Sample records for smart dust based

  1. A smart dust biosensor powered by kinesin motors.

    PubMed

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  2. SMART Ground-based Radiation Measurements during PRIDE

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Qiang; Hansel, R.; Pilewskie, P.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We deployed a suite of ground-based remote sensing instruments - SMART (Surface Measurements for Atmospheric Radiative Transfer), at the Roosevelt Road Naval Station in Puerto Rico during the Puerto Rico Dust Experiment (PRIDE). The instruments include several solar and infrared broadband radiometers, a sunphotometer, a shadow-band radiometer, a micro-pulse lidar, a total-sky imager, a microwave radiometer, and two solar spectrometers. These radiometers were set up on a mobile platform and a solar tracker. During 27 June - 23 July, about 25 days of data were acquired under partially cloudy sky conditions. The diurnal air temperature was fluctuating around 28.6 C to within a few degrees. Daytime average of solar irradiance reaching at the surface was ranged from about 400 W/sq m on a rainy day to about 640 W/sq m on a cloud-free day. The infrared irradiance at the surface during the measurement period was averaged about 408 W/sq m. The heights of boundary layer, dusts and clouds were captured by lidar images. Based on sunphotometer and shadow-band radiometer retrievals, the aerosol optical thickness varied from below 0.1 to over 0.6. Combining with radiative transfer modeling and other in-situ and remote sensing measurements, our ground-based measurements provide vital information on understanding the long-range transport of African dust into the Caribbean.

  3. Smart learning services based on smart cloud computing.

    PubMed

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  4. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  5. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  6. SMART-COMMIT Observations and Deep-Blue Retrievals of Saharan Dust Properties during NAMMA

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Jeong, Myeong-Jae

    2007-01-01

    Monsoon rainfalls sustain the livelihood of more than half of the world's population. The interaction between natural/anthropogenic aerosols, clouds, and precipitation is a critical mechanism that drives the water cycle and fresh water distribution. Analyses of the longterm trend of July-August precipitation anomaly for the last 50 years in the 20" century depict that the largest regional precipitation deficit occurs over the Sahel, where the monsoon water cycle plays an important role. Thus, it is of paramount importance to study how dust aerosols, as well as air pollution and smoke, influence monsoon variability. The NASA African Monsoon Multidisciplinary Activities (NAMMA) was conducted during the international AMMA Special Observation Period (SOP-3) of September 2006 to better comprehend the key attributes of the Saharan Air Layer (SAL) and how they evolve from the source regions to the Atlantic Ocean. The SAL occurs during the late spring through early fall and originates as a result of low-level convergence induced by heat lows over the Sahara that lifts hot, dry, dust laden air aloft into a well mixed layer that extends up to 500mb. This is crucial for understanding the impact of SAL on the key atmospheric processes that determine precipitation over West Africa and tropical cyclogenesis. Results obtained from the synergy of satellite (Deep- Blue) and surface (SMART-COMMIT) observations will be presented and discussed how the physical, optical and radiative properties of the dust in the SAL evolve from the continental to the marine environment.

  7. Air Force Smart Bases

    DTIC Science & Technology

    2017-10-19

    the future. Then to design an information and data architecture to enable many use cases for further mission experimentation and acquisition strategy...development. A key feature of the future of smart cities (or, in our case , smart bases) is that citizen engagement with one another and with their...cybersecurity on Air Force installations. Participants The design sprint brought in over 30 participants from across the military and industry

  8. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  9. Smart Dust--Friend or Foe?

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Nanotechnology is now making it possible to create radically new tiny machines and sensors on par with the size of dust motes. This technology is rapidly progressing and will make profound impacts on the nation's global competitiveness. It promises to be a most pervasive technological advance, comparable to what computers did for an individual's…

  10. Smart FBG-based FRP anchor

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping

    2006-03-01

    FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.

  11. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    PubMed Central

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-01-01

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630

  12. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.

    PubMed

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-05-04

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.

