. General relativistic effects in the structure of massive white dwarfs

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Marinho, R. M.; Malheiro, M.

    2018-04-01

    In this work we investigate the structure of white dwarfs using the Tolman-Oppenheimer-Volkoff equations and compare our results with those obtained from Newtonian equations of gravitation in order to put in evidence the importance of general relativity (GR) for the structure of such stars. We consider in this work for the matter inside white dwarfs two equations of state, frequently found in the literature, namely, the Chandrasekhar and Salpeter equations of state. We find that using Newtonian equilibrium equations, the radii of massive white dwarfs (M>1.3M_{⊙ }) are overestimated in comparison with GR outcomes. For a mass of 1.415M_{⊙ } the white dwarf radius predicted by GR is about 33% smaller than the Newtonian one. Hence, in this case, for the surface gravity the difference between the general relativistic and Newtonian outcomes is about 65%. We depict the general relativistic mass-radius diagrams as M/M_{⊙ }=R/(a+bR+cR^2+dR^3+kR^4), where a, b, c and d are parameters obtained from a fitting procedure of the numerical results and k=(2.08× 10^{-6}R_{⊙ })^{-1}, being R_{⊙ } the radius of the Sun in km. Lastly, we point out that GR plays an important role to determine any physical quantity that depends, simultaneously, on the mass and radius of massive white dwarfs.

  11. The Influence of Notch Root Radius and Austenitizing Temperature on Fracture Appearance of As-Quenched Charpy-V Type AISI4340 Steel Specimens

    NASA Astrophysics Data System (ADS)

    Firrao, D.; Begley, J. A.; Silva, G.; Roberti, R.; de Benedetti, B.

    1982-06-01

    Charpy-V type samples either step-quenched from 1200 °C or directly quenched from the usual 870 °C temperature, fractured by a slow bend test procedure, have been fractographically examined. Their notch root radius, ρ, ranged from almost zero (fatigue precrack) up to 2.0 mm. The fracture initiation process at the notch differs according to root radius and heat treatment. Conventionally austenitized samples with ρ values larger than 0.07 mm approximately ( ρ eff) always display a continuous shear lip formation along the notch surface, whereas specimens with smaller notches do not exhibit a similar feature. Moreover, shear lip width in specimens with ρ > ρ eff is linearly related to the applied J-integral at fracture. In high temperature austenitized samples similar shear lips are almost nonexistent. The above findings, as well as overall fractographic features, are combined to explain why blunt notch AISI 4340 steel specimens display a better fracture resistance if they are conventionally heat treated, whereas fatigue precracked samples show a superior fracture toughness when they are step-quenched from 1200 °C. Variations of fracture morphologies with the notch root radius and heat treating procedures are associated with a shift toward higher Charpy transition temperatures under the combined influence of decreasing root radii and coarsening of the prior austenitic grain size at high austenitizing temperatures.

  12. The Influence of Plumbing System Structure on Volcano Dimensions and Topography

    NASA Astrophysics Data System (ADS)

    Castruccio, Angelo; Diez, Mikel; Gho, Rayen

    2017-11-01

    Volcano morphology has been traditionally studied from a descriptive point of view, but in this work we took a different more quantitative perspective. Here we used volcano dimensions such as height and basal radius, together with the topographic profile as indicators of key plumbing system properties. We started by coupling models for the ascent of magma and extrusion of lava flows with those for volcano edifice construction. We modeled volcanic edifices as a pile of lavas that are emitted from a single vent and reduce in volume with time. We then selected a number of arc-volcano examples to test our physical relationships and estimate parameters, which were compared with independent methods. Our results indicate that large volcanoes (>2,000 m height and base radius >10 km) usually are basaltic systems with overpressured sources located at more than 15 km depth. On the other hand, smaller volcanoes (<2,000 m height and basal radius <10 km) are associated with more evolved systems where the chambers feeding eruptions are located at shallower levels in the crust (<10 km). We find that surface observations on height and basal radius of a volcano and its lavas can give estimates of fundamental properties of the plumbing system, specifically the depth and size of the magma chamber feeding eruptions, as the structure of the magmatic system determines the morphology of the volcanic edifice.

  13. Globular, Sponge-like to Layer-like Morphological Transition in 1-n-Alkyl-3-methylimidazolium Octylsulfate Ionic Liquid Homologous Series.

    PubMed

    Kapoor, Utkarsh; Shah, Jindal K

    2018-01-11

    Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.

  14. Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: application of a multi-objective parallel genetic algorithm.

    PubMed

    Kaur, Jaspreet; Nygren, Anders; Vigmond, Edward J

    2014-01-01

    Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.

  15. Curvature induced phase stability of an intensely heated liquid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel

    2014-06-01

    We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

  16. Effect of Exit-Slot Position and Opening on the Available Cooling Pressure for NACA Nose-Slot Cowlings

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1940-01-01

    Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.

  17. Why is the rapid burster different from all other galactic-bulge X-ray sources?

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1987-01-01

    It is suggested that the rapid X-ray burster exhibits unique behavior because it contains a neutron star whose stellar radius is smaller than the minimum radius of a circular orbit that is stable according to general relativity. The star accretes from a disk that extends down to the last stable orbit. In this state, the disk is unstable against a rapid fall and accretion of its innermost part onto the star. The sudden dumping of mass gives rise to a burst of X-rays. The disk then heals, refilling the inner region at a pace that is dictated mainly by the global accretion rate, in order to ready itself for the next burst. In all other galactic-bulge-type sources, the neutron star is larger than the last stable orbit.

  18. Black branes in a box: hydrodynamics, stability, and criticality

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Martınez, Marina

    2012-07-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  19. Primordial inhomogeneities from massive defects during inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. Wemore » observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.« less

  20. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    PubMed

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  1. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    PubMed

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  2. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents.

    PubMed

    Brown, Aidan T; Poon, Wilson C K; Holm, Christian; de Graaf, Joost

    2017-02-08

    Polar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., H 2 O 2 ⇌ H + + HO 2 - . Using continuum theory, we study the influence of these association-dissociation reactions on the self-propulsion of colloids driven by surface chemical reactions (chemical swimmers). We find that association-dissociation reactions should have a strong influence on swimmers' behaviour, and therefore should be included in future modelling. In particular, such bulk reactions should permit charged swimmers to propel electrophoretically even if all species involved in the surface reactions are neutral. The bulk reactions also significantly modify the predicted speed of chemical swimmers propelled by ionic currents, by up to an order of magnitude. For swimmers whose surface reactions produce both anions and cations (ionic self-diffusiophoresis), the bulk reactions produce an additional reactive screening length, analogous to the Debye length in electrostatics. This in turn leads to an inverse relationship between swimmer radius and swimming speed, which could provide an alternative explanation for recent experimental observations on Pt-polystyrene Janus swimmers [S. Ebbens et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, 85, 020401]. We also use our continuum theory to investigate the effect of the Debye screening length itself, going beyond the infinitely-thin-screening-length approximation used by previous analytical theories. We identify significant departures from this limiting behaviour for micron-sized swimmers under typical experimental conditions and find that the approximation fails entirely for nanoscale swimmers.

  3. Cation radius effects on the helix-coil transition of DNA. Cryptates and other large cations.

    PubMed Central

    Trend, B L; Knoll, D A; Ueno, M; Evans, D F; Bloomfield, V A

    1990-01-01

    Most polyelectrolyte theories of the effect of ions on the thermal melting of DNA assume that the predominant influence of the cations comes through their charge. Ion size and structure are treated, for analytic convenience, as negligible variables. We have examined the validity of this assumption by measuring the melting temperature of calf thymus DNA as a function of salt concentration with four univalent cations of different hydrated radii. These are K+ (3.3 A), (n-Pr)4N+ (4.5 A), (EtOH)4N+ (4.5 A), and C222-K+ (5 A). C222-K+ is a complex of cryptand C222 with K+. With K+ as the sole cation, Tm varies linearly with the log of ionic strength over the range 0.001-0.1 M. With all the K+ sequestered by an equimolar amount of C222, Tm is depressed by 10-20 degrees C and the slope of Tm vs. ionic strength is lower. At low ionic strength, an even greater reduction in Tm is achieved with (n-Pr)4N+; but the similar-sized (EtOH)4N+ gives a curve more similar to K+. Theoretical modeling, taking into account cation size through the Poisson-Boltzmann equation for cylindrical polyelectrolytes, predicts that larger cations should be less effective in stabilizing the double helix; but the calculated effect is less than observed experimentally. These results show that valence, cation size, and specific solvation effects are all important in determining the stability of the double-helical form of DNA. PMID:2344467

  4. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  5. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS.

    PubMed

    Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru

    2018-05-15

    Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  7. The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue.

    PubMed

    Sánchez, Carlos; Corrias, Alberto; Bueno-Orovio, Alfonso; Davies, Mark; Swinton, Jonathan; Jacobson, Ingemar; Laguna, Pablo; Pueyo, Esther; Rodríguez, Blanca

    2012-03-01

    Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.

  8. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    PubMed

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  9. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale

    NASA Astrophysics Data System (ADS)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.

    2017-05-01

    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  10. Mass transport in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  11. Metal-metal bond lengths in complexes of transition metals.

    PubMed

    Pauling, L

    1976-12-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths.

  12. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  13. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraenkel, Dan, E-mail: dfraenkel@eltronresearch.com

    2014-02-07

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment – an extension of the Debye–Hückel theory to ions of dissimilar size (hence DH–SiS) – simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH–SiS equationsmore » for pure binary ionic systems, by adding to the three ion-size parameters – a (of counterions), b{sub +} (of positive coions), and b{sub −} (of negative coions) – a fourth parameter. For the (+ + −) system, this is “b{sub ++},” the contact distance between non-coion cations. b{sub ++} is derived from fits with experiment and, like the other b’s, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl–NaCl–H{sub 2}O, (2) HCl–NH{sub 4}Cl–H{sub 2}O, (3) (0.01 M HX)–MX–H{sub 2}O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl–MCl{sub n}–H{sub 2}O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH–SiS is thus shown to explain known “mysteries” in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.« less

  14. Morphological studies of sulfonated polystyrene and sulfonated EPDM ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.A.

    1992-12-31

    Two ionomer systems have been investigated in this research. Sulfonated polystyrene (SPS) is a typical random ionomer and is a good material for studies into the nature of phase separation in ionomers. A series of narrow molecular weight distribution (MWD) zinc neutralized SPS samples of varying sulfonation levels were prepared and analyzed through small angle x-ray scattering (SAXS). Results indicated that the correlation distance varied with both molecular weight and sulfonation level. Increases in the position of the scattering maximum with sulfonation level is the result of a greater number of ionic groups. Increasing molecular weight led to the movementmore » of the scattering maximum to smaller scattering vectors, an indication of larger distances. It was also observed that ionomer peak occurred at smaller scattering vectors for the narrow MWD samples than in corresponding materials of greater dispersity. SAXS was also used to examine the morphology of zinc stearate (ZnSt) filled sulfonated EPDM (S-EPDM) ionomers and the nature of the interaction between the plasticizer and the ionomer. S-EPDM is a material that may find use as a thermoplastic elastomer, although its melt viscosity is too high to allow for convenient processing. The addition of of ZnSt as a plasticizer greatly reduces the melt viscosity of S-EPDM. ZnSt exists in this system as very small crystallites which are associated with ionic groups. As the temperature is increased, the crystallites anneal briefly into larger crystals before melting and diffusing into the S-EPDM matrix. Above the melting temperature of the ZnSt, it solvates the ionic groups of the ionomer, decreasing their self-association and the viscosity of the system. Increasing ZnSt loading is seen in the SAXS as an increase in scattering in the low angle region. However, this increase in intensity is not linear with concentration, showing that ZnSt exists in different environments at higher concentrations.« less

  15. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    NASA Astrophysics Data System (ADS)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  16. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopesmore » of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.« less

  17. Regulating Effect of Asymmetrical Impeller on the Flow Distributions of Double-sided Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang

    2017-11-01

    To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.

  18. Finite-Larmor-radius effects on z-pinch stability

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  19. Earth's Bow Shock: Elapsed-Time Observations by Two Closely Spaced Satellites.

    PubMed

    Greenstadt, E W; Green, I M; Colburn, D S

    1968-11-22

    Coordinated observations of the earth's bow shock were made as Vela 3A and Explorer 33 passed within 6 earth radii of each other. Elapsed time measurements of shock motion give directly determined velocities in the range 1 to 10 kilometers per second and establish the existence of two regions, one of large amplitude magnetic "shock" oscillations and another of smaller, sunward, upstream oscillations. Each region is as thick as 1 earth radius, or more.

