Sample records for smaller leaf size

  1. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  2. Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth.

    PubMed

    Qi, Ruhu; John, Peter Crook Lloyd

    2007-07-01

    The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.

  3. A Constrained Maximization Model for inspecting the impact of leaf shape on optimal leaf size and stoma resistance

    NASA Astrophysics Data System (ADS)

    Ding, J.; Johnson, E. A.; Martin, Y. E.

    2017-12-01

    Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.

  4. The effect of environmental uncertainty on morphological design and fluid balance in Sarracenia purpurea L.

    PubMed

    Kingsolver, Joel

    1981-03-01

    To explore principles of organismic design in fluctuating environments, morphological design of the leaf of the pitcher-plant, Sarracenia purpurea, was studied for a population in northern Michigan. The design criterion focused upon the leaf shape and minimum size which effectively avoids leaf desiccation (complete loss of fluid from the leaf cavity) in the face of fluctuating rainfall and meteorological conditions. Bowl- and pitcher-shaped leaves were considered. Simulations show that the pitcher geometry experiences less frequent desiccation than bowls of the same size. Desiccation frequency is inversely related to leaf size; the size distribution of pitcher leaves in the field shows that the majority of pitchers desiccate only 1-3 times per season on average, while smaller pitchers may average up to 8 times per season. A linear filter model of an organism in a fluctuating environment is presented, in which the organism selectively filters the temporal patterns of environmental input. General measures of rainfall predictability based upon information theory and spectral analysis are consistent with the model of a pitcher leaf as a low-pass (frequency) filter which avoids desiccation by eliminating high-frequency rainfall variability.

  5. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  6. The Heterogeneity and Spatial Patterning of Structure and Physiology across the Leaf Surface in Giant Leaves of Alocasia macrorrhiza

    PubMed Central

    Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang

    2013-01-01

    Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments. PMID:23776594

  7. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    PubMed

    Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang

    2013-01-01

    Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments.

  8. Predicted distribution of visible and near-infrared radiant flux above and below a transmittant leaf

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Adams, John B.; Smith, Milton O.

    1990-01-01

    The effects are studied analytically of leaf size, leaf height, and background reflectance on the upward and downward radiant flux (RF) of a leaf. The leaf is horizontal and isotropically scattering in the computer model which examines the light environment in three regions about the leaf. The spectral properties of the leaf are based on measurements of the big-leaf maple, and the model is interpreted in terms of relative RF which is defined as a percentage of the total light in the model. The results demonstrate the dependence of upward relative RF on the light's wavelength and background reflectance with large variations in the NIR. Brightness varies directly with distance from background with maximum brightness achieved at lower heights for smaller leaves. These and other results suggest that NIR canopy reflectance due to leaves is highly dependent on the background reflectance.

  9. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  10. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines.

    PubMed

    Wang, Ning; Cao, Di; Gong, Fangping; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2015-10-14

    The midrib of maize leaves provides the primary support for the blade and is largely associated with leaf angle size. To elucidate the role of the midrib in leaf angle formation, the maize line Shen137 (larger leaf angle) and a near isogenic line (NIL, smaller leaf angle) were used in the present study. The results of the analysis showed that both the puncture forces and proximal collenchyma number of the midribs of the first and second leaves above the ear were higher in NIL than in Shen137. Comparative proteomic analysis was performed to reveal protein profile differences in the midribs of the 5th, 10th and 19th newly expanded leaves between Shen137 and NIL. Quantitative analysis of 24 identified midrib proteins indicated that the maximum changes in abundance of 22 proteins between Shen137 and NIL appeared at the 10th leaf stage, of which phosphoglycerate kinase, adenosine kinase, fructose-bisphosphate aldolase and adenylate kinase were implicated in glycometabolism. Thus, glycometabolism might be associated with leaf angle formation and the physical and mechanical properties of the midribs. These results provide insight into the mechanism underlying maize leaf angle formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.

  12. Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2016-11-01

    One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.

  13. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    USGS Publications Warehouse

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  14. Teaching (an introduction to!) fractals and rainfall features in kinder garden

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Villepoux, Mélanie; Rouellé, Valérie

    2014-05-01

    Why trying to teach fractals or rainfall drop size distribution to 3 to 5 year old children? Because it can easily be done in a (rather!) fun way, enabling children to grasp some complex notions and more generally get familiarized with science. This paper presents the outputs of a collaboration between a researcher and two kinder garden teachers which resulted in activities dealing with fractals and rainfall that were implemented in their class. Fractals are geometrical objects that exhibit a similar structure at all scales. A classical natural example is a fern leaf around which an activity was developed and implemented with children aged 3-4. The first step consisted in trying to make them feel the fractal nature of the fern leaf, i.e. a whole leaf is made of smaller leafs which are also made of even smaller leafs exhibiting similar shapes. Four activities were specifically designed for this. In the second step the fractal nature of the fern leaf was used to enable the class to draw a large leaf in a collaborative way. More precisely, each child draw a leaf and they were all assembled to draw a greater one. A similar activity but this time with geometrical shapes based on triangles was implemented with kids aged 4-5. The output was a great Sierpinski triangle. Rain drops typically exhibit sizes ranging from 0.2 to 5 mm (in terms of equivolumic diameter), and scientists uses disdrometers to analyse this distribution. An activity that consisted in developing and testing two disdrometers was implemented in a class with children aged 5-6. The disdrometers consisted of a plate with a thin layer of either flour or oil. The features of the two devices were initially compared with the help of artificial drops generated by the children with a pipette. Then the disdrometers were briefly (few seconds) put under the rain. In order to help children notice the wide variety of drop sizes they were asked to draw what they saw. Finally an activity based on times series of rainy and non-rainy days (recorded by the class) whose aim is to the show the fractal nature of rainfall and to introduce the notion of random models will briefly be discussed. Authors acknowledged the North-West Europe Interreg IV RainGain project (raingain.eu) and the Climate KIC Blue Green Dream project (bgd.org.uk) for funding the underlying research associated with these activities.

  15. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana

    PubMed Central

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke

    2017-01-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173

  16. Compensatory responses in plant-herbivore interactions: Impacts of insects on leaf water relations

    NASA Astrophysics Data System (ADS)

    Peschiutta, María L.; Bucci, Sandra J.; Scholz, Fabián G.; Goldstein, Guillermo

    2016-05-01

    Herbivore damage to leaves has been typically evaluated in terms of fractions of area removed; however morpho-physiological changes in the remaining tissues can occur in response to removal. We assessed the effects of partial removal of the leaf mesophyll by Caliroa cerasi (Hymenoptera) on leaf hydraulic conductance (Kleaf), vascular architecture, water relations and leaf size of three Prunus avium cultivars. The insect feeds on the leaf mesophyll leaving the vein network intact (skeletonization). Within each cultivar there were trees without infestations and trees chronically infested, at least over the last three years. Leaf size of intact leaves tended to be similar during leaf expansion before herbivore attack occurs across infested and non-infested trees. However, after herbivore attack and when the leaves were fully expanded, damaged leaves were smaller than leaves from non-infested trees. Damaged area varied between 21 and 31% depending on cultivar. The non-disruption of the vascular system together with either vein density or capacitance increased in damaged leaves resulted in similar Kleaf and stomatal conductance in infested and non-infested trees. Non-stomatal water loss from repeated leaf damage led to lower leaf water potentials in two of the infested cultivars. Lower leaf osmotic potentials and vulnerability to loss of Kleaf were observed in infested plants. Our results show that skeletonization resulted in compensatory changes in terms of water relations and hydraulics traits and in cultivar-specific physiological changes in phylogenetic related P. avium. Our findings indicate that detrimental effects of herbivory on the photosynthetic surface are counterbalanced by changes providing higher drought resistance, which has adaptive significance in ecosystems where water availability is low and furthermore where global climate changes would decrease soil water availability in the future even further.

  17. Disentangling the visual cues used by a jumping spider to locate its microhabitat.

    PubMed

    Tedore, Cynthia; Johnsen, Sönke

    2016-08-01

    Many arthropod species have evolved to thrive only on the leaves of a particular species of plant, which they must be capable of finding in order to survive accidental displacement, developmental transitions or the changing of the seasons. A number of studies have tested whether such species select leaves to land or oviposit on based on their color, shape or size. Unfortunately, many studies did not control for correlates of these characters, such as the brightness of different colors, the areas of different shapes, and the level of ambient illumination in the vicinity of different sizes of leaves. In the present study, we tested for leaf color, shape and size preferences in a leaf-dwelling jumping spider (Lyssomanes viridis) with known summer and winter host plants, while controlling for these correlates. First, color preferences were tested outdoors under the natural illumination of their forest habitat. Lyssomanes viridis did not prefer to perch on a green substrate compared with various shades of gray, but did prefer the second darkest shade of gray we presented them with. Of the green and gray substrates, this shade of gray's integrated photon flux (350-700 nm), viewed from below, i.e. the spider's perspective in the arena, was the most similar to that of real leaves. This relationship also held when we weighted the transmitted photon flux by the jumping spiders' green photopigment spectral sensitivity. Spiders did not prefer the star-like leaf shape of their summer host plant, Liquidambar styraciflua, to a green circle of the same area. When given a choice between a L. styraciflua leaf-shaped stimulus that was half the area of an otherwise identical alternative, spiders preferred the larger stimulus. However, placing a neutral density filter over the side of the experimental arena with the smaller stimulus abolished this preference, with spiders then being more likely to choose the side of the arena with the smaller stimulus. In conclusion, L. viridis appears to use ambient illumination and possibly perceived leaf brightness but not leaf shape or color to locate its microhabitat. This calls for a careful re-examination of which visual cues a variety of arthropods are actually attending to when they search for their preferred host species or microhabitat. © 2016. Published by The Company of Biologists Ltd.

  18. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    PubMed

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment.

    PubMed

    Sedlacek, Janosch; Wheeler, Julia A; Cortés, Andrés J; Bossdorf, Oliver; Hoch, Guenter; Lexer, Christian; Wipf, Sonja; Karrenberg, Sophie; van Kleunen, Mark; Rixen, Christian

    2015-01-01

    Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological development time and increased exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt.

  20. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less

  1. Freezing resistance in Patagonian woody shrubs: the role of cell wall elasticity and stem vessel size.

    PubMed

    Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo

    2016-08-01

    Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.

    PubMed

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk

    2017-05-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  3. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess.

    PubMed

    Sánchez-Pardo, Beatriz; Fernández-Pascual, Mercedes; Zornoza, Pilar

    2014-01-01

    The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.

  4. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  5. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    PubMed

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.

  6. The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis)

    PubMed Central

    Balduzzi, Mathilde A.F.; Van der Zande, Dimitry; Stuckens, Jan; Verstraeten, Willem W.; Coppin, Pol

    2011-01-01

    Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the laser beam and the surface of the leaf of a Conference Pear tree (Pyrus Commmunis) is established. The results demonstrate that with only intensity, this relationship has a potential for determining the angle of incidence with the leaves surface with a precision of ±5° for an angle of incidence smaller than 60°, whereas it is more variable for an angle of incidence larger than 60°. It appears that TLS beam footprint, leaf curvatures and leaf wrinkles have an impact on the relationship between intensity and angle of incidence, though, this analysis shows that the intensity of scanned leaves has a potential to eliminate ghost points and to improve their meshing. PMID:22319374

  7. Following Vegetative to Embryonic Cellular Changes in Leaves of Arabidopsis Overexpressing LEAFY COTYLEDON21[W][OPEN

    PubMed Central

    Feeney, Mistianne; Frigerio, Lorenzo; Cui, Yuhai; Menassa, Rima

    2013-01-01

    Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpression causes vegetative tissues to change their developmental fate to an embryonic state; however, little information exists about the cellular changes that take place. We show that LEC2 alters leaf morphology and anatomy and causes embryogenic structures to form subcellularly in leaves of Arabidopsis (Arabidopsis thaliana). Chloroplasts accumulate more starch, the cytoplasm fills with oil bodies, and lytic vacuoles (LVs) appear smaller in size and accumulate protein deposits. Because LEC2 is responsible for activating the synthesis of seed storage proteins (SSPs) during seed development, SSP accumulation was investigated in leaves. The major Arabidopsis SSP families were shown to accumulate within small leaf vacuoles. By exploiting the developmental and tissue-specific localization of two tonoplast intrinsic protein isoforms, the small leaf vacuoles were identified as protein storage vacuoles (PSVs). Confocal analyses of leaf vacuoles expressing fluorescently labeled tonoplast intrinsic protein isoforms reveal an altered tonoplast morphology resembling an amalgamation of a LV and PSV. Results suggest that as the LV transitions to a PSV, the tonoplast remodels before the large vacuole lumen is replaced by smaller PSVs. Finally, using vegetative and seed markers to monitor the transition, we show that LEC2 induces a reprogramming of leaf development. PMID:23780897

  8. A scattering model for forested area

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.

  9. Inducible repression of multiple expansin genes leads to growth suppression during leaf development.

    PubMed

    Goh, Hoe-Han; Sloan, Jennifer; Dorca-Fornell, Carmen; Fleming, Andrew

    2012-08-01

    Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix. They are encoded by a large gene family, and data linked to loss of single gene function to support a role of expansins in leaf growth remain limited. Here, we provide a quantitative growth analysis of transgenics containing an inducible artificial microRNA construct designed to down-regulate the expression of a number of expansin genes that an expression analysis indicated are expressed during the development of Arabidopsis (Arabidopsis thaliana) leaf 6. The results support the hypothesis that expansins are required for leaf growth and show that decreased expansin gene expression leads to a more marked repression of growth during the later stage of leaf development. In addition, a histological analysis of leaves in which expansin gene expression was suppressed indicates that, despite smaller leaves, mean cell size was increased. These data provide functional evidence for a role of expansins in leaf growth, indicate the importance of tissue/organ developmental context for the outcome of altered expansin gene expression, and highlight the separation of the outcome of expansin gene expression at the cellular and organ levels.

  10. Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation

    PubMed Central

    Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando

    2008-01-01

    Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. PMID:18387972

  11. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    PubMed

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, L; Smith, L; Ciresianu, A

    2016-06-15

    Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a watermore » phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.« less

  13. Dissection of enhanced cell expansion processes in leaves triggered by a defect in cell proliferation, with reference to roles of endoreduplication.

    PubMed

    Fujikura, Ushio; Horiguchi, Gorou; Tsukaya, Hirokazu

    2007-02-01

    Leaf development relies on cell proliferation, post-mitotic cell expansion and the coordination of these processes. In several Arabidopsis thaliana mutants impaired in cell proliferation, such as angustifolia3 (an3), leaf cells are larger than normal at their maturity. This phenomenon, which we call compensated cell enlargement, suggests the presence of such coordination in leaf development. To dissect genetically the cell expansion system(s) underlying this compensation seen in the an3 mutant, we isolated and utilized 10 extra-small sisters (xs) mutant lines that show decreased cell size but normal cell numbers in leaves. In the xs single mutants, the palisade cell sizes in mature leaves are about 20-50% smaller than those of wild-type cells. Phenotypes of the palisade cell sizes in all combinations of xs an3 double mutants fall into three classes. In the first class, the compensated cell enlargement was significantly suppressed. Conversely, in the second class, the defective cell expansion conferred by the xs mutations was significantly suppressed by the an3 mutation. The residual xs mutations had effects additive to those of the an3 mutation on cell expansion. The endopolyploidy levels in the first class of mutants were decreased, unaffected or increased, as compared with those in wild-type, suggesting that the abnormally enhanced cell expansion observed in an3 could be mediated, at least in part, by ploidy-independent mechanisms. Altogether, these results clearly showed that a defect in cell proliferation in leaf primordia enhances a part of the network that regulates cell expansion, which is required for normal leaf expansion.

  14. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size.

    PubMed

    Fridley, Jason D; Craddock, Alaä

    2015-08-01

    Examination of the significance of genome size to plant invasions has been largely restricted to its association with growth rate. We investigated the novel hypothesis that genome size is related to forest invasions through its association with growth phenology, as a result of the ability of large-genome species to grow more effectively through cell expansion at cool temperatures. We monitored the spring leaf phenology of 54 species of eastern USA deciduous forests, including native and invasive shrubs of six common genera. We used new measurements of genome size to evaluate its association with spring budbreak, cell size, summer leaf production rate, and photosynthetic capacity. In a phylogenetic hierarchical model that differentiated native and invasive species as a function of summer growth rate and spring budbreak timing, species with smaller genomes exhibited both faster growth and delayed budbreak compared with those with larger nuclear DNA content. Growth rate, but not budbreak timing, was associated with whether a species was native or invasive. Our results support genome size as a broad indicator of the growth behavior of woody species. Surprisingly, invaders of deciduous forests show the same small-genome tendencies of invaders of more open habitats, supporting genome size as a robust indicator of invasiveness. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups.

    PubMed

    Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E

    1999-09-01

    ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.

  16. Partitioning of 13C-photosynthate from Spur Leaves during Fruit Growth of Three Japanese Pear (Pyrus pyrifolia) Cultivars Differing in Maturation Date

    PubMed Central

    ZHANG, CAIXI; TANABE, KENJI; TAMURA, FUMIO; ITAI, AKIHIRO; WANG, SHIPING

    2005-01-01

    • Background and Aims In fruit crops, fruit size at harvest is an important aspect of quality. With Japanese pears (Pyrus pyrifolia), later maturing cultivars usually have larger fruits than earlier maturing cultivars. It is considered that the supply of photosynthate during fruit development is a critical determinant of size. To assess the interaction of assimilate supply and early/late maturity of cultivars and its effect on final fruit size, the pattern of carbon assimilate partitioning from spur leaves (source) to fruit and other organs (sinks) during fruit growth was investigated using three genotypes differing in maturation date. • Methods Partitioning of photosynthate from spur leaves during fruit growth was investigated by exposure of spurs to 13CO2 and measurement of the change in 13C abundance in dry matter with time. Leaf number and leaf area per spur, fresh fruit weight, cell number and cell size of the mesocarp were measured and used to model the development of the spur leaf and fruit. • Key Results Compared with the earlier-maturing cultivars ‘Shinsui’ and ‘Kousui’, the larger-fruited, later-maturing cultivar ‘Shinsetsu’ had a greater total leaf area per spur, greater source strength (source weight × source specific activity), with more 13C assimilated per spur and allocated to fruit, smaller loss of 13C in respiration and export over the season, and longer duration of cell division and enlargement. Histology shows that cultivar differences in final fruit size were mainly attributable to the number of cells in the mesocarp. • Conclusions Assimilate availability during the period of cell division was crucial for early fruit growth and closely correlated with final fruit size. Early fruit growth of the earlier-maturing cultivars, but not the later-maturing ones, was severely restrained by assimilate supply rather than by sink limitation. PMID:15655106

  17. Effects of dew deposition on transpiration and carbon uptake in leaves

    NASA Astrophysics Data System (ADS)

    Gerlein-Safdi, C.; Koohafkan, M.; Chung, M.; Rockwell, F. E.; Thompson, S. E.; Caylor, K. K.

    2017-12-01

    Dew deposition occurs in ecosystems worldwide, even in the driest deserts and in times of drought. Although some species absorb dew water directly via foliar uptake, a ubiquitous effect of dew on plant water balance is the interference of dew droplets with the leaf energy balance, which increases leaf albedo and emissivity and decreases leaf temperature through dew evaporation. Dew deposition frequency and amount are expected to be affected by changing environmental conditions, with unknown consequences for plant water stress and ecosystem carbon, water and energy fluxes. Here we present a simple leaf energy balance that characterizes the effect of deposition and the evaporation of dew on leaf energy balance, transpiration, and carbon uptake. The model is driven by five common meteorological variables and shows very good agreement with leaf wetness sensor data from the Blue Oak Ranch Reserve in California. We explore the tradeoffs between energy, water, and carbon balances for leaves of different sizes across a range of relative humidity, wind speed, and air temperature conditions. Our results show significant water savings from transpiration suppression up to 30% for leaf characteristic lengths of 50 cm due to the decrease in leaf temperature. C. 25% of water savings from transpiration suppression in smaller leaves arise from the effect of dew droplets on leaf albedo. CO2 assimilation is decreased by up to 15% by the presence of dew, except for bigger leaves in windspeed conditions below 1 m/s when an increase in assimilation is expected.

  18. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark

    2014-05-01

    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.

  19. Some results from studies on the effects of weightlessness on the growth of epiphytic orchids

    NASA Technical Reports Server (NTRS)

    Cherevchenko, T. M.; Mayko, T. K.

    1983-01-01

    Epidendrum orchids were placed in a Malakhit-2 micro-greenhouse aboard the Soyuz-36-Salyut-6 space station to test their growth under weightless conditions. Growth occurred but was less than in control plants left on Earth; cells were smaller and parenchymal development slowed in all tissues. Stems, roots, and leaves were smaller. The number of stomas on the leaves was about the same as in the controls, but, because of the smaller leaf size, there were more per unit area. A modeling experiment using a clinostat revealed a large decrease in gibberellin activity and auxin activity. It was assumed that weightlessness primarily affects gibberellin biosynthesis, inhibiting cell growth. Reestablishment of growth compound activity upon return of the plants to Earth was indicated by the fact that the orchids resumed growth thereafter.

  20. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    PubMed Central

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  1. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    PubMed

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  2. Cell size, genome size and the dominance of Angiosperms

    NASA Astrophysics Data System (ADS)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic metabolism closer to maximum potential photosynthesis.EndFragment

  3. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    PubMed

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Giant Shoot Apical Meristems in Cacti Have Ordinary Leaf Primordia but Altered Phyllotaxy and Shoot Diameter

    PubMed Central

    MAUSETH, JAMES D.

    2004-01-01

    • Background and Aims Shoot apical meristems (SAMs) in most seed plants are quite uniform in size and zonation, and molecular genetic studies of Arabidopsis and other model plants are revealing details of SAM morphogenesis. Some cacti have SAMs much larger than those of A. thaliana and other seed plants. This study examined how SAM size affects leaf primordium (LP) size, phyllotaxy and shoot diameter. • Methods. Apices from 183 species of cacti were fixed, microtomed and studied by light microscopy. • Key Results Cactus SAM diameter varies from 93 to 2565 µm, the latter being 36 times wider than SAMs of A. thaliana and having a volume 45 thousand times larger. Phyllotaxy ranges from distichous to having 56 rows of leaves and is not restricted to Fibonacci numbers. Leaf primordium diameter ranges from 44 to 402 µm, each encompassing many more cells than do LP of other plants. Species with high phyllotaxy have smaller LP, although the correlation is weak. There is almost no correlation between SAM diameter and LP size, but SAM diameter is strongly correlated with shoot diameter, with shoots being about 189·5 times wider than SAMs. • Conclusions Presumably, genes such as SHOOT‐MERISTEMLESS, WUSCHEL and CLAVATA must control much larger volumes of SAM tissue in cacti than they do in A. thaliana, and genes such as PERIANTHIA might establish much more extensive fields of inhibition around LP. These giant SAMs should make it possible to more accurately map gene expression patterns relative to SAM zonation and LP sites. PMID:15145794

  5. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    PubMed

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  6. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  7. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  8. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    NASA Astrophysics Data System (ADS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  9. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties

    PubMed Central

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-01-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570

  10. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties.

    PubMed

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-09-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.

  11. High Antioxidant Activity Facilitates Maintenance of Cell Division in Leaves of Drought Tolerant Maize Hybrids

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Vasileva, Ivanina; Petrova, Alexandra S.; Holek, Anna; Mariën, Joachim; Asard, Han; Beemster, Gerrit T. S.

    2017-01-01

    We studied the impact of drought on growth regulation in leaves of 13 maize varieties with different drought sensitivity and geographic origins (Western Europe, Egypt, South Africa) and the inbred line B73. Combining kinematic analysis of the maize leaf growth zone with biochemical measurements at a high spatial resolution allowed us to examine the correlation between the regulation of the cellular processes cell division and elongation, and the molecular redox-regulation in response to drought. Moreover, we demonstrated differences in the response of the maize lines to mild and severe levels of water deficit. Kinematic analysis indicated that drought tolerant lines experienced less impact on leaf elongation rate due to a smaller reduction of cell production, which, in turn, was due to a smaller decrease of meristem size and number of cells in the leaf meristem. Clear differences in growth responses between the groups of lines with different geographic origin were observed in response to drought. The difference in drought tolerance between the Egyptian hybrids was significantly larger than between the European and South-African hybrids. Through biochemical analyses, we investigated whether antioxidant activity in the growth zone, contributes to the drought sensitivity differences. We used a hierarchical clustering to visualize the patterns of lipid peroxidation, H2O2 and antioxidant concentrations, and enzyme activities throughout the growth zone, in response to stress. The results showed that the lines with different geographic region used different molecular strategies to cope with the stress, with the Egyptian hybrids responding more at the metabolite level and African and the European hybrids at the enzyme level. However, drought tolerance correlated with both, higher antioxidant levels throughout the growth zone and higher activities of the redox-regulating enzymes CAT, POX, APX, and GR specifically in leaf meristems. These findings provide evidence for a link between antioxidant regulation in the leaf meristem, cell division, and drought tolerance. PMID:28210264

  12. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    PubMed

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  13. SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weppler, S; Villarreal-Barajas, J; Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta

    2016-06-15

    Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf tomore » deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.« less

  14. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).

    PubMed

    Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin

    2018-04-01

    Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.

  15. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  16. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    PubMed

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.

  17. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight.

    PubMed

    Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba

    2010-04-01

    *When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.

  18. Twig-leaf size relationships in woody plants vary intraspecifically along a soil moisture gradient

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Dong; Yan, En-Rong; Chang, Scott X.; Wang, Xi-Hua; Zhao, Yan-Tao; Shi, Qing-Ru

    2014-10-01

    Understanding scaling relationships between twig size and leaf size along environmental gradients is important for revealing strategies of plant biomass allocation with changing environmental constraints. However, it remains poorly understood how variations in the slope and y-intercept in the twig-leaf size relationship partition among individual, population and species levels across communities. Here, we determined the scaling relationships between twig cross-sectional area (twig size) and total leaf area per twig (leaf size) among individual, population and species levels along a soil moisture gradient in subtropical forests in eastern China. Twig and leaf tissues from 95 woody plant species were collected from three sites that form a soil moisture gradient: a wet site (W), a mesophytic site (M), and a dry site (D). The variance in scaling slope and y-intercept was partitioned among individual, population and species levels using a nested ANOVA. In addition, the change in the twig-leaf size relationship over the soil moisture gradient was determined for each of overlapping and turnover species. Twig size was positively related to leaf size across the three levels, with the variance partitioned at the individual level in scaling slope and y-intercept being 98 and 90%, respectively. Along the soil moisture gradient, the twig-leaf size relationship differed inter- and intraspecifically. At the species and population levels, there were homogeneous slopes but the y-intercept was W > M = D. In contrast, at the individual level, the regression slopes were heterogeneous among the three sites. More remarkably, the twig-leaf size relationships changed from negative allometry for overlapping species to isometry for turnover species. This study provides strong evidence for the twig-leaf size relationship to be intraspecific, particularly at the individual level. Our findings suggest that whether or not species have overlapping habitats is crucial for shaping the deployment pattern between twigs and leaves.

  19. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    PubMed

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. The adaptive value of heterospory: Evidence from Selaginella.

    PubMed

    Petersen, Kurt B; Burd, Martin

    2018-05-01

    Heterospory was a pivotal evolutionary innovation for land plants, but it has never been clear why it evolved. We used the geographic distributions of 114 species of the heterosporous lycophyte Selaginella to explore the functional ecology of microspore and megaspore size, traits that would be correlated with many aspects of a species' regeneration niche. We characterized habitats at a global scale using leaf area index (LAI), a measure of foliage density and thus shading, and net primary productivity (NPP), a measure of growth potential. Microspore size tends to decrease as habitat LAI and NPP increase, a trend that could be related to desiccation resistance or to filtration of wind-borne particles by leaf surfaces. Megaspore size tends to increase among species that inhabit regions of high LAI, but there is an important interaction with NPP. This geographical pattern suggests that larger megaspores provide an establishment advantage in shaded habitats, although in open habitats, where light is less limiting, higher productivity of the environment seems to give an advantage to species with smaller megaspores. These results support previous theoretical arguments that heterospory was originally an adaptation to the increasing height and density of Devonian vegetative canopies that accompanied the diversification of vascular plants with leaves. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  1. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  2. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  3. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  4. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  5. Effects of Changing Stomatal Width in A Red Pine Forest on Soil Water Content, Leaf Water Potential, Bole Diameter, and Growth

    PubMed Central

    Turner, Neil C.; Waggoner, Paul E.

    1968-01-01

    Spraying a 16 meter tall stand of red pine (Pinus resinosa Ait.) with 10−3 m phenylmercuric acetate in early June and again in mid-July resulted in the water use between June 1 and October 25 being reduced by almost 10%. It was demonstrated that this was caused by an increase in the leaf resistance with partial stomatal closure, which reduced absolute water potential in the needles by 1 to 3 bars in the middle of the day. Smaller demands were made upon the reserves of water in the bole of the tree as shown by the smaller bole contraction in the treated trees. Although needle length and dry weight were unaffected by the spray, radial growth was reduced by approximately 32%. The dependence of leaf resistance on light intensity is shown, and its independence from leaf water potential discussed. PMID:16656870

  6. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies.