  13. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  14. Automated Clinical Assessment from Smart home-based Behavior Data

    PubMed Central

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  15. A rhythm-based authentication scheme for smart media devices.

    PubMed

    Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.

  16. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  17. Hybrid-Aware Model for Senior Wellness Service in Smart Home.

    PubMed

    Jung, Yuchae

    2017-05-22

    Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors-such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)-were used for monitoring movements of seniors. For context-awareness, environmental sensors-such as gas, fire, smoke, dust, temperature, and light sensors-were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio.

  18. Hybrid-Aware Model for Senior Wellness Service in Smart Home

    PubMed Central

    Jung, Yuchae

    2017-01-01

    Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors—such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)—were used for monitoring movements of seniors. For context-awareness, environmental sensors—such as gas, fire, smoke, dust, temperature, and light sensors—were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio. PMID:28531157

  19. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  20. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    PubMed

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  1. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.

    PubMed

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-07-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behavior in the home and predicting clinical scores of the residents. To accomplish this goal, we propose a clinical assessment using activity behavior (CAAB) approach to model a smart home resident's daily behavior and predict the corresponding clinical scores. CAAB uses statistical features that describe characteristics of a resident's daily activity performance to train machine learning algorithms that predict the clinical scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years. We obtain a statistically significant correlation ( r=0.72) between CAAB-predicted and clinician-provided cognitive scores and a statistically significant correlation ( r=0.45) between CAAB-predicted and clinician-provided mobility scores. These prediction results suggest that it is feasible to predict clinical scores using smart home sensor data and learning-based data analysis.

  2. A Rhythm-Based Authentication Scheme for Smart Media Devices

    PubMed Central

    Lee, Jae Dong; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743

  3. An RFID Based Smart Feeder for Hummingbirds.

    PubMed

    Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F; Tang, Wei

    2015-12-16

    We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9-11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future.

  4. An RFID Based Smart Feeder for Hummingbirds

    PubMed Central

    Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F.; Tang, Wei

    2015-01-01

    We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9–11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future. PMID:26694402

  5. A rule-based smart automated fertilization and irrigation systems

    NASA Astrophysics Data System (ADS)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  6. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  7. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  8. A new physically-based windblown dust emission ...

    EPA Pesticide Factsheets

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based

  9. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes.

    PubMed

    Ali, Bako; Awad, Ali Ismail

    2018-03-08

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or "things" to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes.

  10. Design and implementation of a smart card based healthcare information system.

    PubMed

    Kardas, Geylani; Tunali, E Turhan

    2006-01-01

    Smart cards are used in information technologies as portable integrated devices with data storage and data processing capabilities. As in other fields, smart card use in health systems became popular due to their increased capacity and performance. Their efficient use with easy and fast data access facilities leads to implementation particularly widespread in security systems. In this paper, a smart card based healthcare information system is developed. The system uses smart card for personal identification and transfer of health data and provides data communication via a distributed protocol which is particularly developed for this study. Two smart card software modules are implemented that run on patient and healthcare professional smart cards, respectively. In addition to personal information, general health information about the patient is also loaded to patient smart card. Health care providers use their own smart cards to be authenticated on the system and to access data on patient cards. Encryption keys and digital signature keys stored on smart cards of the system are used for secure and authenticated data communication between clients and database servers over distributed object protocol. System is developed on Java platform by using object oriented architecture and design patterns.

  11. MADM-based smart parking guidance algorithm

    PubMed Central

    Li, Bo; Pei, Yijian; Wu, Hao; Huang, Dijiang

    2017-01-01

    In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by considering three representative decision factors (i.e., walk duration, parking fee, and the number of vacant parking spaces) and various preferences of drivers. In this paper, the expected number of vacant parking spaces is regarded as an important attribute to reflect the difficulty degree of finding available parking spaces, and a queueing theory-based theoretical method was proposed to estimate this expected number for candidate parking facilities with different capacities, arrival rates, and service rates. The effectiveness of the MADM-based parking guidance algorithm was investigated and compared with a blind search-based approach in comprehensive scenarios with various distributions of parking facilities, traffic intensities, and user preferences. Experimental results show that the proposed MADM-based algorithm is effective to choose suitable parking resources to satisfy users’ preferences. Furthermore, it has also been observed that this newly proposed Markov Chain-based availability attribute is more effective to represent the availability of parking spaces than the arrival rate-based availability attribute proposed in existing research. PMID:29236698

