Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array
NASA Astrophysics Data System (ADS)
Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei
2014-11-01
The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.
Microlens performance limits in sub-2mum pixel CMOS image sensors.
Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B
2010-03-15
CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.
Effect of Using 2 mm Voxels on Observer Performance for PET Lesion Detection
NASA Astrophysics Data System (ADS)
Morey, A. M.; Noo, Frédéric; Kadrmas, Dan J.
2016-06-01
Positron emission tomography (PET) images are typically reconstructed with an in-plane pixel size of approximately 4 mm for cancer imaging. The objective of this work was to evaluate the effect of using smaller pixels on general oncologic lesion-detection. A series of observer studies was performed using experimental phantom data from the Utah PET Lesion Detection Database, which modeled whole-body FDG PET cancer imaging of a 92 kg patient. The data comprised 24 scans over 4 days on a Biograph mCT time-of-flight (TOF) PET/CT scanner, with up to 23 lesions (diam. 6-16 mm) distributed throughout the phantom each day. Images were reconstructed with 2.036 mm and 4.073 mm pixels using ordered-subsets expectation-maximization (OSEM) both with and without point spread function (PSF) modeling and TOF. Detection performance was assessed using the channelized non-prewhitened numerical observer with localization receiver operating characteristic (LROC) analysis. Tumor localization performance and the area under the LROC curve were then analyzed as functions of the pixel size. In all cases, the images with 2 mm pixels provided higher detection performance than those with 4 mm pixels. The degree of improvement from the smaller pixels was larger than that offered by PSF modeling for these data, and provided roughly half the benefit of using TOF. Key results were confirmed by two human observers, who read subsets of the test data. This study suggests that a significant improvement in tumor detection performance for PET can be attained by using smaller voxel sizes than commonly used at many centers. The primary drawback is a 4-fold increase in reconstruction time and data storage requirements.
NASA Technical Reports Server (NTRS)
Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Bandera, Cesar (Inventor); Xia, Shu (Inventor)
2002-01-01
A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.
Qiu, Jianjun; Li, Yangyang; Huang, Qin; Wang, Yang; Li, Pengcheng
2013-11-18
In laser speckle contrast imaging, it was usually suggested that speckle size should exceed two camera pixels to eliminate the spatial averaging effect. In this work, we show the benefit of enhancing signal to noise ratio by correcting the speckle contrast at small speckle size. Through simulations and experiments, we demonstrated that local speckle contrast, even at speckle size much smaller than one pixel size, can be corrected through dividing the original speckle contrast by the static speckle contrast. Moreover, we show a 50% higher signal to noise ratio of the speckle contrast image at speckle size below 0.5 pixel size than that at speckle size of two pixels. These results indicate the possibility of selecting a relatively large aperture to simultaneously ensure sufficient light intensity and high accuracy and signal to noise ratio, making the laser speckle contrast imaging more flexible.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
The fragmented nature of tundra landscape
NASA Astrophysics Data System (ADS)
Virtanen, Tarmo; Ek, Malin
2014-04-01
The vegetation and land cover structure of tundra areas is fragmented when compared to other biomes. Thus, satellite images of high resolution are required for producing land cover classifications, in order to reveal the actual distribution of land cover types across these large and remote areas. We produced and compared different land cover classifications using three satellite images (QuickBird, Aster and Landsat TM5) with different pixel sizes (2.4 m, 15 m and 30 m pixel size, respectively). The study area, in north-eastern European Russia, was visited in July 2007 to obtain ground reference data. The QuickBird image was classified using supervised segmentation techniques, while the Aster and Landsat TM5 images were classified using a pixel-based supervised classification method. The QuickBird classification showed the highest accuracy when tested against field data, while the Aster image was generally more problematic to classify than the Landsat TM5 image. Use of smaller pixel sized images distinguished much greater levels of landscape fragmentation. The overall mean patch sizes in the QuickBird, Aster, and Landsat TM5-classifications were 871 m2, 2141 m2 and 7433 m2, respectively. In the QuickBird classification, the mean patch size of all the tundra and peatland vegetation classes was smaller than one pixel of the Landsat TM5 image. Water bodies and fens in particular occur in the landscape in small or elongated patches, and thus cannot be realistically classified from larger pixel sized images. Land cover patterns vary considerably at such a fine-scale, so that a lot of information is lost if only medium resolution satellite images are used. It is crucial to know the amount and spatial distribution of different vegetation types in arctic landscapes, as carbon dynamics and other climate related physical, geological and biological processes are known to vary greatly between vegetation types.
New SOFRADIR 10μm pixel pitch infrared products
NASA Astrophysics Data System (ADS)
Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette
2014-10-01
Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.
It's not the pixel count, you fool
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2012-01-01
The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.
Pixelation Effects in Weak Lensing
NASA Technical Reports Server (NTRS)
High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard
2007-01-01
Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape measurement method.
CMOS image sensors: State-of-the-art
NASA Astrophysics Data System (ADS)
Theuwissen, Albert J. P.
2008-09-01
This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.
Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips
NASA Astrophysics Data System (ADS)
Drozd, A.; Szczygiel, R.; Maj, P.; Satlawa, T.; Grybos, P.
2014-12-01
The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results.
Getting small: new 10μm pixel pitch cooled infrared products
NASA Astrophysics Data System (ADS)
Reibel, Y.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Decaens, G.; Bourqui, M.-L.; Manissadjian, A.; Billon-Lanfrey, D.; Bisotto, S.; Gravrand, O.; Destefanis, G.; Druart, G.; Guerineau, N.
2014-06-01
Recent advances in miniaturization of IR imaging technology have led to a burgeoning market for mini thermalimaging sensors. Seen in this context our development on smaller pixel pitch has opened the door to very compact products. When this competitive advantage is mixed with smaller coolers, thanks to HOT technology, we achieve valuable reductions in size, weight and power of the overall package. In the same time, we are moving towards a global offer based on digital interfaces that provides our customers lower power consumption and simplification on the IR system design process while freeing up more space. Additionally, we are also investigating new wafer level camera solution taking advantage of the progress in micro-optics. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI and ONERA.
NASA Astrophysics Data System (ADS)
Wang, Mi; Martínez, Francisco J.; Márquez, Andrés.; Ye, Yabin; Zong, Liangjia; Pascual, Inmaculada; Beléndez, Augusto
2017-08-01
Liquid-crystal on Silicon (LCoS) microdisplays are one of the competing technologies to implement wavelength selective switches (WSS) for optical telecommunications. Last generation LCoS, with more than 4 megapixels, have decreased pixel size to values smaller than 4 microns, what increases interpixel cross-talk effects such as fringing-field. We proceed with an experimental evaluation of a 3.74 micron pixel size parallel-aligned LCoS (PA-LCoS) device. At 1550 nm, for the first time we use time-average Stokes polarimetry to measure the retardance and its flicker magnitude as a function of voltage. We also verify the effect of the antireflection coating when we try to characterize the PA-LCoS out of the designed interval for the AR coating. Some preliminary results for the performance for binary gratings are also given, where the decrease of modulation range with the increase in spatial frequency is shown, together with some residual polarization effects.
A new generation of small pixel pitch/SWaP cooled infrared detectors
NASA Astrophysics Data System (ADS)
Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.
2015-10-01
Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.
Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics
NASA Technical Reports Server (NTRS)
Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon;
2017-01-01
We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.
The fundamentals of average local variance--Part I: Detecting regular patterns.
Bøcher, Peder Klith; McCloy, Keith R
2006-02-01
The method of average local variance (ALV) computes the mean of the standard deviation values derived for a 3 x 3 moving window on a successively coarsened image to produce a function of ALV versus spatial resolution. In developing ALV, the authors used approximately a doubling of the pixel size at each coarsening of the image. They hypothesized that ALV is low when the pixel size is smaller than the size of scene objects because the pixels on the object will have similar response values. When the pixel and objects are of similar size, they will tend to vary in response and the ALV values will increase. As the size of pixels increase further, more objects will be contained in a single pixel and ALV will decrease. The authors showed that various cover types produced single peak ALV functions that inexplicitly peaked when the pixel size was 1/2 to 3/4 of the object size. This paper reports on work done to explore the characteristics of the various forms of the ALV function and to understand the location of the peaks that occur in this function. The work was conducted using synthetically generated image data. The investigation showed that the hypothesis originally proposed in is not adequate. A new hypothesis is proposed that the ALV function has peak locations that are related to the geometric size of pattern structures in the scene. These structures are not always the same as scene objects. Only in cases where the size of and separation between scene objects are equal does the ALV function detect the size of the objects. In situations where the distance between scene objects are larger than their size, the ALV function has a peak at the object separation, not at the object size. This work has also shown that multiple object structures of different sizes and distances in the image provide multiple peaks in the ALV function and that some of these structures are not implicitly recognized as such from our perspective. However, the magnitude of these peaks depends on the response mix in the structures, complicating their interpretation and analysis. The analysis of the ALV Function is, thus, more complex than that generally reported in the literature.
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)
2005-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.
A compressed sensing X-ray camera with a multilayer architecture
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.
2018-01-01
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.
Random On-Board Pixel Sampling (ROPS) X-Ray Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui; Iaroshenko, O.; Li, S.
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
The effect of split pixel HDR image sensor technology on MTF measurements
NASA Astrophysics Data System (ADS)
Deegan, Brian M.
2014-03-01
Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.
Energy weighted x-ray dark-field imaging.
Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo
2014-10-06
The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.
Improvement of spatial resolution in a Timepix based CdTe photon counting detector using ToT method
NASA Astrophysics Data System (ADS)
Park, Kyeongjin; Lee, Daehee; Lim, Kyung Taek; Kim, Giyoon; Chang, Hojong; Yi, Yun; Cho, Gyuseong
2018-05-01
Photon counting detectors (PCDs) have been recognized as potential candidates in X-ray radiography and computed tomography due to their many advantages over conventional energy-integrating detectors. In particular, a PCD-based X-ray system shows an improved contrast-to-noise ratio, reduced radiation exposure dose, and more importantly, exhibits a capability for material decomposition with energy binning. For some applications, a very high resolution is required, which translates into smaller pixel size. Unfortunately, small pixels may suffer from energy spectral distortions (distortion in energy resolution) due to charge sharing effects (CSEs). In this work, we propose a method for correcting CSEs by measuring the point of interaction of an incident X-ray photon by the time-of-threshold (ToT) method. Moreover, we also show that it is possible to obtain an X-ray image with a reduced pixel size by using the concept of virtual pixels at a given pixel size. To verify the proposed method, modulation transfer function (MTF) and signal-to-noise ratio (SNR) measurements were carried out with the Timepix chip combined with the CdTe pixel sensor. The X-ray test condition was set at 80 kVp with 5 μA, and a tungsten edge phantom and a lead line phantom were used for the measurements. Enhanced spatial resolution was achieved by applying the proposed method when compared to that of the conventional photon counting method. From experiment results, MTF increased from 6.3 (conventional counting method) to 8.3 lp/mm (proposed method) at 0.3 MTF. On the other hand, the SNR decreased from 33.08 to 26.85 dB due to four virtual pixels.
NASA Astrophysics Data System (ADS)
Goss, Tristan M.
2016-05-01
With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.
A compressed sensing X-ray camera with a multilayer architecture
Wang, Zhehui; Laroshenko, O.; Li, S.; ...
2018-01-25
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
A compressed sensing X-ray camera with a multilayer architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui; Laroshenko, O.; Li, S.
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
NASA Astrophysics Data System (ADS)
Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.
2017-08-01
The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.
2008-03-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.
Challenges of small-pixel infrared detectors: a review.
Rogalski, A; Martyniuk, P; Kopytko, M
2016-04-01
In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.
Pilot Studies With BGO Scintillators Coupled to Low-Noise, Large-Area, SiPM Arrays
NASA Astrophysics Data System (ADS)
González, Antonio J.; Sánchez, Filomeno; Majewski, Stan; Parkhurst, Philip; Vaigneur, Keith; Benlloch, José M.
2016-10-01
Despite the fact that timing capabilities for devices based on BGO are limited when compared with LYSO or LSO based systems, the cost of BGO is considerably lower and could thus, be an option for devices with high scintillator volumes (as in the case of nuclear medicine scanners), but also in smaller dedicated imagers. Recently, many studies have been carried out in order to determine the potential capabilities of BGO for PET and SPECT applications, where BGO scintillator crystals have been coupled to SiPM photosensor devices. However, so far these studies have only been done on small-size BGO samples. In this work, we have studied three different BGO size configurations, coupled to a 12 × 12 low-noise SiPM array. Each SiPM has an active area of 3 × 3 mm2 with a pixel pitch of 4.2 mm. A special charge division network providing information for each row and column output of the SiPM array has been used. The first tested BGO configuration has 2.5 mm crystal pixel pitch and 10 mm thickness, while the second makes use of smaller 1.5 mm pixels with 1.67 mm pitch but only 3 mm thick. The third evaluated configuration provided limited photon depth of interaction (DOI) information by using two staggered layers of BGO pixels also with 2.5 mm pitch and with a total thickness of 20 mm. Performances of these configurations in terms of spatial and energy resolutions have been determined. Energy resolution as good as 14.2% was obtained. Our results indicate that single layer crystal arrays with pixel values as low as 1.5 mm or two staggered layers with 2.5 mm pitch are well suited for PET applications, such as low-cost and high performance dedicated PET systems or large systems.
NASA Astrophysics Data System (ADS)
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between 30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of 100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.
Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens
2016-12-01
To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization. Graphical Abstract ᅟ.
Variable pixel size ionospheric tomography
NASA Astrophysics Data System (ADS)
Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei
2017-06-01
A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.
Study of the properties of new SPM detectors
NASA Astrophysics Data System (ADS)
Stewart, A. G.; Greene-O'Sullivan, E.; Herbert, D. J.; Saveliev, V.; Quinlan, F.; Wall, L.; Hughes, P. J.; Mathewson, A.; Jackson, J. C.
2006-02-01
The operation and performance of multi-pixel, Geiger-mode APD structures referred to as Silicon Photomultiplier (SPM) are reported. The SPM is a solid state device that has emerged over the last decade as a promising alternative to vacuum PMTs. This is due to their comparable performance in addition to their lower bias operation and power consumption, insensitivity to magnetic fields and ambient light, smaller size and ruggedness. Applications for these detectors are numerous and include life sciences, nuclear medicine, particle physics, microscopy and general instrumentation. With SPM devices, many geometrical and device parameters can be adjusted to optimize their performance for a particular application. In this paper, Monte Carlo simulations and experimental results for 1mm2 SPM structures are reported. In addition, trade-offs involved in optimizing the SPM in terms of the number and size of pixels for a given light intensity, and its affect on the dynamic range are discussed.
NASA Astrophysics Data System (ADS)
Wang, Junbang; Sun, Wenyi
2014-11-01
Remote sensing is widely applied in the study of terrestrial primary production and the global carbon cycle. The researches on the spatial heterogeneity in images with different sensors and resolutions would improve the application of remote sensing. In this study two sites on alpine meadow grassland in Qinghai, China, which have distinct fractal vegetation cover, were used to test and analyze differences between Normalized Difference Vegetation Index (NDVI) and enhanced vegetation index (EVI) derived from the Huanjing (HJ) and Landsat Thematic Mapper (TM) sensors. The results showed that: 1) NDVI estimated from HJ were smaller than the corresponding values from TM at the two sites whereas EVI were almost the same for the two sensors. 2) The overall variance represented by HJ data was consistently about half of that of Landsat TM although their nominal pixel size is approximately 30m for both sensors. The overall variance from EVI is greater than that from NDVI. The difference of the range between the two sensors is about 6 pixels at 30m resolution. The difference of the range in which there is not more corrective between two vegetation indices is about 1 pixel. 3) The sill decreased when pixel size increased from 30m to 1km, and then decreased very quickly when pixel size is changed to 250m from 30m or 90m but slowly when changed from 250m to 500m. HJ can capture this spatial heterogeneity to some extent and this study provides foundations for the use of the sensor for validation of net primary productivity estimates obtained from ecosystem process models.
NASA Astrophysics Data System (ADS)
Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.
2017-02-01
This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.
2016-12-06
This collage of images from NASA's Cassini spacecraft shows Saturn's northern hemisphere and rings as viewed with four different spectral filters. Each filter is sensitive to different wavelengths of light and reveals clouds and hazes at different altitudes. Clockwise from top left, the filters used are sensitive to violet (420 nanometers), red (648 nanometers), near-infrared (728 nanometers) and infrared (939 nanometers) light. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016, at a distance of about 400,000 miles (640,000 kilometers) from Saturn. Image scale is 95 miles (153 kilometers) per pixel. The images have been enlarged by a factor of two. The original versions of these images, as sent by the spacecraft, have a size of 256 pixels by 256 pixels. Cassini's images are sometimes planned to be compressed to smaller sizes due to data storage limitations on the spacecraft, or to allow a larger number of images to be taken than would otherwise be possible. These images were obtained about two days before its first close pass by the outer edges of Saturn's main rings during its penultimate mission phase. http://photojournal.jpl.nasa.gov/catalog/PIA21053
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.
Comparison of two optimized readout chains for low light CIS
NASA Astrophysics Data System (ADS)
Boukhayma, A.; Peizerat, A.; Dupret, A.; Enz, C.
2014-03-01
We compare the noise performance of two optimized readout chains that are based on 4T pixels and featuring the same bandwidth of 265kHz (enough to read 1Megapixel with 50frame/s). Both chains contain a 4T pixel, a column amplifier and a single slope analog-to-digital converter operating a CDS. In one case, the pixel operates in source follower configuration, and in common source configuration in the other case. Based on analytical noise calculation of both readout chains, an optimization methodology is presented. Analytical results are confirmed by transient simulations using 130nm process. A total input referred noise bellow 0.4 electrons RMS is reached for a simulated conversion gain of 160μV/e-. Both optimized readout chains show the same input referred 1/f noise. The common source based readout chain shows better performance for thermal noise and requires smaller silicon area. We discuss the possible drawbacks of the common source configuration and provide the reader with a comparative table between the two readout chains. The table contains several variants (column amplifier gain, in-pixel transistor sizes and type).
NASA Technical Reports Server (NTRS)
2005-01-01
Desert dust particles tend to be larger in size than aerosols that originate from the processes of combustion. How precisely do the size of the aerosol particles comprising the dust that obscured the Red Sea on July 26, 2005, contrast with the size of the haze particles that obscured the United States eastern seaboard on the same day? NASA's Multi-angle Imaging SpectroRadiometer (MISR), which views Earth at nine different angles in four wavelengths, provides information about the amount, size, and shape of airborne particles. Here, MISR aerosol amount and size is presented for these two events. These MISR results distinguish desert dust, the most common non-spherical aerosol type, from pollution and forest fire particles. Determining aerosol characteristics is a key to understanding how aerosol particles influence the size, abundance, and rate of production of cloud droplets, and to a better understanding of how aerosols influence clouds and climate. The left panel of each of these two image sets (Red Sea, left; U.S. coastline, right) is a natural-color view from MISR's 70-degree forward viewing camera. The color-coded maps in the central panels show aerosol optical depth; the right panels provide a measure of aerosol size, expressed as the 'Angstrom exponent.' For the optical depth maps, yellow pixels indicate the most optically-thick aerosols, whereas the red, green and blue pixels represent progressively decreasing aerosol amounts. For this dramatic dust storm over the Red Sea, the aerosol is quite thick, and in some places, the dust over water is too optically thick for MISR to retrieve the aerosol amount. For the eastern seaboard haze, the thickest aerosols have accumulated over the Atlantic Ocean off the coasts of South Carolina and Georgia. Cases where no successful retrieval occurred, either due to extremely high aerosol optical thickness or to clouds, appear as dark gray pixels. For the Angstrom exponent maps, the blue and green pixels (smaller values) correspond with more large particles, whilst the yellow and red pixels, representing higher Angstrom exponents, correspond with more small particles. Angstrom exponent is related to the way the aerosol optical depth (AOD) changes with wavelength -- a more steeply decreasing AOD with wavelength indicates smaller particles. The greater the magnitude of the Angstrom exponent, the greater the contribution of smaller particles to the overall particle distribution. For optically thick desert dust storms, as in this case, the Angstrom exponent is expected to be relatively low -- likely below 1. For the eastern seaboard haze, the Angstrom exponent is significantly higher, indicating the relative abundance of small pollution particles, especially over the Atlantic where the aerosol optical depth is also very high. With a nearly simultaneous data acquisition time, the MODIS instrument also collected data for these events, and image features for both the dust storm and the haze are available. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82 north and 82 south latitude every nine days. This image covers an area of about 1,265 kilometers by 400 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 29809 and 29814 and utilize data from blocks 60 to 67 and 71 to 78 within World Reference System-2 paths 17 and 170, respectively. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.
2008-12-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.
An exact algorithm for optimal MAE stack filter design.
Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior
2007-02-01
We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.
Validation of ET maps derived from MODIS imagery
NASA Astrophysics Data System (ADS)
Hong, S.; Hendrickx, J. M.; Borchers, B.
2005-12-01
In previous work we have used the New Mexico Tech implementation of the Surface Energy Balance Algorithm for Land (SEBAL-NMT) for the generation of ET maps from LandSat imagery. Comparison of these SEBAL ET estimates versus ET ground measurements using eddy covariance showed satisfactory agreement between the two methods in the heterogeneous arid landscape of the Middle Rio Grande Basin. The objective of this study is to validate SEBAL ET estimates obtained from MODIS imagery. The use of MODIS imagery is attractive since MODIS images are available at a much higher frequency than LandSat images at no cost to the user. MODIS images have a pixel size in the thermal band of 1000x1000 m which is much coarser than the 60x60 m pixel size of LandSat 7. This large pixel size precludes the use of eddy covariance measurements for validation of ET maps derived from MODIS imagery since the eddy covariance measurement is not representative of a 1000x1000 m MODIS pixel. In our experience, a typical foot print of an ET rate measured by eddy covariance on a clear day in New Mexico around 11 am is less than then thousand square meters or two orders of magnitude smaller than a MODIS thermal pixel. Therefore, we have validated ET maps derived from MODIS imagery by comparison with up-scaled ET maps derived from LandSat imagery. The results of our study demonstrate: (1) There is good agreement between ET maps derived from LandSat and MODIS images; (2) Up-scaling of LandSat ET maps over the Middle Rio Grande Basin produces ET maps that are very similar to ET maps directly derived from MODIS images; (3) ET maps derived from free MODIS imagery using SEBAL-NMT can provide reliable regional ET information for water resource managers.
Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current
NASA Astrophysics Data System (ADS)
Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.
2017-09-01
We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors
Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.
2009-01-01
Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.
Sensitivity of landscape metrics to pixel size
J. D. Wickham; K. H. Riitters
1995-01-01
Analysis of diversity and evenness metrics using land cover data are becoming formalized in landscape ecology. Diversity and evenness metrics are dependent on the pixel size (scale) over which the data are collected. Aerial photography was interpreted for land cover and converted into four raster data sets with 4, 12, 28, and 80 m pixel sizes, representing pixel sizes...
NASA Technical Reports Server (NTRS)
Wilheit, Thomas T.; Chandrasekar, V.; Li, Wanyu
2007-01-01
The variability of the drop size distribution (DSD) is one of the factors that must be considered in understanding the uncertainties in the retrieval of oceanic precipitation from passive microwave observations. Here, we have used observations from the Precipitation Radar on the Tropical Rainfall Measuring Mission spacecraft to infer the relationship between the DSD and the rain rate and the variability in this relationship. The impact on passive microwave rain rate retrievals varies with the frequency and rain rate. The total uncertainty for a given pixel can be slightly larger than 10% at the low end (ca. 10 GHz) of frequencies commonly used for this purpose and smaller at higher frequencies (up to 37 GHz). Since the error is not totally random, averaging many pixels, as in a monthly rainfall total, should roughly halve this uncertainty. The uncertainty may be lower at rain rates less than about 30 mm/h, but the lack of sensitivity of the surface reference technique to low rain rates makes it impossible to tell from the present data set.
The dust coma of Comet Austin (1989c1)
NASA Technical Reports Server (NTRS)
Campins, Humberto; Tegler, Stephen C.; Telesco, C. M.; Benson, C.
1991-01-01
Thermal-infrared (10 and 20 micron) images of Comet Austin were obtained on UT 30.6 Apr., 1.8, 2.8, and 3.6 May 1990. The NASA-Marshall Space Flight Center 20 pixel bolometer array at the NASA 3 meter Infrared Telescope Facility in Hawaii was used. The 10.8 micron (FWHM = 5.3 microns) maps were obtained with maximum dimensions of 113 arcsec (57,500 km) in RA and 45 arcsec (23,000 km) in declination, with a pixel size of 4.2 x 4.2 arcsec. A smaller, 45 x 18 arcsec, map was obtained in the 19.2 micron (FWHM = 5.2 microns) bandpass. At the time of these observations Comet Austin's heliocentric and geocentric distances were 0.7 and 0.5 AU respectively. The peak flux density (within the brightest pixel) was 23 + or - 2 Janskys for the first three dates and only marginally lower the last day; i.e., within the observational uncertainties no evidence was found for day-to-day variability like that observed in Comet Halley. A dynamical analysis of the morphology of the extended dust emission is used to constrain the size distribution and production rate of the dust particles. The results of this analysis are compared with similar studies carried out on comets P/Giacobini-Zinner, P/Brorsen-Metcalf, P/Halley, P/Tempel 2, and Wilson (1987).
NASA Astrophysics Data System (ADS)
Moore, J. M.; Grundy, W. M.; Spencer, J. R.; McKinnon, W. B.; Cruikshank, D. P.; White, O. L.; Umurhan, O. M.; Beyer, R. A.; Singer, K. N.; Schenk, P.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.
2017-12-01
The New Horizons encounter with 2014 MU69 on 1 January 2019 will be the first small Kuiper belt object to be studied in detail from a spacecraft. The prospect that the cold classical population, which includes 2014 MU69, may represent a primordial, in situ population is exciting. Indeed, as we have learned just how complex and dynamic the early Solar System was, the cold classical population of the Kuiper belt has emerged as a singular candidate for a fundamentally unaltered original planetesimal population. MU69 in particular provides a unique opportunity to explore the disk processes and chemistry of the primordial solar nebula. As such, compositional measurements during the NH flyby are of paramount importance. So is high-resolution imaging of shape and structure, as the intermediate size of MU69 (much smaller than Pluto but much larger than a typical comet) may show signs of its accretion from much smaller bodies (layers, pebbles, lobes, etc., in the manner of 67P/C-G), or alternatively, derivation via the collisional fragmentation of a larger body if KBOs are "born big". MU69 may also be big enough to show signs of internal evolution driven by radiogenic heat from 26Al decay, if it accreted early enough and fast enough. The size of MU69 (20 - 40 km) places it in a class that has the potential to harbor unusual, and in some cases, possibly active, surface geological processes: several small satellites of similar size, including Helene and Epimetheus, display what appears to be fine-grained material covering large portions of their surfaces, and the surface of Phobos displays an unusual system of parallel grooves. Invariably, these intriguing surface features are only clearly defined at imaging resolutions of at least tens of meters per pixel. The best images of MU69 are planned to have resolutions of 20 - 40 m/pixel at a phase angle range of 40 - 70°. We also plan color imaging in 4 channels at 0.4 to 1 µ at 200 - 500 m/pixel, and 256 channel spectroscopy from 1.25 to 2.5 µ at 1 - 4 km/pixel. Ices such as H2O, NH3, CO2, and CH3OH would be stable and can be detected and mapped if they are exposed at the surface. It will be especially instructive to compare with Cassini VIMS spectra of Phoebe, thought to be a captured outer solar system planetesimal that formed in a related nebular environment to where MU69 formed.
Novel expansion techniques for skin grafts
Kadam, Dinesh
2016-01-01
The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117
NASA Astrophysics Data System (ADS)
Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Adler, Dorit D.; Blane, Caroline E.; Joynt, Lynn K.; Paramagul, Chintana; Roubidoux, Marilyn A.; Wilson, Todd E.; Hadjiiski, Lubomir M.; Goodsitt, Mitchell M.
1999-05-01
A receiver operating characteristic (ROC) experiment was conducted to evaluate the effects of pixel size on the characterization of mammographic microcalcifications. Digital mammograms were obtained by digitizing screen-film mammograms with a laser film scanner. One hundred twelve two-view mammograms with biopsy-proven microcalcifications were digitized at a pixel size of 35 micrometer X 35 micrometer. A region of interest (ROI) containing the microcalcifications was extracted from each image. ROI images with pixel sizes of 70 micrometers, 105 micrometers, and 140 micrometers were derived from the ROI of 35 micrometer pixel size by averaging 2 X 2, 3 X 3, and 4 X 4 neighboring pixels, respectively. The ROI images were printed on film with a laser imager. Seven MQSA-approved radiologists participated as observers. The likelihood of malignancy of the microcalcifications was rated on a 10-point confidence rating scale and analyzed with ROC methodology. The classification accuracy was quantified by the area, Az, under the ROC curve. The statistical significance of the differences in the Az values for different pixel sizes was estimated with the Dorfman-Berbaum-Metz (DBM) method for multi-reader, multi-case ROC data. It was found that five of the seven radiologists demonstrated a higher classification accuracy with the 70 micrometer or 105 micrometer images. The average Az also showed a higher classification accuracy in the range of 70 to 105 micrometer pixel size. However, the differences in A(subscript z/ between different pixel sizes did not achieve statistical significance. The low specificity of image features of microcalcifications an the large interobserver and intraobserver variabilities may have contributed to the relatively weak dependence of classification accuracy on pixel size.
Woie, Leik; Måløy, Frode; Eftestøl, Trygve; Engan, Kjersti; Edvardsen, Thor; Kvaløy, Jan Terje; Ørn, Stein
2014-02-01
Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35-50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (-2.8 ± 2.3 %) and core size (-3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = -0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods.
SNR improvement for hyperspectral application using frame and pixel binning
NASA Astrophysics Data System (ADS)
Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup
2016-05-01
Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.
Large format geiger-mode avalanche photodiode LADAR camera
NASA Astrophysics Data System (ADS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison
2013-05-01
Recently Spectrolab has successfully demonstrated a compact 32x32 Laser Detection and Range (LADAR) camera with single photo-level sensitivity with small size, weight, and power (SWAP) budget for threedimensional (3D) topographic imaging at 1064 nm on various platforms. With 20-kHz frame rate and 500- ps timing uncertainty, this LADAR system provides coverage down to inch-level fidelity and allows for effective wide-area terrain mapping. At a 10 mph forward speed and 1000 feet above ground level (AGL), it covers 0.5 square-mile per hour with a resolution of 25 in2/pixel after data averaging. In order to increase the forward speed to fit for more platforms and survey a large area more effectively, Spectrolab is developing 32x128 Geiger-mode LADAR camera with 43 frame rate. With the increase in both frame rate and array size, the data collection rate is improved by 10 times. With a programmable bin size from 0.3 ps to 0.5 ns and 14-bit timing dynamic range, LADAR developers will have more freedom in system integration for various applications. Most of the special features of Spectrolab 32x32 LADAR camera, such as non-uniform bias correction, variable range gate width, windowing for smaller arrays, and short pixel protection, are implemented in this camera.
Carotid Stenosis And Ulcer Detectability As A Function Of Pixel Size
NASA Astrophysics Data System (ADS)
Mintz, Leslie J.; Enzmann, Dieter R.; Keyes, Gary S.; Mainiero, Louis M.; Brody, William R.
1981-11-01
Digital radiography, in conjunction with digital subtraction methods can provide high quality images of the vascular system,1-4 Spatial resolution is one important limiting factor of this imaging technique. Since spatial resolution of a digital image is a function of pixel size, it is important to determine the pixel size threshold necessary to provide information comparable to that of conventional angiograms. This study was designed to establish the pixel size necessary to identify accurately stenotic and ulcerative lesions of the carotid artery.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.
NASA Astrophysics Data System (ADS)
Lee, Joon Hyeop; Oh, Sree; Jeong, Hyunjin; Yi, Sukyoung K.; Kyeong, Jaemann; Park, Byeong-Gon
2017-07-01
As a case study to understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we investigate the BCGs in dynamically young and old clusters Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color–magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the Canada–France–Hawaii Telescope observations. After masking foreground/background objects and smoothing pixels in consideration of the observational seeing size, detailed pCMD features are compared between the two BCGs. (1) Although the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness (pCMD backbone) indicates that the A2589-BCG formed a larger central body (∼2.0 kpc in radius) via major dry mergers at an early epoch than the A1139-BCG (a central body ∼1.3 kpc in radius), whereas they have grown commonly in subsequent minor mergers. (3) The spatial distributions of the pCMD outliers reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core, possibly resulting from a major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio, compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results are consistent with the idea that the BCG in the dynamically older cluster (A2589) formed earlier and is better relaxed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less
Classification of breast cancer cytological specimen using convolutional neural network
NASA Astrophysics Data System (ADS)
Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman
2017-01-01
The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.