  7. Analysis of Environmental Effects on Leaf Temperature under Sunlight, High Pressure Sodium and Light Emitting Diodes

    PubMed Central

    Nelson, Jacob A.; Bugbee, Bruce

    2015-01-01

    The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies. PMID:26448613

  8. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  9. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  10. Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs Within the Spectrum of Leaf Physiognomy

    PubMed Central

    Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando

    2007-01-01

    Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597

  11. Native Environment Modulates Leaf Size and Response to Simulated Foliar Shade across Wild Tomato Species

    PubMed Central

    Filiault, Daniele L.; Kumar, Ravi; Jiménez-Gómez, José M.; Schrager, Amanda V.; Park, Daniel S.; Peng, Jie; Sinha, Neelima R.; Maloof, Julin N.

    2012-01-01

    The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits. PMID:22253737

  12. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  13. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  14. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

    PubMed

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling.

  15. Oryza sativa BRASSINOSTEROID UPREGULATED1 LIKE1 Induces the Expression of a Gene Encoding a Small Leucine-Rich-Repeat Protein to Positively Regulate Lamina Inclination and Grain Size in Rice

    PubMed Central

    Jang, Seonghoe; Li, Hsing-Yi

    2017-01-01

    Oryza sativa BRASSINOSTEROID UPREGULATED1 LIKE1 (OsBUL1) positively affects lamina inclination and grain size. OsBUL1 knock-out (osbul1) plants as well as transgenic rice with reduced level of OsBUL1 expression produce erect leaves and small grains. Here, we identified a putative downstream gene of OsBUL1, OsBUL1 DOWNSTREAM GENE1 (OsBDG1) encoding a small protein with short leucine-rich-repeats by cDNA microarray analyses in the lamina joint and panicles of wild-type and osbul1 plants. Transgenic rice plants with increased OsBDG1 expression exhibit increased leaf angle and grain size, which is similar to an OsBDG1 activation tagging line whereas double stranded RNA interference (dsRNAi) lines for OsBDG1 knock-down generate erect leaves with smaller grains. Moreover, transgenic rice expressing OsBDG1 under the control of OsBUL1 promoter also shows enlarged leaf bending and grain size phenotypes. Two genes, OsAP2 (OsAPETALA2) and OsWRKY24 were identified as being upregulated transcriptional activators in the lamina joint of pOsBUL1:OsBDG1 plants and induced expression of the two genes driven by OsBUL1 promoter caused increased lamina inclination and grain size in rice. Thus, our work demonstrates that a series of genes showing expression cascades are involved in the promotion of cell elongation in lamina joints and functionally cause increased lamina inclination. PMID:28769958

  16. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  17. Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert

    PubMed Central

    Garrido, Marco; Silva, Herman; Franck, Nicolás; Arenas, Jorge; Acevedo, Edmundo

    2018-01-01

    Water extraction from the underground aquifers of the Pampa del Tamarugal (Atacama Desert, Chile) reduced the growing area of Prosopis tamarugo, a strict phreatic species endemic to northern Chile. The objective of this work was to evaluate the effect of various architectural and morpho-physiological traits adjustment of P. tamarugo subjected to three groundwater depletion intervals (GWDr): <1 m (control), 1–4 m and 6–9 m. The traits were evaluated at three levels, plant [height, trunk cross-section area, leaf fraction (fGCC), and crown size], organ [length of internodes, leaf mass per unit area (LMA), leaflet mass and area], and tissue level [wood density (WD), leaf 13C, 18O isotope composition (δ), and intrinsic water use efficiency (iWUE)]. In addition, soil water content (VWC) to 1.3 m soil depth, pre-dawn and midday water potential difference (ΔΨ), and stomatal conductance (gs) were evaluated. At the deeper GWDr, P. tamarugo experienced significant growth restriction and reduced fGCC, the remaining canopy had a significantly higher LMA associated with smaller leaflets. No differences in internode length and WD were observed. Values for δ13C and δ18O indicated that as GWDr increased, iWUE increased as a result of partial stomata closure with no significant effect on net assimilation over time. The morpho-physiological changes experienced by P. tamarugo allowed it to acclimate and survive in a condition of groundwater depletion, keeping a functional but diminished canopy. These adjustments allowed maintenance of a relatively high gs; ΔΨ was not different among GWDrs despite smaller VWC at greater GWDr. Although current conservation initiatives of this species are promising, forest deterioration is expected continue as groundwater depth increases. PMID:29686691

  18. Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert.

    PubMed

    Garrido, Marco; Silva, Herman; Franck, Nicolás; Arenas, Jorge; Acevedo, Edmundo

    2018-01-01

    Water extraction from the underground aquifers of the Pampa del Tamarugal (Atacama Desert, Chile) reduced the growing area of Prosopis tamarugo , a strict phreatic species endemic to northern Chile. The objective of this work was to evaluate the effect of various architectural and morpho-physiological traits adjustment of P. tamarugo subjected to three groundwater depletion intervals (GWDr): <1 m (control), 1-4 m and 6-9 m. The traits were evaluated at three levels, plant [height, trunk cross-section area, leaf fraction ( f GCC), and crown size], organ [length of internodes, leaf mass per unit area (LMA), leaflet mass and area], and tissue level [wood density (WD), leaf 13 C, 18 O isotope composition (δ), and intrinsic water use efficiency (iWUE)]. In addition, soil water content (VWC) to 1.3 m soil depth, pre-dawn and midday water potential difference (ΔΨ), and stomatal conductance (g s ) were evaluated. At the deeper GWDr, P. tamarugo experienced significant growth restriction and reduced f GCC, the remaining canopy had a significantly higher LMA associated with smaller leaflets. No differences in internode length and WD were observed. Values for δ 13 C and δ 18 O indicated that as GWDr increased, iWUE increased as a result of partial stomata closure with no significant effect on net assimilation over time. The morpho-physiological changes experienced by P. tamarugo allowed it to acclimate and survive in a condition of groundwater depletion, keeping a functional but diminished canopy. These adjustments allowed maintenance of a relatively high g s ; ΔΨ was not different among GWDrs despite smaller VWC at greater GWDr. Although current conservation initiatives of this species are promising, forest deterioration is expected continue as groundwater depth increases.

  19. Phytoremediation of ethylene glycol and its derivatives by the burhead plant (Echinodorus cordifolius (L.)): effect of molecular size.

    PubMed

    Teamkao, Pattrarat; Thiravetyan, Paitip

    2010-11-01

    Ethylene glycol (EG) is a group of dihydroxy alcohol that has been utilised in a variety of industrial and residential settings. EG contaminated wastewater has a high chemical oxygen demand (COD), which causes environmental problems. The aim of this research was to investigate the efficiency of the burhead plant (Echinodorus cordifolius (L.)) in the removal of mono-, di- and triethylene glycol (MEG, DEG and TEG), the first three members of the dihydroxy alcohol group, from synthetic wastewaters, to examine the toxic effect of EG on the plant and to identify differences among MEG, DEG, and TEG removal. It was found that the COD of synthetic wastewaters decreased to levels below the standard effluent (COD=120 mg L⁻¹) on day 18, 21 and 33 for MEG, DEG and TEG, respectively. On day 18 of the experiment, the burhead plant removed approximately 2000, 1950 and 730 mg L⁻¹ of MEG, DEG and TEG, respectively. The removal rate of MEG was faster than that of DEG and TEG, suggesting that the molecular size of the EG had affected its rate of removal. The concentrations of MEG, DEG, and TEG in plant tissue were measured to show that burhead can take up EG, and the major site of EG accumulation is the leaf. The molar of MEG that was taken up into the plant leaf was higher than that of DEG and TEG. This suggested that EG of smaller molecular sizes can be taken up more rapidly by the plant than EG of larger molecular sizes. EG concentrations in the leaf increased to a peak concentration and then slowly decreased. GC-MS analysis of DEG-treated plant tissue found MEG, 1,4-dioxan-2-one, neophytadiene, and 2-propenamide, that may be DEG-degradation products and/or compounds that are induced when plants are exposed to DEG. The result indicates that burhead can potentially be used for EG removal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  1. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.

    PubMed

    Kim, Jong-yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  2. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  3. Sugar export limits size of conifer needles

    NASA Astrophysics Data System (ADS)

    Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas; Jensen, Kaare H.

    2017-04-01

    Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants.

  4. Correlated variation of floral and leaf traits along a moisture availability gradient.

    PubMed

    Lambrecht, Susan C; Dawson, Todd E

    2007-04-01

    Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.

  5. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    PubMed

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  6. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    PubMed

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.

  7. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'.

    PubMed

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-03-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.

    2003-01-01

    1. Most plant demographic studies follow marked individuals in permanent plots. Plots tend to be small, so detectability is assumed to be one for every individual. However, detectability could be affected by factors such as plant traits, time, space, observer, previous detection, biotic interactions, and especially by life-state. 2. We used a double-observer survey and closed population capture-recapture modelling to estimate state-specific detectability of the orchid Cleistes bifaria in a long-term study plot of 41.2 m2. Based on AICc model selection, detectability was different for each life-state and for tagged vs. previously untagged plants. There were no differences in detectability between the two observers. 3. Detectability estimates (SE) for one-leaf vegetative, two-leaf vegetative, and flowering/fruiting states correlated with mean size of these states and were 0.76 (0.05), 0.92 (0.06), and 1 (0.00), respectively, for previously tagged plants, and 0.84 (0.08), 0.75 (0.22), and 0 (0.00), respectively, for previously untagged plants. (We had insufficient data to obtain a satisfactory estimate of previously untagged flowering plants). 4. Our estimates are for a medium-sized plant in a small and intensively surveyed plot. It is possible that detectability is even lower for larger plots and smaller plants or smaller life-states (e.g. seedlings) and that detectabilities < 1 are widespread in plant demographic studies. 5. State-dependent detectabilities are especially worrying since they will lead to a size- or state-biased sample from the study plot. Failure to incorporate detectability into demographic estimation methods introduces a bias into most estimates of population parameters such as fecundity, recruitment, mortality, and transition rates between life-states. We illustrate this by a simple example using a matrix model, where a hypothetical population was stable but, due to imperfect detection, wrongly projected to be declining at a rate of 8% per year. 6. Almost all plant demographic studies are based on models for discrete states. State and size are important predictors both for demographic rates and detectability. We suggest that even in studies based on small plots, state- or size-specific detectability should be estimated at least at some point to avoid biased inference about the dynamics of the population sampled.

  9. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  10. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls

    PubMed Central

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2018-01-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, the declining characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis, and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area was primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. PMID:25158785

  11. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies

    PubMed Central

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E. L.

    2012-01-01

    Background and Aims Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Methods Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Key Results Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Conclusions Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits. PMID:22337079

  12. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  13. ABA-deficiency results in reduced plant and fruit size in tomato.

    PubMed

    Nitsch, L; Kohlen, W; Oplaat, C; Charnikhova, T; Cristescu, S; Michieli, P; Wolters-Arts, M; Bouwmeester, H; Mariani, C; Vriezen, W H; Rieu, I

    2012-06-15

    Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size-twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data

    PubMed Central

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling. PMID:25852721

  16. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    USDA-ARS?s Scientific Manuscript database

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  17. Foliar stable carbon and nitrogen isotopes in woody Mediterranean species with different life form and post-fire regeneration.

    PubMed

    Saura-Mas, S; Lloret, F

    2010-01-01

    Wildfire is an important ecological disturbance factor in most Mediterranean ecosystems. In the Mediterranean Basin, most shrub species can regenerate after fire by resprouting or seeding. Here, we hypothesize that post-fire regenerative syndromes may potentially co-vary with traits directly related to functional properties involved in resource use. Thus, seeders with a shorter life span and smaller size would have lower water-use efficiency (WUE) than re-sprouting species and would take up nutrients such as nitrogen from more superficial parts of the soil. To test this hypothesis, we compared leaf (13)C and (15)N signatures from 29 co-existing species with different post-fire regeneration strategies. We also considered life form as an additional explanatory variable of the differences between post-fire regenerative groups. Our data support the hypothesis that seeder species (which mostly evolved in the Quaternary under a Mediterranean climate) have lower WUE and less stomatal control than non-seeders (many of which evolved under different climatic conditions in the Tertiary) and consequently greater consumption of water per unit biomass. This would be related to their smaller life forms, which tend to have lower WUE and shorter life and leaf lifespan. Differences in (15)N also support the hypothesis that resprouters have deeper root systems than non-resprouters. The study supports the hypothesis of an overlap between plant functional traits and plant attributes describing post-disturbance resilience.

  18. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  19. BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways.

    PubMed

    Marsch-Martinez, Nayelli; Greco, Raffaella; Becker, Jörg D; Dixit, Shital; Bergervoet, Jan H W; Karaba, Aarati; de Folter, Stefan; Pereira, Andy

    2006-12-01

    The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves.

  20. Survival, growth, and localization of epiphytic fitness mutants of pseudomonas syringae on leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, G.A.; Lindow, S.E.

    Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated into and into plant leaves. For example, while non showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular space of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parentalmore » strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sizes protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possible several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes. 52 refs., 6 figs., 1 tab.« less

  1. [Morphological and anatomical characterization of a stripe mutant with abnormal floral organs in rice].

    PubMed

    Chen, De Xi; Ma, Bing Tian; Wang, Yu Ping; Li, Shi Gui; Hao, Ming

    2006-08-01

    A rice double mutant was derived from the transgenic process,but it does not carry the alien gene. The mutant showed white stripe on stem, leaf and spikelet. In some growing stage,the leaf started to produce fork or curliness. The floret number increased, showing multi-lemma/palea, palea-like or lemma-like lodicules or enlarged lodicules, additional pistil and stamen and the spited floret. With observation of cell ultra structure using electron microscope,the white tissue showed concaved cell wall and abnormal plastid which could not develop normal lamellae and thylakoid. The contents of chlorophyll and net photosynthesis rate in the mutant were obviously lower than those in the wild type. The cells in green sectors grow normally with the exception of the bigger cell volume. The morphogenesis of floral organ was observed by using the scanning electron microscopy (SEM). Results showed that the stamen development was not synchronal and the sizes of stamen primordium were different in mutant, and the carpel was smaller than that of wild type.

  2. Ratio of Cut Surface Area to Leaf Sample Volume for Water Potential Measurements by Thermocouple Psychrometers

    PubMed Central

    Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.

    1984-01-01

    Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578

  3. Epigenetic Variation in Mangrove Plants Occurring in Contrasting Natural Environment

    PubMed Central

    Lira-Medeiros, Catarina Fonseca; Parisod, Christian; Fernandes, Ricardo Avancini; Mata, Camila Souza; Cardoso, Monica Aires; Ferreira, Paulo Cavalcanti Gomes

    2010-01-01

    Background Epigenetic modifications, such as cytosine methylation, are inherited in plant species and may occur in response to biotic or abiotic stress, affecting gene expression without changing genome sequence. Laguncularia racemosa, a mangrove species, occurs in naturally contrasting habitats where it is subjected daily to salinity and nutrient variations leading to morphological differences. This work aims at unraveling how CpG-methylation variation is distributed among individuals from two nearby habitats, at a riverside (RS) or near a salt marsh (SM), with different environmental pressures and how this variation is correlated with the observed morphological variation. Principal Findings Significant differences were observed in morphological traits such as tree height, tree diameter, leaf width and leaf area between plants from RS and SM locations, resulting in smaller plants and smaller leaf size in SM plants. Methyl-Sensitive Amplified Polymorphism (MSAP) was used to assess genetic and epigenetic (CpG-methylation) variation in L. racemosa genomes from these populations. SM plants were hypomethylated (14.6% of loci had methylated samples) in comparison to RS (32.1% of loci had methylated samples). Within-population diversity was significantly greater for epigenetic than genetic data in both locations, but SM also had less epigenetic diversity than RS. Frequency-based (GST) and multivariate (βST) methods that estimate population structure showed significantly greater differentiation among locations for epigenetic than genetic data. Co-Inertia analysis, exploring jointly the genetic and epigenetic data, showed that individuals with similar genetic profiles presented divergent epigenetic profiles that were characteristic of the population in a particular environment, suggesting that CpG-methylation changes may be associated with environmental heterogeneity. Conclusions In spite of significant morphological dissimilarities, individuals of L. racemosa from salt marsh and riverside presented little genetic but abundant DNA methylation differentiation, suggesting that epigenetic variation in natural plant populations has an important role in helping individuals to cope with different environments. PMID:20436669

  4. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Wind increases leaf water use efficiency.

    PubMed

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  6. Drag forces of natural trees of different size: experiments in a towing tank

    NASA Astrophysics Data System (ADS)

    Jalonen, Johanna; Järvelä, Juha

    2013-04-01

    Reliable estimation of hydraulic resistance is of great importance in practical applications such as river and wetland restoration as well as flood prediction and management. Parameters describing riparian vegetation need to be physically sound and readily measurable. For these purposes, several researchers have studied the hydraulic resistance in flumes with living and artificial plants both in arrays and with isolated plants. However, due to the restrictions of flume size the experiments are often conducted with parts of trees, twigs or branches. Consequently, it is not clear how the size (parts of trees or small trees vs. full scale trees) affects the hydraulic resistance. We conducted direct drag force measurements for 23 tree individuals of different heights (0.9 m - 3.5 m) in a towing tank. The investigated species were Common Alder (Alnus glutinosa), Goat Willow (Salix caprea), Silver Birch (Betula pendula) and White Birch (Betula pubescens). The forces were measured at velocity ranges of 0.1-2.5 m/s and 0.1-2.0 m/s both in leafy and leafless conditions, respectively. The measurement system consisted of three load cells measuring the main flow direction. Two different load cell setups were used depending on the size of the specimen to allow for accurate force measurement. For the smaller trees the load cells were replaced with more sensitive sensors, and the resulting ranges of the load cells were from 1 to 1000 N and from 0.1 to 100 N. Frontal and side projected areas and bending of the specimens were recorded during the measurements using submerged video cameras. For all specimens, wet and dry biomass, projected area in still air, and one-sided leaf area were determined. In order to construct a 3D-model of the trees, the specimens were laser scanned from three directions with a terrestrial laser scanner (TLS). The resulting point cloud had a millimeter resolution, and provided detailed information about the plant characteristics, such as leaf area, projected area, and stem volume with the corresponding vertical distributions. The experiments provided information for improving understanding about the impact of tree size on drag (different plant properties such as flexibility and deformation), contribution of foliage to drag, and characterization of vegetation (laser scanning vs. biomass and photographs). The results showed that the contribution of leaves to the total drag decreased from 80% at the lowest velocity (0.1 m/s) to around 40% for velocities above 0.5 m/s. For the smaller trees, height 90-150 cm, the contribution of leaves to the total drag was 50% at the velocity of 0.5 m/s and higher. These differences may be attributed to the different tree morphology of the smaller trees compared to the taller trees. The differences in the flexibility and plant characteristics will be elaborated in the further analyses of the data.

  7. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls.

    PubMed

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2015-04-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. © 2014 John Wiley & Sons Ltd.

  8. Large size and high light do not lower the cost of reproduction for the Neotropical herb Goeppertia marantifolia.

    PubMed

    Matlaga, David P; Horvitz, Carol C

    2015-03-01

    • Sexual reproduction is often associated with a cost in terms of reduced survival, growth, or future reproduction. It has been proposed that plant size and the environment (availability of key resources) can sometimes lower or even nullify the cost of reproduction.• We address this issue experimentally with the Neotropical herb Goeppertia marantifolia, by manipulating sexual reproductive effort and measuring the demographic performance of plants and of their clonal offspring, in the context of natural variation in light availability.• Plants in the high-reproductive-effort treatment grew less between seasons but did not differ in their probability of flowering the second season or in inflorescence size compared with plants in the low-effort treatment. Reproductive effort of parent plants influenced the leaf area of their clonal offspring. Plants that invested less in sexual reproduction produced clonal offspring that were initially larger than those produced by plants that invested more in reproduction. The magnitude of this effect was greater in parent plants that received two seasons of the manipulated reproductive effort than in those that received a single season. The trade-off between reproductive modes dampened with time, leading to smaller differences in clonal offspring leaf area between treatments over time.• We found evidence of a cost of reproduction and trade-offs between reproductive modes, although the magnitude of these costs was small. However, we found no evidence of lower costs of reproduction for larger plants or for plants in higher-light environments over our 2-yr study period. © 2015 Botanical Society of America, Inc.

  9. Habitat selection by breeding red-winged blackbirds

    USGS Publications Warehouse

    Albers, P.H.

    1978-01-01

    Habitat preferences of breeding Red-winged Blackbirds in an agricultural area were determined by comparing population density, landscape characteristics, and vegetational descriptions. Observations were made throughout the breeding season. Preferred breeding habitats of Red-wings, in order of preference, were wetlands, hayfields, old fields, and pastures. Males and females occupied old fields and wetlands first, then hayfields, and finally, pastures. Cutting of hayfields caused territorial abandonment by both sexes within 48 h. The apparent movement of displaced females from cut hayfields to uncut hayfields suggests that habitat fidelity of females is strong after the breeding effort has begun. Breeding Red-wings exhibited general preferences for trees, large amounts of habitat edge, erect old vegetation, and sturdy, tall, and dense vegetation. Vegetative forms and species, such as upland grasses, broad- and narrow-leafed monocots in wetlands, and forbs were important to the Red-wing at various times during the breeding season. Landscape and vegetational preferences of breeding adults were easier to observe early in the breeding season (March through May) than later. Vegetational growth and increases in the size of the breeding population probably make these preferences more difficult to detect. Territory size was poorly correlated with landscape and vegetational characteristics in uplands but strongly correlated with broad- and narrow-leafed mono cots and vegetative height in wetlands. Wetland territories were smaller than upland territories. Territories increased in size during the middle and late portions of the breedi g season. Habitat selection by the Red-winged Blackbird can best be studied by evaluating vegetative preferences throughout the breeding season.

  10. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Phillips, O. L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Butt, N.; Anderson, L. O.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Silva, N.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-02-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN) has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  11. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-08-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  12. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees.

    PubMed

    Sendall, Kerrie M; Reich, Peter B

    2013-07-01

    Rates of tissue-level function have been hypothesized to decline as trees grow older and larger, but relevant evidence to assess such changes remains limited, especially across a wide range of sizes from saplings to large trees. We measured functional traits of leaves and twigs of three cold-temperate deciduous tree species in Minnesota, USA, to assess how these vary with tree height. Individuals ranging from 0.13 to 20 m in height were sampled in both relatively open and closed canopy environments to minimize light differences as a potential driver of size-related differences in leaf and twig properties. We hypothesized that (H1) gas-exchange rates, tissue N concentration and leaf mass per unit area (LMA) would vary with tree size in a pattern reflecting declining function in taller trees, yet maintaining (H2) bivariate trait relations, common among species as characterized by the leaf economics spectrum. Taking these two ideas together yielded a third, integrated hypothesis that (H3) nitrogen (N) content and gas-exchange rates should decrease monotonically with tree size and LMA should increase. We observed increasing LMA and decreasing leaf and twig Rd with increasing size, which matched predictions from H1 and H3. However, opposite to our predictions, leaf and twig N generally increased with size, and thus had inverse relations with respiration, rather than the predicted positive relations. Two exceptions were area-based leaf N of Prunus serotina Ehrh. in gaps and mass-based leaf N of Quercus ellipsoidalis E. J. Hill in gaps, both of which showed qualitatively hump-shaped patterns. Finally, we observed hump-shaped relationships between photosynthetic capacity and tree height, not mirroring any of the other traits, except in the two cases highlighted above. Bivariate trait relations were weak intra-specifically, but were generally significant and positive for area-based traits using the pooled dataset. Results suggest that different traits vary with tree size in different ways that are not consistent with a universal shift towards a lower 'return on investment' strategy. Instead, species traits vary with size in patterns that likely reflect complex variation in water, light, nitrogen and carbon availability, storage and use.

  13. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  14. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  15. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels

    PubMed Central

    Singh, Shardendu K.; Reddy, Vangimalla R.

    2017-01-01

    Elevated carbon dioxide (eCO2) often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K) deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM) and two deficient (0.50 and 0.02 mM) levels of K under ambient CO2 (aCO2; 400 μmol mol−1) and eCO2 (800 μmol mol−1). Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet). In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl), and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K), photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum K fertilization for maximum crop productivity under eCO2. Thus, eCO2 compensated, at least partially, for the reduced soybean growth and seed yield under 0.5 mM K supply, but severe K deficiency completely suppressed the eCO2-enhanced seed yield. PMID:28642785

  16. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  17. Multimodal lightsheet, structured illumination and Airyscan superresolution microscopy of chloroplast size and its impact on light propagation

    USDA-ARS?s Scientific Manuscript database

    Altering chloroplast size changes the way light propagates through a leaf by altering light reflectance and transmission as well as absorption by chlorophyll. Thus changing chloroplast size can used to manipulate leaf optical properties to optimize photosynthetic efficiency with the ultimate goal of...

  18. Reprint of On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Correction to the plant canopy gap-size analysis theory used by the Tracing Radiation and Architecture of Canopies instrument

    NASA Astrophysics Data System (ADS)

    Leblanc, Sylvain G.

    2002-12-01

    A plant canopy gap-size analyzer, the Tracing Radiation and Architecture of Canopies (TRAC), developed by Chen and Cihlar [Appl. Opt. 34, 6211 (1995)] and commercialized by 3rd Wave Engineering (Nepean, Canada), has been used around the world to quantify the fraction of photosynthetically active radiation absorbed by plant canopies, the leaf area index (LAI), and canopy architectural parameters. The TRAC is walked under a canopy along transects to measure sunflecks that are converted into a gap-size distribution. A numerical gap-removal technique is performed to remove gaps that are not theoretically possible in a random canopy. The resulting reduced gap-size distribution is used to quantify the heterogeneity of the canopy and to improve LAI measurements. It is explicitly shown here that the original derivation of the clumping index was missing a normalization factor. For a very clumped canopy with a large gap fraction, the resulting LAI can be more than 100% smaller than previously estimated. A test case is used to demonstrate that the new clumping index derivation allows a more accurate change of LAI to be measured.

  1. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees.

    PubMed

    Abdul-Hamid, Hazandy; Mencuccini, Maurizio

    2009-01-01

    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.

  2. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.; Nakata, P.A.; Anderson, J.M.

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tubermore » subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.« less

  4. Stomata size and spatial pattern effects on leaf gas exchange - a quantitative assessment of plant evolutionary choices

    NASA Astrophysics Data System (ADS)

    Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter

    2014-05-01

    Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are lumped into a single effective resistance parameter, the present approach enables derivation of nuanced insights and offers predictive capabilities that link changes in stomata structure and geometrical attributes to quantifying environmental influences and feedbacks on leaf structure and function.

  5. Carbon dioxide enrichment does not reduce leaf longevity or alter accumulation of carbon reserves in the woodland spring ephemeral Erythronium americanum.

    PubMed

    Gutjahr, Sylvain; Lapointe, Line

    2008-11-01

    Woodland spring ephemerals exhibit a relatively short epigeous growth period prior to canopy closure. However, it has been suggested that leaf senescence is induced by a reduction in the carbohydrate sink demand, rather than by changes in light availability. To ascertain whether a potentially higher net carbon (C) assimilation rate could shorten leaf lifespan due to an accelerated rate of storage, Erythronium americanum plants were grown under ambient (400 ppm) and elevated (1100 ppm) CO2 concentrations. During this growth-chamber experiment, plant biomass, bulb starch concentration and cell size, leaf phenology, gas exchange rates and nutrient concentrations were monitored. Plants grown at 1100 ppm CO2 had greater net C assimilation rates than those grown at 400 ppm CO2. However, plant size, final bulb mass, bulb filling rate and timing of leaf senescence did not differ. Erythronium americanum fixed more C under elevated than under ambient CO2 conditions, but produced plants of similar size. The similar bulb growth rates under both CO2 concentrations suggest that the bulb filling rate is dependant on bulb cell elongation rate, rather than on C availability. Elevated CO2 stimulated leaf and bulb respiratory rates; this might reduce feed-back inhibition of photosynthesis and avoid inducing premature leaf senescence.

  6. Trait coordination, mechanical behaviour and growth form plasticity of Amborella trichopoda under variation in canopy openness

    PubMed Central

    Trueba, Santiago; Isnard, Sandrine; Barthélémy, Daniel; Olson, Mark E.