  20. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  1. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Edmundo; Pichardo, Bárbara; Velázquez, Héctor

    2014-10-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a nonaxisymmetric Galactic potential that includes a bar and a three-dimensional model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit instead of the usual linear trajectory employed in previous studies. We compare resultsmore » in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation of the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the nonaxisymmetric potential than those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the nonaxisymmetric potential.« less

  2. Visualizing polarization singularities in Bessel-Poincaré beams.

    PubMed

    Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C

    2015-05-04

    We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.

  3. Computational analysis and preliminary redesign of the nozzle contour of the Langley hypersonic CF4 tunnel

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.; Sutton, Kenneth

    1987-01-01

    A computational analysis, modification, and preliminary redesign study was performed on the nozzle contour of the Langley Hypersonic CF4 Tunnel. This study showed that the existing nozzle was contoured incorrectly for the design operating condition, and this error was shown to produce the measured disturbances in the exit flow field. A modified contour was designed for the current nozzle downstream of the maximum turning point that would provide a uniform exit flow. New nozzle contours were also designed for an exit Mach number and Reynolds number combination which matches that attainable in the Langley 20-Inch Mach 6 Tunnel. Two nozzle contours were designed: one having the same exit radius but a larger mass flow rate than that of the existing CF4 Tunnel, and the other having the same mass flow rate but a smaller exit radius than that of the existing CF4 Tunnel.

  4. Mathematical model of the direct reduction of dust composite pellets containing zinc and iron

    NASA Astrophysics Data System (ADS)

    An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-07-01

    Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.

  5. A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Mayra; Macías, Enrique; Anglada, Guillem

    We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ∼3.4 au and presents a central cavity of ∼1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months)more » than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.« less

  6. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  7. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  8. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  9. Spectral tunability of two-photon states generated by spontaneous four-wave mixing: fibre tapering, temperature variation and longitudinal stress

    NASA Astrophysics Data System (ADS)

    Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.

    2017-09-01

    We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.

  10. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  11. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  12. Proton radius from electron scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent

    Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less

  13. Proton radius from electron scattering data

    DOE PAGES

    Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; ...

    2016-05-31

    Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less

  14. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line.

    PubMed

    Dawes, Melissa A; Zweifel, Roman; Dawes, Nicholas; Rixen, Christian; Hagedorn, Frank

    2014-06-01

    To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species. © 2014 WSL Institute for Snow and Avalanche Research - SLF. New Phytologist © 2014 New Phytologist Trust.

  15. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  16. Dynamic mechanism of equivalent conductivity minimum of electrolyte solution

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2011-10-01

    The theory on electric conductivity of electrolyte solutions we have developed [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 127, 064508 (2007)] is applied to a model electrolyte solution that shows a minimum of equivalent conductivity as the function of concentration [T. Yamaguchi, T. Akatsuka, and S. Koda, J. Chem. Phys. 134, 244506 (2011)]. The theory succeeds in reproducing the equivalent conductivity minimum, whereas the mode-coupling theory (MCT) underestimates the conductivity in the low-concentration regime. The theory can also reproduce the decrease in the relaxation time of conductivity with increasing the concentration we have demonstrated with a Brownian dynamics simulation. A detailed analysis shows that the relaxation of the conductivity occurs through two processes. The faster one corresponds to the collision between a cation and an anion, and the slower one does to the polarization of the ionic atmosphere. The increase in the equivalent conductivity with concentration is attributed to the decrease in the effect of the ionic atmosphere, which is in turn explained by the fact that the counter ion cannot penetrate into the repulsive core when the Debye screening length is compatible or smaller than the ionic diameter. The same mechanism is also observed in MCT calculation with static structure factor determined by mean-spherical approximation.

  17. In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions: effect of irrigation pattern.

    PubMed

    Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus

    2007-05-01

    Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.

  18. Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue.

    PubMed

    Núñez, Silvia Cristina; Garcez, Aguinaldo Silva; Kato, Ilka Tiemy; Yoshimura, Tania Mateus; Gomes, Laércio; Baptista, Maurício Silva; Ribeiro, Martha Simões

    2014-03-01

    Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.

  19. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  20. Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids.

    PubMed

    Li, Song; Bañuelos, José Leobardo; Zhang, Pengfei; Feng, Guang; Dai, Sheng; Rother, Gernot; Cummings, Peter T

    2014-12-07

    The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.

  1. Anthropometric and skeletal phenotype in men with idiopathic osteoporosis and their sons is consistent with deficient estrogen action during maturation.

    PubMed

    Lapauw, Bruno; Taes, Youri; Goemaere, Stefan; Toye, Kaatje; Zmierczak, Hans-Georg; Kaufman, Jean-Marc

    2009-11-01

    Pathophysiology of deficient bone mass acquisition in male idiopathic osteoporosis (IO) remains poorly understood. Our objective was to investigate volumetric and geometric parameters of the appendicular skeleton, biochemical markers, and anthropometrics in men with IO. Our cross-sectional study included 107 men diagnosed with idiopathic low bone mass, 23 of their adult sons, and 130 age-matched controls. Body composition and areal bone parameters (dual-energy x-ray absorptiometry) and volumetric and geometric parameters of radius and tibia (peripheral quantitative computed tomography) were assessed. Serum levels of testosterone, estradiol (E(2)), and SHBG, and bone turnover markers were measured using immunoassays. Free hormone fractions were calculated. Men with idiopathic low bone mass had lower weight (-9.6%), truncal height (-3.3%), and upper/lower body segment ratio (-2.7%; all P < 0.001) and presented at the radius and tibia lower trabecular (-19.0 and -23.6%, respectively; both P < 0.001) and cortical volumetric bone mineral density (vBMD) (-2.4 and -1.7%; both P < 0.001) and smaller cortical areas (-9.7 and -13.6%; both P < 0.001) and thicknesses (-13.5 and -14.5%, both P < 0.001) due to larger endosteal circumferences (+11.8 and +7.4%, both P < 0.001) than controls. Furthermore, (free) E(2) was lower and SHBG higher (both P < 0.01). Their sons had lower trabecular vBMD (-10.3%, P = 0.036) and a thinner cortex (-8.3%, P = 0.024) at the radius. Bone mass deficits in men with idiopathic low bone mass involve trabecular and cortical bone, resulting from lower vBMD and smaller cortical bone cross-sectional areas and thicknesses. A similar bone phenotype is present in at least part of their sons. The lower E(2), together with characteristics as lower upper/lower body segment ratio, larger endosteal circumferences and lower vBMD, may indicate an estrogen-related factor in the pathogenesis of male IO.

  2. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    PubMed

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey telescopes as well as ground-based efforts.

  3. Understanding cation ordering and oxygen vacancy site preference in Ba3CaNb2O9 from first-principles

    NASA Astrophysics Data System (ADS)

    Ding, Hepeng; Virkar, Anil; Liu, Feng

    2014-03-01

    We investigate the physical mechanism underlying the formation of the B-site cation ordering and the oxygen vacancy site selection in Ba3CaNb2O9 using density functional theory calculations. We found that either cation site exchange or oxygen vacancy formation induces negligible lattice strain. This implies that the ionic radius plays an insignificant role in governing these two processes. Furthermore, the electrostatic interactions are found dominant in the ordering of mixed valence species on one or more sites, the ionic bond strength is identified as the dominant force in governing both the 1:2 B-site cation ordering along the <111>direction and the oxygen vacancy site preference in Ba3CaNb2O9. Specifically, the cation ordering can be rationalized by the increased mixing bonding energy of the Ca-O-Nb bonds over the Ca-O-Ca and Nb-O-Nb bonds, i.e., 1/2(Ca-O-Ca + Nb-O-Nb)

  4. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.

    PubMed

    Ding, Shiyuan; Yang, Yu; Huang, Haiou; Liu, Hengchen; Hou, Li-an

    2015-08-30

    The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan's effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan's effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions' radii as SO4(2-)>Cl(-)>NO3(-)>F(-). The variations in Sr rejection were influenced by the electrostatic interactions between Sr(2+) and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 4-(2-Pyridylazo)-resorcinol Functionalized Thermosensitive Ionic Microgels for Optical Detection of Heavy Metal Ions at Nanomolar Level.

    PubMed

    Zhou, Xianjing; Nie, Jingjing; Du, Binyang

    2015-10-07

    4-(2-Pyridylazo)-resorcinol (PAR) functionalized thermosensitive ionic microgels (PAR-MG) were synthesized by a one-pot quaternization method. The PAR-MG microgels were spherical in shape with radius of ca. 166.0 nm and narrow size distribution and exhibited thermo-sensitivity in aqueous solution. The PAR-MG microgels could optically detect trace heavy metal ions, such as Cu(2+), Mn(2+), Pb(2+), Zn(2+), and Ni(2+), in aqueous solutions with high selectivity and sensitivity. The PAR-MG microgel suspensions exhibited characteristic color with the presence of various trace heavy metal ions, which could be visually distinguished by naked eyes. The limit of colorimetric detection (DL) was determined to be 38 nM for Cu(2+) at pH 3, 12 nM for Cu(2+) at pH 7, and 14, 79, 20, and 21 nM for Mn(2+), Pb(2+), Zn(2+), and Ni(2+), respectively, at pH 11, which was lower than (or close to) the United States Environmental Protection Agency standard for the safety limit of these heavy metal ions in drinking water. The mechanism of detection was attributed to the chelation between the nitrogen atoms and o-hydroxyl groups of PAR within the microgels and heavy metal ions.

  6. Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation.

    PubMed

    Jochem, Aljosha-Rakim; Ankah, Genesis Ngwa; Meyer, Lars-Arne; Elsenberg, Stephan; Johann, Christoph; Kraus, Tobias

    2016-10-07

    Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV-vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1-20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.

  7. Spontaneous curvature as a regulator of the size of virus capsids

    NASA Astrophysics Data System (ADS)

    Šiber, Antonio; Majdandžić, Antonio

    2009-08-01

    We investigate the physical reasons underlying the high monodispersity of empty virus capsids assembled in thermodynamical equilibrium in conditions of favorable pH and ionic strength. We propose that the high fidelity of the assembly results from the effective spontaneous curvature of the viral protein assemblies and the corresponding bending rigidity that penalizes curvatures which are larger and smaller from the spontaneous one. On the example of hepatitis B virus, which has been thoroughly studied experimentally in the context of interest to us, we estimate the magnitude of bending rigidity that is needed to suppress the appearance of aberrant capsid structures (˜60kBT) . Our approach also demonstrates that the aberrant capsids that can be classified within the Caspar-Klug framework are in most circumstances likely to be smaller from the regular ones, in agreement with the experimental findings.

  8. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    PubMed Central

    2017-01-01

    Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis. PMID:29392181

  9. Coalescence of repelling colloidal droplets: a route to monodisperse populations.

    PubMed

    Roger, Kevin; Botet, Robert; Cabane, Bernard

    2013-05-14

    Populations of droplets or particles dispersed in a liquid may evolve through Brownian collisions, aggregation, and coalescence. We have found a set of conditions under which these populations evolve spontaneously toward a narrow size distribution. The experimental system consists of poly(methyl methacrylate) (PMMA) nanodroplets dispersed in a solvent (acetone) + nonsolvent (water) mixture. These droplets carry electrical charges, located on the ionic end groups of the macromolecules. We used time-resolved small angle X-ray scattering to determine their size distribution. We find that the droplets grow through coalescence events: the average radius (R) increases logarithmically with elapsed time while the relative width σR/(R) of the distribution decreases as the inverse square root of (R). We interpret this evolution as resulting from coalescence events that are hindered by ionic repulsions between droplets. We generalize this evolution through a simulation of the Smoluchowski kinetic equation, with a kernel that takes into account the interactions between droplets. In the case of vanishing or attractive interactions, all droplet encounters lead to coalescence. The corresponding kernel leads to the well-known "self-preserving" particle distribution of the coalescence process, where σR/(R) increases to a plateau value. However, for droplets that interact through long-range ionic repulsions, "large + small" droplet encounters are more successful at coalescence than "large + large" encounters. We show that the corresponding kernel leads to a particular scaling of the droplet-size distribution-known as the "second-scaling law" in the theory of critical phenomena, where σR/(R) decreases as 1/√(R) and becomes independent of the initial distribution. We argue that this scaling explains the narrow size distributions of colloidal dispersions that have been synthesized through aggregation processes.