A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)
2002-01-01
Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by rain decreases, as the size of a pixel becomes smaller. This means that within what looks like a patch of rainy area in a coarse resolution view with larger pixel size, one finds clusters of rainy and dry patches when viewed on a finer scale. The model makes definite predictions about how these and other related statistics depend on the pixel size. These predictions were found to agree well with data. In a subsequent second part of the work we plan to test the model with rain gauge data collected during the TRMM (Tropical Rainfall Measuring Mission) ground validation campaign.
High-voltage pixel sensors for ATLAS upgrade
NASA Astrophysics Data System (ADS)
Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.
2014-11-01
The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.
Dengg, S; Kneissl, S
2013-01-01
Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n = 15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.
On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors
NASA Astrophysics Data System (ADS)
Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J. L.; Tolosa, A.
2018-03-01
We investigate the performance of large area radiation detectors, with high energy- and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50×50 mm2) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8×8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm2), with a pixel size of 6×6 mm2, we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thicknesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3×3 mm2.
Photodiode area effect on performance of X-ray CMOS active pixel sensors
NASA Astrophysics Data System (ADS)
Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.
2018-02-01
Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.
Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.
Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech
2018-01-01
Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f 50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm -1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans. © 2017 American Association of Physicists in Medicine.
Simulation of Small-Pitch HgCdTe Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2017-09-01
Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.
Classifying multispectral data by neural networks
NASA Technical Reports Server (NTRS)
Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.
1993-01-01
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.
Development of a high-definition IR LED scene projector
NASA Astrophysics Data System (ADS)
Norton, Dennis T.; LaVeigne, Joe; Franks, Greg; McHugh, Steve; Vengel, Tony; Oleson, Jim; MacDougal, Michael; Westerfeld, David
2016-05-01
Next-generation Infrared Focal Plane Arrays (IRFPAs) are demonstrating ever increasing frame rates, dynamic range, and format size, while moving to smaller pitch arrays.1 These improvements in IRFPA performance and array format have challenged the IRFPA test community to accurately and reliably test them in a Hardware-In-the-Loop environment utilizing Infrared Scene Projector (IRSP) systems. The rapidly-evolving IR seeker and sensor technology has, in some cases, surpassed the capabilities of existing IRSP technology. To meet the demands of future IRFPA testing, Santa Barbara Infrared Inc. is developing an Infrared Light Emitting Diode IRSP system. Design goals of the system include a peak radiance >2.0W/cm2/sr within the 3.0-5.0μm waveband, maximum frame rates >240Hz, and >4million pixels within a form factor supported by pixel pitches <=32μm. This paper provides an overview of our current phase of development, system design considerations, and future development work.
NASA Astrophysics Data System (ADS)
Kang, Dong-Uk; Cho, Minsik; Lee, Dae Hee; Yoo, Hyunjun; Kim, Myung Soo; Bae, Jun Hyung; Kim, Hyoungtaek; Kim, Jongyul; Kim, Hyunduk; Cho, Gyuseong
2012-05-01
Recently, large-size 3-transistors (3-Tr) active pixel complementary metal-oxide silicon (CMOS) image sensors have been being used for medium-size digital X-ray radiography, such as dental computed tomography (CT), mammography and nondestructive testing (NDT) for consumer products. We designed and fabricated 50 µm × 50 µm 3-Tr test pixels having a pixel photodiode with various structures and shapes by using the TSMC 0.25-m standard CMOS process to compare their optical characteristics. The pixel photodiode output was continuously sampled while a test pixel was continuously illuminated by using 550-nm light at a constant intensity. The measurement was repeated 300 times for each test pixel to obtain reliable results on the mean and the variance of the pixel output at each sampling time. The sampling rate was 50 kHz, and the reset period was 200 msec. To estimate the conversion gain, we used the mean-variance method. From the measured results, the n-well/p-substrate photodiode, among 3 photodiode structures available in a standard CMOS process, showed the best performance at a low illumination equivalent to the typical X-ray signal range. The quantum efficiencies of the n+/p-well, n-well/p-substrate, and n+/p-substrate photodiodes were 18.5%, 62.1%, and 51.5%, respectively. From a comparison of pixels with rounded and rectangular corners, we found that a rounded corner structure could reduce the dark current in large-size pixels. A pixel with four rounded corners showed a reduced dark current of about 200fA compared to a pixel with four rectangular corners in our pixel sample size. Photodiodes with round p-implant openings showed about 5% higher dark current, but about 34% higher sensitivities, than the conventional photodiodes.
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
Circuit-level optimisation of a:Si TFT-based AMOLED pixel circuits for maximum hold current
NASA Astrophysics Data System (ADS)
Foroughi, Aidin; Mehrpoo, Mohammadreza; Ashtiani, Shahin J.
2013-11-01
Design of AMOLED pixel circuits has manifold constraints and trade-offs which provides incentive for circuit designers to seek optimal solutions for different objectives. In this article, we present a discussion on the viability of an optimal solution to achieve the maximum hold current. A compact formula for component sizing in a conventional 2T1C pixel is, therefore, derived. Compared to SPICE simulation results, for several pixel sizes, our predicted optimum sizing yields maximum currents with errors less than 0.4%.
Lossless compression techniques for maskless lithography data
NASA Astrophysics Data System (ADS)
Dai, Vito; Zakhor, Avideh
2002-07-01
Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining the throughput of one wafer per sixty seconds per layer achieved by today's optical lithography systems. To achieve this throughput with a direct-write maskless lithography system, using 25 nm pixels for 50 nm feature sizes, requires data rates of about 10 Tb/s. In a previous paper, we presented an architecture which achieves this data rate contingent on consistent 25 to 1 compression of lithography data, and on implementation of a decoder-writer chip with a real-time decompressor fabricated on the same chip as the massively parallel array of lithography writers. In this paper, we examine the compression efficiency of a spectrum of techniques suitable for lithography data, including two industry standards JBIG and JPEG-LS, a wavelet based technique SPIHT, general file compression techniques ZIP and BZIP2, our own 2D-LZ technique, and a simple list-of-rectangles representation RECT. Layouts rasterized both to black-and-white pixels, and to 32 level gray pixels are considered. Based on compression efficiency, JBIG, ZIP, 2D-LZ, and BZIP2 are found to be strong candidates for application to maskless lithography data, in many cases far exceeding the required compression ratio of 25. To demonstrate the feasibility of implementing the decoder-writer chip, we consider the design of a hardware decoder based on ZIP, the simplest of the four candidate techniques. The basic algorithm behind ZIP compression is Lempel-Ziv 1977 (LZ77), and the design parameters of LZ77 decompression are optimized to minimize circuit usage while maintaining compression efficiency.
Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs
NASA Astrophysics Data System (ADS)
Weiss, Joel Todd
Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.
Directional x-ray dark-field imaging of strongly ordered systems
NASA Astrophysics Data System (ADS)
Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz
2010-12-01
Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.
Cluster: A New Application for Spatial Analysis of Pixelated Data for Epiphytotics.
Nelson, Scot C; Corcoja, Iulian; Pethybridge, Sarah J
2017-12-01
Spatial analysis of epiphytotics is essential to develop and test hypotheses about pathogen ecology, disease dynamics, and to optimize plant disease management strategies. Data collection for spatial analysis requires substantial investment in time to depict patterns in various frames and hierarchies. We developed a new approach for spatial analysis of pixelated data in digital imagery and incorporated the method in a stand-alone desktop application called Cluster. The user isolates target entities (clusters) by designating up to 24 pixel colors as nontargets and moves a threshold slider to visualize the targets. The app calculates the percent area occupied by targeted pixels, identifies the centroids of targeted clusters, and computes the relative compass angle of orientation for each cluster. Users can deselect anomalous clusters manually and/or automatically by specifying a size threshold value to exclude smaller targets from the analysis. Up to 1,000 stochastic simulations randomly place the centroids of each cluster in ranked order of size (largest to smallest) within each matrix while preserving their calculated angles of orientation for the long axes. A two-tailed probability t test compares the mean inter-cluster distances for the observed versus the values derived from randomly simulated maps. This is the basis for statistical testing of the null hypothesis that the clusters are randomly distributed within the frame of interest. These frames can assume any shape, from natural (e.g., leaf) to arbitrary (e.g., a rectangular or polygonal field). Cluster summarizes normalized attributes of clusters, including pixel number, axis length, axis width, compass orientation, and the length/width ratio, available to the user as a downloadable spreadsheet. Each simulated map may be saved as an image and inspected. Provided examples demonstrate the utility of Cluster to analyze patterns at various spatial scales in plant pathology and ecology and highlight the limitations, trade-offs, and considerations for the sensitivities of variables and the biological interpretations of results. The Cluster app is available as a free download for Apple computers at iTunes, with a link to a user guide website.
NASA Astrophysics Data System (ADS)
Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon
2008-02-01
This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.
Taguchi, Katsuyuki; Stierstorfer, Karl; Polster, Christoph; Lee, Okkyun; Kappler, Steffen
2018-05-01
The interpixel cross-talk of energy-sensitive photon counting x-ray detectors (PCDs) has been studied and an analytical model (version 2.1) has been developed for double-counting between neighboring pixels due to charge sharing and K-shell fluorescence x-ray emission followed by its reabsorption (Taguchi K, et al., Medical Physics 2016;43(12):6386-6404). While the model version 2.1 simulated the spectral degradation well, it had the following problems that has been found to be significant recently: (1) The spectrum is inaccurate with smaller pixel sizes; (2) the charge cloud size must be smaller than the pixel size; (3) the model underestimates the spectrum/counts for 10-40 keV; and (4) the model version 2.1 cannot handlen-tuple-counting withn > 2 (i.e., triple-counting or higher). These problems are inherent to the design of the model version 2.1; therefore, we developed a new model and addressed these problems in this study. We propose a new PCD cross-talk model (version 3.2; Pc TK for "photon counting toolkit") that is based on a completely different design concept from the previous version. It uses a numerical approach and starts with a 2-D model of charge sharing (as opposed to an analytical approach and a 1-D model with version 2.1) and addresses all of the four problems. The model takes the following factors into account: (1) shift-variant electron density of the charge cloud (Gaussian-distributed), (2) detection efficiency, (3) interactions between photons and PCDs via photoelectric effect, and (4) electronic noise. Correlated noisy PCD data can be generated using either a multivariate normal random number generator or a Poisson random number generator. The effect of the two parameters, the effective charge cloud diameter (d 0 ) and pixel size (d pix ), was studied and results were compared with Monte Carlo simulations and the previous model version 2.1. Finally, a script for the workflow for CT image quality assessment has been developed, which started with a few material density images, generated material-specific sinogram (line integrals) data, noisy PCD data with spectral distortion using the model version 3.2, and reconstructed PCD- CT images for four energy windows. The model version 3.2 addressed all of the four problems listed above. The spectra withd pix = 56-113 μm agreed with that of Medipix3 detector withd pix = 55-110 μm without charge summing mode qualitatively. The counts for 10-40 keV were larger than the previous model (version 2.1) and agreed with MC simulations very well (root-mean-square difference values with model version 3.2 were decreased to 16%-67% of the values with version 2.1). There were many non-zero off-diagonal elements withn-tuple-counting withn > 2 in the normalized covariance matrix of 3 × 3 neighboring pixels. Reconstructed images showed biases and artifacts attributed to the spectral distortion due to the charge sharing and fluorescence x rays. We have developed a new PCD model for spatio-energetic cross-talk and correlation between PCD pixels. The workflow demonstrated the utility of the model for general or task-specific image quality assessments for the PCD- CT.Note: The program (Pc TK) and the workflow scripts have been made available to academic researchers. Interested readers should visit the website (pctk.jhu.edu) or contact the corresponding author. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Marion-Ouellet, Laurence Olivier
Faced with the threat of nuclear terrorism, many countries have purchased radioactive material detectors to protect their borders. These systems usually detect gamma, beta or alpha ray emissions coming from uranium, radium, cesium or other radioactive material. However, the radioactive source can be concealed by thick lead shielding and radiation absorbing material. With enough shielding, an individual wishing to smuggle illicit nuclear material could cross borders without alerting the authorities. To address this risk, several laboratories worldwide are working on muon tomography technology. This technique aims to detect shielded nuclear material by measuring the deflection of a cosmic muon after crossing the cargo of interest. Since this deviation is a function of the Z number of atoms (the number of protons inside the nucleus), it is possible to determine the contents of the cargo. To calculate the angular deviation, we must first measure the position of the muon on four succeding horizontal planes (two pre-cargo, two after). This task is traditionally assigned to wire chambers or scintillators detectors but could also be fulfilled by CCD detectors (Charge-Coupled Devices). This work specifically addresses the use of CCDs for muon tomography. This thesis' objective is to determine the feasibility of using a commercial CCD based muon detector. To answer this question, numerical simulations have been performed using the software Geant4. This work allows us to obtain the theoretical energy deposition of muons of various kinetic energies into a silicon wafer representing a CCD chip. These results are then compared to numerical values derived from the theory presented in the literature to verify their validity. The muons' energy is varied from 50 MeV to 1 TeV and silicium thicknesses of 300 and 775 mum are studied. The results obtained indicate that a muon of 4 GeV (most probable cosmic muon energy) should deposit 106 and 281 keV for an average thickness of 300 and 775 mum respectively, which translates to 28 000 and 76 000 electron-hole pairs as signal for the two thicknesses. All the results obtained through Geant4 are consistent with the known theory of energy deposits in thin semiconductor materials. A practical experimentation was also considered, using an astronomical camera DMK51 AU02.AS to capture a series of images hidden from light with the camera turned towards the sky. The pixels presenting a high intensity are considered to be the consequence of the passage of a muon. The expected rate of detection according to the size of the detector was 0.372 muons per minute but the results were 0.1578 muons per minute for data taken inside Polytechnique and 0.1615 for images taken outside. Therefore, the presence of about two meters of concrete above the camera does not significantly affect the detectable muon flux. However, the ratio of 40 % between expected signal and the observations is explained by the small size of the sensitive area of a pixel when compared to its total size. Components such as electrodes and differently doped silicon occupy a certain area in the pixel causing it, in the eyes of the muon, to be much smaller. A smaller pixel will ensure a smaller expected muon flux. Also, the possibility that the energy deposition is simply too small in some cases to be detected is also studied in the results section and solutions to resolve this problem are presented in the conclusion.
Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D.; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N.; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-01-01
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors. PMID:25242695
Filling schemes at submicron scale: development of submicron sized plasmonic colour filters.
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-09-22
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors.
Lee, Joohyeong; You, Jinyoung; Lee, Geun-Shik; Hyun, Sang-Hwan; Lee, Eunsong
2013-09-01
The objective of this study was to examine the developmental competence of pig oocytes in relation to the size of the perivitelline space (PVS) of oocytes matured in vitro. Immature oocytes were matured in medium 199 or porcine zygote medium (PZM)-3 containing 108 or 61.6 mM NaCl. In vitro-matured (IVM) oocytes were examined for intracellular glutathione (GSH) level; cyclin-dependent kinase 1 (CDK1), proliferating cell nuclear antigen (PCNA), and extracellular signal-regulated kinase 2 (ERK2) mRNA levels; and developmental competence after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). IVM oocytes with a larger PVS had higher (P < 0.05) levels of intracellular GSH (1.00 pixels/oocyte vs. 0.57 pixels/oocyte) and blastocyst formation (54.3% vs. 37.3%) after PA than oocytes with a smaller PVS. Culturing oocytes for maturation in PZM-3 with reduced (61.6 mM) NaCl increased (P < 0.05) the size of the PVS (6.4 µm vs. 2.8 µm) compared to control oocytes that were matured in normal PZM-3 containing 108 mM NaCl. Moreover, oocytes with a larger PVS showed higher CDK1, PCNA, and ERK2 mRNA and intracellular GSH levels (1.6 pixels/oocyte vs. 1.2 pixels/oocyte) and increased blastocyst formation after PA (52.1% vs. 40.6%) and SCNT (31.8% vs. 18.2%) than control oocytes. Our results demonstrate that pig oocytes with a large PVS have greater developmental competence after PA and SCNT, which is attributed to improved cytoplasmic maturation based on the enhanced GSH level and transcription factor expression. Further, enlargement of the PVS by culturing in low-NaCl medium improves the developmental competence of pig oocytes. Copyright © 2013 Wiley Periodicals, Inc.
Beyond the resolution limit: subpixel resolution in animals and now in silicon
NASA Astrophysics Data System (ADS)
Wilcox, M. J.
2007-09-01
Automatic acquisition of aerial threats at thousands of kilometers distance requires high sensitivity to small differences in contrast and high optical quality for subpixel resolution, since targets occupy much less surface area than a single pixel. Targets travel at high speed and break up in the re-entry phase. Target/decoy discrimination at the earliest possible time is imperative. Real time performance requires a multifaceted approach with hyperspectral imaging and analog processing allowing feature extraction in real time. Hyperacuity Systems has developed a prototype chip capable of nonlinear increase in resolution or subpixel resolution far beyond either pixel size or spacing. Performance increase is due to a biomimetic implementation of animal retinas. Photosensitivity is not homogeneous across the sensor surface, allowing pixel parsing. It is remarkably simple to provide this profile to detectors and we showed at least three ways to do so. Individual photoreceptors have a Gaussian sensitivity profile and this nonlinear profile can be exploited to extract high-resolution. Adaptive, analog circuitry provides contrast enhancement, dynamic range setting with offset and gain control. Pixels are processed in parallel within modular elements called cartridges like photo-receptor inputs in fly eyes. These modular elements are connected by a novel function for a cell matrix known as L4. The system is exquisitely sensitive to small target motion and operates with a robust signal under degraded viewing conditions, allowing detection of targets smaller than a single pixel or at greater distance. Therefore, not only is instantaneous feature extraction possible but also subpixel resolution. Analog circuitry increases processing speed with more accurate motion specification for target tracking and identification.
Singh, Warsha; Örnólfsdóttir, Erla B.; Stefansson, Gunnar
2014-01-01
An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was and deg that resulted in error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately cm was seen, which could be attributed to pixel error, where each pixel represented cm. After correcting for this difference the estimated heights ranged from cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region. PMID:25303243
Singh, Warsha; Örnólfsdóttir, Erla B; Stefansson, Gunnar
2014-01-01
An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was 1.3 and 2.3 deg that resulted in <2% error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately 0.5 cm was seen, which could be attributed to pixel error, where each pixel represented 0.24 x 0.27 cm. After correcting for this difference the estimated heights ranged from 3.8-9.3 cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region.
NASA Astrophysics Data System (ADS)
MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.
1984-08-01
In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Monte Carlo Optimization of Crystal Configuration for Pixelated Molecular SPECT Scanners
NASA Astrophysics Data System (ADS)
Mahani, Hojjat; Raisali, Gholamreza; Kamali-Asl, Alireza; Ay, Mohammad Reza
2017-02-01
Resolution-sensitivity-PDA tradeoff is the most challenging problem in design and optimization of pixelated preclinical SPECT scanners. In this work, we addressed such a challenge from a crystal point-of-view by looking for an optimal pixelated scintillator using GATE Monte Carlo simulation. Various crystal configurations have been investigated and the influence of different pixel sizes, pixel gaps, and three scintillators on tomographic resolution, sensitivity, and PDA of the camera were evaluated. The crystal configuration was then optimized using two objective functions: the weighted-sum and the figure-of-merit methods. The CsI(Na) reveals the highest sensitivity of the order of 43.47 cps/MBq in comparison to the NaI(Tl) and the YAP(Ce), for a 1.5×1.5 mm2 pixel size and 0.1 mm gap. The results show that the spatial resolution, in terms of FWHM, improves from 3.38 to 2.21 mm while the sensitivity simultaneously deteriorates from 42.39 cps/MBq to 27.81 cps/MBq when pixel size varies from 2×2 mm2 to 0.5×0.5 mm2 for a 0.2 mm gap, respectively. The PDA worsens from 0.91 to 0.42 when pixel size decreases from 0.5×0.5 mm2 to 1×1 mm2 for a 0.2 mm gap at 15° incident-angle. The two objective functions agree that the 1.5×1.5 mm2 pixel size and 0.1 mm Epoxy gap CsI(Na) configuration provides the best compromise for small-animal imaging, using the HiReSPECT scanner. Our study highlights that crystal configuration can significantly affect the performance of the camera, and thereby Monte Carlo optimization of pixelated detectors is mandatory in order to achieve an optimal quality tomogram.
NASA Astrophysics Data System (ADS)
Zou, Z.; Xiao, X.
2015-12-01
With a high temporal resolution and a large covering area, MODIS data are particularly useful in assessing vegetation destruction and recovery of a wide range of areas. In this study, MOD13Q1 data of the growing season (Mar. to Nov.) are used to calculate the Maximum NDVI (NDVImax) of each year. This study calculates each pixel's mean and standard deviation of the NDVImaxs in the 8 years before the earthquake. If the pixel's NDVImax of 2008 is two standard deviation smaller than the mean NDVImax, this pixel is detected as a vegetation destructed pixel. For each vegetation destructed pixel, its similar pixels of the same vegetation type are selected within the latitude difference of 0.5 degrees, altitude difference of 100 meters and slope difference of 3 degrees. Then the NDVImax difference of each vegetation destructed pixel and its similar pixels are calculated. The 5 similar pixels with the smallest NDVImax difference in the 8 years before the earthquake are selected as reference pixels. The mean NDVImaxs of these reference pixels after the earthquake are calculated and serve as the criterion to assess the vegetation recovery process.
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...
2015-09-06
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm
Gu, Shi; Wang, Yves T; Ma, Pei; Werdich, Andreas A; Rollins, Andrew M; Jenkins, Michael W
2015-01-01
Cardiac conduction maturation is an important and integral component of heart development. Optical mapping with voltage-sensitive dyes allows sensitive measurements of electrophysiological signals over the entire heart. However, accurate measurements of conduction velocity during early cardiac development is typically hindered by low signal-to-noise ratio (SNR) measurements of action potentials. Here, we present a novel image processing approach based on least squares optimizations, which enables high-resolution, low-noise conduction velocity mapping of smaller tubular hearts. First, the action potential trace measured at each pixel is fit to a curve consisting of two cumulative normal distribution functions. Then, the activation time at each pixel is determined based on the fit, and the spatial gradient of activation time is determined with a two-dimensional (2D) linear fit over a square-shaped window. The size of the window is adaptively enlarged until the gradients can be determined within a preset precision. Finally, the conduction velocity is calculated based on the activation time gradient, and further corrected for three-dimensional (3D) geometry that can be obtained by optical coherence tomography (OCT). We validated the approach using published activation potential traces based on computer simulations. We further validated the method by adding artificially generated noise to the signal to simulate various SNR conditions using a curved simulated image (digital phantom) that resembles a tubular heart. This method proved to be robust, even at very low SNR conditions (SNR = 2-5). We also established an empirical equation to estimate the maximum conduction velocity that can be accurately measured under different conditions (e.g. sampling rate, SNR, and pixel size). Finally, we demonstrated high-resolution conduction velocity maps of the quail embryonic heart at a looping stage of development. PMID:26114034
Comparative data compression techniques and multi-compression results
NASA Astrophysics Data System (ADS)
Hasan, M. R.; Ibrahimy, M. I.; Motakabber, S. M. A.; Ferdaus, M. M.; Khan, M. N. H.
2013-12-01
Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W.
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation ofmore » fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs,” Proc. Inst. Mech. Eng., Part H 223, 211–236 (2009)]. Results: The AVOT method correctly quantified the isotropic and anisotropic surfaces for all image sizes and scales. Values of FS{sub Sta} were significantly different (P < 0.05) between the isotropic surfaces. Using the VOT and QRG methods no differences were found at large scales for the isotropic surfaces that are smaller than 64 × 64 and 48 × 48 pixels, respectively, and at some scales for the anisotropic surfaces with size 48 × 48 pixels. Compared to controls, using the AVOT and QRG methods the authors found that OA TB textures were less rough (P < 0.05) in the dominating and horizontal directions (i.e., lower FS{sub Sta} and FS{sub H}), rougher in the vertical direction (i.e., higher FS{sub V}) and less anisotropic (i.e., higher StrS) than controls. No differences were found using the VOT method. Conclusions: The AVOT method is well suited for the analysis of bone texture in hand radiographs and it could be potentially useful for early detection and prediction of hand OA.« less
Laser pixelation of thick scintillators for medical imaging applications: x-ray studies
NASA Astrophysics Data System (ADS)
Sabet, Hamid; Kudrolli, Haris; Marton, Zsolt; Singh, Bipin; Nagarkar, Vivek V.
2013-09-01
To achieve high spatial resolution required in nuclear imaging, scintillation light spread has to be controlled. This has been traditionally achieved by introducing structures in the bulk of scintillation materials; typically by mechanical pixelation of scintillators and fill the resultant inter-pixel gaps by reflecting materials. Mechanical pixelation however, is accompanied by various cost and complexity issues especially for hard, brittle and hygroscopic materials. For example LSO and LYSO, hard and brittle scintillators of interest to medical imaging community, are known to crack under thermal and mechanical stress; the material yield drops quickly with large arrays with high aspect ratio pixels and therefore the pixelation process cost increases. We are utilizing a novel technique named Laser Induced Optical Barriers (LIOB) for pixelation of scintillators that overcomes the issues associated with mechanical pixelation. In this technique, we can introduce optical barriers within the bulk of scintillator crystals to form pixelated arrays with small pixel size and large thickness. We applied LIOB to LYSO using a high-frequency solid-state laser. Arrays with different crystal thickness (5 to 20 mm thick), and pixel size (0.8×0.8 to 1.5×1.5 mm2) were fabricated and tested. The width of the optical barriers were controlled by fine-tuning key parameters such as lens focal spot size and laser energy density. Here we report on LIOB process, its optimization, and the optical crosstalk measurements using X-rays. There are many applications that can potentially benefit from LIOB including but not limited to clinical/pre-clinical PET and SPECT systems, and photon counting CT detectors.
Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues
NASA Astrophysics Data System (ADS)
Markoski, P. R.; Rolim, S. B. A.
2012-07-01
The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.
VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)
NASA Astrophysics Data System (ADS)
Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.
2016-09-01
The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
How Many Pixels Does It Take to Make a Good 4"×6" Print? Pixel Count Wars Revisited
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
Digital still cameras emerged following the introduction of the Sony Mavica analog prototype camera in 1981. These early cameras produced poor image quality and did not challenge film cameras for overall quality. By 1995 digital still cameras in expensive SLR formats had 6 mega-pixels and produced high quality images (with significant image processing). In 2005 significant improvement in image quality was apparent and lower prices for digital still cameras (DSCs) started a rapid decline in film usage and film camera sells. By 2010 film usage was mostly limited to professionals and the motion picture industry. The rise of DSCs was marked by a “pixel war” where the driving feature of the cameras was the pixel count where even moderate cost, ˜120, DSCs would have 14 mega-pixels. The improvement of CMOS technology pushed this trend of lower prices and higher pixel counts. Only the single lens reflex cameras had large sensors and large pixels. The drive for smaller pixels hurt the quality aspects of the final image (sharpness, noise, speed, and exposure latitude). Only today are camera manufactures starting to reverse their course and producing DSCs with larger sensors and pixels. This paper will explore why larger pixels and sensors are key to the future of DSCs.
High-speed massively parallel scanning
Decker, Derek E [Byron, CA
2010-07-06
A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.
Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi
2012-11-01
The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.
Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M. D.; Jogler, T.; Dumm, J.
In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less
Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array
Wood, M. D.; Jogler, T.; Dumm, J.; ...
2015-06-07
In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less
Computational scalability of large size image dissemination
NASA Astrophysics Data System (ADS)
Kooper, Rob; Bajcsy, Peter
2011-01-01
We have investigated the computational scalability of image pyramid building needed for dissemination of very large image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and airborne imaging, and high resolution scanners. The term 'large' is understood from a user perspective which means either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the speed and preservation objectives.
The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors
NASA Astrophysics Data System (ADS)
de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.
2018-01-01
A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.
Area estimation of environmental phenomena from NOAA-n satellite data. [TIROS N satellite
NASA Technical Reports Server (NTRS)
Tappan, G. (Principal Investigator); Miller, G. E.
1982-01-01
A technique for documenting changes in size of NOAA-n pixels in order to calibrate the data for use in performing area calculations is described. Based on Earth-satellite geometry, a function for calculating the effective pixel size, measured in terms of ground area, on any given pixel was derived. The equation is an application of the law of sines plus an arclength formula. Effective pixel dimensions for NOAA 6 and 7 satellites for all pixels between nadir and the extreme view angles are presented. The NOAA 6 data were used to estimate the areas of several lakes, with an accuracy within 5%. Sources of error are discussed.
Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.
Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang
2015-08-24
Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.
1999-01-01
Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.
1999-01-01
Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.
Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun
2013-05-06
In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.
NASA Technical Reports Server (NTRS)
Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John
2016-01-01
In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.
Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications
Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean
2014-01-01
An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.
NASA Astrophysics Data System (ADS)
Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung
2008-11-01
In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.
NASA Astrophysics Data System (ADS)
Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.
2018-03-01
We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.
Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...
2017-12-18
Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.
Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less
Aircraft Survivability: Susceptibility Reduction, Spring 2003
2003-01-01
approach to implementing the real-time nonuniformity correction (NUC) hardware. Packaging and size constraints would not prohibit the future...92 Hz MWIR #3 Imager 640x512 InSb FPA Band: 3µm–5µm Pixel size: 24µm Max frame rate: 92 Hz LWIR Imager 640x512 HgCdTe FPA Band: 3µm–5µm Pixel size
Integrated Lens Antennas for Multi-Pixel Receivers
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam
2011-01-01
Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi-pixel receivers and imagers for future planetary and astronomical instruments. These antenna arrays can also be used in radars and imagers for contraband detection at stand-off distances. This will be enabling technology for future balloon-borne, smaller explorer class mission (SMEX), and other missions, and for a wide range of proposed planetary sounders and radars for planetary bodies.
High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics
NASA Technical Reports Server (NTRS)
Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.;
2010-01-01
High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.
2009-05-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).
Circuit for high resolution decoding of multi-anode microchannel array detectors
NASA Technical Reports Server (NTRS)
Kasle, David B. (Inventor)
1995-01-01
A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.
Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Porter, J. G.
1997-01-01
When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.
Limits in point to point resolution of MOS based pixels detector arrays
NASA Astrophysics Data System (ADS)
Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.
2018-01-01
In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.
Production and integration of the ATLAS Insertable B-Layer
NASA Astrophysics Data System (ADS)
Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.
2018-05-01
During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.
NASA Technical Reports Server (NTRS)
Franklin, Janet; Simonett, David
1988-01-01
The Li-Strahler reflectance model, driven by LANDSAT Thematic Mapper (TM) data, provided regional estimates of tree size and density within 20 percent of sampled values in two bioclimatic zones in West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size distribution of trees) and in the imagery (spectral signatures of scene components). Trees are treated as simply shaped objects, and multispectral reflectance of a pixel is assumed to be related only to the proportions of tree crown, shadow, and understory in the pixel. These, in turn, are a direct function of the number and size of trees, the solar illumination angle, and the spectral signatures of crown, shadow and understory. Given the variance in reflectance from pixel to pixel within a homogeneous area of woodland, caused by the variation in the number and size of trees, the model can be inverted to give estimates of average tree size and density. Because the inversion is sensitive to correct determination of component signatures, predictions are not accurate for small areas.
Balasubramaniam, Saranya C; Mohney, Brian G; Bang, Genie M; Link, Thomas P; Pulido, Jose S
2012-09-01
The purpose of this article is to demonstrate the utility of the large spot size (LSS) setting using a binocular laser indirect delivery system for peripheral ablation in children. One patient with bilateral retinopathy of prematurity received photocoagulation with standard spot size burns placed adjacently to LSS burns. Using a pixel analysis program called Image J on the Retcam picture, the areas of each retinal spot size were determined in units of pixels, giving a standard spot range of 805 to 1294 pixels and LSS range of 1699 to 2311 pixels. Additionally, fluence was calculated using theoretical retinal areas produced by each spot size: the standard spot setting was 462 mJ/mm2 and the LSS setting was 104 mJ/mm2. For eyes with retinopathy of prematurity, our study shows that LSS laser indirect delivery halves the number of spots required for treatment and reduces fluence by almost one-quarter, producing more uniform spots.
Oh, Sungjin; Ahn, Jae-Hyun; Lee, Sangmin; Ko, Hyoungho; Seo, Jong Mo; Goo, Yong-Sook; Cho, Dong-il Dan
2015-01-01
Retinal prosthetic devices stimulate retinal nerve cells with electrical signals proportional to the incident light intensities. For a high-resolution retinal prosthesis, it is necessary to reduce the size of the stimulator pixels as much as possible, because the retinal nerve cells are concentrated in a small area of approximately 5 mm × 5 mm. In this paper, a miniaturized biphasic current stimulator integrated circuit is developed for subretinal stimulation and tested in vitro. The stimulator pixel is miniaturized by using a complementary metal-oxide-semiconductor (CMOS) image sensor composed of three transistors. Compared to a pixel that uses a four-transistor CMOS image sensor, this new design reduces the pixel size by 8.3%. The pixel size is further reduced by simplifying the stimulation-current generating circuit, which provides a 43.9% size reduction when compared to the design reported to be the most advanced version to date for subretinal stimulation. The proposed design is fabricated using a 0.35 μm bipolar-CMOS-DMOS process. Each pixel is designed to fit in a 50 μ m × 55 μm area, which theoretically allows implementing more than 5000 pixels in the 5 mm × 5 mm area. Experimental results show that a biphasic current in the range of 0 to 300 μA at 12 V can be generated as a function of incident light intensities. Results from in vitro experiments with rd1 mice indicate that the proposed method can be effectively used for retinal prosthesis with a high resolution.