    2016-01-01

    Understanding the distribution of traits across the angiosperm phylogeny helps map the nested hierarchy of features that characterize key nodes. Finding that Amborella is sister to the rest of the angiosperms has raised the question of whether it shares certain key functional trait characteristics, and plastic responses apparently widespread within the angiosperms at large. With this in mind, we test the hypothesis that local canopy openness induces plastic responses. We used this variation in morphological and functional traits to estimate the pervasiveness of trait scaling and leaf and stem economics. We studied the architecture of Amborella and how it varies under different degrees of canopy openness. We analyzed the coordination of 12 leaf and stem structural and functional traits, and the association of this covariation with differing morphologies. The Amborella habit is made up of a series of sympodial modules that vary in size and branching pattern under different canopy openness. Amborella stems vary from self-supporting to semi-scandent. Changes in stem elongation and leaf size in Amborella produce distinct morphologies under different light environments. Correlations were found between most leaf and stem functional traits. Stem tissue rigidity decreased with increasing canopy openness. Despite substantial modulation of leaf size and leaf mass per area by light availability, branches in different light environments had similar leaf area-stem size scaling. The sympodial growth observed in Amborella could point to an angiosperm synapomorphy. Our study provides evidence of intraspecific coordination between leaf and stem economic spectra. Trait variation along these spectra is likely adaptive under different light environments and is consistent with these plastic responses having been present in the angiosperm common ancestor. PMID:27672131

  7. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  8. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development.

    PubMed

    Vanhaeren, Hannes; Nam, Youn-Jeong; De Milde, Liesbeth; Chae, Eunyoung; Storme, Veronique; Weigel, Detlef; Gonzalez, Nathalie; Inzé, Dirk

    2017-02-01

    The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant's life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development1[OPEN

    PubMed Central

    Vanhaeren, Hannes; De Milde, Liesbeth

    2017-01-01

    The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant’s life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. PMID:28003326

  10. Use of Tectonagrandis Leaf Extract in Colouring Silk Cloth Material Based on pH and Mordant Variations

    NASA Astrophysics Data System (ADS)

    Rosyida, A.; Suranto

    2018-03-01

    One of the very potential use of plant natural colour in the industrial activities was Anthocyanin. This substance contains in a number on plant organs such as Tectona Grandis (Fabaceae) particularly in their leaf materials. In order to get this secondary metabolism, the aim of this research was to find out the optimum condition of mordant and the pH combination in producing natural colour of Tectonagrandis leaf extract. To get this chemical substance, 1 kilogram of young leaves were cut into smaller size and soaked in 7 litre of H2O for 12 hour9. The solution was then boiled for 15 minutes. To get the best colour, variations of pH (5, 7 and 9) respectivelly were applied. The results showed that purple to redness were resulted when pH 5 and no additional mordant was added. Conversly the greyness to black, were produced when ferrosulphate were added. When the addition of alum was made the redies purple will appear. These colours were considered quite good quality under examination of grey and staining scales (4-5) after treated by both wet and dry rubbing methods. The test for wash fastness resulted in sufficiently good value of color change (value of 3 on Grey Scale standard), while test for staining demonstrated good staining (value of 4 on Staining Scale standard). This early finding was quite promosing to be applied in the near future in providing natural colours for industrial purposes.

  11. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  13. [Acumen function in leaves and its vertical distribution in a tropical rain forest of Costa Rica].

    PubMed

    Farji-Brener, Alejandro G; Valverde, Oscar; Paolini, Leonardo; de los Angeles La Torre, María; Quintero, Estela; Bonaccorso, Elisa; Arnedo, Luisa; Villalobos, Richard

    2002-06-01

    Water retention on the leaf surface can be maladaptive to the plant because it increases the colonization of epiphylls and interferes with the physiologic processes of the leaf, diminishing the photosynthetic capacity. To test if leaf driptips facilitate leaf drying after rainfall in a tropical rain forest of Costa Rica, we (1) experimentally measured the capacity to retain water on leaf surfaces of 30 plant species before and after driptip removal, and (2) analyzed the development of driptips along forest strata. We expected leaf driptips to be less developed in the upper strata due to the environmental conditions of the canopy (i.e., high solar radiation, strong winds and low relative humidity), which favor the natural drying of leaves. The presence of driptips increased 100% the water run off capacity of leaves in all the analyzed species. Also, the development of leaf driptips was smaller in canopy species than in understory species. Additionally, they became less developed in canopy species as trees increased in height. These results support the hypothesis that the adaptive role of driptips is to facilitate the drying of leaf surfaces.

  14. Leaf Shape Responds to Temperature but Not CO2 in Acer rubrum

    PubMed Central

    Royer, Dana L.

    2012-01-01

    The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO2 concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO2 has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO2 conditions. The CO2 treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate. PMID:23152921

  15. Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri.

    PubMed

    Ospina-Bautista, F; Estévez Varón, J V

    2016-05-03

    Leaves intercepted by bromeliads become an important energy and matter resource for invertebrate communities, bacteria, fungi, and the plant itself. The relationship between bromeliad structure, defined as its size and complexity, and accumulated leaf litter was studied in 55 bromeliads of Tillandsia turneri through multiple regression and the Akaike information criterion. Leaf litter accumulation in bromeliads was best explained by size and complexity variables such as plant cover, sheath length, and leaf number. In conclusion, plant structure determines the amount of litter that enters bromeliads, and changes in its structure could affect important processes within ecosystem functioning or species richness.

  16. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE PAGES

    Huang, C. W.; Lin, M. Y.; Khlystov, A.; ...

    2015-03-02

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  17. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. W.; Lin, M. Y.; Khlystov, A.

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  18. VARIABILITY AND CHARACTER ASSOCIATION IN ROSE COLOURED LEADWORT (PLUMBAGO ROSEA Linn.)

    PubMed Central

    Kurian, Alice; Anitha, C.A.; Nybe, E.V.

    2001-01-01

    Forty five plumbago rosea accessions collected from different parts of Kerala state were evaluated for variability in morphological and yield related characters and plumbagin content. Highly significant variation was evident for all the characters studied except leaf size indicating wide variability in the accessions. Accessions PR 25 and PR 31 appear to be promising with respect to root yield and high plumbagin content. Character association revelated significant and positive correlation of all the characters except leaf size with yield. Hence, selection of high yielding types could easily be done based on visual characters expressing more vegetative growth but with reduced leaf size. PMID:22557037

  19. Are rates of species diversification and body size evolution coupled in the ferns?

    PubMed

    Testo, Weston L; Sundue, Michael A

    2018-03-01

    Understanding the relationship between phenotypic evolution and lineage diversification is a central goal of evolutionary biology. To extend our understanding of the role morphological evolution plays in the diversification of plants, we examined the relationship between leaf size evolution and lineage diversification across ferns. We tested for an association between body size evolution and lineage diversification using a comparative phylogenetic approach that combined a time-calibrated phylogeny and leaf size data set for 2654 fern species. Rates of leaf size change and lineage diversification were estimated using BAMM, and rate correlations were performed for rates obtained for all families and individual species. Rates and patterns of rate-rate correlation were also analyzed separately for terrestrial and epiphytic taxa. We find no significant correlation between rates of leaf area change and lineage diversification, nor was there a difference in this pattern when growth habit is considered. Our results are consistent with the findings of an earlier study that reported decoupled rates of body size evolution and diversification in the Polypodiaceae, but conflict with a recent study that reported a positive correlation between body size evolution and lineage diversification rates in the tree fern family Cyatheaceae. Our findings indicate that lineage diversification in ferns is largely decoupled from shifts in body size, in contrast to several other groups of organisms. Speciation in ferns appears to be primarily driven by hybridization and isolation along elevational gradients, rather than adaptive radiations featuring prominent morphological restructuring. The exceptional diversity of leaf morphologies in ferns appears to reflect a combination of ecophysiological constraints and adaptations that are not key innovations. © 2018 Botanical Society of America.

  20. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    PubMed

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  1. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  2. Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W

    PubMed Central

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778

  3. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    PubMed

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple possible responses by life forms to progressive exclusion of herbivores, we also found some important generalities. Changes in leaf traits of legumes and grasses correlated with their increasing dominance in the short-grass vegetation and plants were more efficient at constructing photosynthetic tissue when herbivores are present with few exceptions. These results demonstrate that vertebrate and invertebrate herbivores are essential to maintain plant species richness and resource-use efficiency. © 2016 by the Ecological Society of America.

  4. Patterns in leaf morphological traits of Chinese woody plants and the application for paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Yaoqi; Wang, Zhiheng

    2017-04-01

    Leaf morphological traits (LMTs) directly influence carbon-uptake and water-loss of plants in different habitats, and hence can be sensitive indicators of plant interaction with climate. The relationships between community-aggregated LMTs and their surrounding climate have been used to reconstruct paleoclimate. However, the uncertainties in its application remain poorly explored. Using distribution maps and LMTs data (leaf margin states, leaf length, leaf width, and length-width product/ratio) of 10480 Chinese woody dicots and dated family-level phylogenies, we demonstrated the variations of LMTs in geographical patterns, and analyzed their relationships with climate across different life-forms (evergreen and deciduous; trees, shrubs and lianas) and species quartiles with different family-ages. Results showed that from southern to northern China, leaves became shorter and narrower, while leaf length-width ratio increased and toothed-margin percentage decreased. Our results revealed great uncertainties in leaf margin-temperature relationships induced by life-form, precipitation and evolutionary history, and suggested that the widely-used method, leaf margin analysis, should be applied cautiously on paleotemperature reconstruction. Differently, mean leaf size responded tightly to spatial variations in annual evapotranspiration (AET) and primary productivity (GPP and NPP), and these relationships remained constant across different life-forms and evolutionary history, suggesting that leaf size could be a useful surrogate for paleo primary productivity.

  5. Winning by a neck: tall giraffes avoid competing with shorter browsers.

    PubMed

    Cameron, Elissa Z; du Toit, Johan T

    2007-01-01

    With their vertically elongated body form, giraffes generally feed above the level of other browsers within the savanna browsing guild, despite having access to foliage at lower levels. They ingest more leaf mass per bite when foraging high in the tree, perhaps because smaller, more selective browsers deplete shoots at lower levels or because trees differentially allocate resources to promote shoot growth in the upper canopy. We erected exclosures around individual Acacia nigrescens trees in the greater Kruger ecosystem, South Africa. After a complete growing season, we found no differences in leaf biomass per shoot across height zones in excluded trees but significant differences in control trees. We conclude that giraffes preferentially browse at high levels in the canopy to avoid competition with smaller browsers. Our findings are analogous with those from studies of grazing guilds and demonstrate that resource partitioning can be driven by competition when smaller foragers displace larger foragers from shared resources. This provides the first experimental support for the classic evolutionary hypothesis that vertical elongation of the giraffe body is an outcome of competition within the browsing ungulate guild.

  6. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less

  7. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport

    Treesearch

    D.R. Woodruff; F.C. Meinzer; B. Lachenbruch

    2008-01-01

    Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...

  8. [Ichthyofauna associated to Thalassia testudinum at Lobos reef, Veracruz, Mexico: diversity and abundance].

    PubMed

    González-Gándara, Carlos; Trinidad-Martínez, Silvia del Carmen; Chávez-Morales, Víctor Manuel

    2006-03-01

    The diversity and abundance of ichthyofauna associated with Thalassia testudinum in the Lobos coral reef, Veracruz, Mexico, were studied in September and October 2002. Thirty six visual censuses in four sample sites were made using a 50 x 2 m transect belt. On each census, fish species, abundance and size were recorded. Leaf size and cover of T. testudinum were estimated. The similarity of fish groups was calculated with the Gower coefficient. The most abundant coral reef fishes were: Scarus iseri, Halichoeres bivittatus, Sparisoma radians, Stegastes adustus and Stegastes leucostictus. The highest density (0.04078 ind/m2) and biomass (0.72408 g/m2) of fish species were recorded in site II, where leaf size was greater (30.8 cm). The analysis of variance showed significant differences between sites in leaf size (F = 18.30856; p = 0.00001) and cover (H = 33.8119; p = 0.00001). These differences suggest a relationship between fish diversity and abundance, and T. testudinum leaf size and cover. The Gower similarity index produced two groups of fishes; one of them (site II) showed the highest abundance. In this reef, the fishes associated to sea grasses seem to reflect the characteristics of T. testudinum.

  9. Population structure, density and food sources of Terebralia palustris (Potamididae: Gastropoda) in a low intertidal Avicennia marina mangrove stand (Inhaca Island, Mozambique)

    NASA Astrophysics Data System (ADS)

    Penha-Lopes, Gil; Bouillon, Steven; Mangion, Perrine; Macia, Adriano; Paula, José

    2009-09-01

    Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5-10 m apart showed some variation (-21.2‰ to -23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment.

  10. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  11. Influence of blue light on the leaf morphoanatomy of in vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae).

    PubMed

    Leal-Costa, Marcos Vinicius; Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Reinert, Fernanda; Costa, Sônia Soares; Lage, Celso Luiz Salgueiro; Tavares, Eliana Schwartz

    2010-10-01

    Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.

  12. Can Meristematic Activity Determine Variation in Leaf Size and Elongation Rate among Four Poa Species? A Kinematic Study1

    PubMed Central

    Fiorani, Fabio; Beemster, Gerrit T.S.; Bultynck, Lieve; Lambers, Hans

    2000-01-01

    We studied inherent variation in final leaf size among four Poa spp. that live at different elevations. The average final length of leaf 7 of the main stem of the smallest species (Poa alpina) was only one-half that of the largest species (Poa trivialis); it was correlated with leaf elongation rate, but not with the duration of leaf elongation. A faster rate of leaf elongation rate was associated with (a) larger size of the zone of cell expansion, and (b) faster rates of cell production (per cell file) in the meristem, which in turn were due to greater numbers of dividing cells, whereas average cell division rates were very similar for all species (except Poa annua). Also we found that the proliferative fraction equaled 1 throughout the meristem in all species. It was remarkable that rates of cell expansion tended to be somewhat higher in the species with slower growing leaves. We discuss the results by comparing the spatial and material viewpoints, which lead to different interpretations of the role of cell division. Although the presented data do not strictly prove it, they strongly suggest a regulatory role for cell division in determining differences in growth rate among the present four Poa spp. PMID:11027732

  13. A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in Arabidopsis thaliana

    PubMed Central

    Vanhaeren, Hannes; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    In Arabidopsis, leaves contribute to the largest part of the aboveground biomass. In these organs, light is captured and converted into chemical energy, which plants use to grow and complete their life cycle. Leaves emerge as a small pool of cells at the vegetative shoot apical meristem and develop into planar, complex organs through different interconnected cellular events. Over the last decade, numerous phenotyping techniques have been developed to visualize and quantify leaf size and growth, leading to the identification of numerous genes that contribute to the final size of leaves. In this review, we will start at the Arabidopsis rosette level and gradually zoom in from a macroscopic view on leaf growth to a microscopic and molecular view. Along this journey, we describe different techniques that have been key to identify important events during leaf development and discuss approaches that will further help unraveling the complex cellular and molecular mechanisms that underlie leaf growth. PMID:26217168

  14. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.

    PubMed

    de Boer, Hugo Jan; Eppinga, Maarten B; Wassen, Martin J; Dekker, Stefan C

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.

  15. The making of giant pumpkins: how selective breeding changed the phloem of Cucurbita maxima from source to sink.

    PubMed

    Savage, Jessica A; Haines, Dustin F; Holbrook, N Michele

    2015-08-01

    Despite the success of breeding programmes focused on increasing fruit size, relatively little is known about the anatomical and physiological changes required to increase reproductive allocation. To address this gap in knowledge, we compared fruit/ovary anatomy, vascular structure and phloem transport of two varieties of giant pumpkins, and their smaller fruited progenitor under controlled environmental conditions. We also modelled carbon transport into the fruit of competitively grown plants using data collected in the field. There was no evidence that changes in leaf area or photosynthetic capacity impacted fruit size. Instead, giant varieties differed in their ovary morphology and contained more phloem on a cross-sectional area basis in their petioles and pedicels than the ancestral variety. These results suggest that sink activity is important in determining fruit size and that giant pumpkins have an enhanced capacity to transport carbon. The strong connection observed between carbon fixation, phloem structure and fruit growth in field-grown plants indicates that breeding for large fruit has led to changes throughout the carbon transport system that could have important implications for how we think about phloem transport velocity and carbon allocation. © 2014 John Wiley & Sons Ltd.

  16. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    NASA Astrophysics Data System (ADS)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  17. How to pattern a leaf

    USDA-ARS?s Scientific Manuscript database

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, an...

  18. Gastroprotective effects of combination of hot water extracts of turmeric (Curcuma domestica L.), cardamom pods (Ammomum compactum S.) and sembung leaf (Blumea balsamifera DC.) against aspirin-induced gastric ulcer model in rats

    PubMed Central

    Mutmainah; Susilowati, Rina; Rahmawati, Nuning; Nugroho, Agung Endro

    2014-01-01

    Objective To investigate the protective effect of the combination of turmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) on gastric mucosa in aspirin-induced gastric ulcer model rats. Methods Thirty male Wistar rats weighing 150-200 g were divided into 6 groups. Four groups were administered with the hot water extracts combination consisted of cardamom pods 36.6 mg/200 g body weight and sembung leaf 91.5 mg/200 g body weight (fixed doses). The herbal extracts combination were also consisted of turmeric in various doses i.e. 10 mg/200 g body weight in the second group, 30 mg/200 g body weight in the first and third groups, and 50 mg/200 g body weight in the fourth group. The fifth group rats received sucralfate 72 mg /200 g body weight. Ten minutes after receiving herbal extracts combinations or sucralfate, the rats were induced with aspirin 90 mg/200 g body weight except the first group. Another group (sixth group) only received aspirin without any protective agent. All treatments were adsministered orally for seven days. The number and area of the gastric ulcers were counted and measured macroscopically. Score of mucosal damage and the number of eosinophils as well as the number of mast cells were observed in paraffin sections stained with hematoxylin eosin and toluidine blue, respectively. Results The groups receiving herbal infuse combination exhibited less number and smaller area of gastric ulcers as well as smaller score of mucosal damage in comparison to those of aspirin group (P<0.05). The number of mast cells and eosinophil of herbal groups were also smaller than that of aspirin group. Conclusions The herbal extracts combination of turmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) has potential gastroprotective effects. PMID:25183139

  19. Gastroprotective effects of combination of hot water extracts of turmeric (Curcuma domestica L.), cardamom pods (Ammomum compactum S.) and sembung leaf (Blumea balsamifera DC.) against aspirin-induced gastric ulcer model in rats.

    PubMed

    Mutmainah; Susilowati, Rina; Rahmawati, Nuning; Nugroho, Agung Endro

    2014-05-01

    To investigate the protective effect of the combination of turmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) on gastric mucosa in aspirin-induced gastric ulcer model rats. Thirty male Wistar rats weighing 150-200 g were divided into 6 groups. Four groups were administered with the hot water extracts combination consisted of cardamom pods 36.6 mg/200 g body weight and sembung leaf 91.5 mg/200 g body weight (fixed doses). The herbal extracts combination were also consisted of turmeric in various doses i.e. 10 mg/200 g body weight in the second group, 30 mg/200 g body weight in the first and third groups, and 50 mg/200 g body weight in the fourth group. The fifth group rats received sucralfate 72 mg /200 g body weight. Ten minutes after receiving herbal extracts combinations or sucralfate, the rats were induced with aspirin 90 mg/200 g body weight except the first group. Another group (sixth group) only received aspirin without any protective agent. All treatments were adsministered orally for seven days. The number and area of the gastric ulcers were counted and measured macroscopically. Score of mucosal damage and the number of eosinophils as well as the number of mast cells were observed in paraffin sections stained with hematoxylin eosin and toluidine blue, respectively. The groups receiving herbal infuse combination exhibited less number and smaller area of gastric ulcers as well as smaller score of mucosal damage in comparison to those of aspirin group (P<0.05). The number of mast cells and eosinophil of herbal groups were also smaller than that of aspirin group. The herbal extracts combination of turmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) has potential gastroprotective effects.

  20. Linkage between canopy water storage and drop size distributions of leaf drips

    NASA Astrophysics Data System (ADS)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  1. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana

    PubMed Central

    Luo, Y; Widmer, A; Karrenberg, S

    2015-01-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874

  2. Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass.

    PubMed

    Hamerlynck, Erik P; Scott, Russell L; Susan Moran, M; Schwander, Andrea M; Connor, Erin; Huxman, Travis E

    2011-01-01

    It is not clear if tree canopies in savanna ecosystems exert positive or negative effects on soil moisture, and how these might affect understory plant carbon balance. To address this, we quantified rooting-zone volumetric soil moisture (θ(25 cm)), plant size, leaf-level and whole-plant gas exchange of the bunchgrass, bush muhly (Muhlenbergia porteri), growing under and between mesquite (Prosopis velutina) in a southwestern US savanna. Across two contrasting monsoon seasons, bare soil θ(25 cm) was 1.0-2.5% lower in understory than in the intercanopy, and was consistently higher than in soils under grasses, where θ(25 cm) was similar between locations. Understory plants had smaller canopy areas and volumes with larger basal diameters than intercanopy plants. During an above-average monsoon, intercanopy and understory plants had similar seasonal light-saturated leaf-level photosynthesis (A(net-sat)), stomatal conductance (g(s-sat)), and whole-plant aboveground respiration (R(auto)), but with higher whole-plant photosynthesis (GEP(plant)) and transpiration (T(plant)) in intercanopy plants. During a below-average monsoon, intercanopy plants had higher diurnally integrated GEP(plant), R(auto), and T(plant). These findings showed little evidence of strong, direct positive canopy effects to soil moisture and attendant plant performance. Rather, it seems understory conditions foster competitive dominance by drought-tolerant species, and that positive and negative canopy effects on soil moisture and community and ecosystem processes depends on a suite of interacting biotic and abiotic factors.

  3. Effect of species mix on size/density and leaf-area relations in the southwest pinyon/juniper woodlands

    Treesearch

    Thomas M. Schuler; Frederick W. Smith

    1988-01-01

    The effects of species mix on stand structure and growth are evaluated for 117 pinyon (Pinus edulis Engelm.) and juniper (Juniperus monosperma (Engelm.) Sarg and J. osteosperma (Torr.) Little) woodlands of the southwestern United States. Maximum-size/density relations, leaf area and growth of pure and mixed-...

  4. The importance of tree size and fecundity for wind dispersal of big-leaf mahogany

    Treesearch

    Julian M. Norghauer; Charles A. Nock; James Grogan

    2011-01-01

    Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae)...

  5. Leaf Size in Swietenia

    Treesearch

    Charles B. Briscoe; F. Bruce Lamb

    1962-01-01

    A study was made of the putative hybrid of bigleaf and small-leaf mahoganies. Initial measurements indicated that bigleaf mahogany can be distinguished from small-leaf mahogany by gross measurements of leaflets. Isolated mother trees yield typical progeny. Typical mother trees in mixed stands yield like progeny plus, usually, mediumleaf progeny. Mediumleaf mother trees...

  6. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy.

    PubMed

    Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W

    2010-07-01

    Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.

  7. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.

    2015-01-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882

  8. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests

    PubMed Central

    Wright, Ian J.; Ackerly, David D.; Bongers, Frans; Harms, Kyle E.; Ibarra-Manriquez, Guillermo; Martinez-Ramos, Miguel; Mazer, Susan J.; Muller-Landau, Helene C.; Paz, Horacio; Pitman, Nigel C. A.; Poorter, Lourens; Silman, Miles R.; Vriesendorp, Corine F.; Webb, Cam O.; Westoby, Mark; Wright, S. Joseph

    2007-01-01

    Background and Aims When ecologically important plant traits are correlated they may be said to constitute an ecological ‘strategy’ dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. Methods Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. ‘Phylogenetic’ analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. Key Results The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. Conclusions The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD–leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics. PMID:16595553

  9. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species.

    PubMed

    Wyka, Tomasz P; Oleksyn, J; Zytkowiak, R; Karolewski, P; Jagodziński, A M; Reich, P B

    2012-09-01

    Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.

  10. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest.

    PubMed

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2014-01-01

    Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.

  11. Growth promotion in plants by rice necrosis mosaic virus.

    PubMed

    Ghosh, S K

    1982-08-01

    Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.

  12. Arctic Climate during Eocene Hyperthermals: Wet Summers on Ellesmere Island?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; West, C. K.; Basinger, J. F.

    2012-12-01

    Previous work has shown that during the late Paleocene to middle Eocene, mesothermal conditions (i.e., MAT ~12-15° C) and high precipitation (MAP > 150cm/yr) characterized Arctic climates - an Arctic rain forest. Recent analyses of Arctic Eocene wood stable isotope chemistry are consistent with the annual and seasonal temperature estimates from leaf physiognomy and nearest living relative analogy from fossil plants, including the lack of freezing winters, but is interpreted as showing that there was a summer peak in precipitation - modern analogs are best sought on the summer-wet east coasts (e.g., China, Japan, South Korea) not the winter-wet west coasts of present-day northern temperate continents (e.g., Pacific northwest of North America). Highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer precip./winter precip. > 3.0) seem to characterize Eocene hyperthermal conditions in several regions of the earth, including the Arctic and Antarctic, based on both climate model sensitivity experiments and the paleoclimate proxy evidence. The leaf physiognomy proxy previously applied to estimate Arctic Paleogene precipitation was leaf area analysis (LAA), a correlation between mean leaf size in woody dicot vegetation and annual precipitation. New data from modern monsoonal sites, however demonstrates that for deciduous-dicot dominated vegetation, summer precipitation determines mean leaf size, not annual totals, and therefore that under markedly seasonal precipitation and/or light regimes that summer precipitation is being estimated using LAA. Presented here is a new analysis of a leaf macrofloras from 3 separate florules of the Margaret Formation (Split Lake, Stenkul Fiord and Strathcona Fiord) from Ellesmere Island that are placed stratigraphically as early Eocene, and likely fall within Eocene thermal maximum 1 (ETM1; = the 'PETM') or ETM2. These floras are each characterized by a mix of large-leafed and small-leafed dicot taxa, with overall mean leaf size across all leaf morphotypes comparable to that previously reported for late Paleocene to middle Eocene floras from Ellesmere and Axel Heiberg islands of Nunavut. Applying the conventional leaf area analysis to the putatively ETM1 floras yielded estimates of mean annual precipitation 100-200cm/yr, consistent with the previous reports for the late Paleocene to middle Eocene. CLAMP analysis applied to these floras yields growing season precipitation comparable to the annual precipitation estimate from leaf area analysis. These data are interpreted as reflecting high summer precipitation in the Arctic during the late Paleocene to middle Eocene, including ETM1, as precipitation in the dark polar winter months will have had no effect on leaf size while the trees were dormant, corroborating the results from Eocene wood chemistry. High summer precipitation (i.e., light-season = wettest season) in the Eocene Arctic during hyperthermals would have contributed to regional warmth.

  13. Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana

    PubMed Central

    Vanhaeren, Hannes; Gonzalez, Nathalie; Coppens, Frederik; De Milde, Liesbeth; Van Daele, Twiggy; Vermeersch, Mattias; Eloy, Nubia B; Storme, Veronique; Inzé, Dirk

    2014-01-01

    Several genes positively influence final leaf size in Arabidopsis when mutated or overexpressed. The connections between these growth regulators are still poorly understood although such knowledge would further contribute to understand the processes driving leaf growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to what is found in other organisms in which such an epistasis assay was performed, only few genes were highly connected in synergistic combinations as we observed a positive epistasis in the majority of the combinations with samba, BRI1OE or SAUR19OE. Furthermore, positive epistasis was found with combinations of genes with a similar mode of action, but also with genes which affect distinct processes, such as cell proliferation and cell expansion. DOI: http://dx.doi.org/10.7554/eLife.02252.001 PMID:24843021

  14. Thermal Infrared Hot Spot and Dependence on Canopy Geometry

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.

  15. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture.

  16. Compartmentation Studies on Spinach Leaf Peroxisomes 1

    PubMed Central

    Heupel, Ralf; Markgraf, Therese; Robinson, David G.; Heldt, Hans Walter

    1991-01-01

    In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling. ImagesFigure 3 PMID:16668283

  17. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake.

    PubMed

    Harada, Shigeki; Yanagisawa, Mitsunori

    2017-04-01

    The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the mechanism behind leaf litter weight and cesium concentration reduction. Experiment 3 helped us to investigate the effects of the matter present on the surface of the water and the contribution of water soluble cesium. Concurrent experiments on changes in leaf litter chemical composition confirmed that our modified wet oxidation method had an effect on the removal of acid-insoluble lignin. Removal of lignin, a refractory component, might allow for a better utilization of the residue left after implementation of the proposed simplified wet oxidation. Thus, real wastes could be smaller than the residues. Together with the observed smaller cesium concentration in the residue, the proposed method in this study is expected to contribute to mitigate the risk due to the fallen leaves containing cesium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Questionnaire-based assessment of executive functioning: Psychometrics.