  10. Disruption of Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2

    DTIC Science & Technology

    2007-10-24

    are prominent (Galdzicki and Siarey, 2003). We found that GIRK2 mRNA and protein subunits are highly overexpressed in multiple CNS structures ... STRUCTURE GIRK channels are members of the large family of potassium inward rectifiers (Kir). The seven subfamilies of Kir channels (Kir1-7) differ as...This ability to discriminate against the smaller Na+ (atomic radius: 0.95 Å) was elucidated by examining the pore structure of the bacterial KcsA

  11. Electronic structure and O vacancy formation/migration in La0.825(Mg/Ca/Ba)0.125CoO3

    NASA Astrophysics Data System (ADS)

    Omotayo Akande, Salawu; Gan, Li-Yong; Schwingenschlögl, Udo

    2016-04-01

    The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in perovskite LaCoO3 is studied using first-principles calculations. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state.

  12. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  13. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes.

    PubMed

    Shatursky, Oleg Ya; Volkova, Tatyana M; Himmelreich, Nina H; Grishin, Eugene V

    2007-11-01

    The dependence of single channel conductance formed by alpha-latroinsectotoxin (alpha-LIT) from black widow spider venom in the planar phospholipid membrane on the hydrodynamic radii of different nonelectrolytes allowed to determine the geometry of alpha-LIT water lumen. It was found that the cis- and trans-entrances of alpha-LIT channel had the same effective radii of 0.55-0.58 nm. Relatively small conductance of alpha-LIT channel (23.5+3.7 pS) in a symmetrical membrane bathing solution of 100 mM KCl (pH 7.4) may result from the constriction inside the channel with apparent radius of 0.37 nm located 32.5% of channel length away from the cis-entrance.

  14. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers

    NASA Astrophysics Data System (ADS)

    Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu

    2018-05-01

    We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

  15. Theoretical Study on Structural Stability of Fully Filled p-Type Skutterudites RETM4Sb12 ( RE = Rare Earth; TM = Fe, Ru)

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Yang, Jiong; Liu, Ruiheng; Xi, Lili; Zhang, Wenqing; Yang, Jihui

    2013-08-01

    The structural stability of filled p-type skutterudites RETM4Sb12 ( RE = rare earth; TM = Fe, Ru) was studied via ab initio calculations. Most of the RE metals (La-Ho and Yb) could be filled into the cages (voids) of Fe4Sb12 to form stable filled skutterudites. However, only a few RE metals (La-Nd and Eu) could be stably filled into the cage of Ru4Sb12-based skutterudites. Systematic analysis of bonding energy showed that the structural stability could be attributed to ionic radius and effective charge state differences of the RE fillers. Resonant rattling frequencies of the fillers in both Fe4Sb12- and Ru4Sb12-based skutterudites were also studied.

  16. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less

  17. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  18. Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4

    DOE PAGES

    Sinclair, R.; Ma, Jie; Cao, H. B.; ...

    2015-10-12

    The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less

  19. Hydrodynamic interpretation on the rotational diffusion of peroxylamine disulfonate solute dissolved in room temperature ionic liquids as studied by electron paramagnetic resonance spectroscopy.

    PubMed

    Miyake, Yusuke; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko

    2011-06-23

    Rotational motion of a nitroxide radical, peroxylamine disulfonate (PADS), dissolved in room temperature ionic liquids (RTILs) was studied by analyzing electron paramagnetic resonance spectra of PADS in various RTILs. We determined physical properties of PADS such as the hyperfine coupling constant (A), the temperature dependence of anisotropic rotational correlation times (τ(∥) and τ(⊥)), and rotational anisotropy (N). We observed that the A values remain unchanged for various RTILs, which indicates negligible interaction between the N-O PADS group and the cation of RTIL. Large N values suggest strong interaction of the negative sulfonyl parts of PADS with the cations of RTILs. Most of the τ(∥), τ(⊥), and (τ(∥)τ(⊥))(1/2) values are within the range calculated on the basis of a hydrodynamic theory with stick and slip boundary conditions. It was deduced that this theory could not adequately explain the measured results in some RTILs with smaller BF(4) and PF(6) anions.

  20. A dendrite-suppressing composite ion conductor from aramid nanofibres

    NASA Astrophysics Data System (ADS)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.

    2015-01-01

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  1. Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.

    2018-05-01

    Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.

  2. Observational and modeling studies of chemical species concentrations as a function of raindrop size

    NASA Astrophysics Data System (ADS)

    Wai, K. M.; Tam, C. W. F.; Tanner, P. A.

    The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.

  3. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.

    PubMed

    Chu, Xiuxiang

    2007-12-24

    The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.

  4. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-03-01

    EOF of non-Newtonian power-law fluids in a cylindrical microchannel is analyzed theoretically. Specially, exact solutions of electroosmotic velocity corresponding to two special fluid behavior indices (n = 0.5 and 1.0) are found, while approximate solutions are derived for arbitrary values of fluid behavior index. It is found that because of the approximation for the first-order modified Bessel function of the first kind, the approximate solutions introduce largest errors for predicting electroosmotic velocity when the thickness of electric double layer is comparable to channel radius, but can accurately predict the electroosmotic velocity when the thickness of electric double layer is much smaller or larger than the channel radius. Importantly, the analysis reveals that the Helmholtz-Smoluchowski velocity of power-law fluids in cylindrical microchannels becomes dependent on geometric dimensions (radius of channel), standing in stark contrast to the Helmholtz-Smoluchowski velocity over planar surfaces or in parallel-plate microchannels. Such interesting and counterintuitive effects can be attributed to the nonlinear coupling among the electrostatics, channel geometry, and non-Newtonian hydrodynamics. Furthermore, a method for enhancement of EOFs of power-law fluids is proposed under a combined DC and AC electric field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theory of Ostwald ripening in a two-component system

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Lee, L. K.; Frazier, D. O.; Naumann, R. J.

    1986-01-01

    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method.

  6. Hot super-dense compact object with particular EoS

    NASA Astrophysics Data System (ADS)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  7. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  8. The importance of dehydration in determining ion transport in narrow pores.

    PubMed

    Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben

    2012-06-11

    The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  10. Does Marcus-Hush theory really work Optical studies of intervalence transfer in acetylene-bridged biferrocene monocation at infinite dilution and at finite ionic strengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackbourn, R.L.; Hupp, J.T.

    1990-03-08

    Intervalence charge-transfer data for acetylene-bridged biferrocene monocation (Bf{sup +}) have been collected in five solvents in the presence and absence of excess electrolyte and in the limit of infinite chromophore dilution. The study was motivated by earlier work which demonstrated that the intervalence absorption maximum for Bf{sup +} in methylene chloride could vary substantially with both chromophore concentration and added electrolyte concentration. In the present study similar (but smaller) variations are found in other solvents.

  11. PHYSICAL PROPERTIES OF ZIRCONIUM NITRIDE IN THE HOMOGENEITY REGION (in Ukrainian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsonov, G.V.; Verkhoglyadova, T.S.

    1962-01-01

    The x-ray method was used to determine the homogeneity region of zirconium nitride as 40 to 50 at.% (9.5 to 13.3% by weight) of nitrogen. It is also shown that part of the ionic bond in the zirconium nitride lattice increases with a decrease in the nitrogen content in this region, this increase being higher than in the homogeneity region of titunium nitride due to the smaller degree of unfilling of the electron d-shell of the zirconium atom in comparison with that of the titanium atom. (auth)

  12. Effect of A-site La and Ba doping on threshold field and characteristic temperatures of PbSc0.5Ta0.5O3 relaxor studied by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Mihailova, B.; Gospodinov, M.; Roth, M.

    2012-09-01

    The structural transitions in Pb1-xLaxSc(1+x)/2Ta(1-x)/2O3, x = 0.08 (PLST) relaxor crystals were studied by means of acoustic emission (AE) under an external electric field (E) and compared with those observed in pure PbSc0.5Ta0.5O3 (PST) and Pb0.78Ba0.22Sc0.5Ta0.5O3 (PBST) [E. Dul'kin et al., EPL 94, 57002 (2011)]. Similar to both the PST and PBST compounds, in zero field PLST exhibits AE corresponding to a para-to-antiferroelectric incommensurate phase transition at Tn = 276 K, lying in the vicinity of dielectric temperature maximum (Tm). This AE signal exhibits a nontrivial behavior when applying E resembling the electric-field-dependence of Tn previously observed for both the PST and PBST, namely, Tn initially decreases with the increase of E, attains a minimum at a threshold field Eth = 0.5 kV/cm, accompanied by a pronounced maximum of the AE count rate Ṅ = 12 s-1, and then starts increasing as E enhances. The similarities and difference between PST, PLST, and PBST with respect to Tn, Eth, and Ṅ are discussed from the viewpoint of three mechanisms: (i) chemically induced random local electric field due to the extra charge on the A-site ion, (ii) disturbance of the system of stereochemically active lone-pair electrons of Pb2+ by the isotropic outermost electron shell of substituting ion, and (iii) change in the tolerance factor and elastic field to the larger ionic radius of the substituting A-site ion due to the different radius of the substituting ion. The first two mechanisms influence the actual values of Tn and Eth, whereas the latter is shown to affect the normalized Ṅ, indicating the fractions undergoing a field-induced crossover from a modulated antiferroelectric to a ferroelectric state. Creation of secondary random electric field, caused by doping-induced A-site-O ionic chemical bonding, is discussed.

  13. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    NASA Astrophysics Data System (ADS)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated Δ G_hyd^{ominus }[H+] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of Δ G_hyd^{ominus }[H+] close to -1100 kJ.mol-1.

  14. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Jackson, Brian; Jennings, Donald E.

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields R{sub p} = 4.31 R{sub +} {+-} 0.06 R{sub +} and R{sub s} = 0.683 R{sub sun} {+-} 0.009 R{sub sun}, both about 3{sigma} smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transitmore » duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases -0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12{sup 0} {+-} 5{sup 0} to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.« less

  16. Structure of Saturn's Rings from Cassini Diametric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.; Thomson, F.; Wong, K.

    2005-08-01

    Cassini orbits around Saturn were designed to provide eight optimized radio occultation observations of Saturn's rings during summer, 2005. Three monochromatic radio signals (0.94, 3.6, and 13 cm-wavelength) were transmitted by Cassini through the rings and observed at multiple stations of the NASA Deep Space Network. A rich data set has been collected. Detailed structure of Ring B is revealed for the first time, including multi-feature dense ''core'' ˜ 6,000 km wide of normal optical depth > 4.3, a ˜ 5,500 km region of oscillations in optical depth ( ˜ 1.7 to ˜ 3.4) over characteristic radial scales of few hundred kilometers interior to the core, and a ˜ 5,000 km region exterior to the core of similar nature but smaller optical depth fluctuation ( ˜ 2.2 to ˜ 3.3). The innermost ˜ 7,000 km region is the thinnest (mean optical depth ˜ 1.2), and includes two unusually uniform regions and a prominent density wave. With few exceptions, the structure is nearly identical for the three radio signals (when detectable), indicating that Ring B is relatively devoid of centimeters and smaller size particles. The structure is largely circularly symmetric, except for radius > ˜ 116,600 km. In Ring A, numerous (> 40) density waves are clearly observed at multiple longitudes, different average background optical depth is observed among different occultations suggesting that the azimuthal asymmetry extends over most Ring A, and strong dependence of the observed structure on wavelength implies increase in the abundance of centimeter and smaller size particles with increasing radius. Multiple longitude observations of Ring C and the Cassini Division structure reveal remarkable variability of gaps and their embedded narrow eccentric ringlets, and a wake/wave like feature interior to the gap at ˜ 118,200 km (embedded moonlet?). Wavelength dependent structure of Ring C implies abundance of centimeter size particles everywhere and sorting by size within dense embedded features.

  17. Nanostructured protic ionic liquids retain nanoscale features in aqueous solution while precursor Brønsted acids and bases exhibit different behavior.

    PubMed

    Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Tse, Nicholas M K; Kirby, Nigel; Drummond, Calum J

    2011-03-10

    Small- and wide-angle X-ray scattering (SWAXS) has been used to investigate the effect that water has on the nanoscale structure of protic ionic liquids (PILs) along with their precursor Brønsted acids and bases. The series of PILs consisted of primary, secondary, and tertiary alkylammonium cations in conjunction with formate, nitrate, or glycolate anions. Significant differences were observed for these systems. The nanoscale aggregates present in neat protic ionic liquids were shown to be stable in size on dilution to high concentrations of water, indicating that the water is localized in the ionic region and has little effect on the nonpolar domains. The Brønsted acid-water solutions did not display nanostructure at any water concentration. Primary amine Brønsted bases formed aggregates in water, which generally displayed characteristics of poorly structured microemulsions or a form of bicontinuous phase. Exceptions were butyl- and pentylamine with high water concentrations, for which the SWAXS patterns fitted well to the Teubner-Strey model for microemulsions. Brønsted base amines containing multiple alkyl chains or hydroxyl groups did not display nanostructure at any water concentration. IR spectroscopy was used to investigate the nature of water in the various solutions. For low PIL concentrations, the water was predominately present as bulk water for PIL molar fractions less than 0.4-0.5. At high PIL concentrations, in addition to the bulk water, there was a significant proportion of perturbed water, which is water influenced in some way by the cations and anions. The molecular state of the water in the studied amines was predominately present as bulk water, with smaller contributions from perturbed water than was seen in the PILs. © 2011 American Chemical Society

  18. The ionic bases of the action potential in isolated mouse cardiac Purkinje cell.

    PubMed

    Vaidyanathan, Ravi; O'Connell, Ryan P; Deo, Makarand; Milstein, Michelle L; Furspan, Philip; Herron, Todd J; Pandit, Sandeep V; Musa, Hassan; Berenfeld, Omer; Jalife, José; Anumonwo, Justus M B

    2013-01-01

    Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion.