Neighborhood size of training data influences soil map disaggregation
USDA-ARS?s Scientific Manuscript database
Soil class mapping relies on the ability of sample locations to represent portions of the landscape with similar soil types; however, most digital soil mapping (DSM) approaches intersect sample locations with one raster pixel per covariate layer regardless of pixel size. This approach does not take ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Randolph R; Campbell, David V; Shinde, Subhash L
A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less
Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P
2017-09-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.
Protein structure determination by electron diffraction using a single three-dimensional nanocrystal
Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.
2017-01-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237
Optical design considerations when imaging the fundus with an adaptive optics correction
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.
2008-06-01
Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.
NASA Astrophysics Data System (ADS)
Ramsey, J. L.; Walsh, K. F.; Smith, M.; Deegan, J.
2016-05-01
With the move to smaller pixel sizes in the longwave IR region there has been a push for shorter focal length lenses that are smaller, cheaper and lighter and that resolve lower spatial frequencies. As a result lenses must have better correction for both chromatic and monochromatic aberrations. This leads to the increased use of aspheres and diffractive optical elements (kinoforms). With recent developments in the molding of chalcogenide materials these aspheres and kinoforms are more cost effective to manufacture. Without kinoforms the axial color can be on the order of 15 μm which degrades the performance of the lens at the Nyquist frequency. The kinoforms are now on smaller elements and are correcting chromatic aberration which is on the order of the design wavelength. This leads to kinoform structures that do not require large phase changes and therefore have 1.5 to just over 2 zones. The question becomes how many zones are required to correct small amounts of chromatic aberration in the system and are they functioning as predicted by the lens design software? We investigate both the design performance and the as-built performance of two designs that incorporate kinoforms for the correction of axial chromatic aberration.
NASA Astrophysics Data System (ADS)
Na, Jun-Seok; Kwon, Oh-Kyong
2014-01-01
We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.
Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC
NASA Astrophysics Data System (ADS)
Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.
2018-06-01
We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.
VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)
NASA Astrophysics Data System (ADS)
Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.
2015-11-01
The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
Bøcher, Peder Klith; McCloy, Keith R
2006-02-01
In this investigation, the characteristics of the average local variance (ALV) function is investigated through the acquisition of images at different spatial resolutions of constructed scenes of regular patterns of black and white squares. It is shown that the ALV plot consistently peaks at a spatial resolution in which the pixels has a size corresponding to half the distance between scene objects, and that, under very specific conditions, it also peaks at a spatial resolution in which the pixel size corresponds to the whole distance between scene objects. It is argued that the peak at object distance when present is an expression of the Nyquist sample rate. The presence of this peak is, hence, shown to be a function of the matching between the phase of the scene pattern and the phase of the sample grid, i.e., the image. When these phases match, a clear and distinct peak is produced on the ALV plot. The fact that the peak at half the distance consistently occurs in the ALV plot is linked to the circumstance that the sampling interval (distance between pixels) and the extent of the sampling unit (size of pixels) are equal. Hence, at twice the Nyquist sampling rate, each fundamental period of the pattern is covered by four pixels; therefore, at least one pixel is always completely embedded within one pattern element, regardless of sample scene phase. If the objects in the scene are scattered with a distance larger than their extent, the peak will be related to the size by a factor larger than 1/2. This is suggested to be the explanation to the results presented by others that the ALV plot is related to scene-object size by a factor of 1/2-3/4.
NASA Technical Reports Server (NTRS)
Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan
2013-01-01
Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.
The Infrared Spectrograph on the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Roellig, Thomas L.
2017-01-01
The Infrared Spectrograph (IRS) instrument on the Spitzer Space Telescope covered the 5 to 38 micron wavelength range at low and medium spectral resolutions. The instrument was very popular during Spitzers 5.7 year-long cold mission. Every year it attracted the most proposals, and garnered more observing hours, of any of the science instruments. This success was the culmination of a very long development period, where the instrument design changed radically. When the instrument was first selected by NASA in 1984 it was very complicated. As part of the overall reduction of the size of the SIRTF Observatory following its recovery from the missions cancellation in 1991 the IRS became smaller and much, much simpler. The only aspect of the instrument that increased from the original design was the pixel count of the detectors.
Performance of the JPEG Estimated Spectrum Adaptive Postfilter (JPEG-ESAP) for Low Bit Rates
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2016-01-01
Frequency-based, pixel-adaptive filtering using the JPEG-ESAP algorithm for low bit rate JPEG formatted color images may allow for more compressed images while maintaining equivalent quality at a smaller file size or bitrate. For RGB, an image is decomposed into three color bands--red, green, and blue. The JPEG-ESAP algorithm is then applied to each band (e.g., once for red, once for green, and once for blue) and the output of each application of the algorithm is rebuilt as a single color image. The ESAP algorithm may be repeatedly applied to MPEG-2 video frames to reduce their bit rate by a factor of 2 or 3, while maintaining equivalent video quality, both perceptually, and objectively, as recorded in the computed PSNR values.
NASA Astrophysics Data System (ADS)
Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.
2018-01-01
An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.
The FE-I4 Pixel Readout Chip and the IBL Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbero, Marlon; Arutinov, David; Backhaus, Malte
2012-05-01
FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on testmore » results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.« less
NASA Astrophysics Data System (ADS)
Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai
2016-08-01
Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.
Performance assessment of a compressive sensing single-pixel imaging system
NASA Astrophysics Data System (ADS)
Du Bosq, Todd W.; Preece, Bradley L.
2017-04-01
Conventional sensors measure the light incident at each pixel in a focal plane array. Compressive sensing (CS) involves capturing a smaller number of unconventional measurements from the scene, and then using a companion process to recover the image. CS has the potential to acquire imagery with equivalent information content to a large format array while using smaller, cheaper, and lower bandwidth components. However, the benefits of CS do not come without compromise. The CS architecture chosen must effectively balance between physical considerations, reconstruction accuracy, and reconstruction speed to meet operational requirements. Performance modeling of CS imagers is challenging due to the complexity and nonlinearity of the system and reconstruction algorithm. To properly assess the value of such systems, it is necessary to fully characterize the image quality, including artifacts and sensitivity to noise. Imagery of a two-handheld object target set was collected using an shortwave infrared single-pixel CS camera for various ranges and number of processed measurements. Human perception experiments were performed to determine the identification performance within the trade space. The performance of the nonlinear CS camera was modeled by mapping the nonlinear degradations to an equivalent linear shift invariant model. Finally, the limitations of CS modeling techniques are discussed.
Fast distributed large-pixel-count hologram computation using a GPU cluster.
Pan, Yuechao; Xu, Xuewu; Liang, Xinan
2013-09-10
Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.
How many pixels does it take to make a good 4"×6" print? Pixel count wars revisited
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2011-01-01
In the early 1980's the future of conventional silver-halide photographic systems was of great concern due to the potential introduction of electronic imaging systems then typified by the Sony Mavica analog electronic camera. The focus was on the quality of film-based systems as expressed in the number of equivalent number pixels and bits-per-pixel, and how many pixels would be required to create an equivalent quality image from a digital camera. It was found that 35-mm frames, for ISO 100 color negative film, contained equivalent pixels of 12 microns for a total of 18 million pixels per frame (6 million pixels per layer) with about 6 bits of information per pixel; the introduction of new emulsion technology, tabular AgX grains, increased the value to 8 bit per pixel. Higher ISO speed films had larger equivalent pixels, fewer pixels per frame, but retained the 8 bits per pixel. Further work found that a high quality 3.5" x 5.25" print could be obtained from a three layer system containing 1300 x 1950 pixels per layer or about 7.6 million pixels in all. In short, it became clear that when a digital camera contained about 6 million pixels (in a single layer using a color filter array and appropriate image processing) that digital systems would challenge and replace conventional film-based system for the consumer market. By 2005 this became the reality. Since 2005 there has been a "pixel war" raging amongst digital camera makers. The question arises about just how many pixels are required and are all pixels equal? This paper will provide a practical look at how many pixels are needed for a good print based on the form factor of the sensor (sensor size) and the effective optical modulation transfer function (optical spread function) of the camera lens. Is it better to have 16 million, 5.7-micron pixels or 6 million 7.8-micron pixels? How does intrinsic (no electronic boost) ISO speed and exposure latitude vary with pixel size? A systematic review of these issues will be provided within the context of image quality and ISO speed models developed over the last 15 years.
A micron resolution optical scanner for characterization of silicon detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.
2014-02-15
The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less
Respiratory rate estimation from the built-in cameras of smartphones and tablets.
Nam, Yunyoung; Lee, Jinseok; Chon, Ki H
2014-04-01
This paper presents a method for respiratory rate estimation using the camera of a smartphone, an MP3 player or a tablet. The iPhone 4S, iPad 2, iPod 5, and Galaxy S3 were used to estimate respiratory rates from the pulse signal derived from a finger placed on the camera lens of these devices. Prior to estimation of respiratory rates, we systematically investigated the optimal signal quality of these 4 devices by dividing the video camera's resolution into 12 different pixel regions. We also investigated the optimal signal quality among the red, green and blue color bands for each of these 12 pixel regions for all four devices. It was found that the green color band provided the best signal quality for all 4 devices and that the left half VGA pixel region was found to be the best choice only for iPhone 4S. For the other three devices, smaller 50 × 50 pixel regions were found to provide better or equally good signal quality than the larger pixel regions. Using the green signal and the optimal pixel regions derived from the four devices, we then investigated the suitability of the smartphones, the iPod 5 and the tablet for respiratory rate estimation using three different computational methods: the autoregressive (AR) model, variable-frequency complex demodulation (VFCDM), and continuous wavelet transform (CWT) approaches. Specifically, these time-varying spectral techniques were used to identify the frequency and amplitude modulations as they contain respiratory rate information. To evaluate the performance of the three computational methods and the pixel regions for the optimal signal quality, data were collected from 10 healthy subjects. It was found that the VFCDM method provided good estimates of breathing rates that were in the normal range (12-24 breaths/min). Both CWT and VFCDM methods provided reasonably good estimates for breathing rates that were higher than 26 breaths/min but their accuracy degraded concomitantly with increased respiratory rates. Overall, the VFCDM method provided the best results for accuracy (smaller median error), consistency (smaller interquartile range of the median value), and computational efficiency (less than 0.5 s on 1 min of data using a MATLAB implementation) to extract breathing rates that varied from 12 to 36 breaths/min. The AR method provided the least accurate respiratory rate estimation among the three methods. This work illustrates that both heart rates and normal breathing rates can be accurately derived from a video signal obtained from smartphones, an MP3 player and tablets with or without a flashlight.
NASA Technical Reports Server (NTRS)
Wilcox, Mike
1993-01-01
The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.
Validating Phasing and Geometry of Large Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura
2011-01-01
The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of projecting an optical image on the FPA, the Kepler project developed a method using known defect features in the CCDs to verify proper collection and reassembly of the pixels, thereby avoiding the costs and risks of the optical projection approach. The CCDs composing the Kepler FPA, as all CCDs, had minor defects. At ambient temperature, some pixels look far brighter than they should. These ghot h pixels have a higher rate of charge leakage than the others due to manufacturing variations. They are usually stable over time, and appear at temperatures above 5 oC. The hot pixels on the Kepler FPA were mapped before photometer assembly during module testing. Selected hot pixels were used as target gstars h for the purposes of EEIS testing. gDead h pixels are permanently off, producing a permanently black pixel. These can also be used if there is some illumination of the FPA. During EEIS testing, Dark Current Full Frame Images (FFIs) taken at room temperature were used to create the hot pixel maps for all 84 Kepler photometer CCD channels. Data from two separate nights were used to create two hot pixel maps per channel, which were cross-correlated to remove cosmic ray events which appear to be hot pixels. These hot pixel maps obtained during EEIS testing were compared to the maps made during module testing to verify that the end-to-end data flow was correct.
Lan, Gongpu; Li, Guoqiang
2017-03-07
Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm-920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 ± 1.76 μm-significantly smaller than both the pixel size (14 μm × 28 μm) and the Airy disc (25.82 μm in diameter, calculated at the wavenumber of 7.548 μm -1 ). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as -5.20 dB) than the conventional spectrometer (maximum as -16.84 dB) over the whole imaging depth (2.2 mm).
NASA Astrophysics Data System (ADS)
Lan, Gongpu; Li, Guoqiang
2017-03-01
Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm-920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 ± 1.76 μm—significantly smaller than both the pixel size (14 μm × 28 μm) and the Airy disc (25.82 μm in diameter, calculated at the wavenumber of 7.548 μm-1). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as -5.20 dB) than the conventional spectrometer (maximum as -16.84 dB) over the whole imaging depth (2.2 mm).
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul
2003-01-01
As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to
Hainsworth, A. H.; Lee, S.; Patel, A.; Poon, W. W.; Knight, A. E.
2018-01-01
Aims The spatial resolution of light microscopy is limited by the wavelength of visible light (the ‘diffraction limit’, approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Methods Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8–32 nm) and for SOFI (effective pixel size 80 nm). Results In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Conclusions Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. PMID:28696566
Hainsworth, A H; Lee, S; Foot, P; Patel, A; Poon, W W; Knight, A E
2018-06-01
The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm). In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. © 2017 British Neuropathological Society.
Brüllmann, D D; d'Hoedt, B
2011-05-01
The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Emerson, Charles W.; Lam, Nina Siu-Ngan; Laymon, Charles A.
1997-01-01
The Image Characterization And Modeling System (ICAMS) is a public domain software package that is designed to provide scientists with innovative spatial analytical tools to visualize, measure, and characterize landscape patterns so that environmental conditions or processes can be assessed and monitored more effectively. In this study ICAMS has been used to evaluate how changes in fractal dimension, as a landscape characterization index, and resolution, are related to differences in Landsat images collected at different dates for the same area. Landsat Thematic Mapper (TM) data obtained in May and August 1993 over a portion of the Great Basin Desert in eastern Nevada were used for analysis. These data represent contrasting periods of peak "green-up" and "dry-down" for the study area. The TM data sets were converted into Normalized Difference Vegetation Index (NDVI) images to expedite analysis of differences in fractal dimension between the two dates. These NDVI images were also resampled to resolutions of 60, 120, 240, 480, and 960 meters from the original 30 meter pixel size, to permit an assessment of how fractal dimension varies with spatial resolution. Tests of fractal dimension for two dates at various pixel resolutions show that the D values in the August image become increasingly more complex as pixel size increases to 480 meters. The D values in the May image show an even more complex relationship to pixel size than that expressed in the August image. Fractal dimension for a difference image computed for the May and August dates increase with pixel size up to a resolution of 120 meters, and then decline with increasing pixel size. This means that the greatest complexity in the difference images occur around a resolution of 120 meters, which is analogous to the operational domain of changes in vegetation and snow cover that constitute differences between the two dates.
Optoelectronic retinal prosthesis: system design and performance
NASA Astrophysics Data System (ADS)
Loudin, J. D.; Simanovskii, D. M.; Vijayraghavan, K.; Sramek, C. K.; Butterwick, A. F.; Huie, P.; McLean, G. Y.; Palanker, D. V.
2007-03-01
The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10° visual field, with a full 30° field accessible via eye movements. Pixel sizes are scalable from 100 to 25 µm, corresponding to 640-10 000 pixels on an implant 3 mm in diameter.
Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs
NASA Astrophysics Data System (ADS)
Schug, David; Wehner, Jakob; Goldschmidt, Benjamin; Lerche, Christoph; Dueppenbecker, Peter Michael; Hallen, Patrick; Weissler, Bjoern; Gebhardt, Pierre; Kiessling, Fabian; Schulz, Volkmar
2015-06-01
In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.
Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.
2010-01-01
The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.
Design of measuring system for wire diameter based on sub-pixel edge detection algorithm
NASA Astrophysics Data System (ADS)
Chen, Yudong; Zhou, Wang
2016-09-01
Light projection method is often used in measuring system for wire diameter, which is relatively simpler structure and lower cost, and the measuring accuracy is limited by the pixel size of CCD. Using a CCD with small pixel size can improve the measuring accuracy, but will increase the cost and difficulty of making. In this paper, through the comparative analysis of a variety of sub-pixel edge detection algorithms, polynomial fitting method is applied for data processing in measuring system for wire diameter, to improve the measuring accuracy and enhance the ability of anti-noise. In the design of system structure, light projection method with orthogonal structure is used for the detection optical part, which can effectively reduce the error caused by line jitter in the measuring process. For the electrical part, ARM Cortex-M4 microprocessor is used as the core of the circuit module, which can not only drive double channel linear CCD but also complete the sampling, processing and storage of the CCD video signal. In addition, ARM microprocessor can complete the high speed operation of the whole measuring system for wire diameter in the case of no additional chip. The experimental results show that sub-pixel edge detection algorithm based on polynomial fitting can make up for the lack of single pixel size and improve the precision of measuring system for wire diameter significantly, without increasing hardware complexity of the entire system.
Pixel Dynamics Analysis of Photospheric Spectral Data
2014-11-13
absorption lines centered at 6301.5 Å and 6302.5 Å. The two smaller absorption lines are telluric lines. The analysis is carried out for a range of...cadence and consist of 251 scan lines. These two new sets of SOLIS VSM data also revealed more inconsistent instrument movements between scans, forcing us...SOLIS VSM instrument. The wavelength range shows two photospheric absorption lines, Fe I 6301.5 Å and Fe I 6302.5 Å ), and two smaller telluric
Photon small-field measurements with a CMOS active pixel sensor.
Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G
2015-06-07
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
Performance of an X-Ray Microcalorimeter with a 240 Micron Absorber and a 50 Micron TES Bilayer
NASA Technical Reports Server (NTRS)
Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.;
2017-01-01
We have been developing superconducting transition-edge sensor (TES) microcalorimeters for a variety of potential astrophysics missions, including Athena. The X-ray Integral Field Unit (X-IFU) instrument on this mission requires close-packed pixels on a 0.25 mm pitch, and high quantum efficiency between 0.2 and 12 keV. The traditional approach within our group has been to use square TES bilayers on molybdenum and gold that are between 100 and 140 microns in size, deposited on silicon nitride membranes to provide a weak thermal conductance to a 50 mK heat bath temperature. It has been shown that normal metal stripes on top of the bilayer are needed to keep the unexplained noise at a level consistent with the expected based upon estimates for the non-equilibrium non-linear Johnson noise.In this work we describe a new approach in which we use a square TES bilayer that is 50 microns in size. While the weak link effect is much stronger in this size of TES, we have found that excellent spectral performance can be achieved without the need for any normal metal strips on top of the TES. A spectral performance of 1.58 eV at 6 KeV has been achieved, the best resolution seen in any of our devices with this pixel size. The absence of normal metal stripes has led to more uniform transition shapes, and more reliable excellent spectral performance. The smaller TES size has meant that that the thermal conductance to the heat bath, determined by the perimeter length of the TES and the membrane thickness, is lower than on previous devices, and thus has a lower count rate capability. This is an advantage for low count-rate applications where the slower speed enables easier multiplexing in the read-out, thus potential higher multiplexing factors. In order to recover the higher count rate capabilities, a potential path exits using thicker silicon nitride membranes to increase the thermal conductance to the heat bath.
A 256×256 low-light-level CMOS imaging sensor with digital CDS
NASA Astrophysics Data System (ADS)
Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin
2016-10-01
In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.
Miniaturized LEDs for flat-panel displays
NASA Astrophysics Data System (ADS)
Radauscher, Erich J.; Meitl, Matthew; Prevatte, Carl; Bonafede, Salvatore; Rotzoll, Robert; Gomez, David; Moore, Tanya; Raymond, Brook; Cok, Ronald; Fecioru, Alin; Trindade, António Jose; Fisher, Brent; Goodwin, Scott; Hines, Paul; Melnik, George; Barnhill, Sam; Bower, Christopher A.
2017-02-01
Inorganic light emitting diodes (LEDs) serve as bright pixel-level emitters in displays, from indoor/outdoor video walls with pixel sizes ranging from one to thirty millimeters to micro displays with more than one thousand pixels per inch. Pixel sizes that fall between those ranges, roughly 50 to 500 microns, are some of the most commercially significant ones, including flat panel displays used in smart phones, tablets, and televisions. Flat panel displays that use inorganic LEDs as pixel level emitters (μILED displays) can offer levels of brightness, transparency, and functionality that are difficult to achieve with other flat panel technologies. Cost-effective production of μILED displays requires techniques for precisely arranging sparse arrays of extremely miniaturized devices on a panel substrate, such as transfer printing with an elastomer stamp. Here we present lab-scale demonstrations of transfer printed μILED displays and the processes used to make them. Demonstrations include passive matrix μILED displays that use conventional off-the shelf drive ASICs and active matrix μILED displays that use miniaturized pixel-level control circuits from CMOS wafers. We present a discussion of key considerations in the design and fabrication of highly miniaturized emitters for μILED displays.
Development of pixellated Ir-TESs
NASA Astrophysics Data System (ADS)
Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka
2006-04-01
We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.
Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.
Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki
2014-11-01
Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.
Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes
NASA Astrophysics Data System (ADS)
Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten
2016-09-01
Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7 × 7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.
Improvements on ν-Twin Support Vector Machine.
Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh
2016-07-01
In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Defante, Adrian P; Vreeland, Wyatt N; Benkstein, Kurt D; Ripple, Dean C
2018-05-01
Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels 2 , results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1993-01-01
A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.
Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays
NASA Technical Reports Server (NTRS)
Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.
2008-01-01
LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.
Three-scale analysis of the permeability of a natural shale
NASA Astrophysics Data System (ADS)
Davy, C. A.; Adler, P. M.
2017-12-01
The macroscopic permeability of a natural shale is determined by using structural measurements on three different scales. Transmission electron microscopy yields two-dimensional (2D) images with pixels smaller than 1 nm; these images are used to reconstruct 3D nanostructures. Three-dimensional focused ion beam-scanning electron microscopy (5.95- to 8.48-nm voxel size) provides 3D mesoscale pores of limited relative volume (1.71-5.9%). Micro-computed tomography (700-nm voxel size) provides information on the mineralogy of the shale, including the pores on this scale which do not percolate; synthetic 3D media are derived on the macroscopic scale by a training image technique. Permeability of the nanoscale, of the mesoscale structures and of their superposition is determined by solving the Stokes equation and this enables us to estimate the permeabilities of the 700-nm voxels located within the clay matrix. Finally, the Darcy equation is solved on synthetic 3D macroscale media to obtain the macroscopic permeability which is found in good agreement with experimental results obtained on the centimetric scale.
PRISM project optical instrument
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1994-01-01
The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.
Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita
2015-11-01
Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.
Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique
NASA Astrophysics Data System (ADS)
Michaels, Joshua A.
With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to 60 days for a relatively small enhancement area) severely limits the practical usefulness of fraction-area super-resolution. Fractional-area super-resolution is very sensitive to relative input image co-registration, which must be accurate to a sub-pixel degree. However, use of this technique, if input conditions permit, could be applied as a "pinpoint" super-resolution technique. Such an application could be possible by only applying it to only very small areas with very good input image co-registration.
Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel
2014-01-01
Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990
Phase information contained in meter-scale SAR images
NASA Astrophysics Data System (ADS)
Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda
2007-10-01
The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.
Why is Light Text Harder to Read Than Dark Text?
NASA Technical Reports Server (NTRS)
Scharff, Lauren V.; Ahumada, Albert J.
2005-01-01
Scharff and Ahumada (2002, 2003) measured text legibility for light text and dark text. For paragraph readability and letter identification, responses to light text were slower and less accurate for a given contrast. Was this polarity effect (1) an artifact of our apparatus, (2) a physiological difference in the separate pathways for positive and negative contrast or (3) the result of increased experience with dark text on light backgrounds? To rule out the apparatus-artifact hypothesis, all data were collected on one monitor. Its luminance was measured at all levels used, and the spatial effects of the monitor were reduced by pixel doubling and quadrupling (increasing the viewing distance to maintain constant angular size). Luminances of vertical and horizontal square-wave gratings were compared to assess display speed effects. They existed, even for 4-pixel-wide bars. Tests for polarity asymmetries in display speed were negative. Increased experience might develop full letter templates for dark text, while recognition of light letters is based on component features. Earlier, an observer ran all conditions at one polarity and then switched. If dark and light letters were intermixed, the observer might use component features on all trials and do worse on the dark letters, reducing the polarity effect. We varied polarity blocking (completely blocked, alternating smaller blocks, and intermixed blocks). Letter identification responses times showed polarity effects at all contrasts and display resolution levels. Observers were also more accurate with higher contrasts and more pixels per degree. Intermixed blocks increased the polarity effect by reducing performance on the light letters, but only if the randomized block occurred prior to the nonrandomized block. Perhaps observers tried to use poorly developed templates, or they did not work as hard on the more difficult items. The experience hypothesis and the physiological gain hypothesis remain viable explanations.
NASA Astrophysics Data System (ADS)
Tajfirouze, E.; Reale, F.; Petralia, A.; Testa, P.
2016-01-01
Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 and 335 Å) from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from a random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 Å channel, are signatures of a heating excess that occurred a few minutes before.
Lan, Gongpu; Li, Guoqiang
2017-01-01
Nonlinear sampling of the interferograms in wavenumber (k) space degrades the depth-dependent signal sensitivity in conventional spectral domain optical coherence tomography (SD-OCT). Here we report a linear-in-wavenumber (k-space) spectrometer for an ultra-broad bandwidth (760 nm–920 nm) SD-OCT, whereby a combination of a grating and a prism serves as the dispersion group. Quantitative ray tracing is applied to optimize the linearity and minimize the optical path differences for the dispersed wavenumbers. Zemax simulation is used to fit the point spread functions to the rectangular shape of the pixels of the line-scan camera and to improve the pixel sampling rates. An experimental SD-OCT is built to test and compare the performance of the k-space spectrometer with that of a conventional one. Design results demonstrate that this k-space spectrometer can reduce the nonlinearity error in k-space from 14.86% to 0.47% (by approximately 30 times) compared to the conventional spectrometer. The 95% confidence interval for RMS diameters is 5.48 ± 1.76 μm—significantly smaller than both the pixel size (14 μm × 28 μm) and the Airy disc (25.82 μm in diameter, calculated at the wavenumber of 7.548 μm−1). Test results demonstrate that the fall-off curve from the k-space spectrometer exhibits much less decay (maximum as −5.20 dB) than the conventional spectrometer (maximum as –16.84 dB) over the whole imaging depth (2.2 mm). PMID:28266502
NASA Astrophysics Data System (ADS)
Aschauer, S.; Majewski, P.; Lutz, G.; Soltau, H.; Holl, P.; Hartmann, R.; Schlosser, D.; Paschen, U.; Weyers, S.; Dreiner, S.; Klusmann, M.; Hauser, J.; Kalok, D.; Bechteler, A.; Heinzinger, K.; Porro, M.; Titze, B.; Strüder, L.
2017-11-01
DEPFET Active Pixel Sensors (APS) have been introduced as focal plane detectors for X-ray astronomy already in 1996. Fabricated on high resistivity, fully depleted silicon and back-illuminated they can provide high quantum efficiency and low noise operation even at very high read rates. In 2009 a new type of DEPFET APS, the DSSC (DEPFET Sensor with Signal Compression) was developed, which is dedicated to high-speed X-ray imaging at the European X-ray free electron laser facility (EuXFEL) in Hamburg. In order to resolve the enormous contrasts occurring in Free Electron Laser (FEL) experiments, this new DSSC-DEPFET sensor has the capability of nonlinear amplification, that is, high gain for low intensities in order to obtain single-photon detection capability, and reduced gain for high intensities to achieve high dynamic range for several thousand photons per pixel and frame. We call this property "signal compression". Starting in 2015, we have been fabricating DEPFET sensors in an industrial scale CMOS foundry maintaining the outstanding proven DEPFET properties and adding new capabilities due to the industrial-scale CMOS process. We will highlight these additional features and describe the progress achieved so far. In a first attempt on double-sided polished 725 μm thick 200 mm high resistivity float zone silicon wafers all relevant device related properties have been measured, such as leakage current, depletion voltage, transistor characteristics, noise and energy resolution for X-rays and the nonlinear response. The smaller feature size provided by the new technology allows for an advanced design and significant improvements in device performance. A brief summary of the present status will be given as well as an outlook on next steps and future perspectives.
Rapid Disaster Damage Estimation
NASA Astrophysics Data System (ADS)
Vu, T. T.
2012-07-01
The experiences from recent disaster events showed that detailed information derived from high-resolution satellite images could accommodate the requirements from damage analysts and disaster management practitioners. Richer information contained in such high-resolution images, however, increases the complexity of image analysis. As a result, few image analysis solutions can be practically used under time pressure in the context of post-disaster and emergency responses. To fill the gap in employment of remote sensing in disaster response, this research develops a rapid high-resolution satellite mapping solution built upon a dual-scale contextual framework to support damage estimation after a catastrophe. The target objects are building (or building blocks) and their condition. On the coarse processing level, statistical region merging deployed to group pixels into a number of coarse clusters. Based on majority rule of vegetation index, water and shadow index, it is possible to eliminate the irrelevant clusters. The remaining clusters likely consist of building structures and others. On the fine processing level details, within each considering clusters, smaller objects are formed using morphological analysis. Numerous indicators including spectral, textural and shape indices are computed to be used in a rule-based object classification. Computation time of raster-based analysis highly depends on the image size or number of processed pixels in order words. Breaking into 2 level processing helps to reduce the processed number of pixels and the redundancy of processing irrelevant information. In addition, it allows a data- and tasks- based parallel implementation. The performance is demonstrated with QuickBird images captured a disaster-affected area of Phanga, Thailand by the 2004 Indian Ocean tsunami are used for demonstration of the performance. The developed solution will be implemented in different platforms as well as a web processing service for operational uses.
NASA Astrophysics Data System (ADS)
Zheng, Bin; Leader, J. K.; Coxson, Harvey O.; Scuirba, Frank C.; Fuhrman, Carl R.; Balkan, Arzu; Weissfeld, Joel L.; Maitz, Glenn S.; Gur, David
2006-03-01
The fraction of lung voxels below a pixel value "cut-off" has been correlated with pathologic estimates of emphysema. We performed a "standard" quantitative CT (QCT) lung analysis using a -950 HU cut-off to determine the volume fraction of emphysema (below the cut-off) and a "corrected" QCT analysis after removing small group (5 and 10 pixels) of connected pixels ("blobs") below the cut-off. CT examinations two dataset of 15 subjects each with a range of visible emphysema and pulmonary obstruction were acquired at "low-dose and conventional dose reconstructed using a high-spatial frequency kernel at 2.5 mm section thickness for the same subject. The "blob" size (i.e., connected-pixels) removed was inversely related to the computed fraction of emphysema. The slopes of emphysema fraction versus blob size were 0.013, 0.009, and 0.005 for subjects with both no emphysema and no pulmonary obstruction, moderate emphysema and pulmonary obstruction, and severe emphysema and severe pulmonary obstruction, respectively. The slopes of emphysema fraction versus blob size were 0.008 and 0.006 for low-dose and conventional CT examinations, respectively. The small blobs of pixels removed are most likely CT image artifacts and do not represent actual emphysema. The magnitude of the blob correction was appropriately associated with COPD severity. The blob correction appears to be applicable to QCT analysis in low-dose and conventional CT exams.
Super-pixel extraction based on multi-channel pulse coupled neural network
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
Cengiz, Ibrahim Fatih; Oliveira, Joaquim Miguel; Reis, Rui L
2017-08-01
Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.
Lossless compression algorithm for REBL direct-write e-beam lithography system
NASA Astrophysics Data System (ADS)
Cramer, George; Liu, Hsin-I.; Zakhor, Avideh
2010-03-01
Future lithography systems must produce microchips with smaller feature sizes, while maintaining throughputs comparable to those of today's optical lithography systems. This places stringent constraints on the effective data throughput of any maskless lithography system. In recent years, we have developed a datapath architecture for direct-write lithography systems, and have shown that compression plays a key role in reducing throughput requirements of such systems. Our approach integrates a low complexity hardware-based decoder with the writers, in order to decompress a compressed data layer in real time on the fly. In doing so, we have developed a spectrum of lossless compression algorithms for integrated circuit layout data to provide a tradeoff between compression efficiency and hardware complexity, the latest of which is Block Golomb Context Copy Coding (Block GC3). In this paper, we present a modified version of Block GC3 called Block RGC3, specifically tailored to the REBL direct-write E-beam lithography system. Two characteristic features of the REBL system are a rotary stage resulting in arbitrarily-rotated layout imagery, and E-beam corrections prior to writing the data, both of which present significant challenges to lossless compression algorithms. Together, these effects reduce the effectiveness of both the copy and predict compression methods within Block GC3. Similar to Block GC3, our newly proposed technique Block RGC3, divides the image into a grid of two-dimensional "blocks" of pixels, each of which copies from a specified location in a history buffer of recently-decoded pixels. However, in Block RGC3 the number of possible copy locations is significantly increased, so as to allow repetition to be discovered along any angle of orientation, rather than horizontal or vertical. Also, by copying smaller groups of pixels at a time, repetition in layout patterns is easier to find and take advantage of. As a side effect, this increases the total number of copy locations to transmit; this is combated with an extra region-growing step, which enforces spatial coherence among neighboring copy locations, thereby improving compression efficiency. We characterize the performance of Block RGC3 in terms of compression efficiency and encoding complexity on a number of rotated Metal 1, Poly, and Via layouts at various angles, and show that Block RGC3 provides higher compression efficiency than existing lossless compression algorithms, including JPEG-LS, ZIP, BZIP2, and Block GC3.
Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2013-09-21
The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial distance of 150 mm from the center of the transaxial FOV.
Characterization and correction of charge-induced pixel shifts in DECam
Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...
2015-05-28
Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less
New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline
We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.
Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator); Dixon, R. G.
1981-01-01
Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kenya, E-mail: murase@sahs.med.osaka-u.ac.jp; Song, Ruixiao; Hiratsuka, Samu
We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than thosemore » without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.« less
The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View
NASA Technical Reports Server (NTRS)
Key, Jeffrey R.
1994-01-01
In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.
Self-amplified CMOS image sensor using a current-mode readout circuit
NASA Astrophysics Data System (ADS)
Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick
2014-05-01
The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.
Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs
NASA Astrophysics Data System (ADS)
Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Gurbuz, Yasar
2013-06-01
Design of a 90×8 CMOS readout integrated circuit (ROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels which improves the SNR of the system with a factor of √8. Oversampling rate of 3 improves the spatial resolution of the system. TDI operation is realized with a novel under-pixel analog-to-digital converter, which improves the noise performance of ROIC with a lower quantization noise. Since analog signal is converted to digital domain in-pixel, non-uniformities and inaccuracies due to analog signal routing over large chip area is eliminated. Contributions of each pixel for proper TDI operation are added in summation counters, no op-amps are used for summation, hence power consumption of ROIC is lower than its analog counterparts. Due to lack of multiple capacitors or summation amplifiers, ROIC occupies smaller chip area compared to its analog counterparts. ROIC is also superior to its digital counterparts due to novel digital TDI implementation in terms of power consumption, noise and chip area. ROIC supports bi-directional scan, multiple gain settings, bypass operation, automatic gain adjustment, pixel select/deselect, and is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electrons, while power consumption is less than 20mW. ROIC is designed to perform both in room and cryogenic temperatures.
Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M
2014-11-01
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.
The Effect of Pixel Size on the Accuracy of Orthophoto Production
NASA Astrophysics Data System (ADS)
Kulur, S.; Yildiz, F.; Selcuk, O.; Yildiz, M. A.
2016-06-01
In our country, orthophoto products are used by the public and private sectors for engineering services and infrastructure projects, Orthophotos are particularly preferred due to faster and are more economical production according to vector digital photogrammetric production. Today, digital orthophotos provide an expected accuracy for engineering and infrastructure projects. In this study, the accuracy of orthophotos using pixel sizes with different sampling intervals are tested for the expectations of engineering and infrastructure projects.
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
Advancements in DEPMOSFET device developments for XEUS
NASA Astrophysics Data System (ADS)
Treis, J.; Bombelli, L.; Eckart, R.; Fiorini, C.; Fischer, P.; Hälker, O.; Herrmann, S.; Lechner, P.; Lutz, G.; Peric, I.; Porro, M.; Richter, R. H.; Schaller, G.; Schopper, F.; Soltau, H.; Strüder, L.; Wölfel, S.
2006-06-01
DEPMOSFET based Active Pixel Sensor (APS) matrices are a new detector concept for X-ray imaging spectroscopy missions. They can cope with the challenging requirements of the XEUS Wide Field Imager and combine excellent energy resolution, high speed readout and low power consumption with the attractive feature of random accessibility of pixels. From the evaluation of first prototypes, new concepts have been developed to overcome the minor drawbacks and problems encountered for the older devices. The new devices will have a pixel size of 75 μm × 75 μm. Besides 64 × 64 pixel arrays, prototypes with a sizes of 256 × 256 pixels and 128 × 512 pixels and an active area of about 3.6 cm2 will be produced, a milestone on the way towards the fully grown XEUS WFI device. The production of these improved devices is currently on the way. At the same time, the development of the next generation of front-end electronics has been started, which will permit to operate the sensor devices with the readout speed required by XEUS. Here, a summary of the DEPFET capabilities, the concept of the sensors of the next generation and the new front-end electronics will be given. Additionally, prospects of new device developments using the DEPFET as a sensitive element are shown, e.g. so-called RNDR-pixels, which feature repetitive non-destructive readout to lower the readout noise below the 1 e - ENC limit.
Characterizing pixel and point patterns with a hyperuniformity disorder length
NASA Astrophysics Data System (ADS)
Chieco, A. T.; Dreyfus, R.; Durian, D. J.
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".
Characterizing pixel and point patterns with a hyperuniformity disorder length.
Chieco, A T; Dreyfus, R; Durian, D J
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".
Volcano early warning system based on MSG-SEVIRI multispectral data
NASA Astrophysics Data System (ADS)
Ganci, Gaetana; Vicari, Annamaria; Del Negro, Ciro
2010-05-01
Spaceborne remote sensing of high-temperature volcanic features offers an excellent opportunity to monitor the onset and development of new eruptive activity. Particularly, images with lower spatial but higher temporal resolution from meteorological satellites have been proved to be a sound instrument for continuous monitoring of volcanic activity, even though the relevant volcanic characteristics are much smaller than the nominal pixel size. The launch of Spinning Enhanced Visible and Infrared Imager (SEVIRI), on August 2002, onboard the geosynchronous platforms MSG1 and MSG2, has opened a new perspective for near real-time volcano monitoring by providing images at 15 minutes interval. Indeed, in spite of the low spatial resolution (3 km2 at nadir), the high frequency of observations afforded by the MSG SEVIRI was recently applied both for forest fire detection and for the monitoring of effusive volcanoes in Europe and Africa. Our Laboratory of Technologies (TecnoLab) at INGV-CT has been developing methods and know-how for the automated acquisition and management of MSG SEVIRI data. To provide a basis for real-time response during eruptive events, we designed and developed the automated system called HOTSAT. Our algorithm takes advantages from both spectral and spatial comparisons. Firstly, we use an adaptive thresholding procedure based on the computation of the spatial standard deviation derived from the immediately neighboring of each pixel to detect "potential" hot pixels. Secondly, it is required to further assess as true or false hotspot detections base on other thresholds test derived from the SEVIRI middle infrared (MIR, 3.9 μm) brightness temperatures taking into account its statistic behavior. Following these procedures, all the computations are based on dynamic thresholds reducing the number of false alarm due to atmospheric conditions. Our algorithm allows also the derivation of radiative power at all "hot" pixels. This is carried out using the MIR radiance method introduced by Wooster et al. [2003] for forest fires. It's based on an approximation of the Plank's Law as a power law. No assumption is made on the thermal structure of the pixel. The radiant flux, i.e. the fire radiative power, is proportional to the calibrated radiance associated to the hot part of the pixel computed as the difference between the observed hotspot pixel radiance in the SEVIRI MIR channel and the background radiance that would have been observed at the same location in the absence of thermal anomalies. The HOTSAT early warning system based on SEVIRI multispectral data is now suitable to be employed in an operational system of volcano monitoring. To validate and test the system some real cases on Mt Etna are presented.
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon
2013-01-01
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm2. Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes. PMID:23592185
REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography
NASA Astrophysics Data System (ADS)
McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.
2012-03-01
REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan
2013-06-07
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm(2). Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes.
Tests of monolithic active pixel sensors at national synchrotron light source
NASA Astrophysics Data System (ADS)
Deptuch, G.; Besson, A.; Carini, G. A.; Siddons, D. P.; Szelezniak, M.; Winter, M.
2007-01-01
The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17×17 μm2 and was designed in a 0.6 μm CMOS process. The X-ray beam energies used range from 5 to 12 keV. Examples of direct X-ray imaging capabilities are presented.
Spatial resolution requirements for automated cartographic road extraction
Benjamin, S.; Gaydos, L.
1990-01-01
Ground resolution requirements for detection and extraction of road locations in a digitized large-scale photographic database were investigated. A color infrared photograph of Sunnyvale, California was scanned, registered to a map grid, and spatially degraded to 1- to 5-metre resolution pixels. Road locations in each data set were extracted using a combination of image processing and CAD programs. These locations were compared to a photointerpretation of road locations to determine a preferred pixel size for the extraction method. Based on road pixel omission error computations, a 3-metre pixel resolution appears to be the best choice for this extraction method. -Authors
Observations Regarding Small Eolian Dunes and Large Ripples on Mars
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.
2001-01-01
Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are peppered with small impact craters, implying considerable age. These bedforms present a complicated record of the geologically-recent past, one that has involved changes in climate, sediment transport capabilities, and sediment sources and sinks over time.
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.
2015-01-01
Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100 μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200 μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194 μm, with 2×2 binning during the acquisition giving an effective pixel size of 388 μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J
2015-04-01
Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.
Design of a High-resolution Optoelectronic Retinal Prosthesis
NASA Astrophysics Data System (ADS)
Palanker, Daniel
2005-03-01
It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. So far retinal implants have had just a few electrodes, whereas at least several thousand pixels would be required for any functional restoration of sight. We will discuss physical limitations on the number of stimulating electrodes and on delivery of information and power to the retinal implant. Using a model of extracellular stimulation we derive the threshold values of current and voltage as a function of electrode size and distance to the target cell. Electrolysis, tissue heating, and cross-talk between neighboring electrodes depend critically on separation between electrodes and cells, thus strongly limiting the pixels size and spacing. Minimal pixel density required for 20/80 visual acuity (2500 pixels/mm2, pixel size 20 um) cannot be achieved unless the target neurons are within 7 um of the electrodes. At a separation of 50 um, the density drops to 44 pixels/mm2, and at 100 um it is further reduced to 10 pixels/mm2. We will present designs of subretinal implants that provide close proximity of electrodes to cells using migration of retinal cells to target areas. Two basic implant geometries will be described: perforated membranes and protruding electrode arrays. In addition, we will discuss delivery of information to the implant that allows for natural eye scanning of the scene, rather than scanning with a head-mounted camera. It operates similarly to ``virtual reality'' imaging devices where an image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Optical delivery of visual information to the implant allows for flexible control of the image processing algorithms and stimulation parameters. In summary, we will describe solutions to some of the major problems facing the realization of a functional retinal implant: high pixel density, proximity of electrodes to target cells, natural eye scanning capability, and real-time image processing adjustable to retinal architecture.
NASA Astrophysics Data System (ADS)
Fountaine, Katherine T.; Ito, Mikinori; Pala, Ragip; Atwater, Harry A.
2016-09-01
Spectrally-selective nanophotonic and plasmonic structures enjoy widespread interest for application as color filters in imaging devices, due to their potential advantages over traditional organic dyes and pigments. Organic dyes are straightforward to implement with predictable optical performance at large pixel size, but suffer from inherent optical cross-talk and stability (UV, thermal, humidity) issues and also exhibit increasingly unpredictable performance as pixel size approaches dye molecule size. Nanophotonic and plasmonic color filters are more robust, but often have polarization- and angle-dependent optical response and/or require large-range periodicity. Herein, we report on design and fabrication of polarization- and angle-insensitive CYM color filters based on a-Si nanopillar arrays as small as 1um2, supported by experiment, simulation, and analytic theory. Analytic waveguide and Mie theories explain the color filtering mechanism- efficient coupling into and interband transition-mediated attenuation of waveguide-like modes—and also guided the FDTD simulation-based optimization of nanopillar array dimensions. The designed a-Si nanopillar arrays were fabricated using e-beam lithography and reactive ion etching; and were subsequently optically characterized, revealing the predicted polarization- and angle-insensitive (±40°) subtractive filter responses. Cyan, yellow, and magenta color filters have each been demonstrated. The effects of nanopillar array size and inter-array spacing were investigated both experimentally and theoretically to probe the issues of ever-shrinking pixel sizes and cross-talk, respectively. Results demonstrate that these nanopillar arrays maintain their performance down to 1um2 pixel sizes with no inter-array spacing. These concepts and results along with color-processed images taken with a fabricated color filter array will be presented and discussed.
NASA Astrophysics Data System (ADS)
Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki
2017-02-01
Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.
NASA Astrophysics Data System (ADS)
Waigl, C.; Stuefer, M.; Prakash, A.
2013-12-01
Wildfire is the main disturbance regime of the boreal forest ecosystem, a region acutely sensitive to climate change. Large fires impact the carbon cycle, permafrost, and air quality on a regional and even hemispheric scale. Because of their significance as a hazard to human health and economic activity, monitoring wildfires is relevant not only to science but also to government agencies. The goal of this study is to develop pathways towards a near real-time assessment of fire characteristics in the boreal zones of Alaska based on satellite remote sensing data. We map the location of active burn areas and derive fire parameters such as fire temperature, intensity, stage (smoldering or flaming), emission injection points, carbon consumed, and energy released. For monitoring wildfires in the sub-arctic region, we benefit from the high temporal resolution of data (as high as 8 images a day) from MODIS on the Aqua and Terra platforms and VIIRS on NPP/Suomi, downlinked and processed to level 1 by the Geographic Information Network of Alaska at the University of Alaska Fairbanks. To transcend the low spatial resolution of these sensors, a sub-pixel analysis is carried out. By applying techniques from Bayesian inverse modeling to Dozier's two-component approach, uncertainties and sensitivity of the retrieved fire temperatures and fractional pixel areas to background temperature and atmospheric factors are assessed. A set of test cases - large fires from the 2004 to 2013 fire seasons complemented by a selection of smaller burns at the lower end of the MODIS detection threshold - is used to evaluate the methodology. While the VIIRS principal fire detection band M13 (centered at 4.05 μm, similar to MODIS bands 21 and 22 at 3.959 μm) does not usually saturate for Alaskan wildfire areas, the thermal IR band M15 (10.763 μm, comparable to MODIS band 31 at 11.03 μm) indeed saturates for a percentage, though not all, of the fire pixels of intense burns. As this limits the application of the classical version of Dozier's model for this particular combination to lower intensity and smaller fires, or smaller fractional fire areas, other VIIRS band combinations are evaluated as well. Furthermore, the higher spatial resolution of the VIIRS sensor compared to MODIS and its constant along-scan resolution DNB (day/night band) dataset provide additional options for fire mapping, detection and quantification. Higher spatial resolution satellite-borne remote sensing data is used to validate the pixel and sub-pixel level analysis and to assess lower detection thresholds. For each sample fire, moderate-resolution imagery is paired with data from the ASTER instrument (simultaneous with MODIS data on the Terra platform) and/or Landsat scenes acquired in close temporal proximity. To complement the satellite-borne imagery, aerial surveys using a FLIR thermal imaging camera with a broadband TIR sensor provide additional ground truthing and a validation of fire location and background temperature.
First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size
NASA Astrophysics Data System (ADS)
Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.
2018-02-01
In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.
NASA Astrophysics Data System (ADS)
Zhang, Jialin; Chen, Qian; Sun, Jiasong; Li, Jiaji; Zuo, Chao
2018-01-01
Lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and field-of-view (FOV) of conventional lens-based microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). In this paper, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method to address the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Furthermore, an automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target across a wide imaging area of {29.85 mm2 and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67 μm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.
The Floe Size Distribution in the Marginal Ice Zone of the Beaufort and Chukchi Seas
NASA Astrophysics Data System (ADS)
Schweiger, A. J. B.; Stern, H. L., III; Stark, M.; Zhang, J.; Steele, M.; Hwang, P. B.
2014-12-01
Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences the mechanical properties of the ice cover, air-sea momentum and heat transfer, lateral melting, and light penetration. However, no existing sea-ice/ocean models currently simulate the FSD in the MIZ. Model development depends on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have analyzed the FSD in the Beaufort and Chukchi seas using multiple sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites (250 m pixel size), the USGS Landsat 8 satellite (80 m pixel size), the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT (50 meter pixel size), and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the USGS (1 m pixel size). The procedure for identifying ice floes in the imagery begins with manually delineating cloud-free regions (if necessary). A threshold is then chosen to separate ice from water. Morphological operations and other semi-automated techniques are used to identify individual floes, whose properties are then easily calculated. We use the mean caliper diameter as the measure of floe size. The FSD is adequately described by a power-law in which the exponent characterizes the relative number of large and small floes. Changes in the exponent over time and space reflect changes in physical processes in the MIZ, such as sea-ice deformation, fracturing, and melting. We report results of FSD analysis for the spring and summer of 2013 and 2014, and show how the FSD will be incorporated into the MIZMAS model.
New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications
NASA Astrophysics Data System (ADS)
Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.
1998-07-01
This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance, readout amplifier design, optimized timing, and noise cancellation techniques, we achieve 1,000e to 2,000e of noise for the page size and large size arrays, respectively. This allows for true 12-bit performance and quantum limited images over a wide range of x-ray exposures. Various approaches to reducing line correlated noise have been implemented and will be discussed. Images documenting the improved performance will be presented. Avenues for improvement are under development, including higher resolution 97 micrometer pixel imagers, further improvements in detective quantum efficiency, and characterization of dynamic behavior.
A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles
NASA Astrophysics Data System (ADS)
Wiley, E. O.
2013-04-01
Pixel correlation uses the same reduction techniques as speckle imaging but relies on autocorrelation among captured pixel hits rather than true speckles. A video camera operating at speeds (8-66 milliseconds) similar to lucky imaging to capture 400-1,000 video frames. The AVI files are converted to bitmap images and analyzed using the interferometric algorithms in REDUC using all frames. This results in a series of corellograms from which theta and rho can be measured. Results using a 20 cm (8") Dall-Kirkham working at f22.5 are presented for doubles with separations between 1" to 5.7" under average seeing conditions. I conclude that this form of visualizing and analyzing visual double stars is a viable alternative to lucky imaging that can be employed by telescopes that are too small in aperture to capture a sufficient number of speckles for true speckle interferometry.
High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters
NASA Technical Reports Server (NTRS)
Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.
2003-01-01
Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout
Characterization of a 6×6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project
NASA Astrophysics Data System (ADS)
Romeo, G.; Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.
2016-08-01
This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm2) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290-350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm2 version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-μm) detector versus the smaller pixel pitch (50-μm) detector is also undertaken. Furthermore, measurements of the 6×6-mm2 MPPC response versus the angle of incidence are provided for the characterized device.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Togno, M; Wilkens, J J; Menichelli, D; Oechsner, M; Perez-Andujar, A; Morin, O
2016-05-01
To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm(3). The detector has been characterized with (60)Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, -0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09-2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm(2), the output factors are in agreement with a thimble chamber within 2%, while with 25 × 25 cm(2) field size, an underestimation of 4.0% was found. Agreement of field and penumbra width measurements with the flat panel is of the order of 1 mm down to 1 × 1 cm(2) field size. Flatness and symmetry values measured with the 1D array and the reference detectors are comparable, and differences are always smaller than 1%. Angular dependence of the detector, when compared to measurements taken with a cylindrical chamber in the same phantom, is as large as 16%. This includes inhomogeneity and asymmetry of the design, which during plan verification are accounted for by the treatment planning system (TPS). The detector is capable to reproduce the dose distributions of IMRT and VMAT plans with a maximum deviation from TPS of 3.0% in the target region. In the case of VMAT and SRS plans, an average (maximum) deviation of the order of 1% (4%) from films has been measured. The investigated technology appears to be useful both for Linac QA and patient plan verification, especially in treatments with steep dose gradients and nonuniform dose rates such as VMAT and SRS. Major limitations of the present prototype are the linearity at low dose, which can be solved by optimizing the readout electronics, and the underestimation of output factors with large field sizes. The latter problem is presently not completely understood and will require further investigations.
Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo
2016-01-01
Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324
Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo
2016-05-01
High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.
Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements
NASA Technical Reports Server (NTRS)
Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.
2016-01-01
The accuracy and precision of digital image correlation (DIC) is a function of three primary ingredients: image acquisition, image analysis, and the subject of the image. Development of the first two (i.e. image acquisition techniques and image correlation algorithms) has led to widespread use of DIC; however, fewer developments have been focused on the third ingredient. Typically, subjects of DIC images are mechanical specimens with either a natural surface pattern or a pattern applied to the surface. Research in the area of DIC patterns has primarily been aimed at identifying which surface patterns are best suited for DIC, by comparing patterns to each other. Because the easiest and most widespread methods of applying patterns have a high degree of randomness associated with them (e.g., airbrush, spray paint, particle decoration, etc.), less effort has been spent on exact construction of ideal patterns. With the development of patterning techniques such as microstamping and lithography, patterns can be applied to a specimen pixel by pixel from a patterned image. In these cases, especially because the patterns are reused many times, an optimal pattern is sought such that error introduced into DIC from the pattern is minimized. DIC consists of tracking the motion of an array of nodes from a reference image to a deformed image. Every pixel in the images has an associated intensity (grayscale) value, with discretization depending on the bit depth of the image. Because individual pixel matching by intensity value yields a non-unique scale-dependent problem, subsets around each node are used for identification. A correlation criteria is used to find the best match of a particular subset of a reference image within a deformed image. The reader is referred to references for enumerations of typical correlation criteria. As illustrated by Schreier and Sutton and Lu and Cary systematic errors can be introduced by representing the underlying deformation with under-matched shape functions. An important implication, as discussed by Sutton et al., is that in the presence of highly localized deformations (e.g., crack fronts), error can be reduced by minimizing the subset size. In other words, smaller subsets allow the more accurate resolution of localized deformations. Contrarily, the choice of optimal subset size has been widely studied and a general consensus is that larger subsets with more information content are less prone to random error. Thus, an optimal subset size balances the systematic error from under matched deformations with random error from measurement noise. The alternative approach pursued in the current work is to choose a small subset size and optimize the information content within (i.e., optimizing an applied DIC pattern), rather than finding an optimal subset size. In the literature, many pattern quality metrics have been proposed, e.g., sum of square intensity gradient (SSSIG), mean subset fluctuation, gray level co-occurrence, autocorrelation-based metrics, and speckle-based metrics. The majority of these metrics were developed to quantify the quality of common pseudo-random patterns after they have been applied, and were not created with the intent of pattern generation. As such, it is found that none of the metrics examined in this study are fit to be the objective function of a pattern generation optimization. In some cases, such as with speckle-based metrics, application to pixel by pixel patterns is ill-conditioned and requires somewhat arbitrary extensions. In other cases, such as with the SSSIG, it is shown that trivial solutions exist for the optimum of the metric which are ill-suited for DIC (such as a checkerboard pattern). In the current work, a multi-metric optimization method is proposed whereby quality is viewed as a combination of individual quality metrics. Specifically, SSSIG and two auto-correlation metrics are used which have generally competitive objectives. Thus, each metric could be viewed as a constraint imposed upon the others, thereby precluding the achievement of their trivial solutions. In this way, optimization produces a pattern which balances the benefits of multiple quality metrics. The resulting pattern, along with randomly generated patterns, is subjected to numerical deformations and analyzed with DIC software. The optimal pattern is shown to outperform randomly generated patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.
There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that formmore » when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.« less
Utilizing soil polypedons to improve model performance for digital soil mapping
USDA-ARS?s Scientific Manuscript database
Most digital soil mapping approaches that use point data to develop relationships with covariate data intersect sample locations with one raster pixel regardless of pixel size. Resulting models are subject to spurious values in covariate data which may limit model performance. An alternative approac...
Malkusch, Wolf
2005-01-01
The enzyme-linked immunospot (ELISPOT) assay was originally developed for the detection of individual antibody secreting B-cells. Since then, the method has been improved, and ELISPOT is used for the determination of the production of tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, or various interleukins (IL)-4, IL-5. ELISPOT measurements are performed in 96-well plates with nitrocellulose membranes either visually or by means of image analysis. Image analysis offers various procedures to overcome variable background intensity problems and separate true from false spots. ELISPOT readers offer a complete solution for precise and automatic evaluation of ELISPOT assays. Number, size, and intensity of each single spot can be determined, printed, or saved for further statistical evaluation. Cytokine spots are always round, but because of floating edges with the background, they have a nonsmooth borderline. Resolution is a key feature for a precise detection of ELISPOT. In standard applications shape and edge steepness are essential parameters in addition to size and color for an accurate spot recognition. These parameters need a minimum spot diameter of 6 pixels. Collecting one single image per well with a standard color camera with 750 x 560 pixels will result in a resolution much too low to get all of the spots in a specimen. IFN-gamma spots may have only 25 microm diameters, and TNF-alpha spots just 15 microm. A 750 x 560 pixel image of a 6-mm well has a pixel size of 12 microm, resulting in only 1 or 2 pixel for a spot. Using a precise microscope optic in combination with a high resolution (1300 x 1030 pixel) integrating digital color camera, and at least 2 x 2 images per well will result in a pixel size of 2.5 microm and, as a minimum, 6 pixel diameter per spot. New approaches try to detect two cytokines per cell at the same time (i.e., IFN-gamma and IL-5). Standard staining procedures produce brownish spots (horseradish peroxidase) and blue spots (alkaline phosphatase). Problems may occur with color overlaps from cells producing both cytokines, resulting in violet spots. The latest experiments therefore try to use fluorescence labels as a marker. Fluorescein isothiocyanate results in green spots and Rhodamine in red spots. Cells producing both cytokines appear yellow. These colors can be separated much easier than the violet, red, and blue, especially using a high resolution.
Terahertz imaging with compressive sensing
NASA Astrophysics Data System (ADS)
Chan, Wai Lam
Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.
Cosmological parameters from a re-analysis of the WMAP 7 year low-resolution maps
NASA Astrophysics Data System (ADS)
Finelli, F.; De Rosa, A.; Gruppuso, A.; Paoletti, D.
2013-06-01
Cosmological parameters from Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data are re-analysed by substituting a pixel-based likelihood estimator to the one delivered publicly by the WMAP team. Our pixel-based estimator handles exactly intensity and polarization in a joint manner, allowing us to use low-resolution maps and noise covariance matrices in T, Q, U at the same resolution, which in this work is 3.6°. We describe the features and the performances of the code implementing our pixel-based likelihood estimator. We perform a battery of tests on the application of our pixel-based likelihood routine to WMAP publicly available low-resolution foreground-cleaned products, in combination with the WMAP high-ℓ likelihood, reporting the differences on cosmological parameters evaluated by the full WMAP likelihood public package. The differences are not only due to the treatment of polarization, but also to the marginalization over monopole and dipole uncertainties present in the WMAP pixel likelihood code for temperature. The credible central value for the cosmological parameters change below the 1σ level with respect to the evaluation by the full WMAP 7 year likelihood code, with the largest difference in a shift to smaller values of the scalar spectral index nS.
A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.
Chuah, Joon Huang; Holburn, David
2013-06-01
This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan; Hill, K. W.; Bitter, M.
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Image acquisition system using on sensor compressed sampling technique
NASA Astrophysics Data System (ADS)
Gupta, Pravir Singh; Choi, Gwan Seong
2018-01-01
Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.
Stereo pair design for cameras with a fovea
NASA Technical Reports Server (NTRS)
Chettri, Samir R.; Keefe, Michael; Zimmerman, John R.
1992-01-01
We describe the methodology for the design and selection of a stereo pair when the cameras have a greater concentration of sensing elements in the center of the image plane (fovea). Binocular vision is important for the purpose of depth estimation, which in turn is important in a variety of applications such as gaging and autonomous vehicle guidance. We assume that one camera has square pixels of size dv and the other has pixels of size rdv, where r is between 0 and 1. We then derive results for the average error, the maximum error, and the error distribution in the depth determination of a point. These results can be shown to be a general form of the results for the case when the cameras have equal sized pixels. We discuss the behavior of the depth estimation error as we vary r and the tradeoffs between the extra processing time and increased accuracy. Knowing these results makes it possible to study the case when we have a pair of cameras with a fovea.
Statistical framework and noise sensitivity of the amplitude radial correlation contrast method.
Kipervaser, Zeev Gideon; Pelled, Galit; Goelman, Gadi
2007-09-01
A statistical framework for the amplitude radial correlation contrast (RCC) method, which integrates a conventional pixel threshold approach with cluster-size statistics, is presented. The RCC method uses functional MRI (fMRI) data to group neighboring voxels in terms of their degree of temporal cross correlation and compares coherences in different brain states (e.g., stimulation OFF vs. ON). By defining the RCC correlation map as the difference between two RCC images, the map distribution of two OFF states is shown to be normal, enabling the definition of the pixel cutoff. The empirical cluster-size null distribution obtained after the application of the pixel cutoff is used to define a cluster-size cutoff that allows 5% false positives. Assuming that the fMRI signal equals the task-induced response plus noise, an analytical expression of amplitude-RCC dependency on noise is obtained and used to define the pixel threshold. In vivo and ex vivo data obtained during rat forepaw electric stimulation are used to fine-tune this threshold. Calculating the spatial coherences within in vivo and ex vivo images shows enhanced coherence in the in vivo data, but no dependency on the anesthesia method, magnetic field strength, or depth of anesthesia, strengthening the generality of the proposed cutoffs. Copyright (c) 2007 Wiley-Liss, Inc.
2009-03-01
Set negative pixel values = 0 (remove bad pixels) -------------- [m,n] = size(data_matrix_new); for i =1:m for j= 1:n if...everything from packaging toothpaste to high speed fluid dynamics. While future engagements will continue to require the development of specialized
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrummore » of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.
Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). Conclusions: The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.« less
A comparison of the performance of modern screen-film and digital mammography systems.
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J-F; Verdun, F R
2005-06-07
This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.
NASA Astrophysics Data System (ADS)
Fu, Y.; Brezina, C.; Desch, K.; Poikela, T.; Llopart, X.; Campbell, M.; Massimiliano, D.; Gromov, V.; Kluit, R.; van Beauzekom, M.; Zappon, F.; Zivkovic, V.
2014-01-01
Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256 × 256 pixels organized in a square pixel-array with 55 μm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.
Reflective coherent spatial light modulator
Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.
2003-04-22
A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.
Junction-side illuminated silicon detector arrays
Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn
2004-03-30
A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.
Performance assessment of a single-pixel compressive sensing imaging system
NASA Astrophysics Data System (ADS)
Du Bosq, Todd W.; Preece, Bradley L.
2016-05-01
Conventional electro-optical and infrared (EO/IR) systems capture an image by measuring the light incident at each of the millions of pixels in a focal plane array. Compressive sensing (CS) involves capturing a smaller number of unconventional measurements from the scene, and then using a companion process known as sparse reconstruction to recover the image as if a fully populated array that satisfies the Nyquist criteria was used. Therefore, CS operates under the assumption that signal acquisition and data compression can be accomplished simultaneously. CS has the potential to acquire an image with equivalent information content to a large format array while using smaller, cheaper, and lower bandwidth components. However, the benefits of CS do not come without compromise. The CS architecture chosen must effectively balance between physical considerations (SWaP-C), reconstruction accuracy, and reconstruction speed to meet operational requirements. To properly assess the value of such systems, it is necessary to fully characterize the image quality, including artifacts and sensitivity to noise. Imagery of the two-handheld object target set at range was collected using a passive SWIR single-pixel CS camera for various ranges, mirror resolution, and number of processed measurements. Human perception experiments were performed to determine the identification performance within the trade space. The performance of the nonlinear CS camera was modeled with the Night Vision Integrated Performance Model (NV-IPM) by mapping the nonlinear degradations to an equivalent linear shift invariant model. Finally, the limitations of CS modeling techniques will be discussed.
Application of Polynomial Neural Networks to Classification of Acoustic Warfare Signals
1993-04-01
on Neural Networks, Vol. II, Jun’e, 1987. [66] Shynk, J.J., "Adaptive IIR filtering," IEEE ASSP Magazine, Vol. 6, No. 2, Apr. 1989. 175 I [67] Specht ...rows This is the size of the yellow capture window which will be displayed on the screen. The best setting for pixel-rows is two greater than exemplar...exemplar size of 4 to be captured by the PNN. The pixel-rows setting is 6, which allows all four rows of I the retina data to fit inside yellow capture
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Chandra ACIS Sub-pixel Resolution
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.
2011-05-01
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy
Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B
2013-01-01
Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.
Compressive hyperspectral sensor for LWIR gas detection
NASA Astrophysics Data System (ADS)
Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard
2012-06-01
Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul
2010-04-13
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul
2005-03-08
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul
2015-06-23
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul
2014-02-11
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.