    PubMed

    Castellanos, Irina; Kronenberger, William G; Pisoni, David B

    2018-01-01

    The psychometric properties of the Learning, Executive, and Attention Functioning (LEAF) scale were investigated in an outpatient clinical pediatric sample. As a part of clinical testing, the LEAF scale, which broadly measures neuropsychological abilities related to executive functioning and learning, was administered to parents of 118 children and adolescents referred for psychological testing at a pediatric psychology clinic; 85 teachers also completed LEAF scales to assess reliability across different raters and settings. Scores on neuropsychological tests of executive functioning and academic achievement were abstracted from charts. Psychometric analyses of the LEAF scale demonstrated satisfactory internal consistency, parent-teacher inter-rater reliability in the small to large effect size range, and test-retest reliability in the large effect size range, similar to values for other executive functioning checklists. Correlations between corresponding subscales on the LEAF and other behavior checklists were large, while most correlations with neuropsychological tests of executive functioning and achievement were significant but in the small to medium range. Results support the utility of the LEAF as a reliable and valid questionnaire-based assessment of delays and disturbances in executive functioning and learning. Applications and advantages of the LEAF and other questionnaire measures of executive functioning in clinical neuropsychology settings are discussed.

  20. Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

    PubMed

    Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus

    2017-08-01

    Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  2. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  3. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita

    2013-09-01

    The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.

  4. Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.

    2013-01-01

    Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.

  5. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    NASA Astrophysics Data System (ADS)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  6. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    PubMed

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  7. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.

  8. Gap probability - Measurements and models of a pecan orchard

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI

    1992-01-01

    Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.

  9. Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Maher, B.

    2008-12-01

    Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.

  10. Transpiration and whole-tree conductance in ponderosa pine trees of different heights.

    PubMed

    Ryan, M G; Bond, B J; Law, B E; Hubbard, R M; Woodruff, D; Cienciala, E; Kucera, J

    2000-09-01

    Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t ) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165-195 and 240-260 averaged 0.97 mmol m -2 (leaf area, projected) s -1 for the 12-m trees and 0.57 mmol m -2 (leaf area) s -1 for the 36-m trees. When photosynthetically active radiation (I P ) exceeded the light saturation for photosynthesis in ponderosa pine (900 µmol m -2 (ground) s -1 ), differences in E were more pronounced: 2.4 mmol m -2 (leaf area) s -1 for the 12-m trees and 1.2 mmol m -2 s -1 for the 36-m trees, yielding g t of 140 mmol m -2 (leaf area) s -1 for the 12-m trees and 72 mmol m -2 s -1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season.

  11. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3.

    PubMed

    Riikonen, Johanna; Kets, Katre; Darbah, Joseph; Oksanen, Elina; Sober, Anu; Vapaavuori, Elina; Kubiske, Mark E; Nelson, Neil; Karnosky, David F

    2008-02-01

    Paper birch (Betula papyrifera Marsh.) and three trembling aspen clones (Populus tremuloides Michx.) were studied to determine if alterations in carbon gain in response to an elevated concentration of CO(2) ([CO(2)]) or O(3) ([O(3)]) or a combination of both affected bud size and carbohydrate composition in autumn, and early leaf development in the following spring. The trees were measured for gas exchange, leaf size, date of leaf abscission, size and biochemical characteristics of the overwintering buds and early leaf development during the 8th-9th year of free-air CO(2) and O(3) exposure at the Aspen FACE site located near Rhinelander, WI. Net photosynthesis was enhanced 49-73% by elevated [CO(2)], and decreased 13-30% by elevated [O(3)]. Elevated [CO(2)] delayed, and elevated [O(3)] tended to accelerate, leaf abscission in autumn. Elevated [CO(2)] increased the ratio of monosaccharides to di- and oligosaccharides in aspen buds, which may indicate a lag in cold acclimation. The total carbon concentration in overwintering buds was unaffected by the treatments, although elevated [O(3)] decreased the amount of starch by 16% in birch buds, and reduced the size of aspen buds, which may be related to the delayed leaf development in aspen during the spring. Elevated [CO(2)] generally ameliorated the effects of elevated [O(3)]. Our results show that both elevated [CO(2)] and elevated [O(3)] have the potential to alter carbon metabolism of overwintering buds. These changes may cause carry-over effects during the next growing season.

  12. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.

    PubMed

    Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi

    2013-02-01

    We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.

  13. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    PubMed

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  14. Leaf expansion in Phaseolus: transient auxin-induced growth increase

    PubMed Central

    Keller, Christopher P.

    2017-01-01

    Control of leaf expansion by auxin is not well understood. Evidence from short term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggests that, long-term, auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μM NAA responded with an initial surge of elongation growth complete within 10 hours followed by insensitivity. A range of NAA concentrations from 0.1 μM to 300 μM induced increased strip elongation after 24 hours and 48 hours. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin α-naphthalene acetic acid (NAA) at 1.0 mM showed both an initial surge in growth lasting 4–6 hours followed by growth inhibition sustained at least as long as 24 hours post treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together the results suggest increasing leaf auxin first increases growth then slows growth through inhibition of cell expansion. Excised leaf strips, retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or of isolation from the plant. PMID:29200506

  15. Within-plant distribution of onion thrips (Thysanoptera: Thripidae) in onions.

    PubMed

    Mo, Jianhua; Munro, Scott; Boulton, Alan; Stevens, Mark

    2008-08-01

    Two aspects of the within-plant distribution of Thrips tabaci Lindeman (Thysanoptera: Thripidae) on onion, Allium cepa L., plants were investigated: 1) diurnal variations in the distribution of adults and larvae between basal and upper sections of onion leaves, and 2) between-leaf and within-leaf distribution of the eggs. The diurnal investigations showed that higher proportions of larvae than of adults congregated at the basal sections of plants, particularly when plants were young and thrips density was low. As plants matured and thrips density increased, the larvae became more dispersed. Regardless of plant size, there were always more adults in the upper than basal plant sections. There were no clear time-windows during the 24-h diurnal cycle when more thrips were in the upper plant parts. T. tabaci eggs were laid everywhere in the plant. Leaves of intermediate ages had more eggs than older or younger leaves. Within leaves, the white leaf sheath received the least eggs and leaf tips received slightly more eggs than leaf sheaths. The highest egg density was found between the green leaf base and the leaf tips. Regardless of plant size, more than half of all eggs were laid above the basal sections. The percentage increased to >95% in mature plants. Except when plants were small the outer leaves were preferred over inner leaves and upper leaf sections preferred over lower leaf sections as egg-laying sites by adults. Implications of the results in the management of T. tabaci are discussed.

  16. A new species of Coespeletia (Asteraceae, Millerieae) from Venezuela.

    PubMed

    Diazgranados, Mauricio; Morillo, Gilberto

    2013-01-01

    A new species of Coespeletia from the páramos of Mérida (Venezuela) is described here. This species, named Coespeletia palustris, is found in a few marshy areas of the páramo. It is closely related to C. moritziana, but differs from it in a smaller number of florets in the capitula, larger ray flowers with longer ligulae and longer linguiform appendages, smaller pollen grains, larger cypselae, ebracteate scapes, leaves and inflorescences with more whitish indumentum, larger leaf sheaths, and marshy habitat.

  17. Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.

    NASA Astrophysics Data System (ADS)

    Maher, B.; Mitchell, R.

    2009-05-01

    Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.

  18. Within-species patterns challenge our understanding of the causes and consequences of trait variation with implications for trait-based models

    NASA Astrophysics Data System (ADS)

    Anderegg, L. D.; Berner, L. T.; Badgley, G.; Hillerislambers, J.; Law, B. E.

    2017-12-01

    Functional traits could facilitate ecological prediction by provide scale-free tools for modeling ecosystem function. Yet much of their utility lies in three key assumptions: 1) that global patterns of trait covariation are the result of universal trade-offs independent of taxonomic scale, so empirical trait-trait relationships can be used to constrain vegetation models 2) that traits respond predictably to environmental gradients and can therefore be reliably quantified to parameterize models and 3) that well sampled traits influence productivity. We use an extensive dataset of within-species leaf trait variation in North American conifers combined with global leaf trait datasets to test these assumptions. We examine traits central to the `leaf economics spectrum', and quantify patterns of trait variation at multiple taxonomic scales. We also test whether site environment explains geographic trait variation within conifers, and ask whether foliar traits explain geographic variation in relative growth rates. We find that most leaf traits vary primarily between rather than within species globally, but that a large fraction of within-PFT trait variation is within-species. We also find that some leaf economics spectrum relationships differ in sign within versus between species, particularly the relationship between leaf lifespan and LMA. In conifers, we find weak and inconsistent relationships between site environment and leaf traits, making it difficult capture within-species leaf trait variation for regional model parameterization. Finally, we find limited relationships between tree relative growth rate and any foliar trait other than leaf lifespan, with leaf traits jointly explaining 42% of within-species growth variation but environmental factors explaining 77% of variation. We suggest that additional traits, particularly whole plant allometry/allocation traits may be better than leaf traits for improving vegetation model performance at smaller taxonomic and spatial scales.

  19. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision.

    PubMed

    Lucas, P W; Darvell, B W; Lee, P K; Yuen, T D; Choong, M F

    1998-01-01

    Leaf colour, size and toughness were investigated in five plant species important in the diet of Macaca fascicularis in Singapore. Leaf colour and size were examined as potential visual cues for food selection, whereas toughness mirrored fibre content, the inverse of food quality. As leaves matured, they changed colour and toughened. Leaf lightness and yellowness were strongly negatively correlated with toughness, but variation in both the red-green axis of the CIE Lab colour space and leaf size were not. Leaves selected as food by the macaques were distinguished by being very light, yellow to slightly green. Some leaves were dappled with red. The literature suggests that these leaves are relatively rich in protein without being tough and therefore would be sought after by primates. We argue that leaf colour is an important indicator of the nutritive value of leaves. Trichromatic vision is an important advantage in finding those palatable leaves that are dappled red. These would appear dark to dichromatic primates and be deceptive by making leaves look older (lower in quality) than they actually are. This would decrease the perceived window of feeding opportunity for such primates who would be at a disadvantage in trying to find these leaves. It is possible that trichromatic vision in catarrhine primates may have originally evolved for the detection of red coloration in the leaves of shade-tolerant tropical plants, enabling the better exploitation of a food resource.

  20. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less

  1. Reading the leaves: A comparison of leaf rank and automated areole measurement for quantifying aspects of leaf venation1

    PubMed Central

    Green, Walton A.; Little, Stefan A.; Price, Charles A.; Wing, Scott L.; Smith, Selena Y.; Kotrc, Benjamin; Doria, Gabriela

    2014-01-01

    The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families) using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation. PMID:25202646

  2. Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Minki; Lim, Hosub; Lee, Jinkee

    2017-11-01

    Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.

  3. Morphological and molecular variation in Mitchella undulata, with special reference to the systematic treatment of the dwarf form from Yakushima.

    PubMed

    Yokoyama, Jun; Fukuda, Tatsuya; Tsukaya, Hirokazu

    2003-08-01

    Morphological and molecular variation in Mitchella undulata Siebold et Zucc. was examined to evaluate the genetic basis for recognizing the dwarf variety, M. undulata var. minor Masamune. Considerable variation in leaf size in M. undulata, but no obvious morphological discontinuities, were found between the normal and dwarf varieties. Instead, a weak cline running from the Pacific Ocean to the Sea of Japan was found. Anatomical observations of leaf blades revealed that the large variation in leaf size can be attributed to variation in the number of leaf cells and not to differences in cell size. A molecular analysis based on sequences of rDNA internal transcribed spacer regions indicated that there were two major genotypes in M. undulata with minor variation in haplotypes resulting from additional substitutions or putative recombination. The dwarf form from Yakushima was neither genetically uniform nor apparently differentiated from other populations. From these results, we conclude that the dwarf form of M. undulata should be treated at the rank of forma.

  4. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  5. A computational model for biosonar echoes from foliage

    PubMed Central

    Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631

  6. A computational model for biosonar echoes from foliage.

    PubMed

    Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.

  7. Genetic mapping of QTL for the sizes of eight consecutive leaves below the tassel in maize (Zea mays L.).

    PubMed

    Yang, Cong; Tang, Dengguo; Qu, Jingtao; Zhang, Ling; Zhang, Lei; Chen, Zhengjie; Liu, Jian

    2016-11-01

    A set of RIL population was used to detect QTL associated with the sizes of eight consecutive leaves, across different environments, and ten QTL clusters were identified as main QTLs. One of the important parameters of the maize leaf architecture that affects light penetration into the canopy, leaf size, has long attracted breeders' attention for optimizing the plant type of maize and for maximizing the grain yield (GY). In this study, we used 253 RIL lines derived from a cross between B73 and SICAU1212 to investigate the leaf widths (LWs), leaf lengths (LLs), and leaf areas (LAs) of eight consecutive leaves of maize below the tassel and GY across different environments and to identify quantitative traits loci (QTLs) controlling the above-mentioned traits, using inclusive interval mapping for single-environment analysis plus a mixed-model-based composite interval mapping for joint analysis. A total of 171 and 159 putative QTLs were detected through these two mapping methods, respectively. Single-environment mapping revealed that 39 stable QTLs explained more than 10 % of the phenotypic variance, and 35 of the 39 QTLs were also detected by joint analysis. In addition, joint analysis showed that nine of the 159 QTLs exhibited significant QTL × environment interaction and 15 significant epistatic interactions were identified. Approximately 47.17 % of the QTLs for leaf architectural traits in joint analysis were concentrated in ten main chromosomal regions, namely, bins 1.07, 2.02, 3.06, 4.09, 5.01, 5.02, 5.03-5.04, 5.07, 6.07, and 8.05. This study should provide a basis for further fine-mapping of these main genetic regions and improvement of maize leaf architecture.

  8. Beech cupules as keystone structures for soil fauna.

    PubMed

    Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi

    2016-01-01

    Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.

  9. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex.

    PubMed

    Ferris, Kathleen G; Barnett, Laryssa L; Blackman, Benjamin K; Willis, John H

    2017-01-01

    The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects. © 2016 John Wiley & Sons Ltd.

  10. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).

    PubMed

    Mahendra, C; Murali, M; Manasa, G; Ponnamma, Pooja; Abhilash, M R; Lakshmeesha, T R; Satish, A; Amruthesh, K N; Sudarshana, M S

    2017-09-01

    Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.The bio-fabricated ZnO-NPs were of high purity with an average size of ∼76 nm analyzed through Dynamic Light Scattering (DLS) analysis supporting the findings of XRD. The SEM images confirmed the same with agglomeration of smaller nanoparticles. The composition of aqueous leaf extract and ZnO-NPs was explored with Fourier Transform Infrared Spectroscopy (FT-IR). The plant extract as well as bio-fabricated ZnO-NPs offered significant inhibition against Gram-positive (B. subtilis and Staph. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria. The minimum inhibitory concentration (MIC) of bio-fabricated ZnO-NPs and plant extract was found between 4.8 and 625 μg/ml against test pathogens, which was authenticated with live and dead cell analysis. Apart from antibacterial potentiality, antimitotic activity was also observed with a mitotic index of 75.42% (ID 50 0.40 μg mL -1 ) and 61.41% (ID 50 0.58 μg mL -1 ) in ZnO-NPs and plant extract, respectively. The results affirm that plant extract and its mediated ZnO-NPs possess biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A new leaf-tailed gecko of the Uroplatus ebenaui group (Squamata: Gekkonidae) from Madagascar's central eastern rainforests.

    PubMed

    Ratsoavina, Fanomezana Mihaja; Ranjanaharisoa, Fiadanantsoa Andrianja; Glaw, Frank; Raselimanana, Achille P; Miralles, Aurélien; Vences, Miguel

    2015-08-21

    We describe a new leaf-tailed gecko species of the Uroplatus ebenaui group from the eastern central rainforests of Madagascar, which had previously been considered as a confirmed candidate species. Our description of Uroplatus fiera sp. nov. relies on integrating evidence from molecular and morphological characters and is based on newly collected material from two localities. A phylogenetic analysis based on multiple mitochondrial DNA fragments places the new species as sister to a lineage of uncertain status (Uroplatus ebenaui [Ca8]), and the clade consisting of these two lineages is sister to a further undescribed candidate species (U. ebenaui [Ca1]). This entire clade is sister to U. phantasticus plus another candidate species. The new species differs from these close relatives, and all other congenerics, by strong differences in DNA sequences of mitochondrial genes (>8.5% uncorrected p-distance in 16S rDNA to all nominal species of the genus) and lacks shared alleles with any of the nominal species in the nuclear CMOS gene. From its closest relatives the new species further differs in its much smaller tail size (relative to U. phantasticus), and a narrower tail, fewer supralabials, and more toe lamellae (relative to U. ebenaui [Ca1]). Morphologically the new species is most similar to U. ebenaui but differs in its larger body size and unpigmented oral mucosa. Given its distribution in central eastern Madagascar, with records from near Fierenana and Ambatovy, its range overlaps with that of U. phantasticus. Based on examination of the U. phantasticus holotype, we confirm that this latter has a blackish pigmented oral mucosa as do those specimens typically attributed to this nomen, thereby confirming its distinctness from U. fiera sp. nov., in which the mucosa is unpigmented.

  12. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  13. The role of aqueous leaf extract of Tinospora crispa as reducing and capping agents for synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Apriandanu, D. O. B.; Yulizar, Y.

    2017-04-01

    Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.

  14. Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)

    Treesearch

    Jason Cook; Michael R. Saunders

    2013-01-01

    Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...

  15. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae).

    PubMed

    Lang, Andreas; Otto, Mathias

    2015-08-31

    Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.

  16. [Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing].

    PubMed

    Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu

    2007-03-01

    The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.

  17. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

    PubMed

    Markelz, R J Cody; Lai, Lisa X; Vosseler, Lauren N; Leakey, Andrew D B

    2014-04-01

    Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response. © 2013 John Wiley & Sons Ltd.

  18. Can a Toy Encourage Lower Calorie Meal Bundle Selection in Children? A Field Experiment on the Reinforcing Effects of Toys on Food Choice.

    PubMed

    Reimann, Martin; Lane, Kristen

    2017-01-01

    The goal of this research was to test whether including an inexpensive nonfood item (toy) with a smaller-sized meal bundle (420 calories), but not with the regular-sized meal bundle version (580 calories), would incentivize children to choose the smaller-sized meal bundle, even among children with overweight and obesity. Logistic regression was used to evaluate the effect in a between-subjects field experiment of a toy on smaller-sized meal choice (here, a binary choice between a smaller-sized or regular-sized meal bundles). A random sample of 109 elementary school children from two schools in the Tucson, Arizona metropolitan area (55 females; Mage = 8.53 years, SDage = 2.14; MBMI = 18.30, SDBMI = 4.42) participated. Children's height and weight were measured and body-mass-index (BMI) was calculated, adjusting for age and sex. In our sample, 21 children were considered to be either overweight or obese. Logistic regression was used to evaluate the effect of a toy on smaller-sized meal choice. Results revealed that the inclusion of a toy with a smaller-sized meal, but not with the regular-sized version, predicted smaller-sized meal choice (P < .001), suggesting that children can be incentivized to choose less food when such is paired with a toy. BMI neither moderated nor nullified the effect of toy on smaller-sized meal choice (P = .125), suggesting that children with overweight and obesity can also be incentivized to choose less. This article is the first to suggest that fast-food restaurant chains may well utilize toys to motivate children to choose smaller-sized meal bundles. Our findings may be relevant for consumers, health advocates, policy makers, and marketers who would benefit from a strategy that presents healthier, but still desirable, meal bundle options.

  19. Can a Toy Encourage Lower Calorie Meal Bundle Selection in Children? A Field Experiment on the Reinforcing Effects of Toys on Food Choice

    PubMed Central

    2017-01-01

    The goal of this research was to test whether including an inexpensive nonfood item (toy) with a smaller-sized meal bundle (420 calories), but not with the regular-sized meal bundle version (580 calories), would incentivize children to choose the smaller-sized meal bundle, even among children with overweight and obesity. Logistic regression was used to evaluate the effect in a between-subjects field experiment of a toy on smaller-sized meal choice (here, a binary choice between a smaller-sized or regular-sized meal bundles). A random sample of 109 elementary school children from two schools in the Tucson, Arizona metropolitan area (55 females; Mage = 8.53 years, SDage = 2.14; MBMI = 18.30, SDBMI = 4.42) participated. Children’s height and weight were measured and body-mass-index (BMI) was calculated, adjusting for age and sex. In our sample, 21 children were considered to be either overweight or obese. Logistic regression was used to evaluate the effect of a toy on smaller-sized meal choice. Results revealed that the inclusion of a toy with a smaller-sized meal, but not with the regular-sized version, predicted smaller-sized meal choice (P < .001), suggesting that children can be incentivized to choose less food when such is paired with a toy. BMI neither moderated nor nullified the effect of toy on smaller-sized meal choice (P = .125), suggesting that children with overweight and obesity can also be incentivized to choose less. This article is the first to suggest that fast-food restaurant chains may well utilize toys to motivate children to choose smaller-sized meal bundles. Our findings may be relevant for consumers, health advocates, policy makers, and marketers who would benefit from a strategy that presents healthier, but still desirable, meal bundle options. PMID:28085904

  20. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes

    PubMed Central

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich

    2015-01-01

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649

  1. Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue.

    PubMed

    Kothari, Adit R; Burnett, Nicholas P

    2017-09-01

    In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera , and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high-speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant-wind interactions, and vice versa.

  2. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    PubMed Central

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  3. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    NASA Astrophysics Data System (ADS)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  4. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum.

    PubMed

    Enríquez, Susana; Pantoja-Reyes, Norma I

    2005-09-01

    The variation in seagrass morphology and the magnitude of leaf self-shading within the canopy of Thalassia testudinum, were compared among nine sites in a fringing reef lagoon. We found a significant variation in the growth-form of T. testudinum reflected in a 5.4-fold variation in the attenuation coefficient (K (d)) within the canopy. The largest morphological variation was observed in shoot density. Leaf biomass, leaf area index (LAI), and shoot density were positively associated with canopy-K (d) and with the percentage of surface irradiance received by the top of the seagrass canopy (% Es). These results provide an explanation for the consistent pattern of depth reduction in seagrass leaf biomass and shoot density reported in the literature. Shoot density and shoot size are two descriptors of the growth-form of T. testudinum related to its clonal life-form. Shoot size was not significantly correlated with canopy-K (d), nevertheless, it showed a significant effect on the slope of the relationship between shoot density and canopy-K (d). According to this model, shoot size also contributes to light attenuation within the seagrass canopy by increasing the effect of shoot density. This form-function analysis suggests that light may have a relevant role in the regulation of the optimal plant balance between horizontal (variation in shoot density) and vertical (variation in shoot size) growth of seagrasses. Other environmental factors and interactions also need to be examined to fully understand the mechanistic bases of the morphological responses of seagrasses to the environment.

  5. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models

    NASA Astrophysics Data System (ADS)

    McKee, M.; Royer, D. L.

    2017-12-01

    The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy, regardless of species composition. To more accurately compensate for differences among species, models should incorporate phylogenetic information.

  6. Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells.

    PubMed

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T S; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-08-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.

  7. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    PubMed Central

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  8. Revealing catastrophic failure of leaf networks under stress

    PubMed Central

    Brodribb, Timothy J.; Bienaimé, Diane; Marmottant, Philippe

    2016-01-01

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought. PMID:27071104

  9. Revealing catastrophic failure of leaf networks under stress.

    PubMed

    Brodribb, Timothy J; Bienaimé, Diane; Marmottant, Philippe

    2016-04-26

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.

  10. Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution (Lancaster, UK).

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Maher, B. A.

    2009-04-01

    Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.

  11. Biophysical control of leaf temperature

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.

  12. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    PubMed

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  14. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.

    PubMed

    Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K

    2013-12-01

    Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.

  15. The cell-cycle interactome: a source of growth regulators?

    PubMed

    Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie

    2014-06-01

    When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  17. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    PubMed

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  18. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms.

    PubMed

    Chondrogiannis, Christos; Grammatikopoulos, George

    2016-12-01

    Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO 2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.

  19. Ungulate herbivory alters leaf functional traits and recruitment of regenerating aspen.

    PubMed

    Rhodes, Aaron C; Anderson, Val; St Clair, Samuel B

    2017-03-01

    Herbivory by ungulates can affect forest regeneration success, but its long-term impacts on tree function and recruitment are less studied. We evaluated strategies of resistance, tolerance and vertical escape against ungulate herbivory by evaluating leaf traits (photosynthesis, morphology and chemistry) and growth rates of aspen in the presence and absence of ungulate herbivores 1, 2, 3 and 26 years after fires initiated aspen suckering. Over the initial 3-year period, ~60% of aspen stems in unfenced plots showed evidence of being browsed by ungulates. After 3 years, aspen in unfenced plots had smaller leaves, were 50% shorter, and had 33% lower nonstructural carbohydrate concentrations and 33% greater concentrations of condensed tannins, when compared with fenced aspen. Aspen exposed to ungulate herbivory over a 26-year period maintained smaller leaves, had lower annual radial growth rates and were still below the critical height threshold of 2 m required to escape ungulate herbivory for successful recruitment. In contrast, the average height of aspen protected from ungulates was approaching 6 m. Over the 26-year period leaves in unfenced plots had 41% lower nonstructural carbohydrate concentrations and greater expression of defense compounds-condensed tannins (63%) and phenolic glycosides (102%)-than leaves in fenced plots. Photosynthetic rates were slightly higher in aspen that experienced ungulate browsing, suggesting that changes in leaf anatomy and chemistry due to ungulate herbivory did not interfere with photosynthesis. Our data suggest that ungulate browsing increases investment in chemical defense, lowers nonstructural carbohydrate concentrations and reduces leaf area, which decreases the recruitment potential of regenerating aspen. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Gastroprotective Effect of Combination of Hot Water Extracts of Licorice (Glycyrrhiza glabra), Pulasari Stem Bark (Alyxia reinwardtii), and Sembung Leaf (Blumea balsamifera) Against Aspirin-Induced Gastric Ulcer Model Rats.

    PubMed

    Nugroho, Agung Endro; Wijayanti, Agustin; Mutmainah, Mutmainah; Susilowati, Rina; Rahmawati, Nuning

    2016-10-01

    Licorice (Glycyrrhiza glabra), Pulasari stem bark (Alyxia reinwardtii) and Sembung leaf (Blumea balsamifera) are traditionally used to treat gastrointestinal disorders. The aim of the study was to investigate gastroprotective effect of hot water extracts combination of those herbal against aspirin-induced gastric ulcer model in rats. The combination consisted of fixed doses of Licorice 273 mg/kg BW and Sembung leaf 457.5 mg/kg BW, and also consisted of Pulasari stem in various doses i.e. 100 mg/kg BW (first group), 200 mg/kg BW (second and sixth group) and 300 mg/kg BW (third group). The fourth grup rats received sucralfate 360 mg/kg BW. Ten minute after seven consecutive days of drug administration, the rats were induced with aspirin 450 mg/kg BW except sixth group rats. The fifth group rats only received aspirin without any protective agents. The number and area of gastric ulcers were evaluated macroscopically. Whereas, histopatological observation was used for evaluation of mucosal damage score, and the number of eosinophils and mast cells. In the study, herbal extracts combination markedly exhibited protective effects indicated by less number and smaller area of gastric ulcers in comparison to those of aspirin group (P < 0.05). The score of mucosal damages were also decreased in herbal extracts combination groups. The number of eosinophils and mast cells of herbal combination groups were observed to be smaller than those of aspirin group (P < 0.05). In conclusion, herbal combination of Licorice (Glycyrrhiza glabra), Pulasari stem bark (Alyxia reinwardtii) and Sembung leaf (Blumea balsamifera) is potential to develop as a gastroprotective agent. © The Author(s) 2016.

  1. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features.

    PubMed

    Yadav, R K P; Karamanoli, K; Vokou, D

    2005-08-01

    In this study, we assessed various leaf structural and chemical features as possible predictors of the size of the phyllosphere bacterial population in the Mediterranean environment. We examined eight perennial species, naturally occurring and coexisting in the same area, in Halkidiki (northern Greece). They are Arbutus unedo, Quercus coccifera, Pistacia lentiscus, and Myrtus communis (evergreen sclerophyllous species), Lavandula stoechas and Cistus incanus (drought semi-deciduous species), and Calamintha nepeta and Melissa officinalis (non-woody perennial species). M. communis, L. stoechas, C. nepeta, and M. officinalis produce essential oil in substantial quantities. We sampled summer leaves from these species and (1) estimated the size of the bacterial population of their phyllosphere, (2) estimated the concentration of different leaf constituents, and (3) studied leaf morphological and anatomical features and expressed them in a quantitative way. The aromatic plants are on average more highly colonized than the other species, whereas the non-woody perennials are more highly colonized than the woody species. The population size of epiphytic bacteria is positively correlated with glandular and non-glandular trichome densities, and with water and phosphorus contents; it is negatively correlated with total phenolics content and the thickness of the leaf, of the mesophyll, and of the abaxial epidermis. No correlation was found with the density of stomata, the nitrogen, and the soluble sugar contents. By regression tree analysis, we found that the leaf-microbe system can be effectively described by three leaf attributes with leaf water content being the primary explanatory attribute. Leaves with water content >73% are the most highly colonized. For leaves with water content <73%, the phosphorus content, with a critical value of 1.34 mg g(-1) d.w., is the next explanatory leaf attribute, followed by the thickness of the adaxial epidermis. Leaves higher in phosphorus (>1.34 mg g(-1) d.w.) are more colonized, and leaves with the adaxial epidermis thicker than 20.77 microm are the least colonized. Although these critical attributes and values hold true only within the Mediterranean ecosystem studied and the range of observations taken, they are important because they provide a hypothesis to be tested in other Mediterranean ecosystems and other biomes. Such comparative studies may give insight as to the general properties governing the leaf-microbe system.