    PubMed

    Yeganegi, Saeid; Soltanabadi, Azim; Farmanzadeh, Davood

    2012-09-20

    Structures and dynamics of nine geminal dicationic ionic liquids (DILs) Cn(mim)2X2, where n = 3, 6, and 9 and X = PF6(-), BF4(-), and Br(-), were studied by molecular dynamic simulations (J. Phys. Chem.B2004, 108, 2038-2047). A force field with a minor modification for C3(mim)2 × 2 was adopted for the simulations. Densities, detailed microscopic structures, mean-square displacements (MSD), and self-diffusivities for various ion pairs from MD simulations have been presented. The calculated densities for C9(mim)2X2 (X = Br(-) and BF4(-)) agreed well with the experimental values. The calculated RDFs show that anions are well organized around the imidazolium rings. The calculated RDFs indicate that, unlike the mono cationic ILs, the anions and cations in DILs distribute homogeneously. Enthalpies of vaporization were calculated and correlated with the structural features of DILs. The local structure of C9(mim)2X2 (X = Br, PF6) was examined by the spatial distribution function (SDF). The calculated SDFs show that similar trends were found by other groups for mono cationic ionic liquids (ILs). The highest probability densities are located around the imidazolium ring hydrogens. The calculated diffusion coefficients show that the ion diffusivities are 1 order of magnitude smaller than that of the mono cationic ionic liquids. The effects of alkyl chain length and anion type on the diffusion coefficient were also studied. The dynamics of the imidazolium rings and the alkyl chain in different time scales have also discussed. The calculated transference numbers show that the anions have the major role in carrying the electric current in a DIL.

  20. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    PubMed

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  1. Synthesis and Characterization of Polydiacetylene Films and Nanotubes

    PubMed Central

    Gatebe, Erastus; Herron, Hayley; Zakeri, Rashid; Rajasekaran, Pradeep Ramiah; Aouadi, Samir; Kohli, Punit

    2009-01-01

    We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV–vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current–voltage (I–V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as “locks” in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I–V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes. PMID:18823090

  2. Tidal interactions of inspiraling compact binaries

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Cutler, Curt

    1992-01-01

    We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.

  3. Experimental studies on the impact properties of water ice

    NASA Technical Reports Server (NTRS)

    Bridges, F. G.; Lin, D. N. C.; Hatzes, A. P.

    1987-01-01

    Experimental studies on the impact of ice particles at very low velocity were continued. These measurements have applications in the dynamics of Saturn's rings. Initially data were obtained on the coefficient of restitution for ice spheres of one radius of curvature. The type of measurements were expanded to include restitution data for balls with a variety of surfaces as well as sticking forces between ice particles. Significant improvements were made to this experiment, the most important being the construction of a new apparatus. The new apparatus consists of a smaller version of the disk pendulum and a stainless steel, double-walled cryostat. The apparatus has proved to be a significant improvement over the old one. Measurements can now be made at temperatures near 90 K, comparable to the temperature of the environment of Saturn's rings, and with much greater temperature stability. It was found that a roughened contact surface or the presence of frost can cause a much larger change in the restitution measure than the geometrical effect of the radius of curvature.

  4. Search for a new resonance in the boosted di-Higgs to 4 bottom quarks final state at √s = 8 TeV using the ATLAS detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Zhou, Lei

    This thesis presents a search for a new, heavy particle decaying to a pair of Higgs bosons in the 4 bottom quarks final state at √ s=8 TeV. ATLAS detector at the Large Hadron Collider. The full data collected by ATLAS in 2012 at √s=8 TeV. is used, corresponding to a total luminosity of 19.5 fb-1. A novel technique, using smaller radius track jet to tag bottom quarks in combination with two large radius calorimeter jets to fully reconstruct boosted event topologies, significantly improves the sensitivity up to the mass scale of 2 TeV. In the absence of an excess, upper limits on the production cross section are set with 95% confidence level, using Kaluza-Klein gravitons in the bulk Randal-Sundrum model with coupling c ≡ k/MPl = 1.0 and 2.0 as benchmarks.

  5. UV spectroscopy of Titan's atmosphere, planetary organic chemistry and prebiological synthesis. II - Interpretation of new IUE observations in the 220-335 nm range

    NASA Technical Reports Server (NTRS)

    Courtin, Regis; Wagener, Richard; Mckay, Christopher P.; Caldwell, John; Fricke, Karl-Heinrich

    1991-01-01

    The theoretical model developed by McKay et al. (1989) to characterize the size distribution, thermal structure, and chemical composition of the stratospheric haze of Titan is applied to new 220-335-nm albedo measurements obtained with the long-wavelength prime camera of the IUE during August 1987. Data and model predictions are presented in extensive graphs and discussed in detail. It is shown that a simple model with particles of one size at a given altitude does not accurately reproduce the observed features in all spectral regions, but that good general agreement is obtained using a model with a uniformly mixed layer at 150-600 km and a bimodal distribution of small 'polymer' haze particles (radius less than 20 nm) and larger haze particles (radius 100-500 nm). The number densities implied by this model require, however, a mechanism such as electrostatic charging or reaction kinetics to inhibit coagulation of the smaller particles.

  6. Investigating fold structures of 2D materials by quantitative transmission electron microscopy.

    PubMed

    Wang, Zhiwei; Zhang, Zengming; Liu, Wei; Wang, Zhong Lin

    2017-04-01

    We report an approach developed for deriving 3D structural information of 2D membrane folds based on the recently-established quantitative transmission electron microscopy (TEM) in combination with density functional theory (DFT) calculations. Systematic multislice simulations reveal that the membrane folding leads to sufficiently strong electron scattering which enables a precise determination of bending radius. The image contrast depends also on the folding angles of 2D materials due to the variation of projection potentials, which however exerts much smaller effect compared with the bending radii. DFT calculations show that folded edges are typically characteristic of (fractional) nanotubes with the same curvature retained after energy optimization. Owing to the exclusion of Stobbs factor issue, numerical simulations were directly used in comparison with the experimental measurements on an absolute contrast scale, which results in a successful determination of bending radius of folded monolayer MoS 2 films. The method should be applicable to characterizing all 2D membranes with 3D folding features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Scaled experiments of explosions in cavities

    DOE PAGES

    Grun, J.; Cranch, G. A.; Lunsford, R.; ...

    2016-05-11

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less

  8. Micromagnetic simulation study of magnetization reversal in torus-shaped permalloy nanorings

    NASA Astrophysics Data System (ADS)

    Mishra, Amaresh Chandra; Giri, R.

    2017-09-01

    Using micromagnetic simulation, the magnetization reversal of soft permalloy rings of torus shape with major radius R varying within 20-100 nm has been investigated. The minor radius r of the torus rings was increased from 5 nm up to a maximum value rmax such that R- rmax = 10 nm. Micromagnetic simulation of in-plane hysteresis curve of these nanorings revealed that in the case of very thin rings (r ≤ 10 nm), the remanent state is found to be an onion state, whereas for all other rings, the remanent state is a vortex state. The area of the hysteresis loop was found to be decreasing gradually with the increment of r. The normalized area under the hysteresis loops (AN) increases initially with increment of r. It attains a maximum for a certain value of r = r0 and again decreases thereafter. This value r0 increases as we decrease R and as a result, this peak feature is hardly visible in the case of smaller rings (rings having small R).

  9. Mixed Lubrication Simulation of Hydrostatic Spherical Bearings for Hydraulic Piston Pumps and Motors

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu

    Mixed and fluid film lubrication characteristics of hydrostatic spherical bearings for swash-plate-type axial piston pumps and motors are studied theoretically under non-steady-state conditions. The basic equations incorporating interference and contact of surface roughness are derived fundamentally through combination of the GW and PC models. Furthermore, a programming code that is applicable to the caulked-socket-type and open-socket-type bearings is developed. Effects of caulking, operating conditions, and the bearing dimension on the motion of the sphere and tribological performance of the bearings are examined. Salient conclusions are the following: The sphere's eccentricity increases in the low supply pressure period. The time-lag of the load change engenders greater motion of the sphere. Caulking of the bearing socket suppresses the sphere's motion. The bearing stiffness increases and power loss decreases for smaller recess angles. Minimum power loss is given under the condition that the bearing socket radius nearly equals the equivalent load radius.

  10. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    PubMed

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  11. Brownian escape and force-driven transport through entropic barriers: Particle size effect.

    PubMed

    Cheng, Kuang-Ling; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2008-11-14

    Brownian escape from a spherical cavity through small holes and force-driven transport through periodic spherical cavities for finite-size particles have been investigated by Brownian dynamic simulations and scaling analysis. The mean first passage time and force-driven mobility are obtained as a function of particle diameter a, hole radius R(H), cavity radius R(C), and external field strength. In the absence of external field, the escape rate is proportional to the exit effect, (R(H)R(C))(1-a2R(H))(32). In weak fields, Brownian diffusion is still dominant and the migration is controlled by the exit effect. Therefore, smaller particles migrate faster than larger ones. In this limit the relation between Brownian escape and force-driven transport can be established by the generalized Einstein-Smoluchowski relation. As the field strength is strong enough, the mobility becomes field dependent and grows with increasing field strength. As a result, the size selectivity diminishes.

  12. Effects of longitudinal speed reduction markings on left-turn direct connectors.

    PubMed

    Zhao, Xiaohua; Ding, Han; Lin, Zhanzhou; Ma, Jianming; Rong, Jian

    2018-06-01

    Longitudinal speed reduction markings (LSRMs) are designed to alert drivers to an upcoming change in roadway geometry (e.g. direct connectors with smaller radii). In Beijing, LSRMs are usually installed on direct connectors of urban expressways. The objective of this paper is to examine the influence of LSRMs on vehicle operation and driver behavior, and evaluate the decelerating effectiveness of LSRMs on direct connectors with different radii. Empirical data were collected in a driving simulator, and indicators representing vehicle operation status and driving behavior were proposed. To examine the influence of LSRMs, an analysis segment was defined, which begins 500 m prior to the entering point of the connector and ends at the exiting point of the connector. Furthermore, the analysis segment was evenly divided into a series of subsections; the length of each subsection is 50 m. This definition is introduced based on the assumption that drivers would decelerate smoothly in advance of the connector. The analysis results show that drivers tend to decelerate earlier when the radii were 200 m or 300 m. When approaching the connector, drivers tend to decelerate at 500 m thru 250 m in advance of the connector with a 200 m radius; deceleration happens at 300 m-0 m in advance of the connector with a 300 m radius. On the connector, drivers controlled the throttle pedal use at 100 thru 300 m after the entering point when the radius was 200 m; deceleration occurred in two regions when the radius was 300 m: 0 m-900 m from the entering point, and the last 1,000 m of the connector. The analytical results further revealed that LSRMs would be effective at reducing speeds when the radius of the direct connector was 300 m. Copyright © 2018. Published by Elsevier Ltd.

  13. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.

    PubMed

    Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong

    2012-07-24

    We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.

  14. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  15. Rarefaction and Non-equilibrium Effects in Hypersonic Flows about Leading Edges of Small Bluntness

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail; Khotyanovsky, Dmitry; Kudryavtsev, Alexey; Shershnev, Anton; Bondar, Yevgeniy; Yonemura, Shigeru

    2011-05-01

    A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations demonstrate significant effects of the entropy layer on the boundary layer characteristics.

  16. Dynamics of a Sonoluminescing Bubble in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Hopkins, Stephen D.; Putterman, Seth J.; Kappus, Brian A.; Suslick, Kenneth S.; Camara, Carlos G.

    2005-12-01

    The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (˜10ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.

  17. Dynamics of a sonoluminescing bubble in sulfuric acid.

    PubMed

    Hopkins, Stephen D; Putterman, Seth J; Kappus, Brian A; Suslick, Kenneth S; Camara, Carlos G

    2005-12-16

    The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (approximately 10 ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.