  12. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes

    PubMed Central

    2018-01-01

    The Internet of Things (IoT) is an emerging paradigm focusing on the connection of devices, objects, or “things” to each other, to the Internet, and to users. IoT technology is anticipated to become an essential requirement in the development of smart homes, as it offers convenience and efficiency to home residents so that they can achieve better quality of life. Application of the IoT model to smart homes, by connecting objects to the Internet, poses new security and privacy challenges in terms of the confidentiality, authenticity, and integrity of the data sensed, collected, and exchanged by the IoT objects. These challenges make smart homes extremely vulnerable to different types of security attacks, resulting in IoT-based smart homes being insecure. Therefore, it is necessary to identify the possible security risks to develop a complete picture of the security status of smart homes. This article applies the operationally critical threat, asset, and vulnerability evaluation (OCTAVE) methodology, known as OCTAVE Allegro, to assess the security risks of smart homes. The OCTAVE Allegro method focuses on information assets and considers different information containers such as databases, physical papers, and humans. The key goals of this study are to highlight the various security vulnerabilities of IoT-based smart homes, to present the risks on home inhabitants, and to propose approaches to mitigating the identified risks. The research findings can be used as a foundation for improving the security requirements of IoT-based smart homes. PMID:29518023

  13. Smart-Home Architecture Based on Bluetooth mesh Technology

    NASA Astrophysics Data System (ADS)

    Wan, Qing; Liu, Jianghua

    2018-03-01

    This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.

  14. IEEE 1451.2 based Smart sensor system using ADuc847

    NASA Astrophysics Data System (ADS)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  15. Design of smart home gateway based on Wi-Fi and ZigBee

    NASA Astrophysics Data System (ADS)

    Li, Yang

    2018-04-01

    With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.

  16. The application of autostereoscopic display in smart home system based on mobile devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Ling, Zhi

    2015-03-01

    Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.

  17. Crowdsourced Smart Cities versus Corporate Smart Cities

    NASA Astrophysics Data System (ADS)

    Alizadeh, Tooran

    2018-05-01

    Considering the speedy growth of smart-city promises and practices, there is an urgent need to take a critical approach and offer an integrated vision for an otherwise fragmented and sectoral concept. In particular, the literature warns about a critical deficit around the theorization of the smart city because discussions of relevant smart city theories or frameworks are few and fall short of offering alternative practical resolutions to the dominant discourse. In developing a response to such a deficit, this paper takes up the challenge to broaden theoretical insights into smart cities, by offering a bottom-up understanding of the ‘smart city’ concept with special attention to the potential of passive crowdsourcing based on the ocean of mostly untapped and unutilized available data in the public domain. Crowdsourced smart cities are proposed as an alternative to enable public engagement in smart city debates and decision-making – especially when dealing with global digital corporations.

  18. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    NASA Astrophysics Data System (ADS)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  19. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  20. Enabling affordable and efficiently deployed location based smart home systems.

    PubMed

    Kelly, Damian; McLoone, Sean; Dishongh, Terry

    2009-01-01

    With the obvious eldercare capabilities of smart environments it is a question of "when", rather than "if", these technologies will be routinely integrated into the design of future houses. In the meantime, health monitoring applications must be integrated into already complete home environments. However, there is significant effort involved in installing the hardware necessary to monitor the movements of an elder throughout an environment. Our work seeks to address the high infrastructure requirements of traditional location-based smart home systems by developing an extremely low infrastructure localisation technique. A study of the most efficient method of obtaining calibration data for an environment is conducted and different mobile devices are compared for localisation accuracy and cost trade-off. It is believed that these developments will contribute towards more efficiently deployed location-based smart home systems.