  2. Ecophysiological function of leaf 'windows' in Lithops species - 'Living Stones' that grow underground.

    PubMed

    Martin, C E; Brandmeyer, E A; Ross, R D

    2013-01-01

    Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Foliar ozone injury on different-sized Prumus serotina Ehrh. trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.

    1995-06-01

    Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less

  4. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    PubMed

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  5. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy.

    PubMed

    Trouwborst, Govert; Oosterkamp, Joke; Hogewoning, Sander W; Harbinson, Jeremy; van Ieperen, Wim

    2010-03-01

    Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse-grown Cucumis sativus'Samona' crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 micromol photosynthetic photon flux m(-2) s(-1) (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High-Pressure Sodium (HPS)-lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED-light spectrum used, and partly because of the relatively low irradiances from above.

  6. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.

    PubMed

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

    2015-02-22

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Leaf optical properties shed light on foliar trait variability at individual to global scales

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. N.; Serbin, S.; Dietze, M.

    2016-12-01

    Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary within communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a potentially rich and widely available source of information on plant traits. In particular, the inversion of physically-based radiative transfer models (RTMs) is an effective and general method for estimating plant traits from spectral measurements. Here, we apply Bayesian inversion of the PROSPECT leaf RTM to a large database of field spectra and plant traits spanning tropical, temperate, and boreal forests, agricultural plots, arid shrublands, and tundra to identify dominant sources of variability and characterize trade-offs in plant functional traits. By leveraging such a large and diverse dataset, we re-calibrate the empirical absorption coefficients underlying the PROSPECT model and expand its scope to include additional leaf biochemical components, namely leaf nitrogen content. Our work provides a key methodological contribution as a physically-based retrieval of leaf nitrogen from remote sensing observations, and provides substantial insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.

  8. Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).

    PubMed

    Nair, Shakunthala; Braman, S Kristine; Knauft, D A

    2012-10-01

    This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.

  9. Effects of host-plant population size and plant sex on a specialist leaf-miner

    NASA Astrophysics Data System (ADS)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  10. Probing the stochastic property of endoreduplication in cell size determination of Arabidopsis thaliana leaf epidermal tissue

    PubMed Central

    2017-01-01

    Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847

  11. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  12. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    PubMed

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of citrus leaves.

    PubMed

    Syvertsen, J P; Graham, J H

    1990-11-01

    The purpose of this study was to test the hypothesis that vesicular arbuscular mycorrhizal (VAM) fungi affect net assimilation of CO(2) (A) of different-aged citrus leaves independent of mineral nutrition effects of mycorrhizae. Citrus aurantium L., sour orange plants were grown for 6 months in a sandy soil low in phosphorus that was either infested with the VAM fungus, Glomus intraradices Schenck & Smith, or fertilized with additional phosphorus and left nonmycorrhizal (NM). Net CO(2) assimilation, stomatal conductance, water use efficiency, and mineral nutrient status for expanding, recently expanded, and mature leaves were evaluated as well as plant size and relative growth rate of leaves. Nutrient status and net gas exchange varied with leaf age. G. intraradices-inoculated plants had well-established colonization (79% of root length) and were comparable in relative growth rate and size at final harvest with NM plants. Leaf mineral concentrations were generally the same for VAM and NM plants except for nitrogen. Although leaf nitrogen was apparently sufficient for high rates of A, VAM plants did have higher nitrogen concentrations than NM at the time of gas exchange measurements. G. intraradices had no effect on A, stomatal conductance, or water use efficiency, irrespective of leaf age. These results show that well-established VAM colonization does not affect net gas exchange of citrus plants that are comparable in size, growth rate, and nutritional status with NM plants.

  14. Non-native Ants Are Smaller than Related Native Ants.

    PubMed

    McGlynn, Terrence P

    1999-12-01

    I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.

  15. Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.C.; Bazzaz, F.A.

    1996-01-01

    Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less

  16. Data Mining Feature Subset Weighting and Selection Using Genetic Algorithms

    DTIC Science & Technology

    2002-03-01

    seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf- spot, diaporthe-pod-&-stem-blight, cyst - nematode , 2-4-d-injury...seed-discolor: absent,present,?. 33. seed-size: norm,lt-norm,?. 34. shriveling: absent,present,?. 35. roots: norm,rotted,galls- cysts

  17. Characterization of dynamic droplet impaction and deposit formation on leaf surfaces

    USDA-ARS?s Scientific Manuscript database

    Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...

  18. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  19. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2011-05-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics, others tend to covary with leaf size, ΦLS, S tolerance strategies. Several traits such as MA and [C] are important components of more than one dimension with their ambiguous nature reflecting different underlying causes of variation. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.

  20. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae)

    PubMed Central

    Lang, Andreas; Otto, Mathias

    2015-01-01

    Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles. PMID:26463415

  1. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.

  2. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  3. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.

  4. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal curves observed during the dry season, indicated that water potential and hydraulic conductivity values in larger trees restored from midday depression earlier than in smaller ones. The results demonstrate large heterogeneity in the behaviour related to tree water relations among trees of the same species and in the same stand. The combination of diurnal leaf-scale measurements, SF and changes in DBH demonstrated the different strategies of individual trees of different sizes. Large trees with sufficient internal water storage can more freely manipulate their water storage capacity, with reduced dependence on environmental conditions (e.g., morning and afternoon peaks of T). On the other hand, during the dry summer small trees with insufficient internal water storage are strongly restricted by low soil water availability and extreme environmental conditions, which is expressed in only one peak of T, midday to afternoon shift of diurnal DBH maximum, and shift in SF to predawn when soil water potential is highest. Refilling of internal water storage seems to be in the afternoon/evening since T becomes smaller than SF and DBH increases. Reliance on external water availability in small trees might be insufficient during long drought episodes when soil water content decreases below threshold required for extraction by the trees, leading to increased tree mortality in small DBH trees.

  5. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphousmore » layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.« less

  6. Effect of shading intensity on morphological and color traits, and chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation.

    PubMed

    Sano, Tomohito; Horie, Hideki; Matsunaga, Akiko; Hirono, Yuhei

    2018-05-02

    Use of covering cultivation to shade tea (Camellia sinensis L.) trees to produce high-quality, high-priced green tea has recently increased in Japan. Knowledge of shading effects on morphological and color traits, and chemical components of new tea shoots is important for product quality and productivity. We assessed these traits of tea shoots and their relationships under covering cultivation of various radiation intensities. Leaf thickness, LMA (leaf mass per area), and leaf density of new tea leaves were smaller under covering culture than under open-field culture. SPAD values and chlorophyll contents were larger under covering culture than under open culture. The derived exponential equation for estimating chlorophyll contents from SPAD values was improved by considering leaf thickness. Covering culture decreased EC (epicatechin) and EGC (epigallocatechin) contents, and increased theanine and caffeine contents. Principal component analysis on shoot and leaf traits indicated that LMA, and chlorophyll, EC, and EGC contents were strongly associated with shading effects. Morphological and color traits, and chemical components of new tea shoots and leaves varied depending on radiation intensity, shoot growth, and cropping season. These findings are useful for covering cultivation with high quality and high productivity in tea gardens. This article is protected by copyright. All rights reserved.

  7. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    NASA Astrophysics Data System (ADS)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  8. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  9. Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica)

    PubMed Central

    Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting

    2018-01-01

    Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625

  10. Aerial-Photointerpretation of landslides along the Ohio and Mississippi rivers

    USGS Publications Warehouse

    Su, W.-J.; Stohr, C.

    2000-01-01

    A landslide inventory was conducted along the Ohio and Mississippi rivers in the New Madrid Seismic Zone of southern Illinois, between the towns of Olmsted and Chester, Illinois. Aerial photography and field reconnaissance identified 221 landslides of three types: rock/debris falls, block slides, and undifferentiated rotational/translational slides. Most of the landslides are small- to medium-size, ancient rotational/translational features partially ob-scured by vegetation and modified by weathering. Five imagery sources were interpreted for landslides: 1:250,000-scale side-looking airborne radar (SLAR); 1:40,000-scale, 1:20,000-scale, 1:6,000-scale, black and white aerial photography; and low altitude, oblique 35-mm color photography. Landslides were identified with three levels of confidence on the basis of distinguishing characteristics and ambiguous indicators. SLAR imagery permitted identification of a 520 hectare mega-landslide which would not have been identified on medium-scale aerial photography. The leaf-off, 35-mm color, oblique photography provided the best imagery for confident interpretation of detailed features needed for smaller landslides.

  11. Leap and strike kinetics of an acoustically ‘hunting’ barn owl (Tyto alba)

    PubMed Central

    Usherwood, James R.; Sparkes, Emily L.; Weller, Renate

    2014-01-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting ‘strike’ onto an acoustically targeted – and potentially entirely hidden – prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. PMID:24948629

  12. Leap and strike kinetics of an acoustically 'hunting' barn owl (Tyto alba).

    PubMed

    Usherwood, James R; Sparkes, Emily L; Weller, Renate

    2014-09-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting 'strike' onto an acoustically targeted - and potentially entirely hidden - prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. © 2014. Published by The Company of Biologists Ltd.

  13. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. biophysical constraints on leaf expansion under long-term water stress

    Treesearch

    Yanxiang ​Zhang; Maria Alejandra Equiza; Quanshui Zheng; Melvin T. Tyree

    2011-01-01

    In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψw = leaf water potential estimated with a pressure bomb of −0.48 and −0.98 MPa, respectively). Pressure–volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size...

  14. Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein).

    PubMed

    Picoli, E A.T.; Otoni, W C.; Figueira, M L.; Carolino, S M.B.; Almeida, R S.; Silva, E A.M.; Carvalho, C R.; Fontes, E P.B.

    2001-04-01

    The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.

  15. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.

    PubMed

    Koch, George W; Sillett, Stephen C; Antoine, Marie E; Williams, Cameron B

    2015-02-01

    Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.

  16. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory

    PubMed Central

    Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.

    2015-01-01

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  17. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  18. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  19. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Treesearch

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  20. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  1. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  2. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  3. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  4. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    PubMed

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.

  5. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    PubMed

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  6. Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs

    PubMed Central

    Yang, Fei; Cao, Ning; Meyer, Juergen

    2016-01-01

    During volume‐modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out‐of‐field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap dose is not negligible. Leaf gap doses were measured for an Elekta beam modulator linac with 0.4 cm micro‐multileaf collimators (MLC) using an A16 micro‐ionization chamber, a MatriXX ion chamber detector array, and Kodak EDR2 film dosimetry in a solid water phantom. The MLC offset and rounded end tip radius were adjusted in the Pinnacle treatment planning system (TPS) to iteratively arrive at the optimal configuration for 6 MV and 10 MV photon energies. Improvements in gamma index with a 3%/3 mm acceptance criteria and an inclusion threshold of 5% of maximum dose were measured, analyzed, and validated using an ArcCHECK diode detector array for field sizes ranging from 1.6 to 14 cm square field arcs and Task Group (TG) 119 VMAT test cases. The best results were achieved for a rounded leaf tip radius of 13 cm with a 0.1 cm MLC offset. With the optimized MLC model, measured gamma indices ranged between 99.9% and 91.7% for square field arcs with sizes between 3.6 cm and 1.6 cm, with a maximum improvement of 42.7% for the 1.6 cm square field size. Gamma indices improved up to 2.8% in TG‐119 VMAT treatment plans. Imaging and Radiation Oncology Core (IROC) credentialing of a VMAT plan with the head and neck phantom passed with a gamma index of 100%. Fine‐tune adjustments to MLC rounded leaf ends may improve patient‐specific QA pass rates and provide more accurate predictions of dose deposition to avoidance structures. PACS number(s): 87.55.D‐, 87.55.kd, 87.55.kh PMID:27929490

  7. Effect of Habitat Conditions and Plant Traits on Leaf Damage in the Carduoideae Subfamily

    PubMed Central

    Münzbergová, Zuzana; Skuhrovec, Jiří

    2013-01-01

    Plant traits are the key factors that determine herbivore foraging selection. The traits serving as defense traits against herbivores represent a wide range of traits, such as chemical, physiological, morphological and life-history traits. While many studies considered plant defense traits at the within-species scale, much less is known from comparisons of a wide range of closely related species. The aim of this study was to identify factors responsible for the intensity of leaf damage in the Carduoideae subfamily of Asteraceae, which hosts many invasive species and thus is potential candidate plant species that could be controlled by biological control. Specifically, we wanted to see the relative importance of habitat characteristics, plant size and plants traits in determining the degree of folivory. The study identified several defense traits able to explain differences in herbivory between species after accounting for differences in the habitats in which the species occur and the plant size. Specifically, the most important traits were traits related to the quality of the leaf tissue expressed as the content of phosphorus, water and specific leaf area, which suggests that the leaf quality had a more important effect on the degree of herbivory than the presence of specific defense mechanisms such as spines and hair. Leaf quality is thus a candidate factor that drives herbivore choice when selecting which plant to feed on and should be considered when assessing the danger that a herbivore will switch hosts when introduced to a new range. PMID:23717643

  8. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and productivity. Furthermore, the seasonal transitions between photosynthetically active and inactive states can be clearly detected by the PRI. These findings have implications for using remote sensing to detect dynamics in photosynthetic activity in response to changing growing season length in northern latitudes.

  9. Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels.

    PubMed

    Prashanth, G K; Prashanth, P A; Nagabhushana, B M; Ananda, S; Krishnaiah, G M; Nagendra, H G; Sathyananda, H M; Rajendra Singh, C; Yogisha, S; Anand, S; Tejabhiram, Y

    2018-08-01

    Recently, there has been an upsurge in the use of naturally available fuels for solution combustion synthesis (SCS) of nanoparticles. Although many reports suggest that these biofuels pose less harm to the environment, their strategic advantages and reliability for making NPs has not been discussed. In the present work, we try to address this issue using plant extracts as biofuels for the SCS of zinc oxide nanoparticles as a model system. In the present work, combustion synthesis of ZnO NPs using lactose and aqueous leaf extracts of Abutilon indicum, Melia azedarach, Indigofera tinctoria as biofuels has been carried out. A comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using plant extracts over a chemical as combustion fuel for the synthesis of zinc oxide nanoparticles. The X-ray diffractograms of the samples revealed the presence of Wurtzite hexagonal structure with varying crystallite sizes. Morphological studies indicated that samples prepared using biofuels had smaller diameter than those prepared using lactose as fuel. Surface characteristics of the samples were measured by X-ray photoelectron spectroscopy. Qualitative phytochemical screening of aqueous leaf extracts revealed the presence of many phytochemicals in them, which might be responsible for combustion. Gas chromatography mass spectrum was carried out to detect the phytochemicals present in the aqueous extracts of the leaves. Further, anticancer evaluation carried out against DU-145 and Calu-6 cancer cells indicated higher anticancer activity of zinc oxide nanoparticles prepared using biofuels. The results of blood haemolysis revealed the biocompatibility of zinc oxide nanoparticles at lower concentrations. In conclusion, we propose that multiple other studies would be required in order to vindicate the potential advantages of using naturally available fuels in SCS.

  10. Photosynthetic light capture and processing from cell to canopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenberg, P.; DeLucia, E.H.; Schoettle, A.W.

    1995-07-01

    We have addressed the unique structural features of conifers, as they relate to photosynthetic production, at different levels of organization (from needle to canopy). Many concepts and measures must be defined for conifers so that they are consistent with the structural properties of needles and shoots. Consistency is needed in comparing the photosynthetic performance of conifers and broad leaves, wherein it is important to distinguish the effect of structural factors on light capture from differences in the photosynthetic response at a fixed interception. Needles differ from broad leaves both with respect to inner structure and external shape, which includes amore » continuum from nearly flat to cylindrical. For nonflat three-dimensional objects such as for conifer needles, total surface area is the natural measure. The meaning of the one-sided area of needles is not clear, but consistency requires that it be defined as half the total needle surface area, as concluded. Characteristic structural factors of conifers that affect their ability to harvest light are a deep canopy combined with a small needle size, which create an important penumbra effect, and the clustering of needles on shoots, which creates a discontinuous distribution of needle area. These factors imply that, at a fixed leaf area index, the intercepted PAR would be smaller in coniferous than in broad-leafed canopies, but the vertical gradient of light in conifers is less steep and light reaching the lower canopy is all penumbral (diffuse). Conifers can maintain a higher leaf area index, and this may be accomplished by a more even distribution of light between shoots at different locations in the canopy and also because shade shoots have a structure that effectively intercepts light. Broad leaves in general have higher maximum photosynthetic rates than do needles, and yet conifers are at least equally productive on a stand basis. Possible reasons are discussed.« less

  11. School Class Size: Research and Policy

    ERIC Educational Resources Information Center

    Glass, Gene V.; And Others

    This book synthesizes research evidence to demonstrate that 1) class size is strongly related to pupil achievement; 2) smaller classes are more conducive to improved pupil performance than larger classes; 3) smaller classes provide more opportunities to adapt learning programs to individual needs; 4) pupils in smaller classes have more interest in…

  12. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NASA Astrophysics Data System (ADS)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

  13. Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.

    PubMed

    Fambrini, Marco; Pugliesi, Claudio

    2013-06-01

    Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.

  14. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    PubMed Central

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework. PMID:24510217

  15. Cross-scale modelling of transpiration from stomata via the leaf boundary layer.

    PubMed

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-09-01

    Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10⁻⁵-10⁻¹ m), which implies explicitly modelling individual stomata. BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100%). Nevertheless, these conventional BLCs (CR of 100%), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework.

  16. Leaf water content and palisade cell size.

    PubMed

    Canny, M J; Huang, C X

    2006-01-01

    The palisade cell sizes in leaves of Eucalyptus pauciflora were estimated in paradermal sections of cryo-fixed leaves imaged in the cryo-scanning electron microscope, as a quantity called the cell area fraction (CAF). Cell sizes were measured in detached leaves as a function of leaf water content, in intact leaves in the field during a day"s transpiration as a function of balance pressure of adjacent leaves, and on leaf disks equilibrated with air of relative humidities from 100 to 58%. Values of CAF ranged from 0.82 at saturation to approx. 0.3 in leaves dried to a relative water content (RWC) of 0.5, and in the field to approx. 0.58 at 15 bar (1.5 MPa) balance pressure. At a CAF of 0.58, the moisture content of the cell walls is in equilibrium with air at 90% relative humidity, which is the estimated relative humidity in the intercellular spaces. It is shown that at this moisture content, the cell walls could be exerting a pressure of approx. 50 bar on the cell contents.

  17. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3.

    PubMed

    Riikonen, Johanna; Percy, Kevin E; Kivimäenpää, Minna; Kubiske, Mark E; Nelson, Neil D; Vapaavuori, Elina; Karnosky, David F

    2010-04-01

    Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone. 2009 Elsevier Ltd. All rights reserved.

  18. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics such as maximum height, others such as the classical "leaf economic spectrum" covary with structural traits such as leaf size and ΦLS. Coordinated structural and physiological adaptions are also associated with light acquisition/shade tolerance strategies with several traits such as MA and [C] being significant components of more than one ecological strategy dimension. This is argued to be a consequence of a range of different potential underlying causes for any observed variation in such "ambiguous" traits. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.

  19. Environmental sensitivity of gas exchange in different-sized trees.

    PubMed

    McDowell, Nate G; Licata, Julian; Bond, Barbara J

    2005-08-01

    The carbon isotope signature (delta13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in delta13C of the very foliage used for the gas exchange measurements. Since delta13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring. If gas exchange differs with tree size during wet but not dry conditions, then this further implies that environmental sensitivity of leaf gas exchange varies as a function of tree size. These implications are consistent with theoretical relationships among height, hydraulic conductance and gas exchange. We investigated the environmental sensitivity of gas exchange in different-sized Douglas-fir (Pseudotsuga menziesii) via a detailed process model that specifically incorporates size-related hydraulic conductance [soil-plant-atmosphere (SPA)], and empirical measurements from both wet and dry periods. SPA predicted, and the empirical measurements verified, that differences in gas exchange associated with tree size are greatest in wet and mild environmental conditions and minimal during drought. The results support the hypothesis that annual net carbon assimilation and transpiration of trees are limited by hydraulic capacity as tree size increases, even though at particular points in time there may be no difference in gas exchange between different-sized trees. Maximum net ecosystem exchange occurs in spring in Pacific Northwest forests; therefore, the presence of hydraulic limitations during this period may play a large role in carbon uptake differences with stand-age. The results also imply that the impacts of climate change on the growth and physiology of forest trees will vary depending on the age and size of the forest.

  20. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other polymeric NPs of smaller size. PMID:22844443

  1. Structure of potato tubers formed during spaceflight

    NASA Technical Reports Server (NTRS)

    Croxdale, J.; Cook, M.; Tibbitts, T. W.; Brown, C. S.; Wheeler, R. M.

    1997-01-01

    Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.

  2. An empirical test of 'universal' biomass scaling relationships in kelps: evidence of convergence with seed plants.

    PubMed

    Starko, Samuel; Martone, Patrick T

    2016-11-01

    Biomass allocation patterns have received substantial consideration, leading to the recognition of several 'universal' interspecific trends. Despite efforts to understand biomass partitioning among embryophytes, few studies have examined macroalgae that evolved independently, yet function ecologically in much the same ways as plants. Kelps allocate photosynthate among three organs (the blade(s), stipe(s) and holdfast) that are superficially convergent with organs of land plants, providing a unique opportunity to test the limits of 'universal' trends. In this study, we used an allometric approach to quantify interspecific biomass partitioning patterns in kelps and assess whether embryophyte-based predictions of biomass scaling can be applied to marine macrophytes that lack root-to-leaf hydraulic transport. Photosynthetic area and dry mass were found to scale to approximately the ¾ power and kelp biomass allocation patterns were shown to match closely to empirical measures of allometric scaling among woody plants. Larger kelp species were found to have increased relative stipe and holdfast mass than smaller species, highlighting important consequences of size for marine macroalgae. Our study provides insights into the evolution of size in the largest marine macrophytes and corroborates previous work suggesting that the morphology of divergent lineages of photoautotrophs may reflect similar selective pressures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    PubMed

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  4. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  5. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  6. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    NASA Astrophysics Data System (ADS)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  7. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Yuda, T.; Shimazu, T.; Ueda, J.

    Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 °C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 μM) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.

  8. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  9. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized.

    PubMed

    Parent, Boris; Suard, Benoît; Serraj, Rachid; Tardieu, François

    2010-08-01

    Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland-adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland- or lowland-adapted. In the considered range of soil water potential (0 to -0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well-watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.

  10. Leaf optical properties shed light on foliar trait variability at individual to global scales

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. N.; Serbin, S.; Dietze, M.

    2017-12-01

    Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary among communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a rich and widely available source of information on plant traits. Here, we apply Bayesian inversion of the PROSPECT leaf radiative transfer model to a large global database of over 60,000 field spectra and plant traits to (1) comprehensively assess the accuracy of leaf trait estimation using PROSPECT spectral inversion; (2) investigate the correlations between optical traits estimable from PROSPECT and other important foliar traits such as nitrogen and lignin concentrations; and (3) identify dominant sources of variability and characterize trade-offs in optical and non-optical foliar traits. Our work provides a key methodological contribution by validating physically-based retrieval of plant traits from remote sensing observations, and provides insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.

  11. Will smaller plates lead to smaller waists? A systematic review and meta-analysis of the effect that experimental manipulation of dishware size has on energy consumption.

    PubMed

    Robinson, E; Nolan, S; Tudur-Smith, C; Boyland, E J; Harrold, J A; Hardman, C A; Halford, J C G

    2014-10-01

    It has been suggested that providing consumers with smaller dishware may prove an effective way of helping people eat less and preventing weight gain, but experimental evidence supporting this has been mixed. The objective of the present work was to examine the current evidence base for whether experimentally manipulated differences in dishware size influence food consumption. We systematically reviewed studies that experimentally manipulated the dishware size participants served themselves at a meal with and measured subsequent food intake. We used inverse variance meta-analysis, calculating the standardized mean difference (SMD) in food intake between smaller and larger dishware size conditions. Nine experiments from eight publications were eligible for inclusion. The majority of experiments found no significance difference in food intake when participants ate from smaller vs. larger dishware. With all available data included, analysis indicated a marginal effect of dishware size on food intake, with larger dishware size associated with greater intake. However, this effect was small and there was a large amount of heterogeneity across studies (SMD: -0.18, 95% confidence interval: -0.35, 0.00, I(2) = 77%). Evidence to date does not show that dishware size has a consistent effect on food intake, so recommendations surrounding the use of smaller plates/dishware to improve public health may be premature. © 2014 The Authors. obesity reviews © 2014 World Obesity.

  12. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically1[C][W

    PubMed Central

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt DJ; Muino, Jose M.; Cutri, Lucas; Dornelas, Marcelo C.; Angenent, Gerco C.; Immink, Richard G.H.

    2012-01-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway. PMID:22718775

  13. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  14. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract

    NASA Astrophysics Data System (ADS)

    Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.

    2015-12-01

    Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.

  15. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining intraspecific variation in salt tolerance. Plant morphology (size attributes) were strongly associated with salt tolerance in P. hemitomon, weakly associated with salt tolerance in S. patens, and not associated with salt tolerance in S. alterniflora. Highly salt-tolerant populations of Spartina alterniflora displayed the greatest ion selectivity (lower leaf Na+/K+ ratios), which was not displayed by the other two species. These results suggest that plant size attributes can be very important in explaining population differences in salt tolerance in glycophytes, but may be independent of salt tolerance in halophytes, which have specialized physiological (and/or anatomical) adaptations that can confer salinity stress resistance through mechanisms such as selective ion exclusion and secretion. ?? 2001 Elsevier Science B.V. All rights reserved.

  16. A Systematic Software, Firmware, and Hardware Codesign Methodology for Digital Signal Processing

    DTIC Science & Technology

    2014-03-01

    possible mappings ...................................................60 Table 25. Possible optimal leaf -nodes... size weight and power UAV unmanned aerial vehicle UHF ultra-high frequency UML universal modeling language Verilog verify logic VHDL VHSIC...optimal leaf -nodes to some design patterns for embedded system design. Software and hardware partitioning is a very difficult challenge in the field of

  17. 16 CFR § 1633.4 - Prototype testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...

  18. 16 CFR 1633.4 - Prototype testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...

  19. 16 CFR 1633.4 - Prototype testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...

  20. 16 CFR 1633.4 - Prototype testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...

  1. Coordination of crown structure, leaf plasticity and carbon gain within the crowns of three winter-deciduous mature trees.

    PubMed

    Uemura, Akira; Harayama, Hisanori; Koike, Nobuya; Ishida, Atsushi

    2006-05-01

    We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.

  2. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    PubMed

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  3. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity.

    PubMed

    Cao, Zhe; Sui, Shunzhao; Yang, Qian; Deng, Zhanao

    2017-01-01

    Modern cultivated caladiums ( Caladium × hortulanum ) are grown for their long-lasting and colorful leaves. Understanding the mode of inheritance for caladium leaf characteristics is critical for plant breeders to select appropriate parents, predict progeny performance, estimate breeding population sizes needed, and increase breeding efficiencies. This study was conducted to determine the mode of inheritance of two leaf background colors (lemon and green) in caladium and to understand their relationships with four other important leaf characteristics including leaf shape, main vein color, spotting, and rugosity. Seven caladium cultivars and three breeding lines were used as parents in 19 crosses, and their progeny were phenotyped for segregation of leaf traits. Results showed that the two leaf background colors are controlled by a single nuclear locus, with two alleles, LEM and lem , which control the dominant lemon and the recessive green leaf background color, respectively. The lemon-colored cultivar 'Miss Muffet' and breeding lines UF-52 and UF-53 have a heterozygous genotype LEMlem . Chi-square tests showed that the leaf background color locus LEM is independent from the leaf shape locus F , but is tightly linked to three loci ( S , V and RLF ) controlling leaf spotting, main vein color, and rugosity in caladium. A linkage map that consists of four loci controlling major caladium leaf characteristics and extends ~15 cM was developed based on the observed recombination frequencies. This is the first report on the mode of inheritance of leaf background colors in caladium and in the Araceae family. The information gained in this study will be very useful for caladium breeding and study of the inheritance of leaf colors in other ornamental aroids, an important group of ornamental plants in the world.