  18. Kepler

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    2011-01-01

    The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.

  19. A comparison theorem for the SOR iterative method

    NASA Astrophysics Data System (ADS)

    Sun, Li-Ying

    2005-09-01

    In 1997, Kohno et al. have reported numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, is superior to the SOR iterative method. In this paper, we prove that the spectral radius of the IMGS method is smaller than that of the SOR method and Gauss-Seidel method, if the relaxation parameter [omega][set membership, variant](0,1]. As a result, we prove theoretically that this method is succeeded in improving the convergence of some classical iterative methods. Some recent results are improved.

  20. Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Koda, S.

    2010-03-01

    The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.

  1. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.

    PubMed

    Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika

    2014-01-01

    A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology. © 2013.

  2. CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters.

    PubMed

    Karakashev, Stoyan I; Smoukov, Stoyan K

    2017-09-01

    The critical micelle concentration (CMC) of various surfactants is difficult to predict accurately, yet often necessary to do in both industry and science. Hence, quantum-chemical software packages for precise calculation of CMC were developed, but they are expensive and time consuming. We show here an easy method for calculating CMC with a reasonable accuracy. Firstly, CMC 0 (intrinsic CMC, absent added salt) was coupled with quantitative structure - property relationship (QSPR) with defined by us parameter "CMC predictor" f 1 . It can be easily calculated from a number of tabulated molecular parameters - the adsorption energy of surfactant's head, the adsorption energy of its methylene groups, its number of carbon atoms, the specific adsorption energy of its counter-ions, their valency and bare radius. We applied this method to determine CMC 0 to a test set of 11 ionic surfactants, yielding 7.5% accuracy. Furthermore, we calculated CMC in the presence of added salts using the advanced version of Corrin-Harkins equation, which accounts for both the intrinsic and the added counter-ions. Our salt-saturation multiplier, accounts for both the type and concentration of the added counter-ions. We applied our theory to a test set containing 11 anionic/cationic surfactant+salt systems, achieving 8% accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors.

    PubMed

    Becker, Markus; Klüner, Thorsten; Wark, Michael

    2017-03-14

    The development of hybrid organic-inorganic perovskite solar cells is one of the most rapidly growing fields in the photovoltaic community and is on its way to challenge polycrystalline silicon and thin film technologies. High power conversion efficiencies can be achieved by simple processing with low cost. However, due to the limited long-term stability and environmental toxicity of lead in the prototypic CH 3 NH 3 PbI 3 , there is a need to find alternative ABX 3 constitutional combinations in order to promote commercialization. The Goldschmidt tolerance factor and the octahedral factor were found to be necessary geometrical concepts to evaluate which perovskite compounds can be formed. It was figured out that the main challenge lies in estimating an effective ionic radius for the molecular cation. We calculated tolerance factors and octahedral factors for 486 ABX 3 monoammonium-metal-halide combinations, where the steric size of the molecular cation in the A-position was estimated concerning the total charge density. A thorough inquiry about existing mixed organic-inorganic perovskites was undertaken. Our results are in excellent agreement with the reported hybrid compounds and indicate the potential existence of 106 ABX 3 combinations hitherto not discussed in the literature, giving hints for more intense research on prospective individual candidates.

  4. Caesalpinia bonduc serine proteinase inhibitor CbTI-2: Exploring the conformational features and antimalarial activity.

    PubMed

    Bhattacharyya, Arindam; Babu, C R

    2017-10-01

    Seeds of tropical legumes posses a repertoire of proteinase inhibitors (PI) and the current study highlights some structural/functional features of a strong serine PI from the seeds of Caesalpinia bonduc (CbTI-2). Following purification, N-terminal sequence of CbTI-2 revealed over 40% similarity with a few serine PIs of Caesalpinioideae subfamily. Upon exposure to metal ions and ionic/non ionic surfactants, CbTI-2 showed immense variation in the levels of antitryptic activity. Exposure of CbTI-2 to 1,4-Dithiothreitol, Guanidinium HCl, H 2 O 2 and Dimethyl sulfoxide led to a steady loss of inhibitory activity. Chemical modification of amino acids suggested an arginine as the active site residue. Circular Dichroism spectrum of native CbTI-2 revealed an unordered state. Secondary structure composition of CbTI-2 following exposure to extreme conditions (heat, acidic/alkaline environment, Guanidine hydrochloride and DTT) showed considerable perturbations that caused severe loss of antiproteolytic activity. DLS studies yielded a hydrodynamic radius of ∼2.2nm for CbTI-2 and also reconfirmed 1:1 stoichiometry for the trypsin-CbTI-2 complex. Initial studies indicated CbTI-2 to be a potent antiplasmodial agent by being highly toxic towards growth, schizont rupture process and erythrocytic invasion of Plasmodium falciparum. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Minor elements incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave (SE-France)

    NASA Astrophysics Data System (ADS)

    Bourdin, C.; Douville, E.; Genty, D.

    2009-12-01

    A multi-elemental study focusing on earth-alkalis (Mg, Ca, Sr and Ba), uranium and rare-earth elements (REE) in the calcite of a stalagmite from the Chauvet Cave (SE of France) has been achieved by ICP-MS. The Chau-stm6 stalagmite which grew from 33 to 11.5 ky had already been dated and the published d13C and d18O profile is used as a paleoclimatic benchmark. Ba and Sr profiles show an abrupt concentration increase at the beginning of the last deglaciation whereas U and Mg feature a decreasing trend. REY (REE+yttrium) concentrations decrease markedly during early deglaciation (between 15 and 14.5 ky). The transition corresponds to a change from a slow to a fast growth rate. These variations can be explained by the crystallographic control of ionic radii of the minor elements: incorporation of small ions compared to Ca such as U, Mg, heavy REE are favoured during slow growth period (i.e. glacial) whereas large ions such as Ba, Sr and light REE are preferentially precipitated during fast growth period (i.e. Bolling-Allerod). This crystallographic effect seems to be dominant here because the soil above the cave is sparse. And may not have played a major role on the opposite to the water-limestone interaction.

  6. Single-coil properties and concentration effects for polyelectrolyte-like wormlike micelles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Cannavacciuolo, Luigi; Skov Pedersen, Jan; Schurtenberger, Peter

    2002-03-01

    Results of an extensive Monte Carlo (MC) study on both single and many semiflexible charged chains with excluded volume (EV) are summarized. The model employed has been tailored to mimic wormlike micelles in solution. Simulations have been performed at different ionic strengths of added salt, charge densities, chain lengths and volume fractions Φ, covering the dilute to concentrated regime. At infinite dilution the scattering functions can be fitted by the same fitting functions as for uncharged semiflexible chains with EV, provided that an electrostatic contribution bel is added to the bare Kuhn length. The scaling of bel is found to be more complex than the Odijk-Skolnick-Fixman predictions, and qualitatively compatible with more recent variational calculations. Universality in the scaling of the radius of gyration is found if all lengths are rescaled by the total Kuhn length. At finite concentrations, the simple model used is able to reproduce the structural peak in the scattering function S(q) observed in many experiments, as well as other properties of polyelectrolytes (PELs) in solution. Universal behaviour of the forward scattering S(0) is established after a rescaling of Φ. MC data are found to be in very good agreement with experimental scattering measurements with equilibrium PELs, which are giant wormlike micelles formed in mixtures of nonionic and ionic surfactants in dilute aqueous solution, with added salt.

  7. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.

    PubMed

    Cevheri, Necmettin; Yoda, Minami

    2013-07-01

    The wall ζ-potential ζ(w), the potential at the shear plane of the electric double layer, depends on the properties of the BGE solution such as the valence and type of electrolyte, the pH and the ionic strength. Most of the methods estimate ζ(w) from measurements of the EOF velocity magnitude ueo , usually spatially averaged over the entire capillary. In these initial studies, evanescent-wave particle velocimetry was used to measure ueo in steady EOF for a variety of monovalent aqueous solutions to evaluate the effect of small amounts of divalent cations, as well as the pH and ionic strength of BGE solutions. In brief, the magnitude of the EOF velocity of NaCl-NaOH and borate buffer-NaOH solutions was estimated from the measured velocities of radius α = 104 nm fluorescent polystyrene particles in 33 μm fused-silica microchannels. The particle ζ-potentials were measured separately using laser-Doppler micro-electrophoresis; ζ(w) was then determined from ueo. The results suggest that evanescent-wave particle velocimetry can be used to estimate ζ(w) for a variety of BGE solutions, and that it can be used in the future to estimate local wall ζ-potential, and hence spatial variations in ζ(w). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  9. Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems

    NASA Astrophysics Data System (ADS)

    Wijaya, Emmy C.; Separovic, Frances; Drummond, Calum J.; Greaves, Tamar L.

    2018-05-01

    There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926-25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data showed little change with varying ionicity or acid:base ratio. FTIR showed that α-helix was maintained in all, except for the most acidic solvent conditions. The activity data show that HEWL was active between pH 0 and 11 for the EA:N-water system and pH 4.4 and 11 for the EOA:F-water system. This work indicates that ionic liquids have the potential to enable enzymes to maintain activity across a broader range of solvent conditions.

  10. Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kasprzyk, Marta; Środa, Marcin

    2018-06-01

    A series of aluminosilicate glasses 25SiO2·(20-x)Al2O3·40Na2O·15BaO-xGd2O3 with 0 ≤ x ≤ 10 were prepared in order to analyze the influence of gadolinium on thermal and spectroscopic properties of these materials. Increasing of thermal parameters (Tg, Tx, Δcp, ΔT) values with higher Gd2O3 content was determined using DSC method. Crystalline phases, formed during heat treatment, were identified with XRD - NaAlSiO4 and BaSiO3 in glass with 0% mol. Gd2O3 and Gd9.33(SiO4)6O2, NaAlSiO4 and BaAl2Si2O6 in glass with 10% mol. Gd2O3. Spectroscopic analysis - FTIR and Raman - revealed Gd2O3 influence on glass structure in the same way like Al2O3, but some differences appear due to the differ bond strength and ionic radius between Gd and Al. Raman spectra confirmed higher network polymerization (enriched with Q2 units). Optical band gap energy (Eopt) and Urbach energy (ΔE) were calculated from the Tauc plot. Mechanical tests demonstrated lower microhardness with increasing content of Gd2O3 content, as a result of higher concentration of atoms with larger radius.

  11. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media.

    PubMed

    Bradford, Scott A; Torkzaban, Saeed; Shapiro, Alexander

    2013-06-11

    A balance of applied hydrodynamic (T(H)) and resisting adhesive (T(A)) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height h(r) to determine the fraction of the solid surface area that contributes to colloid immobilization (S(f)*) under unfavorable attachment conditions. This model considers resistance due to deformation and the horizontal component of the adhesive force (F(AT)), spatial variations in the pore scale velocity distribution, and the influence of hr on lever arms for T(H) and T(A). Values of S(f)* were calculated for a wide range of physicochemical properties to gain insight into mechanisms and factors influencing colloid immobilization. Colloid attachment processes were demonstrated to depend on solution ionic strength (IS), the colloid radius (r(c)), the Young's modulus (K), the amount of chemical heterogeneity (P+), and the Darcy velocity (q). Colloid immobilization was also demonstrated to occur on a rough surface in the absence of attachment. In this case, S(f)* depended on IS, r(c), the roughness fraction (f0), h(r), and q. Roughness tended to enhance T(A) and diminish T(H). Consequently, the effect of IS on S(f)* was enhanced by h(r) relative to attachment. In contrast, the effects of r(c) and q on S(f)* were diminished by hr in comparison to attachment. Colloid immobilization adjacent to macroscopic roughness locations shares many similarities to grain-grain contact points and may be viewed as a type of straining process. In general, attachment was more important for higher IS and variance in the secondary minimum, and for smaller r(c), q, and K, but diffusion decreased these values. Conversely, straining was dominant for the opposite conditions. Discrepancies in the literature on mechanisms of colloid retention are likely due to a lack of consideration of all of these factors.

  12. Competitive Incorporation of Perrhenate and Nitrate into Sodalite

    DOE PAGES

    Dickson, Johnbull O.; Harsh, James B.; Flury, Markus; ...