2015-11-10
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA
2011-09-27
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul
2014-03-25
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
Electronic displays using optically pumped luminescent semiconductor nanocrystals
Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul
2017-06-06
A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
The Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Lechner, Peter
2009-05-01
For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Yashiro, Seiji; Reginald, Nelson; Thakur, Neeharika; Thompson, Barbara J.; Gong, Qian
2018-01-01
We present preliminary results obtained by observing the solar corona during the 2017 August 21 total solar eclipse using a polarization camera mounted on an eight-inch Schmidt-Cassegrain telescope. The observations were made from Madras Oregon during 17:19 to 17:21 UT. Total and polarized brightness images were obtained at four wavelengths (385, 398.5, 410, and 423 nm). The polarization camera had a polarization mask mounted on a 2048x2048 pixel CCD with a pixel size of 7.4 microns. The resulting images had a size of 975x975 pixels because four neighboring pixels were summed to yield the polarization and total brightness images. The ratio of 410 and 385 nm images is a measure of the coronal temperature, while that at 423 and 398.5 nm images is a measure of the coronal flow speed. We compared the temperature map from the eclipse observations with that obtained from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly images at six EUV wavelengths, yielding consistent temperature information of the corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
SVGA AMOLED with world's highest pixel pitch
NASA Astrophysics Data System (ADS)
Prache, Olivier; Wacyk, Ihor
2006-05-01
We present the design and early evaluation results of the world's highest pixel pitch full-color 800x3x600- pixel, active matrix organic light emitting diode (AMOLED) color microdisplay for consumer and environmentally demanding applications. The design premises were aimed at improving small area uniformity as well as reducing the pixel size while expanding the functionality found in existing eMagin Corporations' microdisplay products without incurring any power consumption degradation when compared to existing OLED microdisplays produced by eMagin. The initial results of the first silicon prototype presented here demonstrate compliance with all major objectives as well as the validation of a new adaptive gamma correction technique that can operate automatically over temperature.
NASA Astrophysics Data System (ADS)
Genocchi, B.; Pickford Scienti, O.; Darambara, DG
2017-05-01
Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.
Sensing, Spectra and Scaling: What's in Store for Land Observations
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H.
2001-01-01
Bill Pecora's 1960's vision of the future, using spacecraft-based sensors for mapping the environment and exploring for resources, is being implemented today. New technology has produced better sensors in space such as the Landsat Thematic Mapper (TM) and SPOT, and creative researchers are continuing to find new applications. However, with existing sensors, and those intended for launch in this century, the potential for extracting information from the land surface is far from being exploited. The most recent technology development is imaging spectrometry, the acquisition of images in hundreds of contiguous spectral bands, such that for any pixel a complete reflectance spectrum can be acquired. Experience with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has shown that, with proper attention paid to absolute calibration, it is possible to acquire apparent surface reflectance to 5% accuracy without any ground-based measurement. The data reduction incorporates in educated guess of the aerosol scattering, development of a precipitable water vapor map from the data and mapping of cirrus clouds in the 1.38 micrometer band. This is not possible with TM. The pixel size in images of the earth plays and important role in the type and quality of information that can be derived. Less understood is the coupling between spatial and spectral resolution in a sensor. Recent work has shown that in processing the data to derive the relative abundance of materials in a pixel, also known is unmixing, the pixel size is an important parameter. A variance in the relative abundance of materials among the pixels is necessary to be able to derive the endmembers or pure material constituent spectra. In most cases, the 1 km pixel size for the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is too large to meet the variance criterion. A pointable high spatial and spectral resolution imaging spectrometer in orbit will be necessary to make the major next step in our understanding of the solid earth surface and its changing face.
NASA Technical Reports Server (NTRS)
Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward
2011-01-01
The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment 2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area equivalent in size to a SMOS pixel.
Structural colour printing from a reusable generic nanosubstrate masked for the target image
NASA Astrophysics Data System (ADS)
Rezaei, M.; Jiang, H.; Kaminska, B.
2016-02-01
Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated.
In vivo performance of photovoltaic subretinal prosthesis
NASA Astrophysics Data System (ADS)
Mandel, Yossi; Goetz, George; Lavinsky, Daniel; Huie, Phil; Mathieson, Keith; Wang, Lele; Kamins, Theodore; Manivanh, Richard; Harris, James; Palanker, Daniel
2013-02-01
We have developed a photovoltaic retinal prosthesis, in which camera-captured images are projected onto the retina using pulsed near-IR light. Each pixel in the subretinal implant directly converts pulsed light into local electric current to stimulate the nearby inner retinal neurons. 30 μm-thick implants with pixel sizes of 280, 140 and 70 μm were successfully implanted in the subretinal space of wild type (WT, Long-Evans) and degenerate (Royal College of Surgeons, RCS) rats. Optical Coherence Tomography and fluorescein angiography demonstrated normal retinal thickness and healthy vasculature above the implants upon 6 months follow-up. Stimulation with NIR pulses over the implant elicited robust visual evoked potentials (VEP) at safe irradiance levels. Thresholds increased with decreasing pulse duration and pixel size: with 10 ms pulses it went from 0.5 mW/mm2 on 280 μm pixels to 1.1 mW/mm2 on 140 μm pixels, to 2.1 mW/mm2 on 70 μm pixels. Latency of the implant-evoked VEP was at least 30 ms shorter than in response evoked by the visible light, due to lack of phototransduction. Like with the visible light stimulation in normal sighted animals, amplitude of the implant-induced VEP increased logarithmically with peak irradiance and pulse duration. It decreased with increasing frequency similar to the visible light response in the range of 2 - 10 Hz, but decreased slower than the visible light response at 20 - 40 Hz. Modular design of the photovoltaic arrays allows scalability to a large number of pixels, and combined with the ease of implantation, offers a promising approach to restoration of sight in patients blinded by retinal degenerative diseases.
NASA Astrophysics Data System (ADS)
Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.
2017-05-01
High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.
Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays
NASA Astrophysics Data System (ADS)
Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav
2011-10-01
Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).
Development of high energy micro-tomography system at SPring-8
NASA Astrophysics Data System (ADS)
Uesugi, Kentaro; Hoshino, Masato
2017-09-01
A high energy X-ray micro-tomography system has been developed at BL20B2 in SPring-8. The available range of the energy is between 20keV and 113keV with a Si (511) double crystal monochromator. The system enables us to image large or heavy materials such as fossils and metals. The X-ray image detector consists of visible light conversion system and sCMOS camera. The effective pixel size is variable by changing a tandem lens between 6.5 μm/pixel and 25.5 μm/pixel discretely. The format of the camera is 2048 pixels x 2048 pixels. As a demonstration of the system, alkaline battery and a nodule from Bolivia were imaged. A detail of the structure of the battery and a female mold Trilobite were successfully imaged without breaking those fossils.
Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices
NASA Astrophysics Data System (ADS)
Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang
2016-04-01
An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.
Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S
2014-12-07
The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.
Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications
ERIC Educational Resources Information Center
Makovoz, Gennadiy
2010-01-01
The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…
Model-based optimization of near-field binary-pixelated beam shapers
Dorrer, C.; Hassett, J.
2017-01-23
The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less
Pixel super resolution using wavelength scanning
2016-04-08
the light source is adjusted to ~20 μW. The image sensor chip is a color CMOS sensor chip with a pixel size of 1.12 μm manufactured for cellphone...pitch (that is, ~ 1 μm in Figure 3a, using a CMOS sensor that has a 1.12-μm pixel pitch). For the same configuration depicted in Figure 3, utilizing...section). The a Lens-free raw holograms captured by 1.12 μm CMOS image sensor Field of view ≈ 20.5 mm2 Angle change directions for synthetic aperture
1984-07-01
aerosols and sub pixel-sized clouds all tend to increase Channel 1 with respect to Channel 2 and reduce the computed VIN. Further, the Guide states that... computation of the VIN. Large scale cloud contamination of pixels, while diffi- cult to correct for, can at least be monitored and affected pixels...techniques have been developed for computer cloud screening. See, for example, Horvath et al. (1982), Gray and McCrary (1981a) and Nixon et al. (1983
10μm pitch family of InSb and XBn detectors for MWIR imaging
NASA Astrophysics Data System (ADS)
Gershon, G.; Avnon, E.; Brumer, M.; Freiman, W.; Karni, Y.; Niderman, T.; Ofer, O.; Rosenstock, T.; Seref, D.; Shiloah, N.; Shkedy, L.; Tessler, R.; Shtrichman, I.
2017-02-01
There has been a growing demand over the past few years for infrared detectors with a smaller pixel dimension. On the one hand, this trend of pixel shrinkage enables the overall size of a given Focal Plan Array (FPA) to be reduced, allowing the production of more compact, lower power, and lower cost electro-optical (EO) systems. On the other hand, it enables a higher image resolution for a given FPA area, which is especially suitable in infrared systems with a large format that are used with a wide Field of View (FOV). In response to these market trends SCD has developed the Blackbird family of 10 μm pitch MWIR digital infrared detectors. The Blackbird family is based on three different Read- Out Integrated Circuit (ROIC) formats: 1920×1536, 1280×1024 and 640×512, which exploit advanced and mature 0.18 μm CMOS technology and exhibit high functionality with relatively low power consumption. Two types of 10 μm pixel sensing arrays are supported. The first is an InSb photodiode array based on SCD's mature planar implanted p-n junction technology, which covers the full MWIR band, and is designed to operate at 77K. The second type of sensing array covers the blue part of the MWIR band and uses the patented XBn-InAsSb barrier detector technology that provides electro-optical performance equivalent to planar InSb but at operating temperatures as high as 150 K. The XBn detector is therefore ideal for low Size, Weight and Power (SWaP) applications. Both sensing arrays, InSb and XBn, are Flip-chip bonded to the ROICs and assembled into custom designed Dewars that can withstand harsh environmental conditions while minimizing the detector heat load. A dedicated proximity electronics board provides power supplies and timing to the ROIC and enables communication and video output to the system. Together with a wide range of cryogenic coolers, a high flexibility of housing designs and various modes of operation, the Blackbird family of detectors presents solutions for EO systems which cover both the very high-end and the low SWaP types of application. In this work we present in detail the EO performance of the Blackbird detector family.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.
A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications
Gao, Lan; Hill, K. W.; Bitter, M.; ...
2016-08-23
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Breast cancer mitosis detection in histopathological images with spatial feature extraction
NASA Astrophysics Data System (ADS)
Albayrak, Abdülkadir; Bilgin, Gökhan
2013-12-01
In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu
Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixelmore » pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.« less
Commissioning results of an automated treatment planning verification system
Mason, Bryan E.; Robinson, Ronald C.; Kisling, Kelly D.; Kirsner, Steven M.
2014-01-01
A dose calculation verification system (VS) was acquired and commissioned as a second check on the treatment planning system (TPS). This system reads DICOM CT datasets, RT plans, RT structures, and RT dose from the TPS and automatically, using its own collapsed cone superposition/convolution algorithm, computes dose on the same CT dataset. The system was commissioned by extracting basic beam parameters for simple field geometries and dose verification for complex treatments. Percent depth doses (PDD) and profiles were extracted for field sizes using jaw settings 3 × 3 cm2 ‐ 40 × 40 cm2 and compared to measured data, as well as our TPS model. Smaller fields of 1 × 1 cm2 and 2 × 2 cm2 generated using the multileaf collimator (MLC) were analyzed in the same fashion as the open fields. In addition, 40 patient plans consisting of both IMRT and VMAT were computed and the following comparisons were made: 1) TPS to the VS, 2) VS to measured data, and 3) TPS to measured data where measured data is both ion chamber (IC) and film measurements. Our results indicated for all field sizes using jaw settings PDD errors for the VS on average were less than 0.87%, 1.38%, and 1.07% for 6x, 15x, and 18x, respectively, relative to measured data. PDD errors for MLC field sizes were less than 2.28%, 1.02%, and 2.23% for 6x, 15x, and 18x, respectively. The infield profile analysis yielded results less than 0.58% for 6x, 0.61% for 15x, and 0.77% for 18x for the VS relative to measured data. Analysis of the penumbra region yields results ranging from 66.5% points, meeting the DTA criteria to 100% of the points for smaller field sizes for all energies. Analysis of profile data for field sizes generated using the MLC saw agreement with infield DTA analysis ranging from 68.8%–100% points passing the 1.5%/1.5 mm criteria. Results from the dose verification for IMRT and VMAT beams indicated that, on average, the ratio of TPS to IC and VS to IC measurements was 100.5 ± 1.9% and 100.4 ± 1.3%, respectively, while our TPS to VS was 100.1 ± 1.0%. When comparing the TPS and VS to film measurements, the average percentage pixels passing a 3%/3 mm criteria based gamma analysis were 96.6 ± 4.2% and 97 ± 5.6%, respectively. When the VS was compared to the TPS, on average 98.1 ± 5.3% of pixels passed the gamma analysis. Based upon these preliminary results, the VS system should be able to calculate dose adequately as a verification tool of our TPS. PACS number: 87.55.km PMID:25207567
Reimann, Martin; Lane, Kristen
2017-01-01
The goal of this research was to test whether including an inexpensive nonfood item (toy) with a smaller-sized meal bundle (420 calories), but not with the regular-sized meal bundle version (580 calories), would incentivize children to choose the smaller-sized meal bundle, even among children with overweight and obesity. Logistic regression was used to evaluate the effect in a between-subjects field experiment of a toy on smaller-sized meal choice (here, a binary choice between a smaller-sized or regular-sized meal bundles). A random sample of 109 elementary school children from two schools in the Tucson, Arizona metropolitan area (55 females; Mage = 8.53 years, SDage = 2.14; MBMI = 18.30, SDBMI = 4.42) participated. Children's height and weight were measured and body-mass-index (BMI) was calculated, adjusting for age and sex. In our sample, 21 children were considered to be either overweight or obese. Logistic regression was used to evaluate the effect of a toy on smaller-sized meal choice. Results revealed that the inclusion of a toy with a smaller-sized meal, but not with the regular-sized version, predicted smaller-sized meal choice (P < .001), suggesting that children can be incentivized to choose less food when such is paired with a toy. BMI neither moderated nor nullified the effect of toy on smaller-sized meal choice (P = .125), suggesting that children with overweight and obesity can also be incentivized to choose less. This article is the first to suggest that fast-food restaurant chains may well utilize toys to motivate children to choose smaller-sized meal bundles. Our findings may be relevant for consumers, health advocates, policy makers, and marketers who would benefit from a strategy that presents healthier, but still desirable, meal bundle options.
2017-01-01
The goal of this research was to test whether including an inexpensive nonfood item (toy) with a smaller-sized meal bundle (420 calories), but not with the regular-sized meal bundle version (580 calories), would incentivize children to choose the smaller-sized meal bundle, even among children with overweight and obesity. Logistic regression was used to evaluate the effect in a between-subjects field experiment of a toy on smaller-sized meal choice (here, a binary choice between a smaller-sized or regular-sized meal bundles). A random sample of 109 elementary school children from two schools in the Tucson, Arizona metropolitan area (55 females; Mage = 8.53 years, SDage = 2.14; MBMI = 18.30, SDBMI = 4.42) participated. Children’s height and weight were measured and body-mass-index (BMI) was calculated, adjusting for age and sex. In our sample, 21 children were considered to be either overweight or obese. Logistic regression was used to evaluate the effect of a toy on smaller-sized meal choice. Results revealed that the inclusion of a toy with a smaller-sized meal, but not with the regular-sized version, predicted smaller-sized meal choice (P < .001), suggesting that children can be incentivized to choose less food when such is paired with a toy. BMI neither moderated nor nullified the effect of toy on smaller-sized meal choice (P = .125), suggesting that children with overweight and obesity can also be incentivized to choose less. This article is the first to suggest that fast-food restaurant chains may well utilize toys to motivate children to choose smaller-sized meal bundles. Our findings may be relevant for consumers, health advocates, policy makers, and marketers who would benefit from a strategy that presents healthier, but still desirable, meal bundle options. PMID:28085904
Seo, Min-Woong; Kawahito, Shoji
2017-12-01
A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.
VizieR Online Data Catalog: Observation of six NSVS eclipsing binaries (Dimitrov+, 2015)
NASA Astrophysics Data System (ADS)
Dimitrov, D. P.; Kjurkchieva, D. P.
2017-11-01
We managed to separate a sample of about 40 ultrashort-period candidates from the Northern Sky Variability Survey (NSVS, Wozniak et al. 2004AJ....127.2436W) appropriate for follow-up observations at Rozhen observatory (δ>-10°). Follow-up CCD photometry of the targets in the VRI bands was carried out with the three telescopes of the Rozhen National Astronomical Observatory. The 2-m RCC telescope is equipped with a VersArray CCD camera (1340x1300 pixels, 20 μm/pixel, field of 5.35x5.25 arcmin2). The 60-cm Cassegrain telescope is equipped with a FLI PL09000 CCD camera (3056x3056 pixels, 12 μm/pixel, field of 17.1x17.1 arcmin2). The 50/70 cm Schmidt telescope has a field of view (FoV) of around 1° and is equipped with a FLI PL 16803 CCD camera, 4096x4096 pixels, 9 μm/pixel size. (4 data files).
Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors
Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David
2016-01-01
This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284
Eclipse SteerTech liquid lenslet beam steering technology
NASA Astrophysics Data System (ADS)
Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III
2007-09-01
Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.
Overview of the ATLAS Insertable B-Layer (IBL) Project
NASA Astrophysics Data System (ADS)
Kagan, M. A.
2014-06-01
The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was set up in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam-pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao
2013-08-01
CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.
2017-08-11
NASA's Cassini spacecraft looks toward the night side of Saturn's moon Titan in a view that highlights the extended, hazy nature of the moon's atmosphere. During its long mission at Saturn, Cassini has frequently observed Titan at viewing angles like this, where the atmosphere is backlit by the Sun, in order to make visible the structure of the hazes. Titan's high-altitude haze layer appears blue here, whereas the main atmospheric haze is orange. The difference in color could be due to particle sizes in the haze. The blue haze likely consists of smaller particles than the orange haze. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on May 29, 2017. The view was acquired at a distance of approximately 1.2 million miles (2 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21625
Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo
2016-02-01
Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.
Does TRACE Resolve Isothermal Coronal Loops?
NASA Astrophysics Data System (ADS)
Weber, Mark A.; Schmelz, J.; Kashyap, V.; Roames, J.
2006-06-01
Historically, increasing resolution of solar data has revealed ever smaller length scales for both the thermodynamics and the magnetic structure of the corona. Furthermore, the dynamics there are governed by magnetohydrodynamic processes which are difficult to observe or model. Recent results in the literature suggest that some coronal loops with cross-sections near the resolution limits of the Transition Region and Coronal Explorer (pixel size = 0.5 arc-seconds, or approx. 360 km) are, in fact, isothermally homogeneous and thus may be identified as elementary loop strands. This poster presents some ongoing work that applies state-of-the-art estimation of differential emission measures in order to evaluate these claims for a sample of loops. We find that the data give no evidence to prefer the "isothermal" hypothesis over the "multithermal" hypothesis. The authors are supported by the following funds: contract SP02H820IR to the Lockheed-Martin Corp.; NSF grant ATM-0402729; NASA grant NNG05GE68G; and NASA contracts NAS8-39073 and NAS8-03060.
NASA Astrophysics Data System (ADS)
Cantreul, Vincent; Cavalli, Marco; Degré, Aurore
2016-04-01
The emerging concept of hydrological connectivity is difficult to quantify. Some indices have been proposed. The most cited is Borselli's one. It mainly uses the DEM as input. The pixel size may strongly impacts the result of the calculation. It has not been studied yet in silty areas. Another important aspect is the choice of the weighting factor which strongly influences the index value. The objective of this poster is so to compare 8 different DEM's resolutions (12, 24, 48, 72, 96, 204, 504 and 996cm) and 3 different weighting factors (factor C of Wischmeier, Manning's factor and rugosity index) in the Borselli's index calculation. The IC was calculated in a 124ha catchment (Hevillers), in the loess belt, in Belgium. The DEM used is coming from a UAV with a maximum resolution of 12 cm. Permanent covered surfaces are not considered in order to avoid artefact due to the vegetation (2% of the surface). Regarding the DEM pixel size, the IC increases for a given pixel when the pixel size decreases. That confirms some results observed in the Alpine region by Cavalli (2014). The mean difference between 12 cm and 10 m resolution is 35% with higher values up to 100% for higher connectivity zones (flow paths). Another result is the lower impact of connections in the watershed (grass strips…) at lower pixel sizes. This is linked to the small width of some connections which are sometimes comparing to cell size. Furthermore, a great loss of precision is observed from the 500 cm pixel size and upper. That remark is quite intuitive. Finally, some very well disconnected zones appear for the highest resolutions. Regarding the weighting factor, IC values calculated using C factor are lower than with the rugosity index which is only a topographic factor. With very high resolution DEM, it permits to represent the fine topography. For the C factor, the zones up to very well disconnected areas (grass strips, wood…) are well represented with lower index values than downstream zones. On the contrary, areas up to very well connected zones (roads, paths…) are higher and much more connected than downstream areas. For the Manning's factor, the values are very low and not very well contrasted. This factor is not enough discriminant for this study. In conclusion, high resolution DEM (1 meter or higher) is needed for the IC calculation (precison, impact of connections…). Very high resolution permits to identify very well disconnected areas but it multiplies the calculation time. For the weighting factor, rugosity index and C factor have each some advantages. It is planned to test other approaches for the IC calculation. Key-words: hydrological connectivity index, DEM, resolution, weighting factor, comparison
Accuracy of measurement of star images on a pixel array
NASA Technical Reports Server (NTRS)
King, I. R.
1983-01-01
Algorithms are developed for predicting the accuracy with which the brightness of a star can be determined from its image on a digital detector array, as a function of the brightness of the background. The assumption is made that a known profile is being fitted by least squares. The two profiles used correspond to ST images and to ground-based observations. The first result is an approximate rule of thumb for equivalent noise area. More rigorous results are then given in tabular form. The size of the pixels, relative to the image size, is taken into account. Astronometric accuracy is also discussed briefly; the error, relative to image size, is very similar to the photometric error relative to brightness.
Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy.
Zhang, Jialin; Sun, Jiasong; Chen, Qian; Li, Jiaji; Zuo, Chao
2017-09-18
High-resolution wide field-of-view (FOV) microscopic imaging plays an essential role in various fields of biomedicine, engineering, and physical sciences. As an alternative to conventional lens-based scanning techniques, lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and FOV of conventional microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). Here, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method which can solve, or at least partially alleviate these limitations. Our approach addresses the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target (~29.85 mm 2 ) and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67µm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.
Characterisation of novel thin n-in-p planar pixel modules for the ATLAS Inner Tracker upgrade
NASA Astrophysics Data System (ADS)
Beyer, J.-C.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Savic, N.; Taibah, R.
2018-01-01
In view of the high luminosity phase of the LHC (HL-LHC) to start operation around 2026, a major upgrade of the tracker system for the ATLAS experiment is in preparation. The expected neutron equivalent fluence of up to 2.4×1016 1 MeV neq./cm2 at the innermost layer of the pixel detector poses the most severe challenge. Thanks to their low material budget and high charge collection efficiency after irradiation, modules made of thin planar pixel sensors are promising candidates to instrument these layers. To optimise the sensor layout for the decreased pixel cell size of 50×50 μm2, TCAD device simulations are being performed to investigate the charge collection efficiency before and after irradiation. In addition, sensors of 100-150 μm thickness, interconnected to FE-I4 read-out chips featuring the previous generation pixel cell size of 50×250 μm2, are characterised with testbeams at the CERN-SPS and DESY facilities. The performance of sensors with various designs, irradiated up to a fluence of 1×1016 neq./cm2, is compared in terms of charge collection and hit efficiency. A replacement of the two innermost pixel layers is foreseen during the lifetime of HL-LHC . The replacement will require several months of intervention, during which the remaining detector modules cannot be cooled. They are kept at room temperature, thus inducing an annealing. The performance of irradiated modules will be investigated with testbeam campaigns and the method of accelerated annealing at higher temperatures.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Effects of Typographic Variables on Eye-Movement Measures in Reading Chinese from a Screen
ERIC Educational Resources Information Center
Yen, Nai-Shing; Tsai, Jie-Li; Chen, Pei-Ling; Lin, Hsuan-Yu; Chen, Arbee L. P.
2011-01-01
To investigate the most efficient way to represent text in reading Chinese on computer displays, three typographic variables, character size (41[feet] arc/24 pixels and 60[feet] arc/32 pixels), character spacing (1/4 and 1/8 character width) and font type (Kai and Ming), were manipulated. Results showed that the reading speed for Chinese…
NASA Astrophysics Data System (ADS)
McCarty, C.; Moersch, J.
2017-12-01
Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS observations may prove to be a new way of distinguishing surfaces that have relatively uniform grain sizes from those that have mixed grain sizes. Assessing the effects of different geologic processes can be aided by noting variations in grain size distributions, so this method may be useful as a new way to extract geologic interpretations from the THEMIS thermal data set.
Technical considerations for designing low-cost, long-wave infrared objectives
NASA Astrophysics Data System (ADS)
Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise
2014-06-01
With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.
Sensor fusion to enable next generation low cost Night Vision systems
NASA Astrophysics Data System (ADS)
Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.
2010-04-01
The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be compensated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagesh, S Setlur; Rana, R; Russ, M
Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spotmore » blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and angiography.« less
An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery
Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley
2009-01-01
In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared surveys of other wildlife species. Published by Elsevier B.V.
SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weppler, S; Villarreal-Barajas, J; Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta
2016-06-15
Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf tomore » deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.« less
A novel algorithm for fast and efficient multifocus wavefront shaping
NASA Astrophysics Data System (ADS)
Fayyaz, Zahra; Nasiriavanaki, Mohammadreza
2018-02-01
Wavefront shaping using spatial light modulator (SLM) is a popular method for focusing light through a turbid media, such as biological tissues. Usually, in iterative optimization methods, due to the very large number of pixels in SLM, larger pixels are formed, bins, and the phase value of the bins are changed to obtain an optimum phase map, hence a focus. In this study an efficient optimization algorithm is proposed to obtain an arbitrary map of focus utilizing all the SLM pixels or small bin sizes. The application of such methodology in dermatology, hair removal in particular, is explored and discussed
An Investigation into the Spectral Imaging of Hall Thruster Plumes
2015-07-01
imaging experiment. It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus...19 mml 14c--7_0_m_m_~•... ,. ,. 50 mm I· ·I ,. 41 mm I Kodak KAF- 3200E ceo 2184 x 1472 px 14.9 x 10.0 mm 6.8 x 6.8J..Lm pixel size SBIG ST...It employs a Kodak KAF-3200E 3 megapixel CCD (2184×1472 with 6.8 µm pixels). The camera was designed for astronomical imaging and thus long exposure
Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor
NASA Technical Reports Server (NTRS)
Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.
2011-01-01
Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.
Optimum viewing distance for target acquisition
NASA Astrophysics Data System (ADS)
Holst, Gerald C.
2015-05-01
Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.
The Effects of Radiation on Imagery Sensors in Space
NASA Technical Reports Server (NTRS)
Mathis, Dylan
2007-01-01
Recent experience using high definition video on the International Space Station reveals camera pixel degradation due to particle radiation to be a much more significant problem with high definition cameras than with standard definition video. Although it may at first appear that increased pixel density on the imager is the logical explanation for this, the ISS implementations of high definition suggest a more complex causal and mediating factor mix. The degree of damage seems to vary from one type of camera to another, and this variation prompts a reconsideration of the possible factors in pixel loss, such as imager size, number of pixels, pixel aperture ratio, imager type (CCD or CMOS), method of error correction/concealment, and the method of compression used for recording or transmission. The problem of imager pixel loss due to particle radiation is not limited to out-of-atmosphere applications. Since particle radiation increases with altitude, it is not surprising to find anecdotal evidence that video cameras subject to many hours of airline travel show an increased incidence of pixel loss. This is even evident in some standard definition video applications, and pixel loss due to particle radiation only stands to become a more salient issue considering the continued diffusion of high definition video cameras in the marketplace.
NASA Astrophysics Data System (ADS)
Evans, Aaron H.
Thermal remote sensing is a powerful tool for measuring the spatial variability of evapotranspiration due to the cooling effect of vaporization. The residual method is a popular technique which calculates evapotranspiration by subtracting sensible heat from available energy. Estimating sensible heat requires aerodynamic surface temperature which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for this problem by calibrating the relationship between sensible heat and retrieved surface temperature. Disadvantage of these calibrations are 1) user must manually identify extremely dry and wet pixels in image 2) each calibration is only applicable over limited spatial extent. Producing larger maps is operationally limited due to time required to manually calibrate multiple spatial extents over multiple days. This dissertation develops techniques which automatically detect dry and wet pixels. LANDSAT imagery is used because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet pixels are developed. Snapshots of retrieved evaporative fraction and actual evapotranspiration are compared to eddy covariance measurements for five study areas in Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available energy, roughness length and wind speed is tested. A technique for temporally interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and tested. The automated algorithm is successful at detecting wet and dry pixels (if they exist). Including wet pixels in calibration and assuming constant atmospheric conductance significantly improved results for all but Big Cypress and Gainesville. Evaporative fraction is not very sensitive to instantaneous available energy but it is sensitive to temperature when wet pixels are included because temperature is required for estimating wet pixel evapotranspiration. Data fusion techniques only slightly outperformed linear interpolation. Eddy covariance comparison and temporal interpolation produced acceptable bias error for most cases suggesting automated calibration and interpolation could be used to predict monthly or annual ET. Maps demonstrating spatial patterns of evapotranspiration at field scale were successfully produced, but only for limited spatial extents. A framework has been established for producing larger maps by creating a mosaic of smaller individual maps.
Imaging natural materials with a quasi-microscope. [spectrophotometry of granular materials
NASA Technical Reports Server (NTRS)
Bragg, S.; Arvidson, R.
1977-01-01
A Viking lander camera with auxilliary optics mounted inside the dust post was evaluated to determine its capability for imaging the inorganic properties of granular materials. During mission operations, prepared samples would be delivered to a plate positioned within the camera's field of view and depth of focus. The auxiliary optics would then allow soil samples to be imaged with an 11 pm pixel size in the broad band (high resolution, black and white) mode, and a 33 pm pixel size in the multispectral mode. The equipment will be used to characterize: (1) the size distribution of grains produced by igneous (intrusive and extrusive) processes or by shock metamorphism, (2) the size distribution resulting from crushing, chemical alteration, or by hydraulic or aerodynamic sorting; (3) the shape and degree of grain roundness and surface texture induced by mechanical and chemical alteration; and (4) the mineralogy and chemistry of grains.
Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC
Bubna, M.; Bolla, G.; Bortoletto, D.; ...
2015-08-03
The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 10 34 cm –2s –1 and collect ~ 3000fb –1 of data. The innermost layer of the pixel detector will be exposed to doses of about 10 16 n eq/ cm 2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have beenmore » fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.« less
Forward model with space-variant of source size for reconstruction on X-ray radiographic image
NASA Astrophysics Data System (ADS)
Liu, Jin; Liu, Jun; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan
2018-03-01
The Forward Imaging Technique is a method to solve the inverse problem of density reconstruction in radiographic imaging. In this paper, we introduce the forward projection equation (IFP model) for the radiographic system with areal source blur and detector blur. Our forward projection equation, based on X-ray tracing, is combined with the Constrained Conjugate Gradient method to form a new method for density reconstruction. We demonstrate the effectiveness of the new technique by reconstructing density distributions from simulated and experimental images. We show that for radiographic systems with source sizes larger than the pixel size, the effect of blur on the density reconstruction is reduced through our method and can be controlled within one or two pixels. The method is also suitable for reconstruction of non-homogeneousobjects.
NASA Astrophysics Data System (ADS)
Luo, Yuan; Wang, Bo-yu; Zhang, Yi; Zhao, Li-ming
2018-03-01
In this paper, under different illuminations and random noises, focusing on the local texture feature's defects of a face image that cannot be completely described because the threshold of local ternary pattern (LTP) cannot be calculated adaptively, a local three-value model of improved adaptive local ternary pattern (IALTP) is proposed. Firstly, the difference function between the center pixel and the neighborhood pixel weight is established to obtain the statistical characteristics of the central pixel and the neighborhood pixel. Secondly, the adaptively gradient descent iterative function is established to calculate the difference coefficient which is defined to be the threshold of the IALTP operator. Finally, the mean and standard deviation of the pixel weight of the local region are used as the coding mode of IALTP. In order to reflect the overall properties of the face and reduce the dimension of features, the two-directional two-dimensional PCA ((2D)2PCA) is adopted. The IALTP is used to extract local texture features of eyes and mouth area. After combining the global features and local features, the fusion features (IALTP+) are obtained. The experimental results on the Extended Yale B and AR standard face databases indicate that under different illuminations and random noises, the algorithm proposed in this paper is more robust than others, and the feature's dimension is smaller. The shortest running time reaches 0.329 6 s, and the highest recognition rate reaches 97.39%.
NASA Technical Reports Server (NTRS)
Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith
2016-01-01
A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.