  4. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity

    PubMed Central

    Cao, Zhe; Sui, Shunzhao; Yang, Qian; Deng, Zhanao

    2017-01-01

    Modern cultivated caladiums (Caladium×hortulanum) are grown for their long-lasting and colorful leaves. Understanding the mode of inheritance for caladium leaf characteristics is critical for plant breeders to select appropriate parents, predict progeny performance, estimate breeding population sizes needed, and increase breeding efficiencies. This study was conducted to determine the mode of inheritance of two leaf background colors (lemon and green) in caladium and to understand their relationships with four other important leaf characteristics including leaf shape, main vein color, spotting, and rugosity. Seven caladium cultivars and three breeding lines were used as parents in 19 crosses, and their progeny were phenotyped for segregation of leaf traits. Results showed that the two leaf background colors are controlled by a single nuclear locus, with two alleles, LEM and lem, which control the dominant lemon and the recessive green leaf background color, respectively. The lemon-colored cultivar ‘Miss Muffet’ and breeding lines UF-52 and UF-53 have a heterozygous genotype LEMlem. Chi-square tests showed that the leaf background color locus LEM is independent from the leaf shape locus F, but is tightly linked to three loci (S, V and RLF) controlling leaf spotting, main vein color, and rugosity in caladium. A linkage map that consists of four loci controlling major caladium leaf characteristics and extends ~15 cM was developed based on the observed recombination frequencies. This is the first report on the mode of inheritance of leaf background colors in caladium and in the Araceae family. The information gained in this study will be very useful for caladium breeding and study of the inheritance of leaf colors in other ornamental aroids, an important group of ornamental plants in the world. PMID:28101369

  5. Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.

    PubMed

    Metcalfe, J C; Davies, W J; Pereira, J S

    1991-12-01

    Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.

  6. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    PubMed

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.

  7. How Does the Amount and Composition of PM Deposited on Platanus acerifolia Leaves Change Across Different Cities in Europe?

    PubMed

    Baldacchini, Chiara; Castanheiro, Ana; Maghakyan, Nairuhi; Sgrigna, Gregorio; Verhelst, Jolien; Alonso, Rocío; Amorim, Jorge H; Bellan, Patrick; Bojović, Danijela Đunisijević; Breuste, Jürgen; Bühler, Oliver; Cântar, Ilie C; Cariñanos, Paloma; Carriero, Giulia; Churkina, Galina; Dinca, Lucian; Esposito, Raffaela; Gawroński, Stanisław W; Kern, Maren; Le Thiec, Didier; Moretti, Marco; Ningal, Tine; Rantzoudi, Eleni C; Sinjur, Iztok; Stojanova, Biljana; Aničić Urošević, Mira; Velikova, Violeta; Živojinović, Ivana; Sahakyan, Lilit; Calfapietra, Carlo; Samson, Roeland

    2017-02-07

    Particulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data. The PM quantity and size were mainly dependent on the regional background concentration of particles, while the percentage of iron-based particles emerged as a clear marker of traffic-related pollution in most of the sites. This indicates that Platanus acerifolia is highly suitable to be used in atmospheric PM monitoring studies and that morphological and elemental characteristics of leaf deposited particles, joined with the leaf magnetic content, may successfully allow urban PM source apportionment.

  8. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  9. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    PubMed

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  10. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves1

    PubMed Central

    Etxeberria, Ed; Gonzalez, Pedro; Fanton Borges, Ana; Brodersen, Craig

    2016-01-01

    Premise of the study: Uptake of foliar-applied substances across the leaf cuticle is central to world food production as well as for physiological investigations into phloem structure and function. Yet, despite the presence of stomata, foliar application as a delivery system can be extremely inefficient due to the low permeability of leaf surfaces to polar compounds. Methods: Using laser light to generate microscopic perforations in the leaf cuticle, we tested the penetration of several substances into the leaf, their uptake into the phloem, and their subsequent movement through the phloem tissue. Substances varied in their size, charge, and Stokes radius. Results: The phloem-mobile compounds 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), lysine, Biocillin, adenosine triphosphate (ATP), trehalose, carboxyfluorescein-SE, and poly(amidomine) (PAMAM) dendrimer G-4 nanoparticles (4.5 nm in size) showed a high degree of mobility and were able to penetrate and be transported in the phloem. Discussion: Our investigation demonstrated the effectiveness of laser light technology in enhancing the penetration of foliar-applied substances into citrus leaves. The technology is also applicable to the study of phloem mobility of substances by providing a less invasive, highly repeatable, and more quantifiable delivery method. The implied superficial lesions to the leaf can be mitigated by applying a waxy coating. PMID:26819863

  11. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  12. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    PubMed

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  14. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  15. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    PubMed

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.

  16. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  17. Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of Xylella fastidiosa pear leaf scorch strain (PLS229) isolated from pear cultivar Hengshan (Pyrus pyrifolia) in Taiwan is reported. The bacterium has a genome size of 2,733,013 bp with a G+C content of 53.1%. The PLS229 strain genome was annotated to have 3,259 open readin...

  18. Herbivores and pathogens on Alnus viridis subsp. fruticosa in interior Alaska: effects of leaf, tree, and neighbour characteristics on damage levels

    Treesearch

    Christa P.H. Mulder; Bitty A. Roy; Sabine Gusewell

    2008-01-01

    Parasite damage strongly affects dynamics of boreal forests. Damage levels may be affected by climate change, either directly or indirectly through changes in properties of host trees. We examined how herbivore and pathogen damage in Alnus viridis subsp. fruticosa (Rupr.) Nym. depend on leaf morphology and chemistry, tree size...

  19. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  20. Life forms, leaf size spectra, regeneration capacity and diversity of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Khan, Waqas; Khan, Shujaul Mulk; Ahmad, Habib; Alqarawi, Abdulaziz A; Shah, Ghulam Mujtaba; Hussain, Manzoor; Abd Allah, E F

    2018-01-01

    The life form and leaf size spectra of plant species of the Thandiani forests, district Abbottabad, were studied during the summer of 2013. These forests host 252 plant species of 97 families. Biological spectra showed that Hemicryptophytes (80 spp., 31.74%) were dominant followed by Megaphanerophytes (51 spp., 20.24%), Therophytes (49 spp., 19.44%) and Nanophanerophytes (45 spp., 17.86). Hemicryptophytes are the indicators of cold temperate vegetation. At the lower elevations, Megaphanerophytes and Nanophanerophytes were dominant which confirm trees as dominant habit form due to high soil depth, moisture and temperature factors. Data on Leaf spectra in the area showed that Microphyllous (88 spp., 34.92%) species were dominant followed by Leptophyllous (74 spp., 29.36%) and Nanophyllous (60 spp., 23.80%). The Microphyllous plants again are the indicator of cold temperate zone as the area is situated at an elevation of 1191-2626 m. Similarly, Nanophylls were dominant at lower elevations. Data on family importance values and diversity among various communities were also recorded. Life form and Leaf spectra studies could be used to understand the micro climatic variation of the region.

  1. Seasonal resource value and male size influence male aggressive interactions in the leaf footed cactus bug, Narnia femorata.

    PubMed

    Nolen, Zachary J; Allen, Pablo E; Miller, Christine W

    2017-05-01

    In animal contests, resource value (the quality of a given resource) and resource holding potential (a male's absolute fighting ability) are two important factors determining the level of engagement and outcome of contests. Few studies have tested these factors simultaneously. Here, we investigated whether natural, seasonal differences in cactus phenology (fruit quality) influence interactions between males in the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae). We also considered whether males were more likely to interact when they were similar in size, as predicted by theory. Finally, we examined if male size relative to the size of an opponent predicted competitive success. We found that males have more interactions on cactus with high value ripe fruit, as we predicted. Further, we found that males that were closer in size were more likely to interact, and larger males were more likely to become dominant. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  3. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    PubMed

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  4. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L.

    PubMed Central

    Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie

    2010-01-01

    To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities. PMID:20577871

  5. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L.

    PubMed

    Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie; Polle, Andrea

    2010-09-01

    To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities.

  6. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  7. Atmospheric cold plasma jet for plant disease treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of <2 mm can completely recover from the fungus-infected state. The plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  8. How food marketers can sell smaller portions: Consumer insights and product innovation.

    PubMed

    Riis, J; Fisher, J O; Rowe, S

    2016-08-01

    Food portion size has been shown to be an important driver of energy intake. Despite the well acknowledged role of portion control in weight management, large portion sizes remain ubiquitous in the marketplace. Moving consumers towards consumption of smaller portion sizes will require changes in consumer behavior as well as changes in products available to consumers in a variety of settings. This special supplement presents cutting edge research aimed at understanding consumer behavior around portion size and innovations in product design that may promote the selection and consumption of smaller portion sizes. We identify further research that will be needed to translate basic behavioral findings into real world settings and to viable product development. Copyright © 2016. Published by Elsevier Ltd.

  9. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    PubMed

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  10. Verification of dosimetric accuracy on the TrueBeam STx: rounded leaf effect of the high definition MLC.

    PubMed

    Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary

    2012-10-01

    The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.

  11. Smaller Cigarette Pack as a Commitment to Smoke Less? Insights from Behavioral Economics

    PubMed Central

    Marti, Joachim; Sindelar, Jody

    2015-01-01

    Cigarettes are commonly sold in packs of 20 units and therefore little is known about the potential impact of pack size on consumption. Using insights from behavioral economics, we suggest that cigarette packs smaller than the standard size may help some smokers cut back and/or quit, consistent with their long-term goals. Results from an online hypothetical purchase experiment conducted in a sample of US smokers reveal that over a third of smokers are willing to pay a price premium to purchase in smaller quantities. Further, a desire to quit smoking and high self-control is associated with preference for a smaller pack. While we provide some preliminary evidence that smaller packs may be beneficial to certain types of smokers, further research should be conducted to assess whether the smaller pack size should be considered in the arsenal of tobacco control policies to help current smokers quit (JEL: I18; I12; D12) PMID:26356844

  12. Size-density metrics, leaf area, and productivity in eastern white pine

    Treesearch

    J. C. Innes; M. J. Ducey; J. H. Gove; W. B. Leak; J. P. Barrett

    2005-01-01

    Size-density metrics are used extensively for silvicultural planning; however, they operate on biological assumptions that remain relatively untested. Using data from 12 even-aged stands of eastern white pine (Pinus strobus L.) growing in southern New Hampshire, we compared size-density metrics with stand productivity and its biological components,...

  13. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    PubMed

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  14. Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.

    2007-01-01

    Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.

  15. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  16. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Kery, M.; Matthies, D.

    2004-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  17. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Robbins, C.S.

    1983-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  18. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  19. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE PAGES

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...

    2016-11-24

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  20. BODY SIZE AND HAREM SIZE IN MALE RED-WINGED BLACKBIRDS: MANIPULATING SELECTION WITH SEX-SPECIFIC FEEDERS.

    PubMed

    Rohwer, Sievert; Langston, Nancy; Gori, Dave

    1996-10-01

    We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.

  1. Association of microRNAs with Types of Leaf Curvature in Brassica rapa.

    PubMed

    Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke

    2018-01-01

    Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp - MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa . These findings provide insight into the relationship between miRNAs and variation in leaf curvature.

  2. Association of microRNAs with Types of Leaf Curvature in Brassica rapa

    PubMed Central

    Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke

    2018-01-01

    Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp-MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa. These findings provide insight into the relationship between miRNAs and variation in leaf curvature. PMID:29467771

  3. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  4. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  5. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Johnson, K.R.; Nichols, D.J.; Attrep, M.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  6. Betel leaf in stoma care.

    PubMed

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  7. Foliage response of young central European oaks to air warming, drought and soil type.

    PubMed

    Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P

    2013-01-01

    Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.

    PubMed

    Ribeiro, F F; Qin, J G

    2015-05-01

    This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.

  9. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient.

    PubMed

    Firmat, C; Delzon, S; Louvet, J-M; Parmentier, J; Kremer, A

    2017-12-01

    It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1

    PubMed Central

    Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne

    2005-01-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246

  11. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  12. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JS; Fan, J; Ma, C-M

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less

  13. PHARMACOGNOSTIC EVALUATION OF THE LEAF OF Rhus succedanea VAR. HIMALAICA. J. D HOOKER.

    PubMed Central

    Khan, Shafqat Ali; Ibrar, Muhammad; Barkatullah

    2016-01-01

    Background: Rhus succedanea is generally traded, distributed and sold in the markets in its crude and raw form. This may have been mixed with adulterants, mismanaged by malpractices and substituted with other closely related drugs having different effect. This study is therefore carried out to authenticate the plant through pharmacogonostic evaluations. Material & Methods: The organoleptic studies were carried through sensory organs i.e size, shape, texrure, odour, etc. Histological studies were conducted by preparing hand slides, mounting the specimen in potato tuber; fluorescence characters were determined through UV and phytochemical screening was investigated using various standard and common methods from relevant literature. Results: Morphologically, the Rhus is a perennial small sized deciduous tree, 5–9 m tall with opposite imparipinnately compound leaves and small grayish yellow flowers born on paniculate inflorescence; locally, called as Rakhkal in Pashto and Kakarsingi in Urdu. The organoleptic evaluation showed leaf had pleasant, aromatic odour and astringent taste. Transverse section of leaf through midrib region was worked out. The anatomy of the midrib has shown to be surrounded by both upper and lower epidermis with multicellular non-glandular trichomes. The leaf was hypostomatic showing anomocytic stomata with average stomatal number 27.1 ± 7.2 and stomatal index 14 ± 3.63. The average vein islet, vein termination and palisade ratios were 13.6 ± 3.04, 10.21 ± 1.92 and 6 ± 2.01 respectively. Leaf powder showed the existance of anomocytic stomata, spirally thickened xylem vessels, non-glandular multicellular and stellate trichomes. Fluorescence study and percent extractive values was also carried out. The phytochemical screening showed the presence of carbohydrates, protein, alkaloids, phenols, flavonoids, terpenoids and anthraquenones, while tannins and fixed oil was not detected. Quantitatively highest amount of alkaloids 16% and flavonoids 19% in leaf was detected. Conclusion: The results of the of the anatomical, organoleptic and physiochemical studies of the powder of leaf will be helpful in standardization of R. succedanea the crude drug. PMID:28480367

  14. How to pattern a leaf.

    PubMed

    Bolduc, N; O'Connor, D; Moon, J; Lewis, M; Hake, S

    2012-01-01

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, and function, all leaves initiate in the same manner: from the flanks of a meristem. The maize leaf is useful for analysis of patterning due to the wealth of mutants and the distinct tissues along the proximal distal axis. The blade is distal, the sheath is proximal, and the ligule forms at the blade/sheath boundary. Establishment of this boundary involves the transcription factors LIGULELESS1 and LIGULELESS2 and the kinase LIGULELESS NARROW. The meristem-specific protein KNOTTED1 (KN1) binds and modulates the lg2 gene. Given the localization of KN1 at the proximal end of the leaf from the time of inception, we hypothesize that KN1 has a role in establishing the very proximal end of the leaf, whereas an auxin maximum guides the growing distal tip.

  15. Biosynthesis of spherical and highly stable gold nanoparticles using Ferulago Angulata aqueous extract: dual role of extract

    NASA Astrophysics Data System (ADS)

    Alizadeh, A.; Parsafar, S.; Khodaei, M. M.

    2017-03-01

    A biocompatible method for synthesizing of highly disperses gold nanoparticles using Ferulago Angulata leaf extract has been developed. It has been shown that leaf extract acts as reducing and coating agent. Various spectroscopic and electron microscopic techniques were employed for the structural characterization of the prepared nanoparticles. The biosynthesized particles were identified as elemental gold with spherical morphology, narrow size distribution (ranged 9.2-17.5 nm) with high stability. Also, the effect of initial ratio of precursors, temperature and time of reaction on the size and morphology of the nanoparticles was studied in more detail. It was observed that varying these parameters provides an accessible remote control on the size and morphology of nanoparticles. The uniqueness of this procedure lies in its cleanliness using no extra surfactant, reducing agent or any capping agent.

  16. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Effect of advance seedling size and vigor on survival after clearcutting

    Treesearch

    David A. Marquis

    1982-01-01

    In several separate experiments, it was found that survival of advance seedlings after clearcutting in Allegheny hardwood stands is a function of initial seedling size-larger seedlings survive best. Age, number of leaves, and leaf size also were important determinants of survival. In Allegheny hardwood stands, where advance regeneration is typically less than 1 foot in...

  18. Effect of cell-size on the energy absorption features of closed-cell aluminium foams

    NASA Astrophysics Data System (ADS)

    Nammi, S. K.; Edwards, G.; Shirvani, H.

    2016-11-01

    The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.

  19. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry.

    PubMed

    Bennett, Michael D; Price, H James; Johnston, J Spencer

    2008-04-01

    Measuring genome size by flow cytometry assumes direct proportionality between nuclear DNA staining and DNA amount. By 1997 it was recognized that secondary metabolites may affect DNA staining, thereby causing inaccuracy. Here experiments are reported with poinsettia (Euphorbia pulcherrima) with green leaves and red bracts rich in phenolics. DNA content was estimated as fluorescence of propidium iodide (PI)-stained nuclei of poinsettia and/or pea (Pisum sativum) using flow cytometry. Tissue was chopped, or two tissues co-chopped, in Galbraith buffer alone or with six concentrations of cyanidin-3-rutinoside (a cyanidin-3-rhamnoglucoside contributing to red coloration in poinsettia). There were large differences in PI staining (35-70 %) between 2C nuclei from green leaf and red bract tissue in poinsettia. These largely disappeared when pea leaflets were co-chopped with poinsettia tissue as an internal standard. However, smaller (2.8-6.9 %) differences remained, and red bracts gave significantly lower 1C genome size estimates (1.69-1.76 pg) than green leaves (1.81 pg). Chopping pea or poinsettia tissue in buffer with 0-200 microm cyanidin-3-rutinoside showed that the effects of natural inhibitors in red bracts of poinsettia on PI staining were largely reproduced in a dose-dependent way by this anthocyanin. Given their near-ubiquitous distribution, many suspected roles and known affects on DNA staining, anthocyanins are a potent, potential cause of significant error variation in genome size estimations for many plant tissues and taxa. This has important implications of wide practical and theoretical significance. When choosing genome size calibration standards it seems prudent to select materials producing little or no anthocyanin. Reviewing the literature identifies clear examples in which claims of intraspecific variation in genome size are probably artefacts caused by natural variation in anthocyanin levels or correlated with environmental factors known to induce variation in pigmentation.

  20. Survival of female Lesser Scaup: Effects of body size, age, and reproductive effort

    USGS Publications Warehouse

    Rotella, J.J.; Clark, R.G.; Afton, A.D.

    2003-01-01

    In birds, larger females generally have greater breeding propensity, reproductive investment, and success than do smaller females. However, optimal female body size also depends on how natural selection acts during other parts of the life cycle. Larger female Lesser Scaup (Aythya affinis) produce larger eggs than do smaller females, and ducklings from larger eggs survive better than those hatching from smaller eggs. Accordingly, we examined patterns of apparent annual survival for female scaup and tested whether natural selection on female body size primarily was stabilizing, a frequent assumption in studies of sexually dimorphic species in which males are the larger sex, or was directional, counter-acting reproductive advantages of large size. We estimated survival using mark-recapture methods for individually marked females from two study sites in Canada (Erickson, Manitoba; St. Denis, Saskatchewan). Structurally larger (adults) and heavier (ducklings) females had lower survival than did smaller individuals in Manitoba; no relationship was detected in adults from Saskatchewan. Survival of adult females declined with indices of increasing reproductive effort at both sites; consequently, the cost of reproduction could explain age-related patterns of breeding propensity in scaup. Furthermore, if larger females are more likely to breed than are smaller females, then cost of reproduction also may help explain why survival was lower for larger females. Overall, we found that advantages of large body size of female scaup during breeding or as young ducklings apparently were counteracted by natural selection favoring lightweight juveniles and structurally smaller adult females through higher annual survival.

  1. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    PubMed

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and economic impact of some invasive exotic plants may be even greater than under current conditions.

  2. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, S; Hong, C; Kim, M

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less

  3. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient.

    PubMed

    de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M

    2017-01-01

    According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the species ability to coexist by diverging on leaf nutrient composition and resource uptake. Lower niche overlap among functional habits were found, which support that different growth forms and leaf life-habits may facilitate the coexistence of the woody species and niche partitioning along and within the gradient.

  4. Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas

    USGS Publications Warehouse

    Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.

    2004-01-01

    In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.

  5. Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy.

    PubMed

    Hao, Guang-You; Goldstein, Guillermo; Sack, Lawren; Holbrook, N Michele; Liu, Zhi-Hui; Wang, Ai-Ying; Harrison, Rhett D; Su, Zhi-Hui; Cao, Kun-Fang

    2011-11-01

    Woody hemiepiphytic species (Hs) are important components of tropical rain forests, and they have been hypothesized to differ from non-hemiepiphytic tree species (NHs) in adaptations relating to water relations and carbon economy; but few studies have been conducted comparing ecophysiological traits between the two growth forms especially in an evolutionary context. Using common-garden plants of the genus Ficus, functional traits related to plant hydraulics and carbon economy were compared for seven NHs and seven Hs in their adult terrestrial "tree-like" growth phase. We used phylogenetically independent contrasts to test the hypothesis that differences in water availability selected for contrasting suites of traits in Hs and NHs, driving evolutionary correlations among functional traits including hydraulic conductivity and photosynthetic traits. Species of the two growth forms differed in functional traits; Hs had substantially lower xylem hydraulic conductivity and stomatal conductance, and higher instantaneous photosynthetic water use efficiency. Leaf morphological and structural traits also differed strikingly between the two growth forms. The Hs had significantly smaller leaves, higher leaf mass per area (LMA), and smaller xylem vessel lumen diameters. Across all the species, hydraulic conductivity was positively correlated with leaf gas exchange indicating high degrees of hydraulic-photosynthetic coordination. More importantly, these correlations were supported by correlations implemented on phylogenetic independent contrasts, suggesting that most trait correlations arose through repeated convergent evolution rather than as a result of chance events in the deep nodes of the lineage. Vatiation in xylem hydraulic conductivity was also centrally associated with a suite of other functional traits related to carbon economy and growth, such as LMA, water use efficiency, leaf nutrient concentration, and photosynthetic nutrient use efficiency, indicating important physiological constraints or trade-offs among functional traits. Shifts in this trait cluster apparently related to the adaptation to drought-prone canopy growth during the early life cycle of Hs and clearly affected ecophysiology of the later terrestrial stage of these species. Evolutionary flexibility in hydraulics and associated traits might be one basis for the hyper-diversification of Ficus species in tropical rain forests.

  6. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.

    2010-03-01

    Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.

  7. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    PubMed

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  8. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis

    PubMed Central

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-01-01

    N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. PMID:28475148

  9. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees.

    PubMed

    Räsänen, Janne V; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna

    2013-12-01

    Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas.

    PubMed

    Sahota, Shivali; Vijay, Virendra Kumar; Subbarao, P M V; Chandra, Ram; Ghosh, Pooja; Shah, Goldy; Kapoor, Rimika; Vijay, Vandit; Koutu, Vaibhav; Thakur, Indu Shekhar

    2018-02-01

    Installation of decentralized units for biogas production along with indigenous upgradation systems can be an effective approach to meet growing energy demands of the rural population. Therefore, readily available leaf waste was used to prepare biochar at different temperatures and employed for H 2 S removal from biogas produced via anaerobic digestion plant. It is found that biochar prepared via carbonization of leaf waste at 400 °C effectively removes 84.2% H 2 S (from 1254 ppm to 201 ppm) from raw biogas for 25 min in a continuous adsorption tower. Subsequently, leaf waste biochar compositional, textural and morphological properties before and after H 2 S adsorption have been analyzed using proximate analysis, CHNS, BET surface area, FTIR, XRD, and SEM-EDX. It is found that BET surface area, pore size, and textural properties of leaf waste biochar plays a crucial role in H 2 S removal from the biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adhesive Leaf Created by a Corona Discharge.

    PubMed

    Lee, Wonseok; Son, Jongsang; Kim, Seonghyun; Yang, Dongmin; Choi, Seungyeop; Watanabe, Rodrigo Akira; Hwang, Kyo Seon; Lee, Sang Woo; Lee, Gyudo; Yoon, Dae Sung

    2018-01-29

    Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.

  12. Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.

    PubMed

    Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich

    2011-11-01

    The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sex-biased sound symbolism in english-language first names.

    PubMed

    Pitcher, Benjamin J; Mesoudi, Alex; McElligott, Alan G

    2013-01-01

    Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. "Thomas"), while female names are significantly more likely to contain smaller phonemes (e.g. "Emily"). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism.

  14. Sex-Biased Sound Symbolism in English-Language First Names

    PubMed Central

    Pitcher, Benjamin J.; Mesoudi, Alex; McElligott, Alan G.

    2013-01-01

    Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. “Thomas”), while female names are significantly more likely to contain smaller phonemes (e.g. “Emily”). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism. PMID:23755148

  15. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    PubMed

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior

    PubMed Central

    Wedmann, Sonja; Bradler, Sven; Rust, Jes

    2007-01-01

    Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage (≈1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or “adaptive stillness,” enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis. PMID:17197423

  17. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    NASA Astrophysics Data System (ADS)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the following order: root > senesced leaves > young leaves. Moreover, plants maintained nutrient homeostasis (K+, Ca++, Mg++, NO-) by selective uptake via root and transport towards leaf. Moderate salinity increased instantaneous carboxylation efficiency and water use efficiency with stomatal density and smaller pore size compared to control which supported unchanged photosynthetic rate by protecting light harvesting machinery. Low photosynthetic rate in early phase of higher salinity was related to reduced stomatal conductance, while in later phase (15-30 days) due to decreased carboxylation efficiency, effective quantum yield and Fv/Fm (at noon). In conclusion, organ specific responses to short and long term exposure in moderate salinity ensures successful plant survival, whereas long term exposure tohigh salinitywas toxic for plant growth. It is recommended that P. karka could be grown as a biofuel crop on marginally saline and degraded lands.

  18. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii1[OPEN

    PubMed Central

    Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao

    2017-01-01

    Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258

  19. Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines

    PubMed Central

    Fernando, Edwino S.; Quimado, Marilyn O.; Doronila, Augustine I.

    2014-01-01

    Abstract A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3–8 cm long × 2–3 cm wide), and smaller fruits (0.6–0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g-1 of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator. PMID:24843295

  20. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  1. Long-Term Inhibition by Auxin of Leaf Blade Expansion in Bean and Arabidopsis1

    PubMed Central

    Keller, Christopher P.; Stahlberg, Rainer; Barkawi, Lana S.; Cohen, Jerry D.

    2004-01-01

    The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with α-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, α-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, β-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 μm, 10 μm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants. PMID:14988474

  2. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  3. Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula.

    PubMed

    Wendler, Renate; Millard, Peter

    1996-01-01

    We determined the response of Betula pendula Roth. trees to a restricted water supply, and quantified the interactions between tree N and water status on leaf demography and internal N cycling. In April 1993, 3-year-old trees were planted in sand culture and four treatments applied: high-N supply (56 mg tree(-1) week(-1)) with either 2 dm(3) water week(-1) (HN+) or 0.9 dm(3) water week(-1) (HN-), or low-N supply (14 mg tree(-1) week(-1)) with 2 dm(3) (LN+) or 0.9 dm(3) (LN-) water week(-1). Until 1994, the N supplied to trees was enriched with (15)N to 5.4 atom %. During 1993, there were few differences in the growth or leaf demography of trees in the LN+ and LN- treatments, but the high-N treatment increased tree growth. Leaf mass and area were initially similar in trees in the HN+ and HN- treatments, but the trees in the HN- treatment had a smaller root system. Net assimilation rate under saturating light was higher in trees in the HN+ treatment than in trees in the LN+ treatment. There was an N x water supply interaction as a result of trees in the HN- treatment closing their stomata by the beginning of August. However, there was no difference in gas exchange characteristics of leaves in the LN+ and LN- treatments. Although leaf senescence and abscission started in the HN- treatment by mid-August and continued for about 90 days, whereas leaf abscission in the other treatments did not start until the beginning of October and only lasted 25-30 days, the trees in the HN+ and HN- treatments remobilized similar amounts of (15)N for leaf growth in the spring of 1994. There were no differences in predawn water potential among treatments and no evidence of osmotic adjustment. We conclude that B. pendula trees avoid rather than tolerate drought. The interaction between the effects of nitrogen and water supplies on leaf demography and internal cycling of N are discussed.