    2014-10-03

    Nuclear waste storage tanks at the Hanford site in southeastern Washington have released highly alkaline solutions, containing radioactive and other contaminants, into subsurface sediments. When this waste reacts with subsurface sediments, feldspathoid minerals (sodalite, cancrinite) can form, sequestering pertechnetate ( 99TcO 4 –) and other ions. This study investigates the potential for incorporation of perrhenate (ReO 4 –), a chemical surrogate for 99TcO 4 –, into mixed perrhenate/nitrate (ReO 4 –/NO 3 –) sodalite. Mixed-anion sodalites were hydrothermally synthesized in the laboratory from zeolite A in sodium hydroxide, nitrate, and perrhenate solutions at 90 °C for 24 h. The resultingmore » solids were characterized by bulk chemical analysis, X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure spectroscopy (XANES) to determine the products’ chemical composition, structure, morphology, and Re oxidation state. The XANES data indicated that nearly all rhenium (Re) was incorporated as Re(VII)O 4 –. The nonlinear increase of the unit cell parameter with ReO 4 –/NO 3 – ratios suggests formation of two separate sodalite phases in lieu of a mixed-anion sodalite. The results reveal that the sodalite cage is highly selective toward NO 3 – over ReO 4 –. Calculated enthalpy and Gibbs free energy of formation at 298 K for NO 3 - and ReO 4 -sodalite suggest that NO 3 – incorporation into the cage is favored over the incorporation of the larger ReO 4 –, due to the smaller ionic radius of NO 3 –. In conclusion, based on these results, it is expected that NO 3 –, which is present at significantly higher concentrations in alkaline waste solutions than 99TcO 4 –, will be strongly preferred for incorporation into the sodalite cage.« less

  13. Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal.

    PubMed

    Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris

    2018-04-15

    Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH <6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically <2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions

    NASA Astrophysics Data System (ADS)

    Rougier, Esteban; Patton, Howard J.

    2015-05-01

    Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.

  15. Detectors for MUSE

    NASA Astrophysics Data System (ADS)

    Hirschman, Jack; Muon Scattering Experiment (MUSE) Collaboration

    2017-09-01

    Until recently, it was thought that the proton radius was known with an uncertainty of 1%. However, experiments carried-out at the Paul Scherrer Institute (PSI) involving muonic hydrogen yielded a radius 4% smaller with an uncertainty of .1%, a 7.9 σ inconsistency. This problem of properly measuring the radius now requires new and different measurements. The Muon Scattering Experiment (MUSE) will thus be the first to utilize elastic muon scattering with sufficient precision to address the proton radius measurement. MUSE will run in PSI's PiM1 beamline, using a stack of GEM chambers and thin scintillation detectors to identify and track the beam particle species in this mixed e, pi, mu beam. Scattered particles will be measured in two arms with ten layers of Straw Tube Tracking (STT) detectors and a double plastic scintillator wall for timing of and triggering on scattered particles. The STT chambers will employ the anti-Proton Annihilations at Darmstadt (PANDA) design. Each straw consists of a thin wire with high voltage surrounded by an aluminized Mylar tube inflated with a mix of Argon and Carbon Dioxide, the ratio of which is important for optimal operation. The Argon gas, ionized by incoming charged particles, releases electrons which attract to the central wire. The CO2 acts as a quencher, taking-up electrons to prevent an unstable avalanche effect. This project will investigate the effects of altering the gas mixture in the STTs on signal size and timing. This material is based upon work supported by the National Science Foundation under Grant No. OISE-1358175, PHY-1614850, and PHY-1614938. Thank you to the teams at HUJI and PSI, in particular, Dr. G. Ron, Dr. T. Rostomyan, Dr. K. Dieters, and D. Cohen.

  16. Modified hoop conjecture in expanding spacetimes and primordial black hole production in FRW universe

    NASA Astrophysics Data System (ADS)

    Saini, Anshul; Stojkovic, Dejan

    2018-05-01

    According to a variant of the hoop conjecture, if we localize two particles within the Schwarzschild radius corresponding to their center of mass energy, then a black hole will form. Despite a large body of work on the formation of primordial black holes, so far this conjecture has not been generalized to expanding spacetimes. We derive a formula which gives the distance within which two particles must be localized to give a black hole, and which crucially depends on the expansion rate of the background space. In the limit of a very slow expansion, we recover the flat spacetime case. In the opposite limit of the large expansion rate when the inverse Hubble radius is smaller than the Schwarzschild radius of a "would be" black hole, the new critical distance between two particles that can make a black hole becomes equal to the particle horizon, which is just a requirement that the particles are in a causal contact. This behavior also nicely illustrates why the Big Bang singularity is not a black hole. We then use our formula to calculate the number density, energy density and production rate of black holes produced in collisions of particles. We find that though black holes might be numerous at high temperatures, they never dominate over the background radiation below the Planck temperature.

  17. Oscillations of Static Discs around Schwarzschild Black Holes: Effect of Self-Gravitation

    NASA Astrophysics Data System (ADS)

    Semerák, Oldřich; Žáček, Miroslav

    2000-12-01

    The oscillations of accretion-disc matter about roughly circular motion may produce a quasi-periodic variation in the observed signal (Ipser 1996, AAA 65.067.047). They were studied theoretically on non-gravitating, test discs, in a pseudo-Newtonian manner as well as in general relativity, both in static and in stationary fields. The present paper shows how the radial profiles of oscillation frequencies can be modified by the self-gravity of the disc. Exact superpositions of a Schwarzschild black hole with the Lemos and Letelier (1994, AAA 61.067.077) annular discs (static thin discs obtained by inversion of the first Morgan-Morgan solution) are considered to be simple (static) models of an accretion system. Both the epicyclic and perpendicular frequencies are plotted against the Schwarzschild radius, the circumferential radius, and the proper distance from the horizon. The curves indicate that in the innermost parts more massive discs are more stable with respect to horizontal perturbations, whereas they are less stable with respect to vertical perturbations. In the case of a sequence of discs interpretable as counter-rotating particles on stable time-like circular geodesics and having their inner rims just on marginally stable circular orbits, oscillations of the inner parts get faster with increasing disc mass; the maximum of the epicyclic frequency, important for trapping of the low-frequency modes near the inner radius, moves to smaller radii and becomes somewhat higher.

  18. Anderson localized modes in a disordered glass optical fiber

    NASA Astrophysics Data System (ADS)

    Karbasi, Salman; Hosseini, Seyedrasoul; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    A beam of light can propagate in a time-invariant transversely disordered waveguide because of transverse Anderson localization. We developed a disordered glass optical ber from a porous artisan glass (satin quartz). The refractive index pro le of the disordered glass optical ber is composed of a non-uniform distribution of air voids which can be approximated as longitudinally invariant. The ll-fraction of air voids is higher at the regions closer to the boundary compared with the central regions. The experimental results show that the beam radius of a localized beam is smaller at the regions closer to the boundary than the one at the central regions. In order to understand the reason behind these observations, the fully vectorial modes of the disordered glass ber are calculated using the actual scanning electron microscope image of the ber tip. The numerical calculations show that the modes at regions closer to the boundary of the ber are more localized compared with the modes at the central regions. Coupling of an input beam to the less-localized modes with large tails at the central regions of the ber results in a large beam radius. In comparison, a beam of light launched at the regions close to the boundary couples to the highly compact modes of the ber and results in a small localized beam radius.

  19. Methods for Improving the Curvature of Steerable Needles in Biological Tissue

    PubMed Central

    Adebar, Troy K.; Greer, Joseph D.; Laeseke, Paul F.; Hwang, Gloria L.; Okamura, Allison M.

    2016-01-01

    Robotic needle steering systems have the potential to improve percutaneous interventions such as radiofrequency ablation of liver tumors, but steering techniques described to date have not achieved sufficiently small radius of curvature in biological tissue to be relevant to this application. In this work, the impact of tip geometry on steerable needle curvature is examined. Finite-element simulations and experiments with bent-tip needles in ex vivo liver tissue demonstrate that selection of tip length and angle can greatly improve curvature, with radius of curvature below 5 cm in liver tissue possible through judicious selection of these parameters. Motivated by the results of this analysis, a new articulated-tip steerable needle is described, in which a distal section is actively switched by a robotic system between a straight tip (resulting in a straight path) and a bent tip (resulting in a curved path). This approach allows the tip length and angle to be increased, while the straight configuration allows the needle tip to still pass through an introducer sheath and rotate inside the body. Validation testing in liver tissue shows that the new articulated-tip steerable needle achieves smaller radius of curvature compared to bent-tip needles described in previous work. Steerable needles with optimized tip parameters, which can generate tight curves in liver tissue, increase the clinical relevance of needle steering to percutaneous interventions. PMID:26441438

  20. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.

    2013-05-01

    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).

  1. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  2. Preservation of Groundwater on Mars Depends on Preservation of an Icy Cryosphere.

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Kirchoff, M. R.; Stillman, D. E.

    2017-12-01

    We seek to understand the constraints and controls on the existence of groundwater on Mars today. Tropical ground ice undergoes long-term sublimation and likely exospheric escape. Using multi-reservoir models for the evolution of D/H ratios, we derive a median estimate of the Hesperian-Amazonian H2O loss of 60 m (interquartile range 30-120 m) Global Equivalent Layer (GEL). These figures are substantially smaller than volumes inferred for geological work and for the holding capacity of the upper crust. This suggests that Mars still has substantial subsurface H2O, but it is unknown whether ground water lies beneath ground ice. Without restriction of sublimation, the cryosphere will eventually breach, leading to massive evaporative loss of any underlying groundwater. Using a multiphase H2O transport model, we find that sublimation is retarded (in order of decreasing priority) by higher obliquity, smaller porosity, higher tortuosity, lower heat flow, and smaller pore radius. Our published results suggested low bulk porosity ( 5%) was necessary to limit sublimation to 60 m GEL, but we now recognize that the dependence of effective tortuosity and pore radius on ice saturation can sharply retard loss due to cold trapping, and thus allow nominal ( 30%) porosities. Separately, we find that single-layer ejecta (SLE) craters—long thought to tap subsurface ice—have formed throughout the Amazonian, without any evidence for a declining rate. This suggests that tropical ground ice has remained at relatively shallow depths, at least where these craters are forming. However, there is a striking spatial mixing in highlands near the equator of layered and normal, radial-ejecta craters. This implies strong spatial heterogeneity in the distribution of tropical ground ice. If the cryospheric ice seal is incomplete due to laterally heterogeneous sublimation of ice, then escape of water vapor through the gaps can lead to nearly total loss of groundwater by evaporation. The D/H-inferred loss indicates either that this has been mitigated, for example if aquifers are laterally compartmented similarly to the overlying cryosphere, or that the global water inventory has always been much smaller than the available pore volume since the early Hesperian. Geophysical sounding is necessary to assess the existence of aquifers on Mars today.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricciardelli, Elena; Tamone, Amelie; Cava, Antonio

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found atmore » smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in amore » regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.« less

  5. Morphological Segregation in the Surroundings of Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Ricciardelli, Elena; Cava, Antonio; Varela, Jesus; Tamone, Amelie

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R void, which we define as the region of influence of voids. The significance of this difference is greater than 3σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  6. Mobilities of ground-state and metastable O/+/, O2/+/, O/2+/, and O2/2+/ ions in helium and neon

    NASA Astrophysics Data System (ADS)

    Johnsen, R.; Biondi, M. A.; Hayashi, M.

    1982-09-01

    The ionic mobilities of O(+), O2(+), O(2+), and O2(2+) in helium and neon have been measured using a selected-ion drift apparatus (SIDA). It is found that the mobilities of both O(+) and O2(+) ions in the metastable states (2D or 4Pi u) are measurably smaller than those of the same ions carried out by using known, state-selective ion-molecule reactions. A similar mobility differentiation of ground-state and metastable ions was not observed for the O(2+) and O2(2+) ions.

  7. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  8. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    PubMed

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  9. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid.

    PubMed

    Ghasemi, S; Rahimnejad, S; Setayesh, S Rahman; Rohani, S; Gholami, M R

    2009-12-30

    TiO(2) and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO(2) nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 degrees C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO(2). Dopant ions in the TiO(2) structure caused significant absorption shift into the visible region. The results of photodegradation of Acid Blue92 (AB92) in aqueous medium under UV light showed that photocatalytic activity of TiO(2) nanoparticles was significantly enhanced by the presence of some transition metal ions. Chemical Oxygen Demand (COD) of dye solutions were done at regular intervals gave a good idea about mineralization of dye.

  10. Nanowire-nanopore transistor sensor for DNA detection during translocation

    NASA Astrophysics Data System (ADS)

    Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles

    2011-03-01

    Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.