  1. Smart governance for smart city

    NASA Astrophysics Data System (ADS)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  2. Integrating Fingerprint Verification into the Smart Card-Based Healthcare Information System

    NASA Astrophysics Data System (ADS)

    Moon, Daesung; Chung, Yongwha; Pan, Sung Bum; Park, Jin-Won

    2009-12-01

    As VLSI technology has been improved, a smart card employing 32-bit processors has been released, and more personal information such as medical, financial data can be stored in the card. Thus, it becomes important to protect personal information stored in the card. Verification of the card holder's identity using a fingerprint has advantages over the present practices of Personal Identification Numbers (PINs) and passwords. However, the computational workload of fingerprint verification is much heavier than that of the typical PIN-based solution. In this paper, we consider three strategies to implement fingerprint verification in a smart card environment and how to distribute the modules of fingerprint verification between the smart card and the card reader. We first evaluate the number of instructions of each step of a typical fingerprint verification algorithm, and estimate the execution time of several cryptographic algorithms to guarantee the security/privacy of the fingerprint data transmitted in the smart card with the client-server environment. Based on the evaluation results, we analyze each scenario with respect to the security level and the real-time execution requirements in order to implement fingerprint verification in the smart card with the client-server environment.

  3. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  4. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  5. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  6. Dust devil characteristics and associated dust entrainment based on large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Kwidzinski, Nick; Shao, Yaping

    2015-04-01

    The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.

  7. a Cloud-Based Architecture for Smart Video Surveillance

    NASA Astrophysics Data System (ADS)

    Valentín, L.; Serrano, S. A.; Oves García, R.; Andrade, A.; Palacios-Alonso, M. A.; Sucar, L. Enrique

    2017-09-01

    Turning a city into a smart city has attracted considerable attention. A smart city can be seen as a city that uses digital technology not only to improve the quality of people's life, but also, to have a positive impact in the environment and, at the same time, offer efficient and easy-to-use services. A fundamental aspect to be considered in a smart city is people's safety and welfare, therefore, having a good security system becomes a necessity, because it allows us to detect and identify potential risk situations, and then take appropriate decisions to help people or even prevent criminal acts. In this paper we present an architecture for automated video surveillance based on the cloud computing schema capable of acquiring a video stream from a set of cameras connected to the network, process that information, detect, label and highlight security-relevant events automatically, store the information and provide situational awareness in order to minimize response time to take the appropriate action.

  8. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  9. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  10. Exploration and design of smart home circuit based on ZigBee

    NASA Astrophysics Data System (ADS)

    Luo, Huirong

    2018-05-01

    To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.

  11. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  12. Novel versatile smart phone based Microplate readers for on-site diagnoses.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Li, Xiuqing; Yao, Cuize; Yu, Shiting; Xiao, Wei; Tang, Yong

    2016-07-15

    Microplate readers are important diagnostic instruments, used intensively for various readout test kits (biochemical analysis kits and ELISA kits). However, due to their expensive and non-portability, commercial microplate readers are unavailable for home testing, community and rural hospitals, especially in developing countries. In this study, to provide a field-portable, cost-effective and versatile diagnostic tool, we reported a novel smart phone based microplate reader. The basic principle of this devise relies on a smart phone's optical sensor that measures transmitted light intensities of liquid samples. To prove the validity of these devises, developed smart phone based microplate readers were applied to readout results of various analytical targets. These targets included analanine aminotransferase (ALT; limit of detection (LOD) was 17.54 U/L), alkaline phosphatase (AKP; LOD was 15.56 U/L), creatinine (LOD was 1.35μM), bovine serum albumin (BSA; LOD was 0.0041mg/mL), prostate specific antigen (PSA; LOD was 0.76pg/mL), and ractopamine (Rac; LOD was 0.31ng/mL). The developed smart phone based microplate readers are versatile, portable, and inexpensive; they are unique because of their ability to perform under circumstances where resources and expertize are limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An u-Service Model Based on a Smart Phone for Urban Computing Environments

    NASA Astrophysics Data System (ADS)

    Cho, Yongyun; Yoe, Hyun

    In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.