  4. Leaf Movements of Indoor Plants Monitored by Terrestrial LiDAR

    PubMed Central

    Herrero-Huerta, Mónica; Lindenbergh, Roderik; Gard, Wolfgang

    2018-01-01

    Plant leaf movement is induced by some combination of different external and internal stimuli. Detailed geometric characterization of such movement is expected to improve understanding of these mechanisms. A metric high-quality, non-invasive and innovative sensor system to analyze plant movement is Terrestrial LiDAR (TLiDAR). This technique has an active sensor and is, therefore, independent of light conditions, able to obtain accurate high spatial and temporal resolution point clouds. In this study, a movement parameterization approach of leaf plants based on TLiDAR is introduced. For this purpose, two Calathea roseopicta plants were scanned in an indoor environment during 2 full-days, 1 day in natural light conditions and the other in darkness. The methodology to estimate leaf movement is based on segmenting individual leaves using an octree-based 3D-grid and monitoring the changes in their orientation by Principal Component Analysis. Additionally, canopy variations of the plant as a whole were characterized by a convex-hull approach. As a result, 9 leaves in plant 1 and 11 leaves in plant 2 were automatically detected with a global accuracy of 93.57 and 87.34%, respectively, compared to a manual detection. Regarding plant 1, in natural light conditions, the displacement average of the leaves between 7.00 a.m. and 12.30 p.m. was 3.67 cm as estimated using so-called deviation maps. The maximum displacement was 7.92 cm. In addition, the orientation changes of each leaf within a day were analyzed. The maximum variation in the vertical angle was 69.6° from 12.30 to 6.00 p.m. In darkness, the displacements were smaller and showed a different orientation pattern. The canopy volume of plant 1 changed more in the morning (4.42 dm3) than in the afternoon (2.57 dm3). The results of plant 2 largely confirmed the results of the first plant and were added to check the robustness of the methodology. The results show how to quantify leaf orientation variation and leaf movements along a day at mm accuracy in different light conditions. This confirms the feasibility of the proposed methodology to robustly analyse leaf movements. PMID:29527217

  5. Chimpanzees Sometimes See Fuller as Better: Judgments of Food Quantities Based on Container Size and Fullness

    PubMed Central

    Parrish, Audrey E.; Beran, Michael J.

    2014-01-01

    The context in which food is presented can alter quantity judgments leading to sub-optimal choice behavior. Humans often over-estimate food quantity on the basis of how food is presented. Food appears larger if plated on smaller dishes than larger dishes and liquid volumes appear larger in taller cups than shorter cups. Moreover, smaller but fuller containers are preferred in comparison to larger, but less full containers with a truly larger quantity. Here, we assessed whether similar phenomena occur in chimpanzees. Four chimpanzees chose between two amounts of food presented in different sized containers, a large (2 oz.) and small (1 oz.) cup. When different quantities were presented in the same-sized cups or when the small cup contained the larger quantity, chimpanzees were highly accurate in choosing the larger food amount. However, when different-sized cups contained the same amount of food or the smaller cup contained the smaller amount of food (but looked relatively fuller), the chimpanzees often showed a bias to select the smaller but fuller cup. These findings contribute to our understanding of how quantity estimation and portion judgment is impacted by the surrounding context in which it is presented. PMID:24374384

  6. Study of the Light Received Characteristics of a Plant-Shoot-Light-Condensing System with Simple Leaves or Lobed Leaves

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Plant shoot configurations evolve so that maximum sunlight may be obtained. The objective of this study is to develop a compact light-condensing system mimicking a plant shoot configuration that is applicable to a light source from a large area. In this paper, the relationship between the position of a light source (the sun) and the rate at which light is absorbed by each leaf was investigated in detail for plant shoot models of a dogwood (simple leaf) and a ginkgo tree (lobed leaf). The rate of light quantum received in each leaf model is reported to an analysis program that uses cross entropy (CE). The analyses showed that the peak amount of light received in the plant-shoot-light-condensing system was during February (vernal equinox) and October (autumnal equinox). Similarly, the rate of light quantum received in each leaf was measured with the CE. The results found that the plant-shoot-light-condensing system that maximizes the amount of light received has differences in the light received in each leaf. Furthermore, the light-condensing characteristics of the ginkgo biloba model are better than the dogwood model. The light-condensing characteristics of a leaf are influenced by the size, a lobe, shape, and the length of the branch.

  7. Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

    PubMed Central

    Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952

  8. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    PubMed Central

    Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.

    2009-01-01

    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620

  9. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods.

    PubMed

    Ambrose, Anthony R; Sillett, Stephen C; Dawson, Todd E

    2009-07-01

    We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum) trees of different sizes. Leaf-specific hydraulic conductivity (k(L)) increased with height in S. sempervirens but not in S. giganteum, while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios (delta(13)C) increased, and maximum mass-based stomatal conductance (g(mass)) and photosynthesis (A(mass)) decreased with height in both species. As a result, both A(mass) and g(mass) were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum. In addition, A(mass) and g(mass) were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO(2) conductance (g(i)). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.

  10. Population-Specific Use of the Same Tool-Assisted Alarm Call between Two Wild Orangutan Populations (Pongopygmaeus wurmbii) Indicates Functional Arbitrariness

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Nouwen, Kim J. J. M.; Topelberg, Eva; Delgado, Roberto A.; Spruijt, Berry M.; Sterck, Elisabeth H. M.; Knott, Cheryl D.; Wich, Serge A.

    2013-01-01

    Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call – the kiss-squeak – and two variants – hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak’s acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music. PMID:23861981

  11. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness [corrected].

    PubMed

    Lameira, Adriano R; Hardus, Madeleine E; Nouwen, Kim J J M; Topelberg, Eva; Delgado, Roberto A; Spruijt, Berry M; Sterck, Elisabeth H M; Knott, Cheryl D; Wich, Serge A

    2013-01-01

    Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call - the kiss-squeak - and two variants - hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak's acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music.

  12. Light interception in species with different functional groups coexisting in moorland plant communities.

    PubMed

    Kamiyama, Chiho; Oikawa, Shimpei; Kubo, Takuya; Hikosaka, Kouki

    2010-11-01

    Competition for light is one of the most essential mechanisms affecting species composition. It has been suggested that similar light acquisition efficiency (Φ(mass), absorbed photon flux per unit aboveground mass) may contribute to species coexistence in multi-species communities. On the other hand, it is known that traits related with light acquisition vary among functional groups. We studied whether Φ(mass) was similar among species with different functional groups coexisting in moorland communities. We conducted stratified clipping in midsummer when the stand biomass reached a maximum. Light partitioning among species was estimated using a model accounting for both direct and diffuse light. Evergreen species were found to have a significantly lower Φ(mass) than deciduous species, which resulted from their lower absorbed photon flux per unit leaf area and lower specific leaf area. Shrubs had a smaller leaf mass fraction, but their Φ(mass) was not lower than that of herbs because they had a higher leaf position due to the presence of wintering stems. Species with vertical leaves had a higher Φ(mass) than those with horizontal leaves despite vertical leaves being a decided disadvantage in terms of light absorption. This higher Φ(mass) was achieved by a greater leaf height in species with vertical leaves. Our results clearly demonstrate that light acquisition efficiency was different among the functional groups. However, the trend observed is not necessarily the same as that expected based on prior knowledge, suggesting that disadvantages in some traits for light acquisition efficiency are partly compensated for by other traits.

  13. Focus on California's Class-Size Reduction: Smaller Classes Aim To Launch Early Literacy.

    ERIC Educational Resources Information Center

    McRobbie, Joan

    Smaller class sizes in California were viewed as a way to improve K-3 education, especially in the area of literacy. The urgency to act prompted state leaders to adopt class-size reduction (CSR) without knowing for sure that it would work and without establishing a formal procedure for evaluating the program. This report looks at past research on…

  14. Body size, extinction risk and knowledge bias in New World snakes.

    PubMed

    Vilela, Bruno; Villalobos, Fabricio; Rodríguez, Miguel Ángel; Terribile, Levi Carina

    2014-01-01

    Extinction risk and body size have been found to be related in various vertebrate groups, with larger species being more at risk than smaller ones. We checked whether this was also the case for snakes by investigating extinction risk-body size relationships in the New World's Colubroidea species. We used the IUCN Red List risk categories to assign each species to one of two broad levels of threat (Threatened and Non-Threatened) or to identify it as either Data Deficient or Not-Evaluated by the IUCN. We also included the year of description of each species in our analysis as this could affect the level of threat assigned to it (earlier described species had more time to gather information about them, which might have facilitated their evaluation). Also, species detectability could be a function of body size, with larger species tending to be described earlier, which could have an impact in extinction risk-body size relationships. We found a negative relationship between body size and description year, with large-bodied species being described earlier. Description year also varied among risk categories, with Non-Threatened species being described earlier than Threatened species and both species groups earlier than Data Deficient species. On average, Data Deficient species also presented smaller body sizes, while no size differences were detected between Threatened and Non-Threatened species. So it seems that smaller body sizes are related with species detectability, thus potentially affecting both when a species is described (smaller species tend to be described more recently) as well as the amount of information gathered about it (Data Deficient species tend to be smaller). Our data also indicated that if Data Deficient species were to be categorized as Threatened in the future, snake body size and extinction risk would be negatively related, contrasting with the opposite pattern commonly observed in other vertebrate groups.

  15. Body Size, Extinction Risk and Knowledge Bias in New World Snakes

    PubMed Central

    Vilela, Bruno; Villalobos, Fabricio; Rodríguez, Miguel Ángel; Terribile, Levi Carina

    2014-01-01

    Extinction risk and body size have been found to be related in various vertebrate groups, with larger species being more at risk than smaller ones. We checked whether this was also the case for snakes by investigating extinction risk–body size relationships in the New World's Colubroidea species. We used the IUCN Red List risk categories to assign each species to one of two broad levels of threat (Threatened and Non-Threatened) or to identify it as either Data Deficient or Not-Evaluated by the IUCN. We also included the year of description of each species in our analysis as this could affect the level of threat assigned to it (earlier described species had more time to gather information about them, which might have facilitated their evaluation). Also, species detectability could be a function of body size, with larger species tending to be described earlier, which could have an impact in extinction risk–body size relationships. We found a negative relationship between body size and description year, with large-bodied species being described earlier. Description year also varied among risk categories, with Non-Threatened species being described earlier than Threatened species and both species groups earlier than Data Deficient species. On average, Data Deficient species also presented smaller body sizes, while no size differences were detected between Threatened and Non-Threatened species. So it seems that smaller body sizes are related with species detectability, thus potentially affecting both when a species is described (smaller species tend to be described more recently) as well as the amount of information gathered about it (Data Deficient species tend to be smaller). Our data also indicated that if Data Deficient species were to be categorized as Threatened in the future, snake body size and extinction risk would be negatively related, contrasting with the opposite pattern commonly observed in other vertebrate groups. PMID:25409293

  16. [Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan].

    PubMed

    Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo

    2012-02-01

    In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- < meso- < macro-fauna, with the highest contribution of micro-fauna (7.9%), meso-fauna (11.9%), and macro-fauna (22.7%) at the onset of freezing stage, deeply frozen stage, and thawing stage, respectively. The results demonstrated that soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.

  17. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize

    PubMed Central

    Benešová, Monika; Fischer, Lukáš; Haisel, Daniel; Hnilička, František; Hniličková, Helena; Jedelský, Petr L.; Kočová, Marie; Rothová, Olga; Tůmová, Lenka; Wilhelmová, Naďa

    2017-01-01

    A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions. PMID:28419152

  18. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation.

    PubMed

    Sarvepalli, Kavitha; Nath, Utpal

    2011-08-01

    Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize.

    PubMed

    Holá, Dana; Benešová, Monika; Fischer, Lukáš; Haisel, Daniel; Hnilička, František; Hniličková, Helena; Jedelský, Petr L; Kočová, Marie; Procházková, Dagmar; Rothová, Olga; Tůmová, Lenka; Wilhelmová, Naďa

    2017-01-01

    A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.

  20. Do Indo-Asians have smaller coronary arteries?

    PubMed

    Lip, G Y; Rathore, V S; Katira, R; Watson, R D; Singh, S P

    1999-08-01

    There is a widespread belief that coronary arteries are smaller in Indo-Asians. The aim of the present study was to compare the size of atheroma-free proximal and distal epicardial coronary arteries of Indo-Asians and Caucasians. We analysed normal coronary angiograms from 77 Caucasians and 39 Indo-Asians. The two groups were comparable for dominance of the coronary arteries. Indo-Asian patients had generally smaller coronary arteries, with a statistically significant difference in the mean diameters of the left main coronary artery, proximal, mid and left anterior descending, and proximal and distal right coronary artery segments. There was a non-significant trend towards smaller coronary artery segment diameters for the distal left anterior descending, proximal and distal circumflex, and obtuse marginal artery segments. However, after correction for body surface area, none of these differences in size were statistically significant. Thus, the smaller coronary arteries in Indo-Asian patients were explained by body size alone and were not due to ethnic origin per se. This finding nevertheless has important therapeutic implications, since smaller coronary arteries may give rise to technical difficulties during bypass graft and intervention procedures such as percutaneous transluminal coronary angioplasty, stents and atherectomy. On smaller arteries, atheroma may also give an impression of more severe disease than on larger diameter arteries.

  1. Critical percolation clusters in seven dimensions and on a complete graph

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Hou, Pengcheng; Wang, Junfeng; Ziff, Robert M.; Deng, Youjin

    2018-02-01

    We study critical bond percolation on a seven-dimensional hypercubic lattice with periodic boundary conditions (7D) and on the complete graph (CG) of finite volume (number of vertices) V . We numerically confirm that for both cases, the critical number density n (s ,V ) of clusters of size s obeys a scaling form n (s ,V ) ˜s-τn ˜(s /Vdf*) with identical volume fractal dimension df*=2 /3 and exponent τ =1 +1 /df*=5 /2 . We then classify occupied bonds into bridge bonds, which includes branch and junction bonds, and nonbridge bonds; a bridge bond is a branch bond if and only if its deletion produces at least one tree. Deleting branch bonds from percolation configurations produces leaf-free configurations, whereas deleting all bridge bonds leads to bridge-free configurations composed of blobs. It is shown that the fraction of nonbridge (biconnected) bonds vanishes, ρn ,CG→0 , for large CGs, but converges to a finite value, ρn ,7 D=0.006 193 1 (7 ) , for the 7D hypercube. Further, we observe that while the bridge-free dimension dbf*=1 /3 holds for both the CG and 7D cases, the volume fractal dimensions of the leaf-free clusters are different: dlf,7 D *=0.669 (9 ) ≈2 /3 and dlf,CG *=0.3337 (17 ) ≈1 /3 . On the CG and in 7D, the whole, leaf-free, and bridge-free clusters all have the shortest-path volume fractal dimension dmin*≈1 /3 , characterizing their graph diameters. We also study the behavior of the number and the size distribution of leaf-free and bridge-free clusters. For the number of clusters, we numerically find the number of leaf-free and bridge-free clusters on the CG scale as ˜lnV , while for 7D they scale as ˜V . For the size distribution, we find the behavior on the CG is governed by a modified Fisher exponent τ'=1 , while for leaf-free clusters in 7D, it is governed by Fisher exponent τ =5 /2 . The size distribution of bridge-free clusters in 7D displays two-scaling behavior with exponents τ =4 and τ'=1 . The probability distribution P (C1,V ) d C1 of the largest cluster of size C1 for whole percolation configurations is observed to follow a single-variable function P ¯(x ) d x , with x ≡C1/Vdf* for both CG and 7D. Up to a rescaling factor for the variable x , the probability functions for CG and 7D collapse on top of each other within the entire range of x . The analytical expressions in the x →0 and x →∞ limits are further confirmed. Our work demonstrates that the geometric structure of high-dimensional percolation clusters cannot be fully accounted for by their complete-graph counterparts.

  2. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  3. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  4. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  5. Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil- and waste-borne DOM.

    PubMed

    Knoth de Zarruk, K; Scholer, G; Dudal, Y

    2007-09-01

    Land spreading of organic materials introduces large amounts of dissolved organic matter (DOM) into the soil. DOM has the ability to form stable complexes with heavy metals and can facilitate their transport towards the groundwater. The effects on soil processes are difficult to assess, because different DOM components might react differently towards metal ions. The objective of this study was to investigate the fluorescence signature and the Cu2+-binding capacity of individual molecular size fractions of DOM from various sources. DOM extracted from leaf compost, chicken manure, sugar cane vinasse and a fulvic hypercalcaric cambisol was fractionated by the means of dialysis into four molecular size classes: MW<500, 50012000-14000 Da. Vinasse and leaf compost contained around 80% and 70%, respectively, of the total organic carbon in the fractions with low molecular weight (MW<3500 Da); in chicken manure and soil these fractions accounted for 40% and 50% only. Fluorescence was highest in the fraction MW>12000 Da for leaf compost, chicken manure and soil. The opposite result was obtained for vinasse, where the fractions with low molecular weight showed highest fluorescence intensities, distinguishing it from all other samples. Vinasse showed the greatest ability to bind Cu2+ with a resulting complex concentration of 6.31mgl(-1) while in contact with an excess of Cu2+. Leaf compost, soil and chicken manure followed with 2.69, 1.12, and 0.85mgl(-1), respectively. Within vinasse, the fraction MW<500 Da was able to form the most DOM-Cu complexes, indicating the importance of low molecular weight fractions in metal binding.

  6. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications.

    PubMed

    Sheny, D S; Philip, Daizy; Mathew, Joseph

    2013-10-01

    An environment friendly approach for the synthesis of Pt nanoparticles (NPs) using dried leaf powder of Anacardium occidentale is reported. The formation of Pt NPs is monitored using UV-Vis spectrophotometer. FTIR spectra reveal that proteins are bound to Pt nanoparticles. TEM images show irregular rod shaped particles which are crystalline. The quantity of leaf powder plays a vital role in determining the size of particles. Synthesized NPs exhibit good catalytic activity in the reduction of aromatic nitrocompound. The effective thermal conductivity of synthesized Pt/water nanofluid has been measured and found to be enhanced to a good extent. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of the Macintosh curved blade size on direct laryngoscopic view in edentulous patients.

    PubMed

    Kim, Hyerim; Chang, Jee-Eun; Han, Sung-Hee; Lee, Jung-Man; Yoon, Soohyuk; Hwang, Jin-Young

    2018-01-01

    In the present study, we compared the laryngoscopic view depending on the size of the Macintosh curved blade in edentulous patients. Thirty-five edentulous adult patients scheduled for elective surgery were included in the study. After induction of anesthesia, two direct laryngoscopies were performed alternately using a standard-sized Macintosh curved blade (No. 4 for men and No. 3 for women) and smaller-sized Macintosh curved blade (No. 3 for men and No. 2 for women). During direct laryngoscopy with each blade, two digital photographs of the lateral view were taken when the blade tip was placed in the valleculae; the laryngoscope was lifted to achieve the best laryngeal view. Then, the best laryngeal views were assessed using the percentage of glottic opening (POGO) score. On the photographs of the lateral view of direct laryngoscopy, the angles between the line extending along the laryngoscopic handle and the horizontal line were measured. The POGO score was improved with the smaller-sized blade compared with the standard-sized blade (87.3% [11.8%] vs. 71.3% [20.0%], P<0.001, respectively). The angles between the laryngoscopic handle and the horizontal line were greater with the smaller-sized blade compared to the standard-sized blade when the blade tip was placed on the valleculae and when the laryngoscope was lifted to achieve the best laryngeal view (both P<0.001). Compared to a standard-sized Macintosh blade, a smaller-sized Macintosh curved blade improved the laryngeal exposure in edentulous patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Analysis of methods commonly used in biomedicine for treatment versus control comparison of very small samples.

    PubMed

    Ristić-Djurović, Jasna L; Ćirković, Saša; Mladenović, Pavle; Romčević, Nebojša; Trbovich, Alexander M

    2018-04-01

    A rough estimate indicated that use of samples of size not larger than ten is not uncommon in biomedical research and that many of such studies are limited to strong effects due to sample sizes smaller than six. For data collected from biomedical experiments it is also often unknown if mathematical requirements incorporated in the sample comparison methods are satisfied. Computer simulated experiments were used to examine performance of methods for qualitative sample comparison and its dependence on the effectiveness of exposure, effect intensity, distribution of studied parameter values in the population, and sample size. The Type I and Type II errors, their average, as well as the maximal errors were considered. The sample size 9 and the t-test method with p = 5% ensured error smaller than 5% even for weak effects. For sample sizes 6-8 the same method enabled detection of weak effects with errors smaller than 20%. If the sample sizes were 3-5, weak effects could not be detected with an acceptable error; however, the smallest maximal error in the most general case that includes weak effects is granted by the standard error of the mean method. The increase of sample size from 5 to 9 led to seven times more accurate detection of weak effects. Strong effects were detected regardless of the sample size and method used. The minimal recommended sample size for biomedical experiments is 9. Use of smaller sizes and the method of their comparison should be justified by the objective of the experiment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Does body size affect a bird's sensitivity to patch size and landscape structure?

    USGS Publications Warehouse

    Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.

    2006-01-01

    Larger birds are generally more strongly affected by habitat loss and fragmentation than are smaller ones because they require more resources and thus larger habitat patches. Consequently, conservation actions often favor the creation or protection of larger over smaller patches. However, in grassland systems the boundaries between a patch and the surrounding landscape, and thus the perceived size of a patch, can be indistinct. We investigated whether eight grassland bird species with different body sizes perceived variation in patch size and landscape structure in a consistent manner. Data were collected from surveys conducted in 44 patches of northern tallgrass prairie during 1998–2001. The response to patch size was very similar among species regardless of body size (density was little affected by patch size), except in the Greater Prairie-Chicken (Tympanuchus cupido), which showed a threshold effect and was not found in patches smaller than 140 ha. In landscapes containing 0%–30% woody vegetation, smaller species responded more negatively to increases in the percentage of woody vegetation than larger species, but above an apparent threshold of 30%, larger species were not detected. Further analyses revealed that the observed variation in responses to patch size and landscape structure among species was not solely due to body size per se, but to other differences among species. These results indicate that a stringent application of concepts requiring larger habitat patches for larger species appears to limit the number of grassland habitats that can be protected and may not always be the most effective conservation strategy.

  10. Spatio-temporal Variability of Stemflow Volume in a Beech-Yellow Poplar Forest in Relation to Tree Species and Size

    NASA Astrophysics Data System (ADS)

    Levia, D. F.; van Stan, J. T.; Mage, S.; Hauske, P. W.

    2009-05-01

    Stemflow is a localized point input at the base of trees that can account for more than 10% of the incident gross precipitation in deciduous forests. Despite the fact that stemflow has been documented to be of hydropedological importance, affecting soil moisture patterns, soil erosion, soil chemistry, and the distribution of understory vegetation, our current understanding of the temporal variability of stemflow yield is poor. The aim of the present study, conducted in a beech-yellow poplar forest in northeastern Maryland (39°42'N, 75°50'W), was to better understand the temporal and variability of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to meteorological conditions and season in order to better assess its importance to canopy-soil interactions. The experimental plot had a stand density of 225 trees/ha, a stand basal area of 36.8 sq. m/ha, a mean dbh of 40.8 cm, and a mean tree height of 27.8 m. The stand leaf area index (LAI) is 5.3. Yellow poplar and beech constitute three- quarters of the stand basal area. Using a high resolution (5 min) sequential stemflow sampling network, consisting of tipping-bucket gauges interfaced with a Campbell CR1000 datalogger, the temporal variability of stemflow yield was examined. Beech produced significantly larger stemflow amounts than yellow poplar. The amount of stemflow produced by individual beech trees in 5 minute intervals reached three liters. Stemflow yield and funneling ratios decreased with increasing rain intensity. Temporal variability of stemflow inputs were affected by the nature of incident gross rainfall, season, tree species, tree size, and bark water storage capacity. Stemflow was greater during the leafless period than full leaf period. Stemflow yield was greater for larger beech trees and smaller yellow poplar trees, owing to differences in bark water storage capacity. The findings of this study indicate that stemflow has a detectable affect on soil moisture patterning and the hydraulic conductivity of forest soils.

  11. Sizing Up What Matters.

    ERIC Educational Resources Information Center

    McCluskey, Neal

    "Smaller is better" is often the mantra of school leaders with regard to class size, while the benefits of smaller schools are ignored. Benefits of small classes seem obvious--teachers with fewer students could devote more time to each student. Conducted in 1985-89, Tennessee's Project STAR (Student/Teacher Achievement Ratio) found that…

  12. Studies in Forecasting Upper-Level Turbulence

    DTIC Science & Technology

    2006-09-01

    path, where they begin 9 to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing tips. b...the flight path, where they begin to dissipate. Vortex size is reduced by the use of winglets , smaller “wings” that curve upward from aircraft wing

  13. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    PubMed

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  14. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit.

    PubMed

    Sonoda, Yutaka; Sako, Kaori; Maki, Yuko; Yamazaki, Naoko; Yamamoto, Hiroko; Ikeda, Akira; Yamaguchi, Junji

    2009-10-01

    The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins, to control many cellular events. To further understand this pathway, we focused on the RPT2 subunit of the 26S proteasome regulatory particle. The Arabidopsis genome contains two genes, AtRPT2a and AtRPT2b, which encode paralog molecules of the RPT2 subunit, with a difference of only three amino acids in the protein sequences. Both genes showed similar mRNA accumulation patterns. However, the rpt2a mutant showed a specific phenotype of enlarged leaves caused by increased cell size, in correlation with increased ploidy. Detailed analyses revealed that cell expansion is increased in the rpt2a mutant by extended endoreduplication early in leaf development. The transcription of genes encoding cell cycle-related components, for DNA replication licensing and the G2/M phase, was also promoted in the rpt2a mutant, suggesting that extended endoreduplication was caused by increased DNA replication, and disrupted regulation of the G2/M checkpoint, at the proliferation stage of leaf development.

  15. Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential.

    PubMed

    Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla

    2017-06-01

    In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

  16. Methods for obtaining true particle size distributions from cross section measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a planemore » section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.« less

  17. A possible link between life and death of a xeric tree in desert.

    PubMed

    Xu, Gui-Qing; McDowell, Nate G; Li, Yan

    2016-05-01

    Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE PAGES

    Lim, Sung Don; Yim, Won Choel; Liu, Degao; ...

    2018-04-16

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  19. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Sung Don; Yim, Won Choel; Liu, Degao

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  20. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees.

    PubMed

    Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer

    2018-06-01

    Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.

  1. Hemoglobin level and lipoprotein particle size.

    PubMed

    Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno

    2018-01-10

    Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.

  2. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.

    PubMed

    Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel

    2016-12-01

    Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  3. Population structure and the evolution of sexual size dimorphism and sex ratios in an insular population of Florida box turtles (Terrapene carolina bauri)

    USGS Publications Warehouse

    Dodd, C.K.

    1997-01-01

    Hypotheses in the chelonian literature suggest that in species with sexual size dimorphism, the smaller sex will mature at a smaller size and a younger age than the larger sex, sex ratios should be biased in favor of the earlier maturing sex, and deviations from a 1:1 sex ratio result from maturation of the smaller sex at a younger age. I tested these hypotheses using data collected from 1991 to 1995 on an insular (Egmont Key) population of Florida box turtles, Terrapene carolina bauri. Contrary to predictions, the earlier maturing sex (males) grew to larger sizes than the late maturing sex. Males were significantly larger than females in mean carapace length but not mean body mass. Sex ratios were not balanced, favoring the earlier maturing sex (1.6 males:1 female), but the sex-ratio imbalance did not result from faster maturation of the smaller sex. The imbalance in the sex ratio in Egmont Key's box turtles is not the result of sampling biases; it may result from nest placement. Size-class structure and sex ratios can provide valuable insights into the status and trends of populations of long-lived turtles.

  4. Stable and pH-responsive core-shell nanoparticles based on HEC and PMAA networks via template copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jin, Q.; Chen, Y.; Zhao, J.

    2011-10-01

    Taking advantage of the specific hydrogen bonding interactions, stable and pH-responsive core-shell nanoparticles based on hydroxyethyl cellulose (HEC) and polymethacrylic acid (PMAA) networks, with a < D h > size ranging from 190 to 250 nm, can be efficiently prepared via facile one-step co-polymerization of methacrylic acid (MAA) and N, N'-methylenebisacrylamide (MBA) on HEC template in water. Using dynamic light scattering, electrophoretic light scattering, fluorescence spectrometry, thermo-gravimetric analysis, TEM, and AFM observations, the influence of crosslinker MBA as well as the reaction parameters were studied. The results show that after the introduction of crosslinker MBA, the nanoparticles became less compact; their size exhibited a smaller pH sensitivity, and their stability against pH value was improved greatly. Furthermore, the size, structure, and pH response of the nanoparticles can be adjusted via varying the reaction parameters: nanoparticles of smaller size, more compact structure, and higher swelling capacity were produced as pH value of the reaction medium increased or the HEC/MAA ratio decreased; while nanoparticles of smaller size, less compact structure and smaller swelling capacity were produced as the total feeding concentration increased.

  5. Coordination and plasticity in leaf anatomical traits of invasive and native vine species.

    PubMed

    Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya

    2014-09-01

    • Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.

  6. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.

  7. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  8. Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Martin, F. P.; Abdullah, M.; Solichin; Hadiyanti, L. N.; Widianingrum, K.