  11. The Fundamental Plane and the Surface Brightness Test for the Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Kjaergaard, Per; Jorgensen, Inger; Moles, Mariano

    1993-12-01

    We have determined the Petrosian radius, rη , and the enclosed mean surface brightness within the Petrosian radius, <μ>η, for 33 elliptical and S0 galaxies in the Coma cluster from new accurate CCD surface photometry. For the Petrosian parameter η = 1.39, rη and <μ>η are compared with the effective radius, re, and the effective mean surface brightness, <μ>e derived from fitting a de Vaucouleurs law. The fundamental plane (FP) expressed using rη and <μ>η is the same as the FP found by Jørgensen, Franx, & Kjaergaard (1993) using re and <μ>e. The FP can be used to predict the mean surface brightness within the effective radius or the corresponding Petrosian radius (η = 1.39) with an uncertainty of ±0.14 mag for Coma cluster ellipticals. Thus the FP, applied to clusters, appears to be a suitable tool for performing the surface brightness test (SBT) for the expansion of the universe. We suggest that instead of correcting individual galaxies to some standard conditions, e.g., the same metric radius, the fundamental plane itself should be considered the standard. It is argued that the metric size enclosing around 75% of the total light represents a reasonable compromise between resolution and faint level detection when performing the SBT. This radius could be derived as the Petrosian radius corresponding to η = 2.0 or from a global fit to that part of the observed profile which encompasses 75% of the total light. In case both small and large galaxies are well described by a de Vaucouleurs law the global fit can be performed on a smaller central part of the brightness profile. The use of the FP involves the time consuming determinations of velocity dispersions. We find that <μ>η (η = 1.39) can be predicted from the log rη alone with an accuracy of 0.3 mag for the Coma cluster ellipticals. Our discussion of the various error contributions to the predicted mean surface brightness for faint cluster ellipticals at redshifts z < 0.5 shows that the final error is probably dominated by extra scatter due to, e.g., environmental and evolutionary effects. Thus it might be possible that the use of velocity dispersions are not necessary. To get significant results for the SBT, clusters out to a redshift of approximately z = 0.3 have to be observed. For the most distant galaxies light levels down to about 25-26 mag arcsec-2 in the red and sizes as small as approximately 2" have to be accurately measured. We outline an observational program which will allow the control of the different sources of scatter, including cosmic evolution, producing conclusive results about the expansion of the universe.

  12. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.

    PubMed Central

    Zabusky, N J; Deem, G S

    1979-01-01

    We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570

  13. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  14. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.

    PubMed

    Lee, Hwankyu

    2015-07-01

    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

    PubMed Central

    Majumder, Rupamanjari; Nayak, Alok Ranjan; Pandit, Rahul

    2011-01-01

    Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study. PMID:21483682

  16. Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering

    PubMed Central

    2017-01-01

    We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy–distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications. PMID:29183122

  17. On the significance of including the thermal motion of ions in determining the ion distribution behind a satellite

    NASA Technical Reports Server (NTRS)

    Samir, U.; Widjaja, D.

    1981-01-01

    A comparative investigation concerning the spatial distribution of ions in the wake of small bodies was conducted using the theoretical wake models of Call (1969) and Parker (1976). Results for bodies with radius/ambient Debye length ratios of 2 and 5, with an electron temperature equal to the ambient electron temperature, and for the ionic Mach numbers S = 2, 4, 6, 8 are presented. Since the main physical difference between the models is in the consideration of the thermal motion of ions (Parker) versus ignoring this component (Call), a comparison between the models yields the quantitative significance of this component in determining the distribution of ions in the wake of artificial satellites. The application of this result to future experiments to be conducted on board the Spacelab and for any other large space platform in the area of space plasma physics is mentioned.

  18. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    PubMed

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  19. Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms

    NASA Astrophysics Data System (ADS)

    Kargar, Fariborz; Penilla, Elias H.; Aytan, Ece; Lewis, Jacob S.; Garay, Javier E.; Balandin, Alexander A.

    2018-05-01

    We report results of Brillouin—Mandelstam spectroscopy of transparent Al2O3 crystals with Nd dopants. The ionic radius and atomic mass of Nd atoms are distinctively different from those of the host Al atoms. Our results show that even a small concentration of Nd atoms incorporated into the Al2O3 samples produces a profound change in the acoustic phonon spectrum. The velocity of the transverse acoustic phonons decreases by ˜600 m/s at the Nd density of only ˜0.1%. Interestingly, the decrease in the phonon frequency and velocity with the doping concentration is non-monotonic. The obtained results, demonstrating that modification of the acoustic phonon spectrum can be achieved not only by traditional nanostructuring but also by low-concentration doping, have important implications for thermal management as well as thermoelectric and optoelectronic devices.

  20. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  1. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  2. Development of a Discharge Pumped 13 nm Laser for Metrology of Projection Lithography Optics at the Manufacture-Site

    DTIC Science & Technology

    2003-09-14

    nm @2,6,9#. In the particular case of Ar discharges the gain-length product for the 3p 1S0-3s 1P1 transition of Ne-like Ar at 46.9 nm has exceeded...The addition of the Al filter decreases the transmissivity in this window by a factor that increases from about 63 at 4.5 nm to about 6003 at 10 nm... factors including the smaller current and pinch radius, together with very good initial plasma symmetry and relatively short time duration of4-7 GONZALEZ

  3. LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG)

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2016-12-01

    The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a = cS / GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M ≲ 10M⊙.

  4. Application of Tools to Measure PCB Microbial Dechlorination and Flux into Water During In-situ Treatment of Sediments

    DTIC Science & Technology

    2011-08-01

    flocs within a radius of 2 flocs’ centerline would be intercepted by the settling particle . The curvilinear kernel assumes only smaller particle hit...Aerobic Sediment Slurry……………………………………………………………...11 Study 4. Modeling the Impact of Flocculation on the Fate of Organic and Inorganic Particles ...suspended particles at the beginning of free settling period………....………46 Figure 4.2: Three fOC distribution trends: small, uniform, and size-variable

  5. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    PubMed

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin; Lissauer, Jack; Howard, Andrew; Clark Fabrycky, Daniel

    2015-12-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 new precise RVs from Keck-HIRES, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (Rp = 1.47 R⊕) has mass 3.70 ± 0.43 M⊕ and density 6.44 ± 0.73 g cm-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c (Rp = 2.35 R⊕) we measure mass 13.32 ± 1.65 M⊕and density 5.67 ± 0.70 g cm-3, significantly lower than the mass in Dumusque et al. (2014, 17.2±1.9 M⊕). Kepler-10c is not sufficiently dense to have a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of either hydrogen-helium (0.0027 ± 0.0015 of the mass, 0.172±0.037 of the radius) or super-ionic water (0.309±0.11 of the mass, 0.305±0.075 of the radius). Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, 82, or 101 days, and a mass from 1-7 M⊕.

  7. Variability of intensity ratios of H to He and He to ions with Z not smaller than 3 in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Venkatarangan, P.; Venkatesan, D.

    1974-01-01

    Data from the solid-state detector on Explorer 35 are applied to a study of two intensity ratios in the sub-MeV per nucleon specific kinetic energy range for several energetic particle events. It is found that the intensity ratios vary markedly from event to event, particularly during the time history of the individual events. This implies that the ratios have no simple relationship to 'solar abundances' in the usual sense of the term. The pattern of the variability of each ratio is established; the ratio of He to ions with Z not smaller than 3 starts with a low value and increases as the event proceeds. The H/He ratio exhibits a qualitatively similar time history with marked relative enhancement of He early in an event. Differential diffusion of the various ionic species with differing magnetic rigidities is seen to be the dominant physical cause for the variabilities observed.

  8. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  9. Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200-1350°C and 15-34 kbar

    NASA Astrophysics Data System (ADS)

    Gasparik, Tibor

    1985-03-01

    Equilibrium compositions of diopside-jadeite pyroxene coexisting with albite and quartz were experimentally determined at 25 different P-T conditions, using an electron microprobe for analysis. The new data and the 600°C data of HOLLAND (1983) provided the following mixing properties of the diopside (Di)-jadeite (Jd) solid solution (J, K): Gxs = XJdXDi[12600 - 9.45 T + (12600 - 7.6 T)( XJd - XDi) - (21400 - 16.2 T)( XJd - XDi) 2]. The Di-Jd solution is close to ideal above 1000°C but immiscible below 565°C. The Di-Jd solvus is slightly asymmetric with the crest at composition Di 42.4Jd 57.6. Excess enthalpy is positive but smaller than indicated by the enthalpy of solution measurements of WOODet al. (1980). Disorder in the Di-Jd solution is significantly smaller than complete disorder implied by the ionic two-site model.

  10. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  11. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based onmore » the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.« less

  12. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    NASA Astrophysics Data System (ADS)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F., A. L.; Guedes, S.; Takizawa, R. H.

    2014-11-01

    It is well known that radon daughters up to 214Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  13. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.

  14. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  15. Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design.

    PubMed

    Fish, Frank E; Hurley, Jenifer; Costa, Daniel P

    2003-02-01

    Maneuverability is critical to the performance of fast-swimming marine mammals that use rapid turns to catch prey. Overhead video recordings were analyzed for two sea lions (Zalophus californianus) turning in the horizontal plane. Unpowered turns were executed by body flexion in conjunction with use of the pectoral and pelvic flippers, which were used as control surfaces. A 90 degree bank angle was used in the turns to vertically orient the control surfaces. Turning radius was dependent on body mass and swimming velocity. Relative minimum radii were 9-17% of body length and were equivalent for pinnipeds and cetaceans. However, Zalophus had smaller turning radii at higher speeds than cetaceans. Rate of turn was inversely related to turn radius. The highest turn rate observed in Zalophus was 690 degrees s(-1). Centripetal acceleration measured up to 5.1 g for Zalophus. Comparison with other marine mammals indicates that Zalophus has a morphology that enhances instability, thus providing enhanced turning performance. Enhanced turning performance is necessary for sea lions to forage after highly elusive prey in structurally complex environments.

  16. Tidal disruption of open clusters in their parent molecular clouds

    NASA Technical Reports Server (NTRS)

    Long, Kevin

    1989-01-01

    A simple model of tidal encounters has been applied to the problem of an open cluster in a clumpy molecular cloud. The parameters of the clumps are taken from the Blitz, Stark, and Long (1988) catalog of clumps in the Rosette molecular cloud. Encounters are modeled as impulsive, rectilinear collisions between Plummer spheres, but the tidal approximation is not invoked. Mass and binding energy changes during an encounter are computed by considering the velocity impulses given to individual stars in a random realization of a Plummer sphere. Mean rates of mass and binding energy loss are then computed by integrating over many encounters. Self-similar evolutionary calculations using these rates indicate that the disruption process is most sensitive to the cluster radius and relatively insensitive to cluster mass. The calculations indicate that clusters which are born in a cloud similar to the Rosette with a cluster radius greater than about 2.5 pc will not survive long enough to leave the cloud. The majority of clusters, however, have smaller radii and will survive the passage through their parent cloud.

  17. Current-Voltage and Floating-Potential characteristics of cylindrical emissive probes from a full-kinetic model based on the orbital motion theory

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Sánchez-Arriaga, Gonzalo

    2018-02-01

    To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.

  18. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Cunningham, Michael; Samson, Claire; Wood, Alan; Cook, Ian

    2017-12-01

    Unmanned aircraft systems (UASs) have been under rapid development for applications in the mineral exploration industry, mainly for aeromagnetic surveying. They provide improved detection of smaller, deeper and weaker magnetic targets. A traditional system flying an altitude of 100 m above ground level (AGL) can detect a spherical ore body with a radius of 16 m and a magnetic susceptibility of 10-4 buried at a depth of 40 m. A UAS flying at an altitude of 50 or 2 m AGL would require the radius to be 11 or 5 m, respectively. A demonstration survey was performed using the SkyLance rotary-wing UAS instrumented with a cesium vapour magnetometer in Nash Creek, New Brunswick, Canada. The UAS flew over a zinc deposit featuring three magnetic anomalies. It acquired repeatable data that compared well with upward continuation maps of ground magnetic data. Dykes or faults that are dipping eastward at 25° and are approximately 1.5 m wide fit the observed response of the three anomalies captured on the UAS magnetic data.

  19. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.