Modeling misregistration and related effects on multispectral classification
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1981-01-01
The effects of misregistration on the multispectral classification accuracy when the scene registration accuracy is relaxed from 0.3 to 0.5 pixel are investigated. Noise, class separability, spatial transient response, and field size are considered simultaneously with misregistration in their effects on accuracy. Any noise due to the scene, sensor, or to the analog/digital conversion, causes a finite fraction of the measurements to fall outside of the classification limits, even within nominally uniform fields. Misregistration causes field borders in a given band or set of bands to be closer than expected to a given pixel, causing additional pixels to be misclassified due to the mixture of materials in the pixel. Simplified first order models of the various effects are presented, and are used to estimate the performance to be expected.
NASA Astrophysics Data System (ADS)
Das, Sukanta Kumar; Shukla, Ashish Kumar
2011-04-01
Single-frequency users of a satellite-based augmentation system (SBAS) rely on ionospheric models to mitigate the delay due to the ionosphere. The ionosphere is the major source of range and range rate errors for users of the Global Positioning System (GPS) who require high-accuracy positioning. The purpose of the present study is to develop a tomography model to reconstruct the total electron content (TEC) over the low-latitude Indian region which lies in the equatorial ionospheric anomaly belt. In the present study, the TEC data collected from the six TEC collection stations along a longitudinal belt of around 77 degrees are used. The main objective of the study is to find out optimum pixel size which supports a better reconstruction of the electron density and hence the TEC over the low-latitude Indian region. Performance of two reconstruction algorithms Algebraic Reconstruction Technique (ART) and Multiplicative Algebraic Reconstruction Technique (MART) is analyzed for different pixel sizes varying from 1 to 6 degrees in latitude. It is found from the analysis that the optimum pixel size is 5° × 50 km over the Indian region using both ART and MART algorithms.
Low Complexity Compression and Speed Enhancement for Optical Scanning Holography
Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Kim, T.; Kim, Y. S.
2016-01-01
In this paper we report a low complexity compression method that is suitable for compact optical scanning holography (OSH) systems with different optical settings. Our proposed method can be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit representation with delta modulation (DM). Existing DM-based hologram compression techniques suffers from the disadvantage that a core parameter, commonly known as the step size, has to be determined in advance. However, the correct value of the step size for compressing each row of hologram is dependent on the dynamic range of the pixels, which could deviate significantly with the object scene, as well as OSH systems with different opical settings. We have overcome this problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied in the compression of holograms that are acquired with 2 different OSH systems, demonstrating a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the reconstructed images. PMID:27708410
A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity
Zhang, Fan; Niu, Hanben
2016-01-01
In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699
A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.
Zhang, Fan; Niu, Hanben
2016-06-29
In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.
Correlation and registration of ERTS multispectral imagery. [by a digital processing technique
NASA Technical Reports Server (NTRS)
Bonrud, L. O.; Henrikson, P. J.
1974-01-01
Examples of automatic digital processing demonstrate the feasibility of registering one ERTS multispectral scanner (MSS) image with another obtained on a subsequent orbit, and automatic matching, correlation, and registration of MSS imagery with aerial photography (multisensor correlation) is demonstrated. Excellent correlation was obtained with patch sizes exceeding 16 pixels square. Qualities which lead to effective control point selection are distinctive features, good contrast, and constant feature characteristics. Results of the study indicate that more than 300 degrees of freedom are required to register two standard ERTS-1 MSS frames covering 100 by 100 nautical miles to an accuracy of 0.6 pixel mean radial displacement error. An automatic strip processing technique demonstrates 600 to 1200 degrees of freedom over a quater frame of ERTS imagery. Registration accuracies in the range of 0.3 pixel to 0.5 pixel mean radial error were confirmed by independent error analysis. Accuracies in the range of 0.5 pixel to 1.4 pixel mean radial error were demonstrated by semi-automatic registration over small geographic areas.
Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications
Rozler, Mike; Liang, Haoning; Chang, Wei
2013-01-01
A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436
An ultrashort throw ratio projection lens design based on a catadioptric structure
NASA Astrophysics Data System (ADS)
Wang, Hsiu-Cheng; Pan, Jui-Wen
2018-07-01
In this paper, we present a rotational symmetry for an ultrashort throw (UST) lens with offset field. The UST lens has a throw ratio of 0.23 and a total track of 195 mm. The optical elements of the UST lens are comprised of two parts. First, a catadioptric projection lens where the catadioptric function permits reaching an ultrashort throw ratio, short total track, while at the same time requiring fewer lens elements. The second part is a collimating lens which takes advantage of the telecentric condition to generate uniform total internal reflection (TIR) in the TIR prism. With this design, an effective focal length of -1.96 mm and a f-number of 2.4 can be obtained. The root mean square spot size and lateral colour of all fields are smaller than one pixel in size. The maximum optical distortion of -0.97% and TV distortion of 0.2% are acceptable. In terms of image quality, the modulation transfer function (MTF) values for all fields are above 0.65 at 0.245 line pairs/mm. Even when the tolerance error is considered, the MTF values for all fields are still above 0.3. The suitability of the novel UST lens design for projection applications is discussed.
Pluto’s non-icy component: a close-in analysis
NASA Astrophysics Data System (ADS)
Dalle Ore, Cristina M.; Protopapa, Silvia; Cruikshank, Dale P.; Grundy, William M.; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine; Reuter, Dennie; Young, Leslie; Weaver, Harold A.; New Horizons Composition Theme Team
2017-10-01
The understanding of the origin and evolution of Pluto, and, by extension, that of a vast number of similar sized and smaller bodies in the Third Zone of the solar system, are closely tied to their atmosphere and surface chemistry. In turn, a major role in the composition and coloration (from dark red to yellow) of the surface -and indirectly the atmosphere- of Pluto is played by non-ice components presumed to be organic compounds known as tholins. While some of these compounds have been reproduced in the laboratory by irradiation of native materials found in Pluto’s atmosphere and surface, the number of kinds of tholins on the surface of Pluto, and the processes responsible for their formation and distribution is still subject of investigation. We make use of Pluto data from the New Horizons Ralph instrument consisting of a multicolor/panchromatic mapper (MVIC) and mapping infrared (IR) composition spectrometer (LEISA). For this study we have adopted a set of scans at high spatial resolution (on average 2.7 km/pixel), spectroscopically analyzed for the first time. Our preliminary analysis shows different signatures for the dark red material that could be attributed to either grain size or composition/nature of the darkening agent. We characterize and inter-compare the potentially different tholins aiming at understanding its/their history and chemical evolution.
Non-native Ants Are Smaller than Related Native Ants.
McGlynn, Terrence P
1999-12-01
I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.
NASA Astrophysics Data System (ADS)
Ni, W.; Zhang, Z.; Sun, G.
2017-12-01
Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in this study and forest AGB map was shown in Figure 2. The technique details and further analysis will be given in the final report. AcknowledgmentThis work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733401, 2013CB733404), and in part by the National Natural Science Foundation of China (Grant Nos. 41471311, 41371357, 41301395).
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara
2013-11-07
For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.
NASA Astrophysics Data System (ADS)
Molinario, Giuseppe; Hansen, Matthew; Potapov, Peter V.
2017-08-01
An error in the unit conversion from pixels to hectares lead to all the areal quantities in the text being smaller than they should have been. Only the number of hectares were changed; none of the text nor tables were changed. The changes do not affect the overall results or conclusions.
Graphene metamaterial spatial light modulator for infrared single pixel imaging.
Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J
2017-10-16
High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.
Stability of deep features across CT scanners and field of view using a physical phantom
NASA Astrophysics Data System (ADS)
Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.
2018-02-01
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
Study on pixel matching method of the multi-angle observation from airborne AMPR measurements
NASA Astrophysics Data System (ADS)
Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han
2015-10-01
For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.
Comparing the imaging performance of computed super resolution and magnification tomosynthesis
NASA Astrophysics Data System (ADS)
Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2017-03-01
Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.
Independent Pixel and Two Dimensional Estimates of LANDSAT-Derived Cloud Field Albedo
NASA Technical Reports Server (NTRS)
Chambers, L. H.; Wielicki, Bruce A.; Evans, K. F.
1996-01-01
A theoretical study has been conducted on the effects of cloud horizontal inhomogeneity on cloud albedo bias. A two-dimensional (2D) version of the Spherical Harmonic Discrete Ordinate Method (SHDOM) is used to estimate the albedo bias of the plane parallel (PP-IPA) and independent pixel (IPA-2D) approximations for a wide range of 2D cloud fields obtained from LANDSAT. They include single layer trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus boundary layer cloud fields over ocean. Findings are presented on a variety of averaging scales and are summarized as a function of cloud fraction, mean cloud optical depth, cloud aspect ratio, standard deviation of optical depth, and the gamma function parameter Y (a measure of the width of the optical depth distribution). Biases are found to be small for small cloud fraction or mean optical depth, where the cloud fields under study behave linearly. They are large (up to 0.20 for PP-IPA bias, -0.12 for IPA-2D bias) for large v. On a scene average basis PP-IPA bias can reach 0.30, while IPA-2D bias reaches its largest magnitude at -0.07. Biases due to horizontal transport (IPA-2D) are much smaller than PP-IPA biases but account for 20% RMS of the bias overall. Limitations of this work include the particular cloud field set used, assumptions of conservative scattering, constant cloud droplet size, no gas absorption or surface reflectance, and restriction to 2D radiative transport. The LANDSAT data used may also be affected by radiative smoothing.
NASA Astrophysics Data System (ADS)
Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2016-04-01
This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Sun, Huayan; Guo, Huichao
2018-01-01
Aiming at the problem of beam scanning in low-resolution APD array in three-dimensional imaging, a method of beam scanning with liquid crystal phase-space optical modulator is proposed to realize high-resolution imaging by low-resolution APD array. First, a liquid crystal phase spatial light modulator is used to generate a beam array and then a beam array is scanned. Since the sub-beam divergence angle in the beam array is smaller than the field angle of a single pixel in the APD array, the APD's pixels respond only to the three-dimensional information of the beam illumination position. Through the scanning of the beam array, a single pixel is used to collect the target three-dimensional information multiple times, thereby improving the resolution of the APD detector. Finally, MATLAB is used to simulate the algorithm in this paper by using two-dimensional scalar diffraction theory, which realizes the splitting and scanning with a resolution of 5 x 5. The feasibility is verified theoretically.
Compressed Sensing and Electron Microscopy
2010-01-01
dimensional space IRn and so there is a lot of collapsing of information. For example, any vector η in the null space N = N (Φ) of Φ is mapped...assignment of the pixel intensity f̂P in the image. Thus, the pixels size is the same as the grid spacing h and we can ( with only a slight abuse of notation...offers a fresh view of signal/image acquisition and reconstruction.
OLED study for military applications
NASA Astrophysics Data System (ADS)
Barre, F.; Chiquard, A.; Faure, S.; Landais, L.; Patry, P.
2005-07-01
The presentation deals with some applications of OLED displays in military optronic systems, which are scheduled by SAGEM DS (Defence and Security). SAGEM DS, one of the largest group in the defence and security market, is currently investigating OLED Technologies for military programs. This technology is close from being chosen for optronic equipment such as future infantry night vision goggles, rifle-sight, or, more generally, vision enhancement systems. Most of those applications requires micro-display with an active matrix size below 1". Some others, such as, for instance, ruggedized flat displays do have a need for higher active matrix size (1,5" to 15"). SAGEM DS takes advantages of this flat, high luminance and emissive technology in highly integrated systems. In any case, many requirements have to be fulfilled: ultra-low power consumption, wide viewing angle, good pixel to pixel uniformity, and satisfactory behaviour in extreme environmental conditions.... Accurate measurements have been achieved at SAGEM DS on some micro display OLEDs and will be detailed: luminance (over 2000 cd/m2 achieved), area uniformity and pixel to pixel uniformity, robustness at low and high temperature (-40°C to +60°C), lifetime. These results, which refer to military requirements, provide a valuable feedback representative of the state of the art OLED performances.
Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors.
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-12
Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.
Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors
Lim, Seon-Jeong; Leem, Dong-Seok; Park, Kyung-Bae; Kim, Kyu-Sik; Sul, Sangchul; Na, Kyoungwon; Lee, Gae Hwang; Heo, Chul-Joon; Lee, Kwang-Hee; Bulliard, Xavier; Satoh, Ryu-Ichi; Yagi, Tadao; Ro, Takkyun; Im, Dongmo; Jung, Jungkyu; Lee, Myungwon; Lee, Tae-Yon; Han, Moon Gyu; Jin, Yong Wan; Lee, Sangyoon
2015-01-01
Complementary metal–oxide–semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor. PMID:25578322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.
We developed a silicon avalanche photodiode (Si-APD) linear-array detector to be used for time-resolved X-ray scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and a depletion depth of 10 μm. The multichannel scaler counted X-ray pulses over continuous 2046 time bins for every 0.5 ns and recorded a time spectrum at each pixel with a time resolution of 0.5 ns (FWHM) for 8.0 keV X-rays. Using the detector system, we were able to observe X-ray peaks clearly separated with 2 nsmore » interval in the multibunch-mode operation of the Photon Factory ring. The small-angle X-ray scattering for polyvinylidene fluoride film was also observed with the detector.« less
NASA Astrophysics Data System (ADS)
Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.
2016-02-01
The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.
IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...
High resolution laboratory grating-based x-ray phase-contrast CT
NASA Astrophysics Data System (ADS)
Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia
2017-03-01
Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.
Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, P.; Zbijewski, W.; Gang, G. J.
2011-10-15
Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequencymore » content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for 1 x 1 (full-resolution) projection data acquisition followed by full-resolution reconstruction with a sharp filter for high-frequency tasks along with 2 x 2 binning reconstruction with a smooth filter for low-frequency tasks. The analysis guided selection of specific source and detector components implemented on the proposed scanner. The analysis also quantified the potential benefits and points of diminishing return in focal spot size, reduced electronic noise, finer detector pixels, and low-dose limits of detectability. Theoretical results agreed quantitatively with the measured NPS and qualitatively with evaluation of cadaver images by a musculoskeletal radiologist. Conclusions: A fairly comprehensive model for 3D imaging performance in cone-beam CT combines factors of quantum noise, system geometry, anatomical background, and imaging task. The analysis provided a valuable, quantitative guide to design, optimization, and technique selection for a musculoskeletal extremities imaging system under development.« less
Improving Nocturnal Fire Detection with the VIIRS Day-Night Band
NASA Technical Reports Server (NTRS)
Polivka, Thomas N.; Wang, Jun; Ellison, Luke T.; Hyer, Edward J.; Ichoku, Charles M.
2016-01-01
Building on existing techniques for satellite remote sensing of fires, this paper takes advantage of the day-night band (DNB) aboard the Visible Infrared Imaging Radiometer Suite (VIIRS) to develop the Firelight Detection Algorithm (FILDA), which characterizes fire pixels based on both visible-light and infrared (IR) signatures at night. By adjusting fire pixel selection criteria to include visible-light signatures, FILDA allows for significantly improved detection of pixels with smaller and/or cooler subpixel hotspots than the operational Interface Data Processing System (IDPS) algorithm. VIIRS scenes with near-coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified "candidate fire pixel selection" approach from FILDA that lowers the 4-µm brightness temperature (BT) threshold but includes a minimum DNB radiance. FILDA is shown to be effective in detecting gas flares and characterizing fire lines during large forest fires (such as the Rim Fire in California and High Park fire in Colorado). Compared with the operational VIIRS fire algorithm for the study period, FILDA shows a large increase (up to 90%) in the number of detected fire pixels that can be verified with the finer resolution ASTER data (90 m). Part (30%) of this increase is likely due to a combined use of DNB and lower 4-µm BT thresholds for fire detection in FILDA. Although further studies are needed, quantitative use of the DNB to improve fire detection could lead to reduced response times to wildfires and better estimate of fire characteristics (smoldering and flaming) at night.
Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar
2012-01-01
To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.
Fiber pixelated image database
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Matham, Murukeshan Vadakke
2016-08-01
Imaging of physically inaccessible parts of the body such as the colon at micron-level resolution is highly important in diagnostic medical imaging. Though flexible endoscopes based on the imaging fiber bundle are used for such diagnostic procedures, their inherent honeycomb-like structure creates fiber pixelation effects. This impedes the observer from perceiving the information from an image captured and hinders the direct use of image processing and machine intelligence techniques on the recorded signal. Significant efforts have been made by researchers in the recent past in the development and implementation of pixelation removal techniques. However, researchers have often used their own set of images without making source data available which subdued their usage and adaptability universally. A database of pixelated images is the current requirement to meet the growing diagnostic needs in the healthcare arena. An innovative fiber pixelated image database is presented, which consists of pixelated images that are synthetically generated and experimentally acquired. Sample space encompasses test patterns of different scales, sizes, and shapes. It is envisaged that this proposed database will alleviate the current limitations associated with relevant research and development and would be of great help for researchers working on comb structure removal algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull
Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of imagesmore » that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.« less
Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.
Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian
2009-04-01
Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.
IMPACTS OF PATCH SIZE AND LAND COVER HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of miss-classifying pixels during thematic image classification. However, there has been a lack of empirical evidence to support these hypotheses,...
Panchromatic SED modelling of spatially resolved galaxies
NASA Astrophysics Data System (ADS)
Smith, Daniel J. B.; Hayward, Christopher C.
2018-05-01
We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, B.D.; Zhang, X.; Desu, S.B.
1997-04-01
Much of the cost of traditional infrared cameras based on narrow-bandgap photoelectric semiconductors comes from the cryogenic cooling systems required to achieve high detectivity. Detectivity is inversely proportional to noise. Generation-recombination noise in photoelectric detectors increases roughly exponentially with temperature, but thermal noise in photoelectric detectors increases only linearly with temperature. Therefore `thermal detectors perform far better at room temperature than 8-14 {mu}m photon detectors.` Although potentially more affordable, uncooled pyroelectric cameras are less sensitive than cryogenic photoelectric cameras. One way to improve the sensitivity to cost ratio is to deposit ferroelectric pixels with good electrical properties directly on mass-produced,more » image-processing chips. `Good` properties include a strong temperature dependence of the remanent polarization, P{sub r}, or the relative dielectric constant, {epsilon}{sub r}, for sensitive operation in pyroelectric or dielectric mode, respectively, below or above the Curie temperature, which is 320 C for SBT. When incident infrared radiation is chopped, small oscillations in pixel temperature produce pyroelectric or dielectric alternating currents. The sensitivity of ferroelectric thermal detectors depends strongly on pixel microstructure, since P{sub r} and {epsilon}{sub r} increase with grain size during annealing. To manufacture SBT pixels on Si chips, acceptable SBT grain growth must be achieved at the lowest possible oxygen annealing temperature, to avoid damaging the Si chip below. Therefore current technical progress describes how grain size, reaction layer thickness, and electrical properties develop during the annealing of SBT pixels deposited on Si.« less
Sub-pixel spatial resolution wavefront phase imaging
NASA Technical Reports Server (NTRS)
Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)
2012-01-01
A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.
Processing Translational Motion Sequences.
1982-10-01
the initial ROADSIGN image using a (del)**2g mask with a width of 5 pixels The distinctiveness values were computed using features which were 5x5 pixel...the initial step size of the local search quite large. 34 4. EX P R g NTg The following experiments were performed using the roadsign and industrial...the initial image of the sequence. The third experiment involves processing the roadsign image sequence using the features extracted at the positions
An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2015-09-01
Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is <0.25. This camera specific depth of focus is transferred in the object space by paraxial relations. It follows a general applicable Depth of Field diagram which could be applied to lenses realizing a lateral magnification range -0.05…0. Easy to handle formulas are provided between hyperfocal distance and the borders of the Depth of Field in dependence on sharp distances. These relations are in line with the classical Depth of Field-theory. Thermal pictures, taken by different IR-camera cores, illustrate the new approach. The quite often requested graph "MTF versus distance" choses the half Nyquist frequency as reference. The paraxial transfer of the through focus MTF in object space distorts the MTF-curve: hard drop at closer distances than sharp distance, smooth drop at further distances. The formula of a general Diffraction-Limited-Through-Focus-MTF (DLTF) is deducted. Arbitrary detector-lens combinations could be discussed. Free variables in this analysis are waveband, aperture based F-number (lens) and pixel pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.
Energy-correction photon counting pixel for photon energy extraction under pulse pile-up
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong
2017-06-01
A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 μm2 was fabricated by using a 6-metal 1-poly 0.18 μm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.
Why does offspring size affect performance? Integrating metabolic scaling with life-history theory
Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.
2015-01-01
Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952
Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho
2013-10-01
Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.
Active Pixel Sensors: Are CCD's Dinosaurs?
NASA Technical Reports Server (NTRS)
Fossum, Eric R.
1993-01-01
Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.
The Advanced ACTPol 27/39 GHz Array
NASA Astrophysics Data System (ADS)
Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.
Computer program documentation for the patch subsampling processor
NASA Technical Reports Server (NTRS)
Nieves, M. J.; Obrien, S. O.; Oney, J. K. (Principal Investigator)
1981-01-01
The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square.
High-performance MCT and QWIP IR detectors at Sofradir
NASA Astrophysics Data System (ADS)
Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.
2012-11-01
Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.
Full-frame video stabilization with motion inpainting.
Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung
2006-07-01
Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.
Automated thematic mapping and change detection of ERTS-A images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.
2006-05-18
Enceladus briefly passes behind the crescent of Rhea in these images, which are part of a "mutual event" sequence taken by Cassini. These sequences help scientists refine our understanding of the orbits of Saturn's moons. The images were taken one minute apart as smaller Enceladus (505 kilometers, or 314 miles across) darted behind Rhea (1,528 kilometers, or 949 miles across) as seen from the Cassini spacecraft's point of view. The images were taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2006, at a distance of approximately 3.4 million kilometers (2.1 million miles) from Rhea and 4.1 million kilometers (2.5 million miles) from Enceladus. The image scale is 20 kilometers (13 miles) per pixel on Rhea and 24 kilometers (15 miles) per pixel on Enceladus. http://photojournal.jpl.nasa.gov/catalog/PIA08180
School Class Size: Research and Policy
ERIC Educational Resources Information Center
Glass, Gene V.; And Others
This book synthesizes research evidence to demonstrate that 1) class size is strongly related to pupil achievement; 2) smaller classes are more conducive to improved pupil performance than larger classes; 3) smaller classes provide more opportunities to adapt learning programs to individual needs; 4) pupils in smaller classes have more interest in…
Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector
NASA Astrophysics Data System (ADS)
Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.
2017-01-01
MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.
Large Area Cd0.9Zn0.1Te Pixelated Detector: Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Chaudhuri, Sandeep K.; Nguyen, Khai; Pak, Rahmi O.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Mandal, Krishna C.
2014-04-01
Cd0.9Zn0.1Te (CZT) based pixelated radiation detectors have been fabricated and characterized for gamma ray detection. Large area CZT single crystals has been grown using a tellurium solvent method. A 10 ×10 guarded pixelated detector has been fabricated on a 19.5 ×19.5 ×5 mm3 crystal cut out from the grown ingot. The pixel dimensions were 1.3 ×1.3 mm2 and were pitched at 1.8 mm. A guard grid was used to reduce interpixel/inter-electrode leakage. The crystal was characterized in planar configuration using electrical, optical and optoelectronic methods prior to the fabrication of pixelated geometry. Current-voltage (I-V) measurements revealed a leakage current of 27 nA at an operating bias voltage of 1000 V and a resistivity of 3.1 ×1010 Ω-cm. Infrared transmission imaging revealed an average tellurium inclusion/precipitate size less than 8 μm. Pockels measurement has revealed a near-uniform depth-wise distribution of the internal electric field. The mobility-lifetime product in this crystal was calculated to be 6.2 ×10 - 3 cm2/V using alpha ray spectroscopic method. Gamma spectroscopy using a 137Cs source on the pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with percentage resolution (FWHM) as high as 1.8%.
Three-pass protocol scheme for bitmap image security by using vernam cipher algorithm
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Budiman, M. A.; Aulya, L.
2018-02-01
Confidentiality, integrity, and efficiency are the crucial aspects of data security. Among the other digital data, image data is too prone to abuse of operation like duplication, modification, etc. There are some data security techniques, one of them is cryptography. The security of Vernam Cipher cryptography algorithm is very dependent on the key exchange process. If the key is leaked, security of this algorithm will collapse. Therefore, a method that minimizes key leakage during the exchange of messages is required. The method which is used, is known as Three-Pass Protocol. This protocol enables message delivery process without the key exchange. Therefore, the sending messages process can reach the receiver safely without fear of key leakage. The system is built by using Java programming language. The materials which are used for system testing are image in size 200×200 pixel, 300×300 pixel, 500×500 pixel, 800×800 pixel and 1000×1000 pixel. The result of experiments showed that Vernam Cipher algorithm in Three-Pass Protocol scheme could restore the original image.
Adaptive local thresholding for robust nucleus segmentation utilizing shape priors
NASA Astrophysics Data System (ADS)
Wang, Xiuzhong; Srinivas, Chukka
2016-03-01
This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Togno, M., E-mail: michele.togno@iba-group.com; Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675; IBA Dosimetry GmbH, Schwarzenbruck 90592
Purpose: To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. Methods: The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm{sup 3}. The detector has been characterized with {sup 60}Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both themore » source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Results: Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, −0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09–2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm{sup 2}, the output factors are in agreement with a thimble chamber within 2%, while with 25 × 25 cm{sup 2} field size, an underestimation of 4.0% was found. Agreement of field and penumbra width measurements with the flat panel is of the order of 1 mm down to 1 × 1 cm{sup 2} field size. Flatness and symmetry values measured with the 1D array and the reference detectors are comparable, and differences are always smaller than 1%. Angular dependence of the detector, when compared to measurements taken with a cylindrical chamber in the same phantom, is as large as 16%. This includes inhomogeneity and asymmetry of the design, which during plan verification are accounted for by the treatment planning system (TPS). The detector is capable to reproduce the dose distributions of IMRT and VMAT plans with a maximum deviation from TPS of 3.0% in the target region. In the case of VMAT and SRS plans, an average (maximum) deviation of the order of 1% (4%) from films has been measured. Conclusions: The investigated technology appears to be useful both for Linac QA and patient plan verification, especially in treatments with steep dose gradients and nonuniform dose rates such as VMAT and SRS. Major limitations of the present prototype are the linearity at low dose, which can be solved by optimizing the readout electronics, and the underestimation of output factors with large field sizes. The latter problem is presently not completely understood and will require further investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandlakunta, P; Pham, R; Zhang, T
Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less
Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming
2014-06-03
Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.
The 2014 Napa Earthquake Imaged Through A Full Exploitation Of SAR Data
NASA Astrophysics Data System (ADS)
Castaldo, R.; Casu, F.; de Luca, C.; Solaro, G.
2014-12-01
We investigate the co-seismic surface deformation related to the earthquake occurred in Napa area (California) on August 24, 2014. To this aim, we exploit both the phase and the amplitude information of SAR data acquired in Stripmap mode by the Italian COSMO-SkyMed (CSK), the Canadian RADARSAT-2 (RS2), and the recently launched Europena Sentinel-1 satellites, to evaluate and analyze the induced surface displacements through the Differential SAR Interferometry (DInSAR) and Pixel-Offset (PO) techniques. In particular, the SAR images, acquired from descending orbits on 26 July and 27 August 2014 by CSK, and on 07 August and 31 August 2014 by Sentinel-1, as well as the ones acquired on 24 July and 10 September by RS2 from ascending passes were used to generate differential SAR interferograms encompassing the main seismic events. The related deformation map, obtained by performing a complex multi-look operation resulting in a pixel size of about 30 m by 30 m, reveals two main lobes of LOS displacement with a range change decrease of about 11 cm to the NE sector and about 7 cm of range change increase to the SE sector. Moreover, by benefiting from the sensor spatial resolutions (down to 3 meters for both CSK and Sentinel-1 satellites), the Pixel-Offset maps of the same data pairs have been also computed, thus permitting us to retrieve displacement information along the azimuth direction and better describing the deformation field. In order to retrieve the earthquake source location and its geometrical characteristics, the displacement maps were modeled by finite dislocation faults in an elastic and homogeneous half-space [Okada, 1985]. In particular, we searched for all the parameters free the fault by using a nonlinear inversion based on the Levenberg-Marquardt least-squares approach. The best fit solution, consists of a right -lateral NNW-SSE oriented fault. The comparison between the model results and the measured InSAR data show a good fit, with residue values smaller than 2 cm. However, small zones far from the epicenter area, with higher residues are individuated.
Enhancing the image resolution in a single-pixel sub-THz imaging system based on compressed sensing
NASA Astrophysics Data System (ADS)
Alkus, Umit; Ermeydan, Esra Sengun; Sahin, Asaf Behzat; Cankaya, Ilyas; Altan, Hakan
2018-04-01
Compressed sensing (CS) techniques allow for faster imaging when combined with scan architectures, which typically suffer from speed. This technique when implemented with a subterahertz (sub-THz) single detector scan imaging system provides images whose resolution is only limited by the pixel size of the pattern used to scan the image plane. To overcome this limitation, the image of the target can be oversampled; however, this results in slower imaging rates especially if this is done in two-dimensional across the image plane. We show that by implementing a one-dimensional (1-D) scan of the image plane, a modified approach to CS theory applied with an appropriate reconstruction algorithm allows for successful reconstruction of the reflected oversampled image of a target placed in standoff configuration from the source. The experiments are done in reflection mode configuration where the operating frequency is 93 GHz and the corresponding wavelength is λ = 3.2 mm. To reconstruct the image with fewer samples, CS theory is applied using masks where the pixel size is 5 mm × 5 mm, and each mask covers an image area of 5 cm × 5 cm, meaning that the basic image is resolved as 10 × 10 pixels. To enhance the resolution, the information between two consecutive pixels is used, and oversampling along 1-D coupled with a modification of the masks in CS theory allowed for oversampled images to be reconstructed rapidly in 20 × 20 and 40 × 40 pixel formats. These are then compared using two different reconstruction algorithms, TVAL3 and ℓ1-MAGIC. The performance of these methods is compared for both simulated signals and real signals. It is found that the modified CS theory approach coupled with the TVAL3 reconstruction process, even when scanning along only 1-D, allows for rapid precise reconstruction of the oversampled target.
Algorithm for Detecting a Bright Spot in an Image
NASA Technical Reports Server (NTRS)
2009-01-01
An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)
2008-12-01
projects have either resorted to partitioned smaller databases, or to a hybrid scheme where meta - data are stored in the database, along with pointers to...comes from the briefing of Dr. Mark Duchaineau from LLNL. If we assume that a pixel from a modern airborne sensor covers a square meter, then one can... airborne platform. After surveillance is complete, the data (in fact the disks them- selves) are sent to a ground station for processing. Despite the
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variogram plays a crucial role in remote sensing application and geostatistics. It is very important to estimate variogram reliably from sufficient data. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100x100-pixel subset was chosen from ...
Analysis of variograms with various sample sizes from a multispectral image
USDA-ARS?s Scientific Manuscript database
Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...
Robinson, E; Nolan, S; Tudur-Smith, C; Boyland, E J; Harrold, J A; Hardman, C A; Halford, J C G
2014-10-01
It has been suggested that providing consumers with smaller dishware may prove an effective way of helping people eat less and preventing weight gain, but experimental evidence supporting this has been mixed. The objective of the present work was to examine the current evidence base for whether experimentally manipulated differences in dishware size influence food consumption. We systematically reviewed studies that experimentally manipulated the dishware size participants served themselves at a meal with and measured subsequent food intake. We used inverse variance meta-analysis, calculating the standardized mean difference (SMD) in food intake between smaller and larger dishware size conditions. Nine experiments from eight publications were eligible for inclusion. The majority of experiments found no significance difference in food intake when participants ate from smaller vs. larger dishware. With all available data included, analysis indicated a marginal effect of dishware size on food intake, with larger dishware size associated with greater intake. However, this effect was small and there was a large amount of heterogeneity across studies (SMD: -0.18, 95% confidence interval: -0.35, 0.00, I(2) = 77%). Evidence to date does not show that dishware size has a consistent effect on food intake, so recommendations surrounding the use of smaller plates/dishware to improve public health may be premature. © 2014 The Authors. obesity reviews © 2014 World Obesity.
A custom hardware classifier for bruised apple detection in hyperspectral images
NASA Astrophysics Data System (ADS)
Cárdenas, Javier; Figueroa, Miguel; Pezoa, Jorge E.
2015-09-01
We present a custom digital architecture for bruised apple classification using hyperspectral images in the near infrared (NIR) spectrum. The algorithm classifies each pixel in an image into one of three classes: bruised, non-bruised, and background. We extract two 5-element feature vectors for each pixel using only 10 out of the 236 spectral bands provided by the hyperspectral camera, thereby greatly reducing both the requirements of the imager and the computational complexity of the algorithm. We then use two linear-kernel support vector machine (SVM) to classify each pixel. Each SVM was trained with 504 windows of size 17×17-pixel taken from 14 hyperspectral images of 320×320 pixels each, for each class. The architecture then computes the percentage of bruised pixels in each apple in order to adequately classify the fruit. We implemented the architecture on a Xilinx Zynq Z-7010 field-programmable gate array (FPGA) and tested it on images from a NIR N17E push-broom camera with a frame rate of 25 fps, a band-pixel rate of 1.888 MHz, and 236 spectral bands between 900 and 1700 nanometers in laboratory conditions. Using 28-bit fixed-point arithmetic, the circuit accurately discriminates 95.2% of the pixels corresponding to an apple, 81% of the pixels corresponding to a bruised apple, and 96.4% of the background. With the default threshold settings, the highest false positive (FP) for a bruised apple is 18.7%. The circuit operates at the native frame rate of the camera, consumes 67 mW of dynamic power, and uses less than 10% of the logic resources on the FPGA.
Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale
NASA Astrophysics Data System (ADS)
Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.
2017-12-01
Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at large scales in fractional mixture analysis.
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
Commercial CMOS image sensors as X-ray imagers and particle beam monitors
NASA Astrophysics Data System (ADS)
Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G. V.; Carraresi, L.
2015-01-01
CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1-6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements.
16 CFR § 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
Performance verification of the CMS Phase-1 Upgrade Pixel detector
NASA Astrophysics Data System (ADS)
Veszpremi, V.
2017-12-01
The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3 cm and 110 cm in radius and up to 280 cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2 m 2 total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200 m 2 total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC . The current strip detector continues to perform very well. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suited to match the increased instantaneous luminosity the LHC would reach before 2023. It was built to operate at an instantaneous luminosity of around 2×1034 cm-2s-1. The detector's new layout has an additional inner layer with respect to the previous one; it allows for more efficient tracking with smaller fake rate at higher event pile-up. The paper focuses on the first results obtained during the commissioning of the new detector. It also includes challenges faced during the first data taking to reach the optimal measurement efficiency. Details will be given on the performance at high occupancy with respect to observables such as data-rate, hit reconstruction efficiency, and resolution.
Combined statistical analysis of landslide release and propagation
NASA Astrophysics Data System (ADS)
Mergili, Martin; Rohmaneo, Mohammad; Chu, Hone-Jay
2016-04-01
Statistical methods - often coupled with stochastic concepts - are commonly employed to relate areas affected by landslides with environmental layers, and to estimate spatial landslide probabilities by applying these relationships. However, such methods only concern the release of landslides, disregarding their motion. Conceptual models for mass flow routing are used for estimating landslide travel distances and possible impact areas. Automated approaches combining release and impact probabilities are rare. The present work attempts to fill this gap by a fully automated procedure combining statistical and stochastic elements, building on the open source GRASS GIS software: (1) The landslide inventory is subset into release and deposition zones. (2) We employ a traditional statistical approach to estimate the spatial release probability of landslides. (3) We back-calculate the probability distribution of the angle of reach of the observed landslides, employing the software tool r.randomwalk. One set of random walks is routed downslope from each pixel defined as release area. Each random walk stops when leaving the observed impact area of the landslide. (4) The cumulative probability function (cdf) derived in (3) is used as input to route a set of random walks downslope from each pixel in the study area through the DEM, assigning the probability gained from the cdf to each pixel along the path (impact probability). The impact probability of a pixel is defined as the average impact probability of all sets of random walks impacting a pixel. Further, the average release probabilities of the release pixels of all sets of random walks impacting a given pixel are stored along with the area of the possible release zone. (5) We compute the zonal release probability by increasing the release probability according to the size of the release zone - the larger the zone, the larger the probability that a landslide will originate from at least one pixel within this zone. We quantify this relationship by a set of empirical curves. (6) Finally, we multiply the zonal release probability with the impact probability in order to estimate the combined impact probability for each pixel. We demonstrate the model with a 167 km² study area in Taiwan, using an inventory of landslides triggered by the typhoon Morakot. Analyzing the model results leads us to a set of key conclusions: (i) The average composite impact probability over the entire study area corresponds well to the density of observed landside pixels. Therefore we conclude that the method is valid in general, even though the concept of the zonal release probability bears some conceptual issues that have to be kept in mind. (ii) The parameters used as predictors cannot fully explain the observed distribution of landslides. The size of the release zone influences the composite impact probability to a larger degree than the pixel-based release probability. (iii) The prediction rate increases considerably when excluding the largest, deep-seated, landslides from the analysis. We conclude that such landslides are mainly related to geological features hardly reflected in the predictor layers used.
NASA Astrophysics Data System (ADS)
Chung, C.; Nagol, J. R.; Tao, X.; Anand, A.; Dempewolf, J.
2015-12-01
Increasing agricultural production while at the same time preserving the environment has become a challenging task. There is a need for new approaches for use of multi-scale and multi-source remote sensing data as well as ground based measurements for mapping and monitoring crop and ecosystem state to support decision making by governmental and non-governmental organizations for sustainable agricultural development. High resolution sub-meter imagery plays an important role in such an integrative framework of landscape monitoring. It helps link the ground based data to more easily available coarser resolution data, facilitating calibration and validation of derived remote sensing products. Here we present a hierarchical Object Based Image Analysis (OBIA) approach to classify sub-meter imagery. The primary reason for choosing OBIA is to accommodate pixel sizes smaller than the object or class of interest. Especially in non-homogeneous savannah regions of Tanzania, this is an important concern and the traditional pixel based spectral signature approach often fails. Ortho-rectified, calibrated, pan sharpened 0.5 meter resolution data acquired from DigitalGlobe's WorldView-2 satellite sensor was used for this purpose. Multi-scale hierarchical segmentation was performed using multi-resolution segmentation approach to facilitate the use of texture, neighborhood context, and the relationship between super and sub objects for training and classification. eCognition, a commonly used OBIA software program, was used for this purpose. Both decision tree and random forest approaches for classification were tested. The Kappa index agreement for both algorithms surpassed the 85%. The results demonstrate that using hierarchical OBIA can effectively and accurately discriminate classes at even LCCS-3 legend.
NASA Astrophysics Data System (ADS)
Albert, L.; Rottensteiner, F.; Heipke, C.
2015-08-01
Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 1 July 2003An example of dalmatian terrain near the south pole. The bright material is polar ice and the dark spots dark sands that are appearing in depressions where the ice has defrosted to reveal underlying material. Interestingly, there is an almost continuous dark band around the edges of many of the depressions. This could be a clue to the nature of the sand deposits in polar regions. The sand forms dunes in a range of sizes and shapes. Near the top of the image the dunes shrink until they are smaller than the 18 m pixels of the THEMIS camera and seem to disappear into the surrounding ice.Image information: VIS instrument. Latitude -66.6, Longitude 36 East (324 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Schweiger, A. J.; Stern, H. L.; Stark, M.; Zhang, J.; Hwang, P.; Steele, M.
2013-12-01
Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences mechanical properties of the ice and thus its response to winds, currents, and waves, which is likely to modify the air-sea momentum transfer. The FSD also influences the air-sea heat transfer and the response of the MIZ ice cover to the thermal forcing. The FSD also has a significant role in lateral melting. No existing sea-ice/ocean models currently simulate the FSD in the MIZ. Significant uncertainties in FSD-related processes hinder model incorporation of the FSD, and model development must heavily depend on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have conducted an analysis of the FSD in the Beaufort and Chukchi seas using three sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT, and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the U.S. Geological Survey. The MODIS visible and short-wave infrared bands have a pixel size of 250 meters, and are only useful in cloud-free regions. The SAR imagery is unaffected by clouds and darkness, and has a pixel size of 50 meters. The GFL visible imagery, with a pixel size of 1 meter, is only useful in cloud-free regions. The resolution and spatial extent of the various image products allows us to identify ice floes of all sizes from 10 meters to 100 kilometers. The general procedure for identifying ice floes in the imagery is as follows: delineate cloud-free regions (if necessary); choose a threshold to separate ice from water, and create a binary image; apply the morphological erosion operation to separate floes that touch each other; identify contiguous sets of pixels (floes) by a recursive algorithm; and apply the morphological dilation operation to restore (approximately) the floes to their original sizes and shapes. Once the floes in an image have been identified, any number of properties may be calculated: the centroid, length, width, area, perimeter, orientation, convexity, etc. We calculate the mean caliper diameter as a simple, single measure of the size of a floe. We report results on the observed FSD in the Beaufort and Chukchi seas, including its seasonal evolution and spatial variability. We outline how the results will be used in model development and validation of the FSD in the MIZMAS.
Resolution studies with the DATURA beam telescope
NASA Astrophysics Data System (ADS)
Jansen, H.
2016-12-01
Detailed studies of the resolution of a EUDET-type beam telescope are carried out using the DATURA beam telescope as an example. The EUDET-type beam telescopes make use of CMOS MIMOSA 26 pixel detectors for particle tracking allowing for precise characterisation of particle-sensing devices. A profound understanding of the performance of the beam telescope as a whole is obtained by a detailed characterisation of the sensors themselves. The differential intrinsic resolution as measured in a MIMOSA 26 sensor is extracted using an iterative pull method, and various quantities that depend on the size of the cluster produced by a traversing charged particle are discussed: the residual distribution, the intra-pixel residual-width distribution and the intra-pixel density distribution of track incident positions.
Nearby Exo-Earth Astrometric Telescope (NEAT)
NASA Technical Reports Server (NTRS)
Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.
2011-01-01
NEAT (Nearby Exo ]Earths Astrometric Telescope) is a modest sized (1m diameter telescope) It will be capable of searching approx 100 nearby stars down to 1 Mearth planets in the habitable zone, and 200 @ 5 Mearth, 1AU. The concept addresses the major issues for ultra -precise astrometry: (1) Photon noise (0.5 deg dia field of view) (2) Optical errors (beam walk) with long focal length telescope (3) Focal plane errors , with laser metrology of the focal plane (4) PSF centroiding errors with measurement of the "True" PSF instead of using a "guess " of the true PSF, and correction for intra pixel QE non-uniformities. Technology "close" to complete. Focal plane geometry to 2e-5 pixels and centroiding to approx 4e -5 pixels.
Terahertz imaging with compressed sensing and phase retrieval.
Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M
2008-05-01
We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.
NASA Astrophysics Data System (ADS)
Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy
2009-03-01
In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.
CdZnTe Image Detectors for Hard-X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.
2005-01-01
Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.
Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics
NASA Astrophysics Data System (ADS)
Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.
2017-03-01
Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.
Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Cavicchioli, C.; Chalmet, P. L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J. W.; Yang, P.
2014-11-01
Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget ( 0.3 %X0 in total for each inner layer) and higher granularity ( 20 μm × 20 μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ > 1 kΩ cm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1-5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.
Characterisation of crystal matrices and single pixels for nuclear medicine applications
NASA Astrophysics Data System (ADS)
Herbert, D. J.; Belcari, N.; Camarda, M.; Guerra, A. Del; Vaiano, A.
2005-01-01
Commercially constructed crystal matrices are characterised for use with PSPMT detectors for PET system developments and other nuclear medicine applications. The matrices of different scintillation materials were specified with pixel dimensions of 1.5×1.5 mm2 in cross-section and a length corresponding to one gamma ray interaction length at 511 keV. The materials used in this study were BGO, LSO, LYSO, YSO and CsI(Na). Each matrix was constructed using a white TiO loaded epoxy that forms a 0.2 mm septa between each pixel. The white epoxy is not the optimum choice in terms of the reflective properties, but represents a good compromise between cost and the need for optical isolation between pixels. We also tested a YAP matrix that consisted of pixels of the same size specification but was manufactured by a different company, who instead of white epoxy, used a thin aluminium reflective layer for optical isolation that resulted in a septal thickness of just 0.01 mm, resulting in a much higher packing fraction. The characteristics of the scintillation materials, such as the light output and energy resolution, were first studied in the form of individual crystal elements by using a single pixel HPD. A comparison of individual pixels with and without the epoxy/dielectric coatings was also performed. Then the matrices themselves were coupled to a PSPMT in order to study the imaging performance. In particular, the system pixel resolution and the peak to valley ratio were measured at 511 and 122 keV.
A High Resolution TDI CCD Camera forMicrosatellite (HRCM)
NASA Astrophysics Data System (ADS)
Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie
In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror
VizieR Online Data Catalog: Radial velocities in A1914 (Barrena+, 2013)
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.
2014-04-01
We performed observations of A1914 using Device Optimized for the Low Resolution (DOLORES) multi-object spectrograph at the TNG telescope in 2010 March. We used the LR-B grism, which provides a dispersion of 187Å/mm. DOLORES works with a 2048x2048 pixels E2V CCD. The pixel size is 13.5um. We retrieved a total of four multi-object spectroscopy (MOS) masks containing 146 slits. We exposed 3600s for each mask. (1 data file).
VizieR Online Data Catalog: Velocity catalog of A545 galaxies (Barrena+, 2011)
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Eckert, D.; Rossetti, M.
2011-08-01
Multi-object spectroscopic observations of A545 were carried out at the TNG telescope in October 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the new 2048x2048pixels E2V CCD, with a pixel size of 13.5um. In total, we observed 4 MOS masks for a total of 142 slits. We acquired three exposures of 1200s for each mask. (1 data file).
VizieR Online Data Catalog: BVR light curves of UZ Leo (Lee+, 2018)
NASA Astrophysics Data System (ADS)
Lee, J. W.; Park, J.-H.
2018-04-01
We performed new CCD photometry of UZ Leo during two observing seasons between 2012 February and 2013 April, using a PIXIS: 2048B CCD and a BVR filter set attached to the 61 cm reflector at Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. The CCD chip has 2048x2048pixels and a pixel size of 13.5um, so the field of view of a CCD frame is 17.6'x17.6'. (1 data file).
Application of field dependent polynomial model
NASA Astrophysics Data System (ADS)
Janout, Petr; Páta, Petr; Skala, Petr; Fliegel, Karel; Vítek, Stanislav; Bednář, Jan
2016-09-01
Extremely wide-field imaging systems have many advantages regarding large display scenes whether for use in microscopy, all sky cameras, or in security technologies. The Large viewing angle is paid by the amount of aberrations, which are included with these imaging systems. Modeling wavefront aberrations using the Zernike polynomials is known a longer time and is widely used. Our method does not model system aberrations in a way of modeling wavefront, but directly modeling of aberration Point Spread Function of used imaging system. This is a very complicated task, and with conventional methods, it was difficult to achieve the desired accuracy. Our optimization techniques of searching coefficients space-variant Zernike polynomials can be described as a comprehensive model for ultra-wide-field imaging systems. The advantage of this model is that the model describes the whole space-variant system, unlike the majority models which are partly invariant systems. The issue that this model is the attempt to equalize the size of the modeled Point Spread Function, which is comparable to the pixel size. Issues associated with sampling, pixel size, pixel sensitivity profile must be taken into account in the design. The model was verified in a series of laboratory test patterns, test images of laboratory light sources and consequently on real images obtained by an extremely wide-field imaging system WILLIAM. Results of modeling of this system are listed in this article.
Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang
2017-04-26
This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.
The wide field imager instrument for Athena
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael
2016-07-01
The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be <= 170 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array, signal correction and event filtering have to be done on-board and in real-time as the raw data rate would by far exceed the feasible telemetry rate. The data streams are merged and compressed in the Instrument Control and Power distribution Unit (ICPU). The ICPU is the data, control and power interface of the WFI to the Athena spacecraft. The WFI instrument comprises in addition a filter wheel (FW) in front of the camera as well as an optical stray-light baffle. In the current phase A of the Athena project, the technology development is performed. At its end, breadboard models will be developed and tested to demonstrate a technical readiness level (TRL) of at least 5 for the various WFI subsystems before mission adoption in 2020.
NV-CMOS HD camera for day/night imaging
NASA Astrophysics Data System (ADS)
Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.
2014-06-01
SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.
The Backscatter Cloudprobe with Polarization Detection: A New Aircraft Ice Water Detector
NASA Astrophysics Data System (ADS)
Freer, M.; Baumgardner, D.; Axisa, D.
2017-12-01
The differentiation of liquid water and ice crystals smaller than 100 um in mixed phase clouds continues to challenge the cloud measurement community. In situ imaging probes now have pixel resolution down to about 5 um, but at least 10 pixels are needed to accurately distinguish a water droplet from an ice crystal. This presents a major obstacle for the understanding of cloud glaciation in general, and the formation and evolution of cloud ice in particular. A new sensor has recently been developed that can detect and quantify supercooled liquid droplets and ice crystals. The Backscatter Cloudprobe with Polarization Detection (BCPD) is a very lightweight, compact and low power optical spectrometer that has already undergone laboratory, wind tunnel and flight tests that have validated its capabilities. The BCPD employs the optical approach with single particles that has been used for years in remote sensing to distinguish liquid water from ice crystals in ensembles of cloud particles. The sensor is mounted inside an aircraft and projects a linearly polarized laser beam to the outside through a heated window. Particles that pass through the sample volume of the laser scatter light and the photons scattered in the back direction pass through another heated window where they are collected and focused onto a beam splitter that directs them onto two photodetectors. The P-detector senses the light with polarization parallel to that of the incident light and the S-Detector measures the light that is perpendicular to that of the laser. The polarization ratio, S/P, is sensitive to the asphericity of a particle and is used to identify liquid water and ice crystals. The BCPD has now been exercised in an icing wind tunnel where it was compared with other cloud spectrometers. It has also been flown on the NCAR C-130 and on a commercial Citation, making measurements in all water, all ice and mixed phase clouds. Results from these three applications clearly show that the BCPD can be employed successfully to derive ice fraction in mixed phase clouds at sizes less than 50 um, a size range that has previously been inaccessible to cloud researchers.
Towards simultaneous single emission microscopy and magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Cai, Liang
In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of <500?m, when operated inside MR scanners. The ultrahigh resolution MR-compatible SPECT system is built around a small pixel CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that are made of cast platinum (90%)-iridium (10%) alloy, which provides the maximum stopping power and are compatible with MR scanners. The SPECT system is installed on a non-metal gantry constructed with 3-D printing using nylon powder material. This compact system can work as a "low-cost" desktop ultrahigh resolution SPECT system. It can also be directly operated inside an MR scanner. Accurate system geometrical calibration and corresponding image reconstruction methods for the MRC-SPECT system is developed. In order to account for the magnetic field induced distortion in the SPECT image, a comprehensive charge collection model inside strong magnetic field is adopted to produce high resolution SPECT image inside MR scanner.
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
NASA Astrophysics Data System (ADS)
Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui
2016-11-01
A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.
Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration
2010-03-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.
Calibration of the Auger Fluorescence Telescopes
NASA Astrophysics Data System (ADS)
Klages, H.; Pierre Auger Observatory Collaboration
Thirty fluorescence telescopes in four stations will overlook the detector array of the southern hemisphere experiment of the Pierre Auger project. The main aim of these telescopes is tracking of EHE air showers, measurement of the longitudinal shower development (Xmax) and determination of the absolute energy of EHE events. A telescope camera contains 440 PMTs each covering a 1.5 x 1.5 degree pixel of the sky. The response of every pixel is converted into the number of charged particles at the observed part of the shower. This reconstruction includes the shower/observer geometry and the details of the atmospheric photon production and transport. The remaining experimental task is to convert the ADC counts of the camera pixel electronics into the light flux entering the Schmidt aperture. Three types of calibration and control are necessary : a) Monitoring of time dependent variations has to be performed for all parts of the optics and for all pixels frequently. Common illumination for all pixels of a camera allows the detection of individual deviations. Properties of windows, filters and mirrors have to be measured separately. b) Differences in pixel-to-pixel efficiency are mainly due to PMT gain and to differences in effective area (camera shadow, mirror size limits). Homogeneous and isotropic illumination will enable cross calibration. c) An absolute calibration has to be performed once in a while using trusted light monitors. The calibration methods used for the Pierre Auger FD telescopes in Argentina are discussed.
Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.
The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array withoutmore » any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.« less
Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors
NASA Astrophysics Data System (ADS)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman
2015-08-01
The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.
The Infrared Astronomical Satellite /IRAS/ Scientific Data Analysis System /SDAS/ sky flux subsystem
NASA Technical Reports Server (NTRS)
Stagner, J. R.; Girard, M. A.
1980-01-01
The sky flux subsystem of the Infrared Astronomical Satellite Scientific Data Analysis System is described. Its major output capabilities are (1) the all-sky lune maps (8-arcminute pixel size), (2) galactic plane maps (2-arcminute pixel size) and (3) regional maps of small areas such as extended sources greater than 1-degree in extent. The major processing functions are to (1) merge the CRDD and pointing data, (2) phase the detector streams, (3) compress the detector streams in the in-scan and cross-scan directions, and (4) extract data. Functional diagrams of the various capabilities of the subsystem are given. Although this device is inherently nonimaging, various calibrated and geometrically controlled imaging products are created, suitable for quantitative and qualitative scientific interpretation.
Display process compatible accurate graphene patterning for OLED applications
NASA Astrophysics Data System (ADS)
Shin, Jin-Wook; Han, Jun-Han; Cho, Hyunsu; Moon, Jaehyun; Kwon, Byoung-Hwa; Cho, Seungmin; Yoon, Taeshik; Kim, Taek-Soo; Suemitsu, Maki; Lee, Jeong-Ik; Cho, Nam Sung
2018-01-01
Graphene film can be used as transparent electrodes in display and optoelectronic applications. However, achieving residue free graphene film pixel arrays with geometrical precision on large area has been a difficult challenge. By utilizing the liquid bridging concept, we realized photolithographic patterning of graphene film with dimensional correctness and absence of surface contaminant. On a glass substrate of 100 × 100 mm2 size, we demonstrate our patterning method to fabricate an addressable two-color OLED module of which graphene film pixel size is 170 × 300 µm2. Our results strongly suggest graphene film as a serviceable component in commercial display products. The flexible and foldable display applications are expected to be main beneficiaries of our method.
BigView Image Viewing on Tiled Displays
NASA Technical Reports Server (NTRS)
Sandstrom, Timothy
2007-01-01
BigView allows for interactive panning and zooming of images of arbitrary size on desktop PCs running Linux. Additionally, it can work in a multi-screen environment where multiple PCs cooperate to view a single, large image. Using this software, one can explore on relatively modest machines images such as the Mars Orbiter Camera mosaic [92,160 33,280 pixels]. The images must be first converted into paged format, where the image is stored in 256 256 pages to allow rapid movement of pixels into texture memory. The format contains an image pyramid : a set of scaled versions of the original image. Each scaled image is 1/2 the size of the previous, starting with the original down to the smallest, which fits into a single 256 x 256 page.
NASA Astrophysics Data System (ADS)
Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming
2017-09-01
We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.
Contrast computation methods for interferometric measurement of sensor modulation transfer function
NASA Astrophysics Data System (ADS)
Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio
2018-01-01
Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.
NASA Astrophysics Data System (ADS)
Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.
2018-06-01
A large area SiPM array is individually coupled to five different types of scintillators in and each is evaluated for the development of a coded aperture imaging system. In order to readout signals from the 144 pixel array, a resistor network with symmetric charge division circuitry was developed, which successfully provides a significant reduction in the multiplicity of the analog outputs and reduces the size of the accumulated data. Energy resolutions at 662 keV for pixelated arrays of dimensions and material types as follows: 3 × 3 × 20 mm3 CsI(Tl), 4 × 4 × 20 mm3 CsI(Tl), 4 × 4 × 5 mm3 LYSO(Ce), 4 × 4 × 10 mm3 LYSO(Ce), and 2 × 2 × 5 mm3 LaCl3(Ce) have been determined. In addition, sub-millimeter FWHM pixel-identification resolutions were acquired from all of the scintillators tested.
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Watabe, Toshihisa; Ohtake, Hiroshi; Sakai, Toshikatsu; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Hirao, Takashi
2011-02-01
A color image was produced by a vertically stacked image sensor with blue (B)-, green (G)-, and red (R)-sensitive organic photoconductive films, each having a thin-film transistor (TFT) array that uses a zinc oxide (ZnO) channel to read out the signal generated in each organic film. The number of the pixels of the fabricated image sensor is 128×96 for each color, and the pixel size is 100×100 µm2. The current on/off ratio of the ZnO TFT is over 106, and the B-, G-, and R-sensitive organic photoconductive films show excellent wavelength selectivity. The stacked image sensor can produce a color image at 10 frames per second with a resolution corresponding to the pixel number. This result clearly shows that color separation is achieved without using any conventional color separation optical system such as a color filter array or a prism.
CMOS active pixel sensors response to low energy light ions
NASA Astrophysics Data System (ADS)
Spiriti, E.; Finck, Ch.; Baudot, J.; Divay, C.; Juliani, D.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.; Agodi, C.; Cuttone, G.; De Napoli, M.; Romano, F.
2017-12-01
Recently CMOS active pixel sensors have been used in Hadrontherapy ions fragmentation cross section measurements. Their main goal is to reconstruct tracks generated by the non interacting primary ions or by the produced fragments. In this framework the sensors, unexpectedly, demonstrated the possibility to obtain also some informations that could contribute to the ion type identification. The present analysis shows a clear dependency in charge and number of pixels per cluster (pixels with a collected amount of charge above a given threshold) with both fragment atomic number Z and energy loss in the sensor. This information, in the FIRST (F ragmentation of I ons R elevant for S pace and T herapy) experiment, has been used in the overall particle identification analysis algorithm. The aim of this paper is to present the data analysis and the obtained results. An empirical model was developed, in this paper, that reproduce the cluster size as function of the deposited energy in the sensor.
Simulations of radiation-damaged 3D detectors for the Super-LHC
NASA Astrophysics Data System (ADS)
Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.
2008-07-01
Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.
Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution
Bishara, Waheb; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan
2010-01-01
We demonstrate lensfree holographic microscopy on a chip to achieve ~0.6 µm spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 mm2. By using partially coherent illumination from a large aperture (~50 µm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans. PMID:20588977
CMOS Image Sensors for High Speed Applications.
El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David
2009-01-01
Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).
Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks
Xu, Xin; Gui, Rong; Pu, Fangling
2018-01-01
Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499
Spectral characterisation and noise performance of Vanilla—an active pixel sensor
NASA Astrophysics Data System (ADS)
Blue, Andrew; Bates, R.; Bohndiek, S. E.; Clark, A.; Arvanitis, Costas D.; Greenshaw, T.; Laing, A.; Maneuski, D.; Turchetta, R.; O'Shea, V.
2008-06-01
This work will report on the characterisation of a new active pixel sensor, Vanilla. The Vanilla comprises of 512×512 (25μm 2) pixels. The sensor has a 12 bit digital output for full-frame mode, although it can also be readout in analogue mode, whereby it can also be read in a fully programmable region-of-interest (ROI) mode. In full frame, the sensor can operate at a readout rate of more than 100 frames per second (fps), while in ROI mode, the speed depends on the size, shape and number of ROIs. For example, an ROI of 6×6 pixels can be read at 20,000 fps in analogue mode. Using photon transfer curve (PTC) measurements allowed for the calculation of the read noise, shot noise, full-well capacity and camera gain constant of the sensor. Spectral response measurements detailed the quantum efficiency (QE) of the detector through the UV and visible region. Analysis of the ROI readout mode was also performed. Such measurements suggest that the Vanilla APS (active pixel sensor) will be suitable for a wide range of applications including particle physics and medical imaging.
Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks.
Wang, Lei; Xu, Xin; Dong, Hao; Gui, Rong; Pu, Fangling
2018-03-03
Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods.
Facial recognition using simulated prosthetic pixelized vision.
Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin
2003-11-01
To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.
NASA Astrophysics Data System (ADS)
Lloyd, G. R.; Nallala, J.; Stone, N.
2016-03-01
FTIR is a well-established technique and there is significant interest in applying this technique to medical diagnostics e.g. to detect cancer. The introduction of focal plane array (FPA) detectors means that FTIR is particularly suited to rapid imaging of biopsy sections as an adjunct to digital pathology. Until recently however each pixel in the image has been limited to a minimum of 5.5 µm which results in a comparatively low magnification image or histology applications and potentially the loss of important diagnostic information. The recent introduction of higher magnification optics gives image pixels that cover approx. 1.1 µm. This reduction in image pixel size gives images of higher magnification and improved spatial detail can be observed. However, the effect of increasing the magnification on spectral quality and the ability to discriminate between disease states is not well studied. In this work we test the discriminatory performance of FTIR imaging using both standard (5.5 µm) and high (1.1 µm) magnification for the detection of colorectal cancer and explore the effect of binning to degrade high resolution images to determine whether similar diagnostic information and performance can be obtained using both magnifications. Results indicate that diagnostic performance using high magnification may be reduced as compared to standard magnification when using existing multivariate approaches. Reduction of the high magnification data to standard magnification via binning can potentially recover some of the lost performance.
How food marketers can sell smaller portions: Consumer insights and product innovation.
Riis, J; Fisher, J O; Rowe, S
2016-08-01
Food portion size has been shown to be an important driver of energy intake. Despite the well acknowledged role of portion control in weight management, large portion sizes remain ubiquitous in the marketplace. Moving consumers towards consumption of smaller portion sizes will require changes in consumer behavior as well as changes in products available to consumers in a variety of settings. This special supplement presents cutting edge research aimed at understanding consumer behavior around portion size and innovations in product design that may promote the selection and consumption of smaller portion sizes. We identify further research that will be needed to translate basic behavioral findings into real world settings and to viable product development. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Bentefour, Hassan; Flanz, Jacob; Kooy, Hanne; Clasie, Benjamin
2018-05-01
Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ = 0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ = 0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ = 3.6 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like pattern nor volume averaging corrections, then the position and width of σ = 5.0 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. This work helps to simplify periodic QA in proton therapy because more routinely used ionization chamber arrays can be used to characterize narrow pencil beam properties.
Lin, Yuting; Bentefour, Hassan; Flanz, Jacob; Kooy, Hanne; Clasie, Benjamin
2018-05-15
Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ = 0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ = 0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ = 3.6 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like pattern nor volume averaging corrections, then the position and width of σ = 5.0 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. This work helps to simplify periodic QA in proton therapy because more routinely used ionization chamber arrays can be used to characterize narrow pencil beam properties.
Squamate hatchling size and the evolutionary causes of negative offspring size allometry.
Meiri, S; Feldman, A; Kratochvíl, L
2015-02-01
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Smaller Cigarette Pack as a Commitment to Smoke Less? Insights from Behavioral Economics
Marti, Joachim; Sindelar, Jody
2015-01-01
Cigarettes are commonly sold in packs of 20 units and therefore little is known about the potential impact of pack size on consumption. Using insights from behavioral economics, we suggest that cigarette packs smaller than the standard size may help some smokers cut back and/or quit, consistent with their long-term goals. Results from an online hypothetical purchase experiment conducted in a sample of US smokers reveal that over a third of smokers are willing to pay a price premium to purchase in smaller quantities. Further, a desire to quit smoking and high self-control is associated with preference for a smaller pack. While we provide some preliminary evidence that smaller packs may be beneficial to certain types of smokers, further research should be conducted to assess whether the smaller pack size should be considered in the arsenal of tobacco control policies to help current smokers quit (JEL: I18; I12; D12) PMID:26356844
Quick probabilistic binary image matching: changing the rules of the game
NASA Astrophysics Data System (ADS)
Mustafa, Adnan A. Y.
2016-09-01
A Probabilistic Matching Model for Binary Images (PMMBI) is presented that predicts the probability of matching binary images with any level of similarity. The model relates the number of mappings, the amount of similarity between the images and the detection confidence. We show the advantage of using a probabilistic approach to matching in similarity space as opposed to a linear search in size space. With PMMBI a complete model is available to predict the quick detection of dissimilar binary images. Furthermore, the similarity between the images can be measured to a good degree if the images are highly similar. PMMBI shows that only a few pixels need to be compared to detect dissimilarity between images, as low as two pixels in some cases. PMMBI is image size invariant; images of any size can be matched at the same quick speed. Near-duplicate images can also be detected without much difficulty. We present tests on real images that show the prediction accuracy of the model.
Opto-mechanical design of PANIC
NASA Astrophysics Data System (ADS)
Fried, Josef W.; Baumeister, Harald; Huber, Armin; Laun, Werner; Rohloff, Ralf-Rainer; Concepción Cárdenas, M.
2010-07-01
PANIC, the Panoramic Near-Infrared Camera, is a new instrument for the Calar Alto Observatory. A 4x4 k detector yields a field of view of 0.5x0.5 degrees at a pixel scale of 0.45 arc sec/pixel at the 2.2m telescope. PANIC can be used also at the 3.5m telescope with half the pixel scale. The optics consists of 9 lenses and 3 folding mirrors. Mechanical tolerances are as small as 50 microns for some elements. PANIC will have a low thermal background due to cold stops. Read-out is done with MPIA's own new electronics which allows read-out of 132 channels in parallel. Weight and size limits lead to interesting design features. Here we describe the opto-mechanical design.