    2018-03-01

    The leaf litter of trees along the existing streets on campus UNNES if not managed properly will be scattered and become garbage. Leaf litter Production in UNNES campus is not known for certain. UNNES does not own mapping of leaf litter Production of dominant tree species on campus. This cause leaf waste management is not optimal yet. There is still a lot of leaf litter that is discharged (not processed) because it exceeds the capacity of the fertilizer production equipment in the compost house. Aims of this study were to examine leaf litter production of dominant trees in Universitas Negeri Semarang and evaluate the relationship between leaf litter and average rainfall. Purposive sampling method placed pouches of nylon gauze measuring 1 × 1 mm2 as litter trap container with size 1 x l m2 (10 points mounted along street and campus forest). Litter trap mounted at the height of 50 cm above ground level. Leaf litter will be taken once a week for three months to observe the litter production. The litter was then dried by the oven at 70 ° C for 48 hours to obtain constant dry weight. Based on the results of the research, it was known that Mahogany tree in UNNES campus area has the potential to produce the litter of about 10 ton/ha / 3months in campus forest area and 2.5 ton/ha / 3months along campus street. There is a significant relationship between litter production of Mahogany leaves and precipitation during August - October 2017.

  9. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?

    PubMed

    Biancucci, Luis; Martin, Thomas E

    2010-09-01

    1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.

  10. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?

    USGS Publications Warehouse

    Biancucci, L.; Martin, T.E.

    2010-01-01

    1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.

  11. Changes in area affect figure-ground assignment in pigeons.

    PubMed

    Castro, Leyre; Lazareva, Olga F; Vecera, Shaun P; Wasserman, Edward A

    2010-03-05

    A critical cue for figure-ground assignment in humans is area: smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons' performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons' performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination.

  12. Changes in Area Affect Figure-Ground Assignment in Pigeons

    PubMed Central

    Castro, Leyre; Lazareva, Olga F.; Vecera, Shaun P.; Wasserman, Edward A.

    2010-01-01

    A critical cue for figure-ground assignment in humans is area: Smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons’ performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons’ performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination. PMID:20060406

  13. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    PubMed

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  14. Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect

    NASA Astrophysics Data System (ADS)

    Vimala, R. T. V.; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-01-01

    Currently bioactive principles of plants and their nanoproducts have been extensively studied in agriculture and medicine. In this study Couroupita guianensis Aubl. leaf and fruit extracts were selected for rapid and cost-effective synthesis of silver nanoparticles (leaf-LAgNPs and fruit-FAgNPs). Various physiological conditions such as temperature, pH, concentration of metal ions, stoichiometric proportion of reaction mixture and reaction time showed influence on the size, dispersity and synthesis rate of AgNPs. Generation of AgNPs was initially confirmed with the surface plasmon vibrations at 420 nm in UV-visible spectrophotometer. The results recorded from X-ray diffractometer (XRD) and Transmission electron microscope (TEM) supports the biosynthesis of cubic crystalline LAgNPs & FAgNPs with the size ranges between 10-45 nm and 5-15 nm respectively. Surface chemistry of synthesized AgNPs was studied with Fourier transform infrared spectroscopy (FTIR), it reveals that water soluble phenolic compounds present in the extracts act as reducing and stabilizing agent. Leaf, fruit extracts and synthesized AgNPs were evaluated against IV instar larvae of Aedes aegypti (Diptera; Culicidae). Furthermore, different extracts and synthesized AgNPs showed dose dependent larvicidal effect against A. aegypti after 24 h of treatment. Compare to all extracts such as ethyl acetate (leaf; LC50 - 44.55 ppm and LC90 - 318.39 ppm & fruit; LC50 - 49.96 ppm and LC90 - 568.84 ppm respectively) and Methanol (leaf; LC50 - 85.75 ppm and LC90 - 598.63 ppm & fruit; LC50 - 67.78 ppm and LC90 - 714.45 ppm respectively) synthesized AgNPs showed extensive mortality rate (LAgNPs; LC50 - 2.1 ppm and LC90 - 5.59 ppm & FAgNPs; LC50 - 2.09 ppm and LC90 - 5.7 ppm). Hence, this study proves that C. guianensis is a potential bioresource for stable, reproducible nanoparticle synthesis (AgNPs) and also can be used as an efficient mosquito control agent.

  15. Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.S.; Gmur, N.F.; Da Costa, F.

    1977-08-01

    Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less

  16. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    PubMed

    Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  17. Influence of Shoot Structure on Light Interception and Photosynthesis in Conifers

    PubMed Central

    Carter, Gregory A.; Smith, William K.

    1985-01-01

    The influence of shoot structure on net photosynthesis was evaluated under field conditions for the central Rocky Mountain (United States) conifers Picea engelmannii (Parry ex Engelm.), Abies lasiocarpa ([Hook] Nutt.), and Pinus contorta (Engelm.). In all species, the greater number of needles per unit stem length on sun shoots correlated with a smaller silhouette leaf area to total leaf area ratio (STAR). Decreased STAR was due primarily to greater needle inclination toward the vertical, plus some needle mutual shading. However, photosynthesis expressed on a total leaf area basis did not decrease in sun shoots (lower STAR) but remained nearly constant at approximately 3 micromoles per square meter per second over a wide range of STAR (0.1 to 0.3). Relatively low light saturation levels of 200 to 1400 microeinsteins per square meter per second and diffuse light to 350 microeinsteins per meter per second maintained photosynthetic flux densities in inclined and/or shaded needles at levels comparable to those in unshaded needles oriented perpendicular to the solar beam. As a result, net CO2 uptake per unit stem length increased as much as 2-fold in sun shoots (low STAR) in direct proportion to increasing needle density. PMID:16664525

  18. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking.

    PubMed

    Pickering, Catherine Marina; Barros, Agustina

    2015-12-01

    Functional traits reflect plant responses to disturbance, including from visitor impacts. The impacts of mountain biking and hiking on functional composition were compared using a common experimental protocol in a subalpine grassland in the Australian Alps. The overlapping cover of all species was recorded two weeks after different intensities of hiking (200 and 500 passes) and mountain biking (none, 25, 75, 200 and 500 passes). Species' functional trait data were combined with their relative cover to calculate community trait weighted means for plant height, leaf area, percentage leaf dry matter content and Specific Leaf Area (SLA). Species such as Poa fawcettiae with larger leaves and SLA but lower dry weight content of leaves were more resistant to use, with differences between bikers and hikers only apparent at the highest levels of use tested. This differs from some vegetation communities in Europe where plants with smaller leaves were more resistant to hiking. More research using functional traits may account for differences in species responses to trampling. Managers of conservation areas used for hiking and biking need to minimise off trail use by both user groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Construction of Open Burning Facility Moody Air Force Base, Georgia Environmental Assessment and Finding of No Significant Impact

    DTIC Science & Technology

    2009-01-01

    are smaller and more leathery, and the leaf canopy is less dense. The trees commonly found in the southeastern United States are pines ( Pinus spp...during periods of extreme drought . These periodic fires maintained the pine subclimax forest by controlling hardwood competition, encouraged the growth...cinnamomea), chain fern (Woodwardia virginica), and greenbrier (Smilax spp). In the transition areas from wetlands to uplands, pond pine ( Pinus serotina

  20. Selection on an extreme weapon in the frog-legged leaf beetle (Sagra femorata).

    PubMed

    O'Brien, Devin M; Katsuki, Masako; Emlen, Douglas J

    2017-11-01

    Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon-bearing beetles (frog-legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population-level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait-size versus body-size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition-sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about-and measure-selection acting on these structures in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. The Structure and Climate of Size: Small Scale Schooling in an Urban District

    ERIC Educational Resources Information Center

    LeChasseur, Kimberly

    2009-01-01

    This study explores mechanisms involved in small scale schooling and student engagement. Specifically, this study questions the validity of arguments for small scale schooling reforms that confound the promised effects of small scale schooling "structures" (such as smaller enrollments, schools-within-schools, and smaller class sizes)…

  2. The False Promise of Class-Size Reduction

    ERIC Educational Resources Information Center

    Chingos, Matthew M.

    2011-01-01

    Class-size reduction, or CSR, is enormously popular with parents, teachers, and the public in general. Many parents believe that their children will benefit from more individualized attention in a smaller class and many teachers find smaller classes easier to manage. The pupil-teacher ratio is an easy statistic for the public to monitor as a…

  3. Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes.

    PubMed

    Nikolaev, A L; Gopin, A V; Severin, A V; Rudin, V N; Mironov, M A; Dezhkunov, N V

    2018-06-01

    The size control of materials is of great importance in research and technology because materials of different size and shape have different properties and applications. This paper focuses on the synthesis of hydroxyapatite in ultrasound fields of different frequencies and intensities with the aim to find the conditions which allow control of the particles size. The results are evaluated by X-ray diffraction, Transmission Electron Microscopy, morphological and sedimentation analyses. It is shown that the hydroxyapatite particles synthesized at low intensity non-cavitation regime of ultrasound have smaller size than those prepared at high intensity cavitation regime. The explanation of observed results is based on the idea of formation of vortices at the interface between phosphoric acid and calcium hydroxide solution where the nucleation of hydroxyapatite particles is taken place. Smaller vortices formed at high frequency non-cavitation ultrasound regime provide smaller nucleation sites and smaller resulting particles, compared to vortices and particles obtained without ultrasound. Discovered method has a potential of industrial application of ultrasound for the controlled synthesis of nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Wind Energy Conversion by Plant-Inspired Designs

    PubMed Central

    Mosher, Curtis L.; Henderson, Eric R.

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a “vertical flapping stalk”—the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°–90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept. PMID:28085933

  5. Wind Energy Conversion by Plant-Inspired Designs.

    PubMed

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  6. An assessment of the effects of cell size on AGNPS modeling of watershed runoff

    USGS Publications Warehouse

    Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2008-01-01

    This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.

  7. In Vivo Delivery of Nanoparticles into Plant Leaves.

    PubMed

    Wu, Honghong; Santana, Israel; Dansie, Joshua; Giraldo, Juan P

    2017-12-14

    Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. The demise of chloroplast DNA in Arabidopsis.

    PubMed

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2004-09-01

    Although it might be expected that chloroplast DNA (cpDNA) would be stably maintained in mature leaves, we report the surprising observation that cpDNA levels decline during plastid development in Arabidopsis thaliana (Col.) until most of the leaves contain little or no DNA long before the onset of senescence. We measured the cpDNA content in developing cotyledons, rosette leaves, and cauline leaves. The amount of cpDNA per chloroplast decreases as the chloroplasts develop, reaching undetectable levels in mature leaves. In young cauline leaves, most individual molecules of cpDNA are found in complex, branched forms. In expanded cauline leaves, cpDNA is present in smaller branched forms only at the base of the leaf and is virtually absent in the distal part of the leaf. We conclude that photosynthetic activity may persist long after the demise of the cpDNA. Copyright 2004 Springer-Verlag

  9. Effects of irrigation moisture regimes on yield and quality of paprika ( Capsicum annuum L)

    NASA Astrophysics Data System (ADS)

    Shongwe, Victor D.; Magongo, Bekani N.; Masarirambi, Michael T.; Manyatsi, Absalom M.

    Although paprika ( Capsicum annuum L) is not widely grown in Swaziland it is becoming increasingly popular as a spice and food colourant. It is a crop that requires irrigation at specific stages of growth as this affects not only the yield but most importantly the quality of the crop. Yield of paprika has been found to increase with relative increase in moisture whereas the quality of fruits has not followed the same trend. The objective of this study was to find the effect of varying irrigation water regimes on the yield and quality of paprika at uniform fertiliser levels. The study was carried out in the 2006/2007 cropping season at the Luyengo campus of the University of Swaziland in a greenhouse. A randomised complete block design was used with four water treatments (0.40, 0.60, 0.80, and 1.00 × Field Capacity). Parameters measured included leaf number per plant, plant height, chlorophyll content, canopy size, leaf width, leaf length, stem girth, dry mass, fresh mass, fruit length, and brix content. There were significant ( P < 0.05) increases in leaf number, plant height, chlorophyll content, canopy size, fresh and dry mass tops and fruit length at the highest moisture level (1.00 × FC) followed by the second highest regime (0.80 × FC) whilst the lower water regimes resulted in lower increases in each of the parameters. Leaf area index did not differ significantly across all treatments. In increasing order the treatments 0.80 × FC and 1.00 × FC gave higher yields but in decreasing order lower brix and thus subsequent lower paprika quality. It is recommended that growers who are aiming for optimum yield and high quality of paprika may use the 0.8 × FC treatment when irrigating.

  10. Operating characteristics of full count and binomial sampling plans for green peach aphid (Hemiptera: Aphididae) in potato.

    PubMed

    Kabaluk, J Todd; Binns, Michael R; Vernon, Robert S

    2006-06-01

    Counts of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in potato, Solanum tuberosum L., fields were used to evaluate the performance of the sampling plan from a pest management company. The counts were further used to develop a binomial sampling method, and both full count and binomial plans were evaluated using operating characteristic curves. Taylor's power law provided a good fit of the data (r2 = 0.95), with the relationship between the variance (s2) and mean (m) as ln(s2) = 1.81(+/- 0.02) + 1.55(+/- 0.01) ln(m). A binomial sampling method was developed using the empirical model ln(m) = c + dln(-ln(1 - P(T))), to which the data fit well for tally numbers (T) of 0, 1, 3, 5, 7, and 10. Although T = 3 was considered the most reasonable given its operating characteristics and presumed ease of classification above or below critical densities (i.e., action thresholds) of one and 10 M. persicae per leaf, the full count method is shown to be superior. The mean number of sample sites per field visit by the pest management company was 42 +/- 19, with more than one-half (54%) of the field visits involving sampling 31-50 sample sites, which was acceptable in the context of operating characteristic curves for a critical density of 10 M. persicae per leaf. Based on operating characteristics, actual sample sizes used by the pest management company can be reduced by at least 50%, on average, for a critical density of 10 M. persicae per leaf. For a critical density of one M. persicae per leaf used to avert the spread of potato leaf roll virus, sample sizes from 50 to 100 were considered more suitable.

  11. Plant Trait Variation along an Altitudinal Gradient in Mediterranean High Mountain Grasslands: Controlling the Species Turnover Effect

    PubMed Central

    Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián

    2015-01-01

    Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532

  12. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect.

    PubMed

    Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián

    2015-01-01

    Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.

  13. Is There a Relation between the Microscopic Leaf Morphology and the Association of Salmonella and Escherichia coli O157:H7 with Iceberg Lettuce Leaves?

    PubMed

    VAN der Linden, Inge; Eriksson, Markus; Uyttendaele, Mieke; Devlieghere, Frank

    2016-10-01

    To prevent contamination of fresh produce with enteric pathogens, more insight into mechanisms that may influence the association of these pathogens with fresh produce is needed. In this study, Escherichia coli O157:H7 and Salmonella were chosen as model pathogens, and fresh cut iceberg lettuce was chosen as a model fresh produce type. The morphological structure of iceberg lettuce leaves (stomatal density and length of cell margins per leaf area) was quantified by means of leaf peels and light microscopy of leaves at different stages of development (outer, middle, and inner leaves of the crop) on both leaf sides (abaxial and adxial) and in three leaf regions (top, center, and bottom). The morphology of the top region of the leaves was distinctly different from that of the center and base, with a significantly higher stomatal density (up to five times more stomata), different cell shape, and longer cell margins (two to three times longer). Morphological differences between the same regions of the leaves at different stages of development were smaller or nonsignificant. An attachment assay with two attenuated E. coli O157:H7 strains (84-24h11-GFP and BRMSID 188 GFP) and two Salmonella strains (serovars Thompson and Typhimurium) was performed on different regions of the middle leaves. Our results confirmed earlier reports that these pathogens have a higher affinity for the base of the lettuce leaf than the top. Differences of up to 2.12 log CFU/g were seen ( E. coli O157:H7 86-24h11-GFP). Intermediate attachment occurred in the central region. The higher incidence of preferential bacterial attachment sites such as stomata and cell margins or grooves could not explain the differences observed in the association of the tested pathogens with different regions of iceberg lettuce leaves.

  14. Sexual differences in post-hatching Saunders's gulls: size, locomotor activity, and foraging skill.

    PubMed

    Yoon, Jongmin; Lee, Seung-Hee; Joo, Eun-Jin; Na, Ki-Jeong; Park, Shi-Ryong

    2013-04-01

    Various selection pressures induce the degree and direction of sexual size dimorphism in animals. Selection favors either larger males for contests over mates or resources, or smaller males are favored for maneuverability; whereas larger females are favored for higher fecundity, or smaller females for earlier maturation for reproduction. In the genus of Larus (seagulls), adult males are generally known to be larger in size than adult females. However, the ontogeny of sexual size dimorphism is not well understood, compared to that in adults. The present study investigates the ontogeny of sexual size dimorphism in Saunders's gulls (Larus saundersi) in captivity. We artificially incubated fresh eggs collected in Incheon, South Korea, and measured body size, locomotor activity, and foraging skill in post-hatching chicks in captivity. Our results indicated that the sexual differences in size and locomotor activity occurred with the post-hatching development. Also, larger males exhibited greater foraging skills for food acquisition than smaller females at 200 days of age. Future studies should assess how the adaptive significance of the sexual size dimorphism in juveniles is linked with sexual divergence in survival rates, intrasexual contests, or parental effort in sexes.

  15. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  16. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    PubMed

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  17. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    PubMed

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  18. Canopy architecture of a walnut orchard

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Martens, Scott N.; Vanderbilt, Vern C.

    1991-01-01

    A detailed dataset describing the canopy geometry of a walnut orchard was acquired to support testing and comparison of the predictions of canopy microwave and optical inversion models. Measured canopy properties included the quantity, size, and orientation of stems, leaves, and fruit. Eight trees receiving 100 percent of estimated potential evapotranspiration water use and eight trees receiving 33 percent of potential water use were measured. The vertical distributions of stem, leaf, and fruit properties are presented with respect to irrigation treatment. Zenith and probability distributions for stems and leaf normals are presented. These data show that, after two years of reduced irrigation, the trees receiving only 33 percent of their potential water requirement had reduced fruit yields, lower leaf area index, and altered allocation of biomass within the canopy.

  19. Remote sensing of floe size distribution and surface topography

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Thorndike, A. S.

    1984-01-01

    Floe size can be measured by several properties p- for instance, area or mean caliper diameter. Two definitions of floe size distribution seem particularly useful. F(p), the fraction of area covered by floes no smaller than p; and N(p), the number of floes per unit area no smaller than p. Several summertime distributions measured are a graph, their slopes range from -1.7 to -2.5. The variance of an estimate is also calculated.

  20. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. An Updated Equilibrium Machine

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    2008-08-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.

  3. What is the effect of area size when using local area practice style as an instrument?

    PubMed

    Brooks, John M; Tang, Yuexin; Chapman, Cole G; Cook, Elizabeth A; Chrischilles, Elizabeth A

    2013-08-01

    Discuss the tradeoffs inherent in choosing a local area size when using a measure of local area practice style as an instrument in instrumental variable estimation when assessing treatment effectiveness. Assess the effectiveness of angiotensin converting-enzyme inhibitors and angiotensin receptor blockers on survival after acute myocardial infarction for Medicare beneficiaries using practice style instruments based on different-sized local areas around patients. We contrasted treatment effect estimates using different local area sizes in terms of the strength of the relationship between local area practice styles and individual patient treatment choices; and indirect assessments of the assumption violations. Using smaller local areas to measure practice styles exploits more treatment variation and results in smaller standard errors. However, if treatment effects are heterogeneous, the use of smaller local areas may increase the risk that local practice style measures are dominated by differences in average treatment effectiveness across areas and bias results toward greater effectiveness. Local area practice style measures can be useful instruments in instrumental variable analysis, but the use of smaller local area sizes to generate greater treatment variation may result in treatment effect estimates that are biased toward higher effectiveness. Assessment of whether ecological bias can be mitigated by changing local area size requires the use of outside data sources. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. From the Cover: Explaining the moon illusion

    NASA Astrophysics Data System (ADS)

    Kaufman, Lloyd; Kaufman, James H.

    2000-01-01

    An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size-distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions.

  5. Explaining the moon illusion.

    PubMed

    Kaufman, L; Kaufman, J H

    2000-01-04

    An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size-distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions.

  6. Consistent leaf respiratory response to experimental warming of three North American deciduous trees: a comparison across seasons, years, habitats and sites.

    PubMed

    Wei, Xiaorong; Sendall, Kerrie M; Stefanski, Artur; Zhao, Changming; Hou, Jihua; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B

    2017-03-01

    Most vascular plants acclimate respiration to changes in ambient temperature, but explicit tests of these responses in field settings are rare, and how acclimation responses vary in space and time is relatively unstudied, hindering our ability to predict respiratory release of carbon under future climatic conditions. We measured temperature response curves of leaf respiration for three deciduous tree species from 2009 to 2012 in a field warming experiment (+3.4 °C above ambient) in both open and understory conditions at two sites in the southern boreal forest in Minnesota, USA. We analyzed the effects of warming on leaf respiration, and how the effects varied among species, times of season (early, middle and late parts of the growing season), sites, habitats (understory, open) and years. We hypothesized that the respiration exponent (Q10) of the short-term temperature response curve and the degree of acclimation would be smaller under conditions where plants were more likely to be substrate limited, such as in the understory or the margins of the growing season. However, in contrast to these predictions, stable Q10 and strong respiratory acclimation were consistently observed. For each species, the Q10 did not vary with experimental warming, nor was its response to warming influenced by time of season, year, site or habitat. Strong leaf respiratory acclimation to warming occurred in each species and was consistent across most sources of variation. Most of the leaf traits studied were not affected by warming, while the Q10-leaf nitrogen and R25-soluble carbohydrate relationships were observed, and shifted with warming, implying that acclimation may be associated with the adjustment in respiratory capacity and its relation to leaf nitrogen and soluble carbohydrate content. Consistent Q10 and acclimation across habitats, sites, times of season and years suggest that modeling of temperature acclimation may be possible with relatively simple functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    PubMed

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in photosynthetic traits of soybean plants even in hydroponics (i.e., NFT), with positive effects on growth and seed production, prefiguring potential application of beneficial microorganisms in plant cultivation in hydroponics.

  8. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    PubMed Central

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in photosynthetic traits of soybean plants even in hydroponics (i.e., NFT), with positive effects on growth and seed production, prefiguring potential application of beneficial microorganisms in plant cultivation in hydroponics. PMID:28529515

  9. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.

    PubMed

    Liu, Yan-Yan; Song, Jia; Wang, Miao; Li, Na; Niu, Cun-Yang; Hao, Guang-You

    2015-12-01

    Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (-0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica. Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The effects of age, viewing distance, display type, font type, colour contrast and number of syllables on the legibility of Korean characters.

    PubMed

    Kong, Yong-Ku; Lee, Inseok; Jung, Myung-Chul; Song, Young-Woong

    2011-05-01

    This study evaluated the effects of age (20s and 60s), viewing distance (50 cm, 200 cm), display type (paper, monitor), font type (Gothic, Ming), colour contrast (black letters on white background, white letters on black background) and number of syllables (one, two) on the legibility of Korean characters by using the four legibility measures (minimum letter size for 100% correctness, maximum letter size for 0% correctness, minimum letter size for the least discomfort and maximum letter size for the most discomfort). Ten subjects in each age group read the four letters presented on a slide (letter size varied from 80 pt to 2 pt). Subjects also subjectively rated the reading discomfort of the letters on a 4-point scale (1 = no discomfort, 4 = most discomfort). According to the ANOVA procedure, age, viewing distance and font type significantly affected the four dependent variables (p < 0.05), while the main effect of colour contrast was not statistically significant for any measures. Two-syllable letters had smaller letters than one-syllable letters in the two correctness measures. The younger group could see letter sizes two times smaller than the old group could and the viewing distance of 50 cm showed letters about three times smaller than those at a 200 cm viewing distance. The Gothic fonts were smaller than the Ming fonts. Monitors were smaller than paper for correctness and maximum letter size for the most discomfort. From a comparison of the results for correctness and discomfort, people generally preferred larger letter sizes to those that they could read. The findings of this study may provide basic information for setting a global standard of letter size or font type to improve the legibility of characters written in Korean. STATEMENT OF RELEVANCE: Results obtained in this study will provide basic information and guidelines for setting standards of letter size and font type to improve the legibility of characters written in Korean. Also, the results might offer useful information for people who are working on design of visual displays.

  11. Smaller predator-prey body size ratios in longer food chains.

    PubMed Central

    Jennings, Simon; Warr, Karema J

    2003-01-01

    Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034

  12. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    PubMed

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Errors in Measuring Water Potentials of Small Samples Resulting from Water Adsorption by Thermocouple Psychrometer Chambers 1

    PubMed Central

    Bennett, Jerry M.; Cortes, Peter M.

    1985-01-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367

  14. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  15. Photosynthesis and canopy characteristics in genetically defined families of silver birch (Betula pendula).

    PubMed

    Wang, T; Tigerstedt, P M; Viherä-Aarnio, A

    1995-10-01

    Net photosynthetic rates (A) of leaves in upper and lower crown layers (A(upper) and A(lower)), leaf area index (LAI), mean tilt angle (MTA), several leaf characteristics, and volume growth were observed in fast- and slow-growing families of a 14-year-old full-sib and half-sib family progeny test of Betula pendula Roth. Each measure of net photosynthetic rate was calculated after correcting measured net photosynthesis for the effects of environmental variables. The differences in A(upper) and LAI among families were significant. The proportions of the total variance assigned to family for A(upper), A(lower) and LAI were 33.64, 28.93 and 54.99%, respectively. The mean A(upper) and LAI of the fast-growing families were significantly higher than those of the slow-growing families, whereas the mean A(lower) of the fast-growing families was significantly lower than that of the slow-growing families. There were also significant differences among families in leaf size, leaf shape, and the ratios leaf fresh weight/area and leaf dry weight/area. Between 27.55 and 54.55% of the total variance in these characteristics could be assigned to the family effect. Volume growth was positively correlated with A(upper) and LAI, but it was most strongly correlated with A(upper) x LAI.

  16. Errors in measuring water potentials of small samples resulting from water adsorption by thermocouple psychrometer chambers.

    PubMed

    Bennett, J M; Cortes, P M

    1985-09-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.

  17. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy.

    PubMed

    Wang, Q C; Valkonen, J P T

    2008-12-01

    Sweet potato chlorotic stunt virus (SPCSV; Closteroviridae) and Sweet potato feathery mottle virus (SPFMV; Potyviridae) interact synergistically and cause severe diseases in co-infected sweetpotato plants (Ipomoea batatas). Sweetpotato is propagated vegetatively and virus-free planting materials are pivotal for sustainable production. Using cryotherapy, SPCSV and SPCSV were eliminated from all treated single-virus-infected and co-infected shoot tips irrespective of size (0.5-1.5mm including 2-4 leaf primordia). While shoot tip culture also eliminated SPCSV, elimination of SPFMV failed in 90-93% of the largest shoot tips (1.5mm) using this technique. Virus distribution to different leaf primordia and tissues within leaf primordia in the shoot apex and petioles was not altered by co-infection of the viruses in the fully virus-susceptible sweetpotato genotype used. SPFMV was immunolocalized to all types of tissues and up to the fourth-youngest leaf primordium. In contrast, SPCSV was detected only in the phloem and up to the fifth leaf primordium. Because only cells in the apical dome of the meristem and the two first leaf primordia survived cryotherapy, all data taken together could explain the results of virus elimination. The simple and efficient cryotherapy protocol developed for virus elimination can also be used for preparation of sweetpotato materials for long-term preservation.

  18. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  19. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa).

    PubMed

    Ma, Xiaozhi; Sun, Xiaoqiu; Li, Chunmei; Huan, Rui; Sun, Changhui; Wang, Yang; Xiao, Fuliang; Wang, Qian; Chen, Purui; Ma, Furong; Zhang, Kuan; Wang, Pingrong; Deng, Xiaojian

    2017-02-01

    Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production. Copyright © 2016. Published by Elsevier Masson SAS.

  20. Alluvial lithofacies recognition in a humid-tropical setting

    NASA Astrophysics Data System (ADS)

    Darby, Dennis A.; Whittecar, G. Richard; Barringer, Richard A.; Garrett, Jim R.

    1990-05-01

    Cobble gravel deposits in the Antigua Formation accumulated on a large alluvial fan or braid-plain west of the Cordillera Occidental in southwest Colombia. This formation was probably deposited during the Pleistocene in a very wet tropical climate (> 500 cm/yr rainfall). Fining-upwards sequences of clast-supported, imbricated boulders and cobbles dominate with maximum clast sizes between 30 and 300 cm. The sand matrix in the Antigua gravels and the minor (⩽ 10%) sand facies are weathered to clay at depths of up to 20 m. The sand facies contains abundant drift logs and leaf mats. Except for the absence of debris flows and the very coarse nature of the gravel, the Antigua gravels have lithofacies similar to the glacial outwash braid-plain in the proximal area of the Scott type model. Gravels and sands of the younger Panambi Formation were deposited by a braided stream that was smaller, confined by valley walls, and flowing at a lower gradient than the river that deposited the Antigua gravels. We recognize no sedimentologic characteristics of these deposits as diagnostic of a humid-tropical environment except for textural and compositional changes in matrix sediments caused by deep and rapid chemical weathering.

Top