  14. Concept of Smart Cyberspace for Smart Grid Implementation

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Malov, D.

    2018-05-01

    The concept of Smart Cyberspace for Smart Grid (SG) implementation is presented in the paper. The classification of electromechanical units, based on the amount of analysing data, the classification of electromechanical units, based on the data processing speed; and the classification of computational network organization, based on required resources, are proposed in this paper. The combination of the considered classifications is formalized, which can be further used in organizing and planning of SG.

  15. SMARTe 2008

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all asp...

  16. SMARTe 2011

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decisions support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all a...

  17. SMARTE 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains guidance and analysis tools for all aspect...

  18. util_2comp: Planck-based two-component dust model utilities

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron

    2014-11-01

    The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

  19. Towards smart environments using smart objects.

    PubMed

    Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli

    2011-01-01

    Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.

  20. Cellulose-Based Smart Fluids under Applied Electric Fields

    PubMed Central

    Choi, Kisuk; Gao, Chun Yan; Nam, Jae Do

    2017-01-01

    Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices. PMID:28891966

  1. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  2. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph

    PubMed Central

    Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.

    2017-01-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119

  3. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.

    PubMed

    Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H

    2016-03-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.

  4. Developing upconversion nanoparticle-based smart substrates for remote temperature sensing

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.

    2018-02-01

    Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.

  5. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation.

    PubMed

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S; Talal, Talal K; Menzies, Robert A; Armstrong, David G

    2017-07-01

    This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m 2 ) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. In laboratory and under controlled conditions, the agreements for parameters of interest were excellent ( r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan ( r = .67, P < .050) as well as between thermography and SmartSox ( r = .55, P < .050). This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN.

  6. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation

    PubMed Central

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S.; Talal, Talal K.; Menzies, Robert A.; Armstrong, David G.

    2017-01-01

    Objective: This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). Methods: After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m2) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. Results: In laboratory and under controlled conditions, the agreements for parameters of interest were excellent (r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan (r = .67, P < .050) as well as between thermography and SmartSox (r = .55, P < .050). Conclusion: This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN. PMID:28513212

  7. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    NASA Astrophysics Data System (ADS)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  8. Derivation of an observation-based map of North African dust emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visiblemore » and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.« less

  9. Evaluation of atmospheric dust prediction models using ground-based observations

    NASA Astrophysics Data System (ADS)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  10. SMART-1 SPEDE: Results and Legacy after 10 Years

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Mälkki, Anssi

    2014-05-01

    The Spacecraft Potential, Electron and Dust Experiment (SPEDE) [1], one of the instruments on the SMART-1 spacecraft, the European Space Agency's first Lunar mission, was part of the monitoring instruments supervising the propulsion system and supporting corrective actions to its operation when needed. During mission phases with inactive propulsion system the plasma instrument measured electron and ion densities and temperatures of the natural plasma in the vicinity of the spacecraft. While the spacecraft was slowly spiraling out of an Earth orbit towards a Moon trajectory it spent many months inside the Earth radiation belt. During this time SPEDE recorded the plasma parameters as a function of altitude and solar conditions and monitored also the effects of the major solar CME of October 28, the so-called "Halloween Storm" [2], [3]. After reaching the Moon on November 15, 2004, it continued to monitor the plasma and dust impacts onto the spacecraft until the end of the mission on September 3, 2006. Most of the Moon orbits lasted about 5 hours with an initial perilune distance of 2208 and an apolune distance of 4618 km, changing to 300 km and 3000km, respectively towards the end of the mission with a controlled impact onto the Lunar surface. A total of over 200 orbits were covered [4]. Covered by the SPEDE instrument are three areas of scientific interest: - A detailed altitude profile of the plasma parameters inside the radiation belt under different environmental condition - SPEDE was one of the few instruments active inside the radiation belt while normally all instruments on space missions are kept off to prevent damage, - a plasma parameter map in Lunar orbit with the Moon inside and outside the Earth magnetosphere, - plasma wave measurements around the moon with signatures of dust impacts onto the spacecraft monitoring the dust lifting processes on the Moon surface to escape velocities under certain solar wind conditions. Technical legacy: The Langmuir Probe

  11. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  12. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    NASA Astrophysics Data System (ADS)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  13. Smart material screening machines using smart materials and controls

    NASA Astrophysics Data System (ADS)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  14. Electricity usage scheduling in smart building environments using smart devices.