  20. A highly magnetized twin-jet base pinpoints a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.

    2016-09-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47

  1. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    NASA Astrophysics Data System (ADS)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  2. Gating current studies reveal both intra- and extracellular cation modulation of K+ channel deactivation

    PubMed Central

    Wang, Zhuren; Zhang, Xue; Fedida, David

    1999-01-01

    The presence of permeant ions can modulate the rate of gating charge return in wild-type human heart K+ (hKv1.5) channels. Here we employ gating current measurements in a non-conducting mutant, W472F, of the hKv1.5 channel to investigate how different cations can modulate charge return and whether the actions can be specifically localized at the internal as well as the external mouth of the channel pore. Intracellular cations were effective at accelerating charge return in the sequence Cs+ > Rb+ > K+ > Na+ > NMG+. Extracellular cations accelerated charge return with the selectivity sequence Cs+ > Rb+ > Na+ = NMG+. Intracellular and extracellular cation actions were of relatively low affinity. The Kd for preventing slowing of the time constant of the off-gating current decay (τoff) was 20.2 mM for intracellular Cs+ (Csi+) and 358 mM for extracellular Cs+ (Cso+). Both intracellular and extracellular cations can regulate the rate of charge return during deactivation of hKv1.5, but intracellular cations are more effective. We suggest that ion crystal radius is an important determinant of this action, with larger ions preventing slowing more effectively. Important parallels exist with cation-dependent modulation of slow inactivation of ionic currents in this channel. However, further experiments are required to understand the exact relationship between acceleration of charge return and the slowing of inactivation of ionic currents by cations. PMID:10050001

  3. Mechanisms of combustion synthesis and magnetic response of high-surface-area hexaboride compounds.

    PubMed

    Kanakala, Raghunath; Escudero, Roberto; Rojas-George, Gabriel; Ramisetty, Mohan; Graeve, Olivia A

    2011-04-01

    We present an analysis of the combustion synthesis mechanisms for the preparation of hexaboride materials using three compounds as model systems: EuB(6), YbB(6), and YB(6). These three hexaborides were chosen because of the differences in ionic radii between Eu(3+), Yb(3+), and Y(3+), which is a factor in their stability. The powders were prepared using metal nitrates, carbohydrazide, and two different boron precursor powders. The resulting materials were analyzed by X-ray diffraction, which showed that combustion synthesis is effective for the synthesis of EuB(6), since the Eu(3+) ion has an ionic radius greater than ∼1 Å. The synthesis of YbB(6) and YB(6) is not as effective because of the small size of the Yb(3+) and Y(3+) ions, making the hexaborides of these metals less stable and resulting in the synthesis of borates due to the presence of oxygen during the combustion process. Scanning electron microscopy and dynamic light scattering of the EuB(6) powders shows that the particle size of the hexaboride product is dependent on the particle size of the boron precursor. The magnetic susceptibility of our EuB(6) powders manifests irreversible behavior at low applied fields, which disappears at higher fields. This behavior can be attributed to the increase in size and number of magnetic polarons with increasing magnetic field. © 2011 American Chemical Society

  4. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    NASA Astrophysics Data System (ADS)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure the flux within the Einstein radius and to compute secure error bars to all of our results.

  5. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  6. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    PubMed

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.

  7. Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids.

    PubMed

    Lovelock, Kevin R J; Cowling, Frances N; Taylor, Alasdair W; Licence, Peter; Walsh, Darren A

    2010-04-08

    The electrochemical properties of a series of room temperature ionic liquids (RTILs) were studied using voltammetric methods and scanning electrochemical microscopy (SECM). The RTILs consisted of 1-alkyl-3-methylimidazolium cations, [C(n)C(1)Im](+), and either bis[(trifluoromethyl)sulfonyl]imide anions, [Tf(2)N](-), or hexafluorophosphate anions, [PF(6)](-). The effect of RTIL viscosity on mass transfer dynamics within each RTIL was studied electrochemically using ferrocene as a redox probe. In the case of the [C(n)C(1)Im][Tf(2)N] RTILs, the viscosity was altered by changing the alkyl chain length. [C(4)C(1)Im][PF(6)] was used for comparison as its viscosity is significantly higher than that of the [C(n)C(1)Im][Tf(2)N] RTILs. The RTIL viscosity affected the ability to record steady-state voltammograms at ultramicroelectrodes (UMEs). For example, it was possible to record steady-state voltammograms at scan rates up to 10 mV s(-1) in [C(2)C(1)Im][Tf(2)N] using 1.5 mum radius disk UMEs, but non-steady-state behavior was observed at 50 mV s(-1). However, at 12.5 microm radius UMEs, steady-state voltammetry was only observed at 1 mV s(-1) in [C(2)C(1)Im][Tf(2)N]. The RTIL viscosity also affected the ability to record SECM feedback approach curves that agreed with conventional SECM theory. In the most viscous [C(n)C(1)Im][Tf(2)N] RTILs, feedback approach curves agreed with conventional theory only when very slow tip approach speeds were used (0.1 microm s(-1)). These observations were interpreted using the Peclet number, which describes the relative contributions of convective and diffusive mass transfer to the tip surface. By recording feedback approach curves in each RTIL at a range of tip approach speeds, we describe the experimental conditions that must be met to perform SECM in imidazolium-based RTILs. The rate of heterogeneous electron transfer across the RTIL/electrode interface was also studied using SECM and the standard heterogeneous electron transfer rate constant, k(0), for ferrocene oxidation recorded in each RTIL was higher than that determined previously using voltammetric methods.

  8. How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study.

    PubMed

    Klähn, Marco; Lim, Geraldine S; Wu, Ping

    2011-11-07

    The influence of eight different ionic liquid (IL) solvents on the stability of the lipase Candida antarctica lipase B (CAL-B) is investigated with molecular dynamics (MD) simulations. Considered ILs contain cations that are based either on imidazolium or guanidinium as well as nitrate, tetrafluoroborate or hexafluorophosphate anions. Partial unfolding of CAL-B is observed during high-temperature MD simulations and related changes of CAL-B regarding its radius of gyration, surface area, secondary structure, amount of solvent close to the backbone and interaction strength with the ILs are evaluated. CAL-B stability is influenced primarily by anions in the order NO(3)(-)≪ BF(4)(-) < PF(6)(-) of increasing stability, which agrees with experiments. Cations influence protein stability less than anions but still substantially. Long decyl side chains, polar methoxy groups and guanidinium-based cations destabilize CAL-B more than short methyl groups, other non-polar groups and imidazolium-based cations, respectively. Two distinct causes for CAL-B destabilization are identified: a destabilization of the protein surface is facilitated mostly by strong Coulomb interactions of CAL-B with anions that exhibit a localized charge and strong polarization as well as with polar cation groups. Surface instability is characterized by an unraveling of α-helices and an increase of surface area, radius of gyration and protein-IL total interaction strength of CAL-B, all of which describe a destabilization of the folded protein state. On the other hand, a destabilization of the protein core is facilitated when direct core-IL interactions are feasible. This is the case when long alkyl chains are involved or when particularly hydrophobic ILs induce major conformational changes that enable ILs direct access to the protein core. This core instability is characterized by a disintegration of β-sheets, diffusion of ions into CAL-B and increasing protein-IL van der Waals interactions. This process describes a stabilization of the unfolded protein state. Both of these processes reduce the folding free energy and thus destabilize CAL-B. The results of this work clarify the impact of ions on CAL-B stabilization. An extrapolation of the observed trends enables proposing novel ILs in which protein stability could be enhanced further. This journal is © the Owner Societies 2011

  9. Water-Free Rare Earth-Prussian Blue Type Analogues: Synthesis, Structure, Computational Analysis, and Magnetic Data of {Ln[superscript III](DMF)[subscript 6]Fe[superscript III](CN)[subcsript 6]}[subscript infinity] (Ln = Rare Earths Excluding Pm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Duane C.; Liu, Shengming; Chen, Xuenian

    2009-11-04

    Water-free rare earth(III) hexacyanoferrate(III) complexes, {l_brace}Ln(DMF){sub 6}({mu}-CN){sub 2}Fe(CN){sub 4}{r_brace}{sub {infinity}} (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K]{sub 3}Fe(CN){sub 6} with LnX{sub 3}(DMF){sub n} (X = Cl or NO{sub 3}). Anhydrous DMF solutions of LnX{sub 3}(DMF){sub n} were prepared at room temperature from LnCl{sub 3} or LnX{sub 3} {center_dot} nH{sub 2}O under a dynamic vacuum. All compounds were characterized by IR, X-raymore » powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the {nu}{sub {mu}-CN} stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN){sub 6}]{sup 3-} formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.« less

  10. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  11. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  12. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel

    NASA Astrophysics Data System (ADS)

    Zheng, Guojun; Li, Xiaodong; Chang, Ying; Wang, Cunyu; Dong, Han

    2018-02-01

    Third-generation advanced automotive medium-Mn steel, which can replace 22MnB5 steel, was newly developed to improve the lightweight and crashworthiness of automobile. Studies on the formability and simulation method of medium-Mn steel have just been initiated. In this study, finite element simulation models of square-cup deep drawing were established based on various material property experiments and validated by experiments. The effects of blank holder force (BHF), fillet radii of tools (die and punch) on the maximum drawing depth (MDD), thickness distribution of the formed products, and the microstructure before and after forming were investigated and compared with those on 22MnB5 steel. Results show that the MDD of the two steels decreased with increased BHF but increased with the fillet radius of punch; however, the fillet radius of die showed no significant effect on the MDD for both steels. Compared with hot-formed 22MnB5 steel, the martensitic transformation of the hot-formed medium-Mn steel is rarely influenced by the process parameters; thus, it holds the complete, fine-grained, and uniform martensitic microstructure. Moreover, the medium-Mn has better formability, lower initial blank temperature, and smaller impact of BHF and fillet radius of tools on the hot-formed product. Thus, a theoretical basis for the replacement of 22MnB5 steel by medium-Mn steel in hot forming process is provided.

  13. A universal relation for the propeller mechanisms in magnetic rotating stars at different scales

    NASA Astrophysics Data System (ADS)

    Campana, Sergio; Stella, Luigi; Mereghetti, Sandro; de Martino, Domitilla

    2018-02-01

    Accretion of matter onto a magnetic, rotating object can be strongly affected by the interaction with its magnetic field. This occurs in a variety of astrophysical settings involving young stellar objects, white dwarfs, and neutron stars. As matter is endowed with angular momentum, its inflow toward the star is often mediated by an accretion disc. The pressure of matter and that originating from the stellar magnetic field balance at the magnetospheric radius: at smaller distances the motion of matter is dominated by the magnetic field, and funnelling towards the magnetic poles ensues. However, if the star, and thus its magnetosphere, is fast spinning, most of the inflowing matter will be halted at the magnetospheric radius by centrifugal forces, resulting in a characteristic reduction of the accretion luminosity. The onset of this mechanism, called the propeller, has been widely adopted to interpret a distinctive knee in the decaying phase of the light curve of several transiently accreting X-ray pulsar systems. By comparing the observed luminosity at the knee for different classes of objects with the value predicted by accretion theory on the basis of the independently measured magnetic field, spin period, mass, and radius of the star, we disclose here a general relation for the onset of the propeller which spans about eight orders of magnitude in spin period and ten in magnetic moment. The parameter-dependence and normalisation constant that we determine are in agreement with basic accretion theory.

  14. A thermodynamic approach to alamethicin pore formation.

    PubMed

    Rahaman, Asif; Lazaridis, Themis

    2014-01-01

    The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8Å pore and the octamer in an 11Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted "barrel-stave" model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself. © 2013.

  15. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the smaller values in the numerical parameters variations. This is an important numerical exercise, since for instance, it is believed that galaxy structural parameters are strongly dependent on dark matter halo structural parameters.

  16. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  17. Artificial muscles with adjustable stiffness

    NASA Astrophysics Data System (ADS)

    Mutlu, Rahim; Alici, Gursel

    2010-04-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20-40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators.

  18. Adsorption mechanisms of metal ions on the potassium dihydrogen phosphate (1 0 0) surface: A density functional theory-based investigation.

    PubMed

    Wu, Yulin; Zhang, Lei; Liu, Yao; Qu, Yunpeng

    2018-07-15

    The adsorption of metal ions (K + , Na + , Ca 2+ , Cu 2+ , Al 3+ , Cr 3+ ) on the (1 0 0) surface of potassium dihydrogen phosphate (KDP) has been studied using density functional theory (DFT). Calculation results show that all the investigated metal ions can be spontaneously adsorbed on the surface with negative adsorption energies. The adsorption stability increases in the order of Na +  < K +  < Cu 2+  < Ca 2+  < Al 3+  < Cr 3+ , and shows a consistent trend as the adsorbed metal ion valence (monovalent < divalent < trivalent). Three types of stable adsorption configurations are observed, corresponding to three different bonding mechanisms. Na + , K + and Ca 2+ ions with a large radius can form two ionic bonds and one weak covalent bond with the O and H atoms respectively. In addition, the medium-sized ion of Cu 2+ forms two covalent bonds with the O and H atoms. Furthermore, Al 3+ and Cr 3+ ions with the smallest radius form two metal-oxygen and one metal-hydrogen covalent bonds with the surface, making one H-O bond broken. Compared with other metal ions, Al 3+ and Cr 3+ have the strongest interactions with the surface, which can be explained by the significant electron transfer and more stable covalent bond formations between these two ions and the surface. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Isolation of the constitutive heterochromatin from mouse liver nuclei.

    PubMed

    Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N

    2008-01-01

    A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.

  20. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    PubMed

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

Top