VizieR Online Data Catalog: HD61005 SPHERE H and Ks images (Olofsson+, 2016)
NASA Astrophysics Data System (ADS)
Olofsson, J.; Samland, M.; Avenhaus, H.; Caceres, C.; Henning, T.; Moor, A.; Milli, J.; Canovas, H.; Quanz, S. P.; Schreiber, M. R.; Augereau, J.-C.; Bayo, A.; Bazzon, A.; Beuzit, J.-L.; Boccaletti, A.; Buenzli, E.; Casassus, S.; Chauvin, G.; Dominik, C.; Desidera, S.; Feldt, M.; Gratton, R.; Janson, M.; Lagrange, A.-M.; Langlois, M.; Lannier, J.; Maire, A.-L.; Mesa, D.; Pinte, C.; Rouan, D.; Salter, G.; Thalmann, C.; Vigan, A.
2016-05-01
The fits files contains the reduced ADI and DPI SPHERE observations used to produce Fig. 1 of the paper. Besides the primary card, the files consists of 6 additional ImageHDU. The first and second one contain the SPHERE IRDIS ADI H band observations and the noise map. The third and fourth contain the SPHERE IRDIS ADI Ks band observations and the corresponding noise map. Finally, the fifth and sixth ImageHDU contain the SPHERE IRDIS DPI H band data as well as the noise map. Each ADI image has 1024x1024 pixels, while the DPI images have 1800x1800 pixels. The header of the primary card contains the pixel sizes for each datasets and the wavelengths of the H and K band observations. (2 data files).
NASA Astrophysics Data System (ADS)
Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.
2018-01-01
We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-01-01
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-05-11
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.
Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun;
2015-01-01
Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.
First light from a very large area pixel array for high-throughput x-ray polarimetry
NASA Astrophysics Data System (ADS)
Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Omodei, N.; Massai, M. M.; Sgrò, C.; Costa, E.; Soffitta, P.; Krummenacher, F.; de Oliveira, R.
2006-06-01
We report on a large active area (15x15mm2), high channel density (470 pixels/mm2), self-triggering CMOS analog chip that we have developed as pixelized charge collecting electrode of a Micropattern Gas Detector. This device, which represents a big step forward both in terms of size and performance, is the last version of three generations of custom ASICs of increasing complexity. The CMOS pixel array has the top metal layer patterned in a matrix of 105600 hexagonal pixels at 50μm pitch. Each pixel is directly connected to the underneath full electronics chain which has been realized in the remaining five metal and single poly-silicon layers of a standard 0.18μm CMOS VLSI technology. The chip has customizable self-triggering capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way it is possible to reduce significantly the readout time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. The very small pixel area and the use of a deep sub-micron CMOS technology has brought the noise down to 50 electrons ENC. Results from in depth tests of this device when coupled to a fine pitch (50μm on a triangular pattern) Gas Electron Multiplier are presented. The matching of readout and gas amplification pitch allows getting optimal results. The application of this detector for Astronomical X-Ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation when working with two gas mixtures and two different photon energies is shown. Results from a full MonteCarlo simulation for several galactic and extragalactic astronomical sources are also reported.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
A study of response of a LuYAP:Ce array with innovative assembling for PET
NASA Astrophysics Data System (ADS)
Pani, Roberto; Cinti, Maria Nerina; Scafè, Raffaele; Bennati, Paolo; Lo Meo, Sergio; Preziosi, Enrico; Pellegrini, Rosanna; De Vincentis, Giuseppe; Sacco, Donatella; Fabbri, Andrea
2015-09-01
We propose the characterization of a first array of 10×10 Lutetium Yttrium Orthoaluminate Perovskite (LuYAP:Ce) crystals, 2 mm×2 mm×10 mm pixel size, with an innovative assembling designed to enhance light output, uniformity and detection efficiency. The innovation consists of the use of 0.015 mm thick dielectric coating as inter-pixel light-insulators, manufactured by Crytur (Czech Republic) intended to improve crystal insulation and then light collection. Respect to the traditional treatment with 0.2 mm of white epoxy, a thinner pixel gap enhances packing fraction up to 98% with a consequent improvement of detection efficiency. Spectroscopic characterization of the array was performed by a Hamamatsu R6231 photomultiplier tube. A pixel-by-pixel scanning with a collimated 99mTc radioisotope (140 keV photon energy) highlighted a deviation in pulse height close to 3.5% respect to the overall mean value. Meanwhile, in term of energy resolution a difference between the response of single pixel and the array of about 10% was measured. Results were also supported and validated by Monte Carlo simulations performed with GEANT4. Although the dielectric coating pixel insulator cannot overcome the inherent limitations of LuYAP crystal due to its self-absorption of light (still present), this study demonstrated that the new coating treatment allows better light collection (nearly close to the expected one) with in addition a very good uniformity between different pixels. These results confirm the high potentiality of this coating for any other crystal array suited for imaging application and new expectations for the use of LuYAP for PET systems.
ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Mager, M.; ALICE Collaboration
2016-07-01
A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.
Small pixel cross-talk MTF and its impact on MWIR sensor performance
NASA Astrophysics Data System (ADS)
Goss, Tristan M.; Willers, Cornelius J.
2017-05-01
As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent
2012-01-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
2017-07-28
Cassini gazed toward high southern latitudes near Saturn's south pole to observe ghostly curtains of dancing light -- Saturn's southern auroras, or southern lights. These natural light displays at the planet's poles are created by charged particles raining down into the upper atmosphere, making gases there glow. The dark area at the top of this scene is Saturn's night side. The auroras rotate from left to right, curving around the planet as Saturn rotates over about 70 minutes, compressed here into a movie sequence of about five seconds. Background stars are seen sliding behind the planet. Cassini was moving around Saturn during the observation, keeping its gaze fixed on a particular spot on the planet, which causes a shift in the distant background over the course of the observation. Some of the stars seem to make a slight turn to the right just before disappearing. This effect is due to refraction -- the starlight gets bent as it passes through the atmosphere, which acts as a lens. Random bright specks and streaks appearing from frame to frame are due to charged particles and cosmic rays hitting the camera detector. The aim of this observation was to observe seasonal changes in the brightness of Saturn's auroras, and to compare with the simultaneous observations made by Cassini's infrared and ultraviolet imaging spectrometers. The original images in this movie sequence have a size of 256x256 pixels; both the original size and a version enlarged to 500x500 pixels are available here. The small image size is the result of a setting on the camera that allows for shorter exposure times than full-size (1024x1024 pixel) images. This enabled Cassini to take more frames in a short time and still capture enough photons from the auroras for them to be visible. The images were taken in visible light using the Cassini spacecraft narrow-angle camera on July 20, 2017, at a distance of about 620,000 miles (1 million kilometers) from Saturn. The views look toward 74 degrees south latitude on Saturn. Image scale is about 0.9 mile (1.4 kilometers) per pixel on Saturn. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21623
NASA Astrophysics Data System (ADS)
Xie, Huan; Luo, Xin; Xu, Xiong; Wang, Chen; Pan, Haiyan; Tong, Xiaohua; Liu, Shijie
2016-10-01
Water body is a fundamental element in urban ecosystems and water mapping is critical for urban and landscape planning and management. As remote sensing has increasingly been used for water mapping in rural areas, this spatially explicit approach applied in urban area is also a challenging work due to the water bodies mainly distributed in a small size and the spectral confusion widely exists between water and complex features in the urban environment. Water index is the most common method for water extraction at pixel level, and spectral mixture analysis (SMA) has been widely employed in analyzing urban environment at subpixel level recently. In this paper, we introduce an automatic subpixel water mapping method in urban areas using multispectral remote sensing data. The objectives of this research consist of: (1) developing an automatic land-water mixed pixels extraction technique by water index; (2) deriving the most representative endmembers of water and land by utilizing neighboring water pixels and adaptive iterative optimal neighboring land pixel for respectively; (3) applying a linear unmixing model for subpixel water fraction estimation. Specifically, to automatically extract land-water pixels, the locally weighted scatter plot smoothing is firstly used to the original histogram curve of WI image . And then the Ostu threshold is derived as the start point to select land-water pixels based on histogram of the WI image with the land threshold and water threshold determination through the slopes of histogram curve . Based on the previous process at pixel level, the image is divided into three parts: water pixels, land pixels, and mixed land-water pixels. Then the spectral mixture analysis (SMA) is applied to land-water mixed pixels for water fraction estimation at subpixel level. With the assumption that the endmember signature of a target pixel should be more similar to adjacent pixels due to spatial dependence, the endmember of water and land are determined by neighboring pure land or pure water pixels within a distance. To obtaining the most representative endmembers in SMA, we designed an adaptive iterative endmember selection method based on the spatial similarity of adjacent pixels. According to the spectral similarity in a spatial adjacent region, the spectrum of land endmember is determined by selecting the most representative land pixel in a local window, and the spectrum of water endmember is determined by calculating an average of the water pixels in the local window. The proposed hierarchical processing method based on WI and SMA (WISMA) is applied to urban areas for reliability evaluation using the Landsat-8 Operational Land Imager (OLI) images. For comparison, four methods at pixel level and subpixel level were chosen respectively. Results indicate that the water maps generated by the proposed method correspond as closely with the truth water maps with subpixel precision. And the results showed that the WISMA achieved the best performance in water mapping with comprehensive analysis of different accuracy evaluation indexes (RMSE and SE).
Land cover mapping at sub-pixel scales
NASA Astrophysics Data System (ADS)
Makido, Yasuyo Kato
One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.
Rohwer, Sievert; Langston, Nancy; Gori, Dave
1996-10-01
We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each resolution. Results are compared with the radar reflectivity techniques employed by the NOAA ETL MMCR and the PARSL 94 GHz radars located at the CRYSTAL-FACE Eastern & Western Ground Sites, respectively. This technique is most likely to yield improvements for low and midlevel layer clouds that have little thermal variability in cloud height.
Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.
Ribeiro, F F; Qin, J G
2015-05-01
This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.
Entangled-photon compressive ghost imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.
2011-12-15
We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.
Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems
NASA Astrophysics Data System (ADS)
El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.
2012-07-01
Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zhang, Zhibo
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product provides three separate 1 km resolution retrievals of cloud particle effective radii (r (sub e)), derived from 1.6, 2.1 and 3.7 micron band observations. In this study, differences among the three size retrievals for maritime water clouds (designated as r (sub e), 1.6 r (sub e), 2.1 and r (sub e),3.7) were systematically investigated through a series of case studies and global analyses. Substantial differences are found between r (sub e),3.7 and r (sub e),2.1 retrievals (delta r (sub e),3.7-2.l), with a strong dependence on cloud regime. The differences are typically small, within +/- 2 micron, over relatively spatially homogeneous coastal stratocumulus cloud regions. However, for trade wind cumulus regimes, r (sub e),3.7 was found to be substantially smaller than r (sub e),2.1, sometimes by more than 10 micron. The correlation of delta r(sub e),3.7-2.1 with key cloud parameters, including the cloud optical thickness (tau), r (sub e) and a cloud horizontal heterogeneity index (H-sigma) derived from 250 m resolution MODIS 0.86 micron band observations, were investigated using one month of MODIS Terra data. It was found that differences among the three r (sub e) retrievals for optically thin clouds (tau <5) are highly variable, ranging from - 15 micron to 10 micron, likely due to the large MODIS retrieval uncertainties when the cloud is thin. The delta r (sub e),3.7-2.1 exhibited a threshold-like dependence on both r (sub e),2.l and H-sigma. The re,3.7 is found to agree reasonably well with re,2.! when re,2.l is smaller than about 15J-Lm, but becomes increasingly smaller than re,2.1 once re,2.! exceeds this size. All three re retrievals showed little dependence when H-sigma < 0.3 (defined as standard deviation divided by the mean for the 250 m pixels within a 1 km pixel retrieval). However, for H-=sigma >0.3, both r (sub e),1.6 and r (sub e),2.1 were seen to increase quickly with H-sigma. On the other hand, r (sub e),3.7 statistics showed little dependence on H-sigma and remained relatively stable over the whole range of H-sigma values. Potential contributing causes to the substantial r (sub e),3.7 and r (sub e),2.1 differences are discussed. In particular, based on both 1-D and 3-D radiative transfer simulations, we have elucidated mechanisms by which cloud heterogeneity and 3-D radiative effects can cause large differences between r (sub e),3.7 and r (sub e),2.l retrievals for highly inhomogeneous clouds. Our results suggest that the contrast in observed delta r (sub e)3.7-2.1 between cloud regimes is correlated with increases in both cloud r (sub e) and H-sigma. We also speculate that in some highly inhomogeneous drizzling clouds, vertical structure induced by drizzle and 3-D radiative effects might operate together to cause dramatic differences between r (sub e),3.7 and r (sub e),2.1 retrievals.
VizieR Online Data Catalog: New redshifts for Abell 1758N galaxies (Boschin+, 2012)
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.; Nonino, M.
2012-06-01
Multi-object spectroscopic observations of A1758N were carried out at the TNG, a 4m-class telescope, in May 2008 and May 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. The detector is a 2048x2048 pixels E2V CCD, with a pixel size of 13.5um. In total, we observed four MOS masks (one in 2008 and three in 2009) for a total of 146 slits. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de
We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densitiesmore » can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.« less
Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.
2007-09-01
We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
NASA Astrophysics Data System (ADS)
Falcone, Abe
In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and characterized.
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
NASA Technical Reports Server (NTRS)
Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.
2013-01-01
Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.
Film cameras or digital sensors? The challenge ahead for aerial imaging
Light, D.L.
1996-01-01
Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.
Advanced illumination control algorithm for medical endoscopy applications
NASA Astrophysics Data System (ADS)
Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.
2015-05-01
CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.
2012-12-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing
NASA Astrophysics Data System (ADS)
Tian, Q.; Fainman, Y.; Lee, Sing H.
1989-02-01
The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.
NASA Astrophysics Data System (ADS)
Yon, J. J.; Dumont, G.; Goudon, V.; Becker, S.; Arnaud, A.; Cortial, S.; Tisse, C. L.
2014-06-01
Silicon-based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) required by a promising mass market that shows momentum for some extensive consumer applications, such as automotive driving assistance, smart presence localization and building management. Among the various approaches studied worldwide, CEA, LETI in partnership with ULIS is committed to the development of a unique technology referred to as PLP (Pixel Level Packaging). In this PLP technology, each bolometer pixel is sealed under vacuum using a transparent thin film deposition on wafer. PLP operates as an array of hermetic micro caps above the focal plane, each enclosing a single microbolometer. In continuation of our on-going studies on PLP for regular QVGA IRFPAs, this paper emphasizes on the innate scalability of the technology which was successfully demonstrated through the development of an 80 × 80 pixel IRFPA. The relevance of the technology with regard to the two formats is discussed, considering both performance and cost issues. We show that the suboptimal fill factor inherent to the PLP arrangement is not so critical when considering smaller arrays preferably fitted for consumer applications. The discussion is supported with the electro-optical performance measurements of the PLP-based 80×80 demonstrator.
Scattered light in a DMD based multi-object spectrometer
NASA Astrophysics Data System (ADS)
Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.
2010-07-01
The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.
Effect of cell-size on the energy absorption features of closed-cell aluminium foams
NASA Astrophysics Data System (ADS)
Nammi, S. K.; Edwards, G.; Shirvani, H.
2016-11-01
The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.
2015-01-19
Janus (111 miles or 179 kilometers across) seems to almost stare off into the distance, contemplating deep, moonish thoughts as the F ring stands by at the bottom of this image. From this image, it is easy to distinguish Janus' shape from that of a sphere. Many of Saturn's smaller moons have similarly irregular shapes that scientists believe may give clues to their origins and internal structure. Models combining the dynamics of this moon with its shape imply the existence of mass inhomogeneities within Janus. This would be a surprising result for a body the size of Janus. By studying more images of Janus, scientists may be able confirm this finding and determine just how complicated the internal structure of this small body is. This image is roughly centered on the side of Janus which faces away from Saturn. North on Janus is up and rotated 3 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 28, 2012. The view was obtained at a distance of approximately 54,000 miles (87,000 kilometers) from Janus. Image scale is 1,700 feet (520 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18299
Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections
NASA Astrophysics Data System (ADS)
Ziock, K. P.; Boehnen, C. B.; Ernst, J. M.; Fabris, L.; Hayward, J. P.; Karnowski, T. P.; Paquit, V. C.; Patlolla, D. R.; Trombino, D. G.
2016-01-01
Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combined gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. The complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.
A calibration method for fringe reflection technique based on the analytical phase-slope description
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Yue, Huimin; Pan, Zhipeng; Liu, Yong
2018-05-01
The fringe reflection technique (FRT) has been one of the most popular methods to measure the shape of specular surface these years. The existing system calibration methods of FRT usually contain two parts, which are camera calibration and geometric calibration. In geometric calibration, the liquid crystal display (LCD) screen position calibration is one of the most difficult steps among all the calibration procedures, and its accuracy is affected by the factors such as the imaging aberration, the plane mirror flatness, and LCD screen pixel size accuracy. In this paper, based on the deduction of FRT analytical phase-slope description, we present a novel calibration method with no requirement to calibrate the position of LCD screen. On the other hand, the system can be arbitrarily arranged, and the imaging system can either be telecentric or non-telecentric. In our experiment of measuring the 5000mm radius sphere mirror, the proposed calibration method achieves 2.5 times smaller measurement error than the geometric calibration method. In the wafer surface measuring experiment, the measurement result with the proposed calibration method is closer to the interferometer result than the geometric calibration method.
Ellmauthaler, Andreas; Pagliari, Carla L; da Silva, Eduardo A B
2013-03-01
Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.
Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections
Ziock, Klaus -Peter; Boehnen, Chris Bensing; Ernst, Joseph M.; ...
2015-09-05
Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combinedmore » gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. Here,the complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.« less
Survival of female Lesser Scaup: Effects of body size, age, and reproductive effort
Rotella, J.J.; Clark, R.G.; Afton, A.D.
2003-01-01
In birds, larger females generally have greater breeding propensity, reproductive investment, and success than do smaller females. However, optimal female body size also depends on how natural selection acts during other parts of the life cycle. Larger female Lesser Scaup (Aythya affinis) produce larger eggs than do smaller females, and ducklings from larger eggs survive better than those hatching from smaller eggs. Accordingly, we examined patterns of apparent annual survival for female scaup and tested whether natural selection on female body size primarily was stabilizing, a frequent assumption in studies of sexually dimorphic species in which males are the larger sex, or was directional, counter-acting reproductive advantages of large size. We estimated survival using mark-recapture methods for individually marked females from two study sites in Canada (Erickson, Manitoba; St. Denis, Saskatchewan). Structurally larger (adults) and heavier (ducklings) females had lower survival than did smaller individuals in Manitoba; no relationship was detected in adults from Saskatchewan. Survival of adult females declined with indices of increasing reproductive effort at both sites; consequently, the cost of reproduction could explain age-related patterns of breeding propensity in scaup. Furthermore, if larger females are more likely to breed than are smaller females, then cost of reproduction also may help explain why survival was lower for larger females. Overall, we found that advantages of large body size of female scaup during breeding or as young ducklings apparently were counteracted by natural selection favoring lightweight juveniles and structurally smaller adult females through higher annual survival.
Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas
Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.
2004-01-01
In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.
Photovoltaic restoration of sight in rodents with retinal degeneration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Palanker, Daniel V.
2017-02-01
To restore vision in patients who lost their photoreceptors due to retinal degeneration, we developed a photovoltaic subretinal prosthesis which converts light into pulsed electric current, stimulating the nearby inner retinal neurons. Visual information is projected onto the retina by video goggles using pulsed near-infrared ( 900nm) light. This design avoids the use of bulky electronics and wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes, and multiple modules can be tiled under the retina to expand the visual field. We found that similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies (>20Hz), adaptation to static images, and non-linear summation of subunits in the receptive fields. Photovoltaic arrays with 70um pixels restored visual acuity up to a single pixel pitch, which is only two times lower than natural acuity in rats. If these results translate to human retina, such implants could restore visual acuity up to 20/250. With eye scanning and perceptual learning, human patients might even cross the 20/200 threshold of legal blindness. In collaboration with Pixium Vision, we are preparing this system (PRIMA) for a clinical trial. To further improve visual acuity, we are developing smaller pixels - down to 40um, and on 3-D interface to improve proximity to the target neurons. Scalability, ease of implantation and tiling of these wireless modules to cover a large visual field, combined with high resolution opens the door to highly functional restoration of sight.
NASA Astrophysics Data System (ADS)
Kealy, John C.; Marenco, Franco; Marsham, John H.; Garcia-Carreras, Luis; Francis, Pete N.; Cooke, Michael C.; Hocking, James
2017-05-01
Novel methods of cloud detection are applied to airborne remote sensing observations from the unique Fennec aircraft dataset, to evaluate the Met Office-derived products on cloud properties over the Sahara based on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellite. Two cloud mask configurations are considered, as well as the retrievals of cloud-top height (CTH), and these products are compared to airborne cloud remote sensing products acquired during the Fennec campaign in June 2011 and June 2012. Most detected clouds (67 % of the total) have a horizontal extent that is smaller than a SEVIRI pixel (3 km × 3 km). We show that, when partially cloud-contaminated pixels are included, a match between the SEVIRI and aircraft datasets is found in 80 ± 8 % of the pixels. Moreover, under clear skies the datasets are shown to agree for more than 90 % of the pixels. The mean cloud field, derived from the satellite cloud mask acquired during the Fennec flights, shows that areas of high surface albedo and orography are preferred sites for Saharan cloud cover, consistent with published theories. Cloud-top height retrievals however show large discrepancies over the region, which are ascribed to limiting factors such as the cloud horizontal extent, the derived effective cloud amount, and the absorption by mineral dust. The results of the CTH analysis presented here may also have further-reaching implications for the techniques employed by other satellite applications facilities across the world.
A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope
NASA Astrophysics Data System (ADS)
Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.
2016-10-01
Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.
Investigating error structure of shuttle radar topography mission elevation data product
NASA Astrophysics Data System (ADS)
Becek, Kazimierz
2008-08-01
An attempt was made to experimentally assess the instrumental component of error of the C-band SRTM (SRTM). This was achieved by comparing elevation data of 302 runways from airports all over the world with the shuttle radar topography mission data product (SRTM). It was found that the rms of the instrumental error is about +/-1.55 m. Modeling of the remaining SRTM error sources, including terrain relief and pixel size, shows that downsampling from 30 m to 90 m (1 to 3 arc-sec pixels) worsened SRTM vertical accuracy threefold. It is suspected that the proximity of large metallic objects is a source of large SRTM errors. The achieved error estimates allow a pixel-based accuracy assessment of the SRTM elevation data product to be constructed. Vegetation-induced errors were not considered in this work.
Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.
Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich
2011-11-01
The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.
2008-07-01
Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.
Solar-blind ultraviolet optical system design for missile warning
NASA Astrophysics Data System (ADS)
Chen, Yu; Huo, Furong; Zheng, Liqin
2015-03-01
Solar-blind region of Ultraviolet (UV) spectrum has very important application in military field. The spectrum range is from 240nm to 280nm, which can be applied to detect the tail flame from approaching missile. A solar-blind UV optical system is designed to detect the UV radiation, which is an energy system. iKon-L 936 from ANDOR company is selected as the UV detector, which has pixel size 13.5μm x 13.5 μm and active image area 27.6mm x 27.6 mm. CaF2 and F_silica are the chosen materials. The original structure is composed of 6 elements. To reduce the system structure and improve image quality, two aspheric surfaces and one diffractive optical element are adopted in this paper. After optimization and normalization, the designed system is composed of five elements with the maximum spot size 11.988μ m, which is less than the pixel size of the selected CCD detector. Application of aspheric surface and diffractive optical element makes each FOV have similar spot size, which shows the system almost meets the requirements of isoplanatic condition. If the focal length can be decreased, the FOV of the system can be enlarged further.
Sex-biased sound symbolism in english-language first names.
Pitcher, Benjamin J; Mesoudi, Alex; McElligott, Alan G
2013-01-01
Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. "Thomas"), while female names are significantly more likely to contain smaller phonemes (e.g. "Emily"). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism.
Sex-Biased Sound Symbolism in English-Language First Names
Pitcher, Benjamin J.; Mesoudi, Alex; McElligott, Alan G.
2013-01-01
Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. “Thomas”), while female names are significantly more likely to contain smaller phonemes (e.g. “Emily”). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism. PMID:23755148
Demonstration of a real-time implementation of the ICVision holographic stereogram display
NASA Astrophysics Data System (ADS)
Kulick, Jeffrey H.; Jones, Michael W.; Nordin, Gregory P.; Lindquist, Robert G.; Kowel, Stephen T.; Thomsen, Axel
1995-07-01
There is increasing interest in real-time autostereoscopic 3D displays. Such systems allow 3D objects or scenes to be viewed by one or more observers with correct motion parallax without the need for glasses or other viewing aids. Potential applications of such systems include mechanical design, training and simulation, medical imaging, virtual reality, and architectural design. One approach to the development of real-time autostereoscopic display systems has been to develop real-time holographic display systems. The approach taken by most of the systems is to compute and display a number of holographic lines at one time, and then use a scanning system to replicate the images throughout the display region. The approach taken in the ICVision system being developed at the University of Alabama in Huntsville is very different. In the ICVision display, a set of discrete viewing regions called virtual viewing slits are created by the display. Each pixel is required fill every viewing slit with different image data. When the images presented in two virtual viewing slits separated by an interoccular distance are filled with stereoscopic pair images, the observer sees a 3D image. The images are computed so that a different stereo pair is presented each time the viewer moves 1 eye pupil diameter (approximately mm), thus providing a series of stereo views. Each pixel is subdivided into smaller regions, called partial pixels. Each partial pixel is filled with a diffraction grating that is just that required to fill an individual virtual viewing slit. The sum of all the partial pixels in a pixel then fill all the virtual viewing slits. The final version of the ICVision system will form diffraction gratings in a liquid crystal layer on the surface of VLSI chips in real time. Processors embedded in the VLSI chips will compute the display in real- time. In the current version of the system, a commercial AMLCD is sandwiched with a diffraction grating array. This paper will discuss the design details of a protable 3D display based on the integration of a diffractive optical element with a commercial off-the-shelf AMLCD. The diffractive optic contains several hundred thousand partial-pixel gratings and the AMLCD modulates the light diffracted by the gratings.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Ogorodnik, Konstantin V.
2006-04-01
We analyse the existent methods of cryptographic defence for the facsimile information transfer, consider their shortcomings and prove the necessity of better information protection degree. The method of information protection that is based on presentation of input data as images is proposed. We offer a new noise-immune algorithm for realization of this method which consists in transformation of an input frame by pixels transposition according to an entered key. At decoding mode the reverse transformation of image with the use of the same key is used. Practical realization of the given method takes into account noise in the transmission channels and information distortions by scanners, faxes and others like that. We show that the given influences are reduced to the transformation of the input image coordinates. We show the algorithm in detail and consider its basic steps. We show the possibility of the offered method by the means of the developed software. The realized algorithm corrects curvature of frames: turn, scaling, fallout of pixels and others like that. At low noise level (loss of pixel information less than 10 percents) it is possible to encode, transfer and decode any types of images and texts with 12-size font character. The software filters for information restore and noise removing allow to transfer fax data with 30 percents pixels loss at 18-size font text. This percent of data loss can be considerably increased by the use of the software character recognition block that can be realized on fuzzy-neural algorithms. Examples of encoding and decryption of images and texts are shown.
Development of a Timepix based detector for the NanoXCT project
NASA Astrophysics Data System (ADS)
Nachtrab, F.; Hofmann, T.; Speier, C.; Lučić, J.; Firsching, M.; Uhlmann, N.; Takman, P.; Heinzl, C.; Holmberg, A.; Krumm, M.; Sauerwein, C.
2015-11-01
The NanoXCT EU FP7 project [1] aims at developing a laboratory, i.e. bench top sized X-ray nano-CT system with a large field-of-view (FOV) for non-destructive testing needs in the micro- and nano-technology sector. The targeted voxel size is 50 nm at 0.175 mm FOV, the maximum FOV is 1 mm at 285 nm voxel size. Within the project a suitable X-ray source, detector and manipulation system have been developed. The system concept [2] omits the use of X-ray optics, to be able to provide a large FOV of up to 1 mm and to preserve the flexibility of state-of-the-art micro-CT systems. The targeted resolution will be reached via direct geometric magnification made possible by the development of a specialized high-flux nano-focus transmission X-ray tube. The end-user's demand for elemental analysis will be covered by energy-resolved measurement techniques, in particular a K-edge imaging method. Timepix [3] modules were chosen as the basis for the detector system, since a photon counting detector is advantageous for the long exposure times that come with very small focal spot sizes. Additional advantages are the small pixel size and adjustable energy threshold. To fulfill the requirements on field-of-view, a detector width 0> 300 pixels was needed. The NanoXCT detector consists of four Hexa modules with 500 μm silicon sensors supplied by X-ray Imaging Europe. An adapter board was developed to connect all four modules to one Fitpix3 readout. The final detector has an active area of 3072 × 512 pixels or approximately 17 × 3 cm2.In this contribution we present the development of the Timepix based NanoXCT detector, it's application in the NanoXCT project for CT and material specific measurements and the current status of results.
NASA Astrophysics Data System (ADS)
Chen, Hsin-Han; Hsieh, Chih-Cheng
2013-09-01
This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.
Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions
NASA Astrophysics Data System (ADS)
Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin
2016-10-01
After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.
Multiscale multichroic focal planes for measurements of the cosmic microwave background
NASA Astrophysics Data System (ADS)
Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin
2018-01-01
We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the integration of our devices in current and future CMB experiments.
Population attribute compression
White, James M.; Faber, Vance; Saltzman, Jeffrey S.
1995-01-01
An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes that represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete look-up table (LUT). Color space containing the LUT color values is successively subdivided into smaller volumes until a plurality of volumes are formed, each having no more than a preselected maximum number of color values. Image pixel color values can then be rapidly placed in a volume with only a relatively few LUT values from which a nearest neighbor is selected. Image color values are assigned 8 bit pointers to their closest LUT value whereby data processing requires only the 8 bit pointer value to provide 24 bit color values from the LUT.
Validation of aerosol optical depth uncertainties within the ESA Climate Change Initiative
NASA Astrophysics Data System (ADS)
Stebel, Kerstin; Povey, Adam; Popp, Thomas; Capelle, Virginie; Clarisse, Lieven; Heckel, Andreas; Kinne, Stefan; Klueser, Lars; Kolmonen, Pekka; de Leeuw, Gerrit; North, Peter R. J.; Pinnock, Simon; Sogacheva, Larisa; Thomas, Gareth; Vandenbussche, Sophie
2017-04-01
Uncertainty is a vital component of any climate data record as it provides the context with which to understand the quality of the data and compare it to other measurements. Therefore, pixel-level uncertainties are provided for all aerosol products that have been developed in the framework of the Aerosol_cci project within ESA's Climate Change Initiative (CCI). Validation of these estimated uncertainties is necessary to demonstrate that they provide a useful representation of the distribution of error. We propose a technique for the statistical validation of AOD (aerosol optical depth) uncertainty by comparison to high-quality ground-based observations and present results for ATSR (Along Track Scanning Radiometer) and IASI (Infrared Atmospheric Sounding Interferometer) data records. AOD at 0.55 µm and its uncertainty was calculated with three AOD retrieval algorithms using data from the ATSR instruments (ATSR-2 (1995-2002) and AATSR (2002-2012)). Pixel-level uncertainties were calculated through error propagation (ADV/ASV, ORAC algorithms) or parameterization of the error's dependence on the geophysical retrieval conditions (SU algorithm). Level 2 data are given as super-pixels of 10 km x 10 km. As validation data, we use direct-sun observations of AOD from the AERONET (AErosol RObotic NETwork) and MAN (Maritime Aerosol Network) sun-photometer networks, which are substantially more accurate than satellite retrievals. Neglecting the uncertainty in AERONET observations and possible issues with their ability to represent a satellite pixel area, the error in the retrieval can be approximated by the difference between the satellite and AERONET retrievals (herein referred to as "error"). To evaluate how well the pixel-level uncertainty represents the observed distribution of error, we look at the distribution of the ratio D between the "error" and the ATSR uncertainty. If uncertainties are well represented, D should be normally distributed and 68.3% of values should fall within the range [-1, +1]. A non-zero mean of D indicates the presence of residual systematic errors. If the fraction is smaller than 68%, uncertainties are underestimated; if it is larger, uncertainties are overestimated. For the three ATSR algorithms, we provide statistics and an evaluation at a global scale (separately for land and ocean/coastal regions), for high/low AOD regimes, and seasonal and regional statistics (e.g. Europe, N-Africa, East-Asia, N-America). We assess the long-term stability of the uncertainty estimates over the 17-year time series, and the consistency between ATSR-2 and AATSR results (during their period of overlap). Furthermore, we exploit the possibility to adapt the uncertainty validation concept to the IASI datasets. Ten-year data records (2007-2016) of dust AOD have been generated with four algorithms using IASI observations over the greater Sahara region [80°W - 120°E, 0°N - 40°N]. For validation, the coarse mode AOD at 0.55 μm from the AERONET direct-sun spectral deconvolution algorithm (SDA) product may be used as a proxy for desert dust. The uncertainty validation results for IASI are still tentative, as larger IASI pixel sizes and the conversion of the IASI AOD values from infrared to visible wavelengths for comparison to ground-based observations introduces large uncertainties.