    PubMed

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  15. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  16. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  17. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  18. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  19. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture.

    PubMed

    García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime

    2018-03-27

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen's d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach.

  20. Smart glass based on electrochromic polymers

    NASA Astrophysics Data System (ADS)

    Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru

    2006-03-01

    Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.

  1. An acceptance model for smart glasses based tourism augmented reality

    NASA Astrophysics Data System (ADS)

    Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao

    2017-10-01

    Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.

  2. Dust-concentration measurement based on Mie scattering of a laser beam

    PubMed Central

    Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu

    2017-01-01

    To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662

  3. Imaging-based dust sensors: equipment and methods

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Greco, Sonia

    2004-05-01

    Dust detection and control in real time, represent one of the most challenging problem in all those environments where fine and ultrafine airborne particulate solids products are present. The presence of such products can be linked to several factors, often directly related and influenced by the working-production actions performed. Independently from the causes generating dust, airborne contaminants are an occupational problem of increasing interest as they are related to a wide number of diseases. In particular, airborne dusts are well known to be associated with several classical occupational lung diseases, such as the pneumoconiosis, especially at high levels of exposure. Nowadays there is also an increasing interest in other dust related diseases, from the most serious as cancer and asthma, to those related with allergies or irritation and other illnesses, also occurring at lower levels of exposure. Among the different critical factors influencing health risk for airborne dust exposure, mainly four have to be considered, that is: i) nature of the dust resulting from working in terms of presence of specific poisoning material, i.e. free silica, and morphological and morphometrical attributes of particulates constituting airborne dust; ii) size of the particles, iii) duration of exposure time and, finally, iv) airborne dust concentration in the breathing zone where the worker performs his activity. A correct dust detection is not easy, especially if some of the previous mentioned factors, have to be detected and quantified in real time in order to define specific "on-line" control actions aimed to reduce the level of the exposure to dust of the workers, as for example: i) modification of aspirating devices operating condition, change of filtering cleaning sequence, etc. . The more severe are the environmental conditions, in terms of dust presence (in quantity and quality) more difficult is to utilize efficient sampling devices. Detection devices, in fact, tend

  4. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    PubMed Central

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951

  5. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    PubMed

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-06-27

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  6. Smart Electronic Textiles.

    PubMed

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  8. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  9. A sensor and video based ontology for activity recognition in smart environments.

    PubMed

    Mitchell, D; Morrow, Philip J; Nugent, Chris D

    2014-01-01

    Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.

  10. Research on Dust Concentration Measurement Technique Based on the Theory of Ultrasonic Attenuation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lou, Wenzhong; Liao, Maohao

    2018-03-01

    In this paper, a method of characteristics dust concentration is proposed, which based on ultrasonic changes of MEMS piezoelectric ultrasonic transducer. The principle is that the intensity of the ultrasonic will produce attenuation with the propagation medium and propagation distance, the attenuation coefficient is affect by dust concentration. By detecting the changes of ultra acoustic in the dust, the concentration of the dust is calculate by the attenuation-concentration model, and the EACH theory model is based on this principle. The experimental results show that the MEMS piezoelectric ultrasonic transducer can be use for dust concentration of 100-900 g/m3 detection, the deviation between theory and experiments is smaller than 10.4%.

  11. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  12. A Kinect-Based Assessment System for Smart Classroom

    ERIC Educational Resources Information Center

    Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin

    2015-01-01

    With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…

  13. An IBeacon-Based Location System for Smart Home Control.

    PubMed

    Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen

    2018-06-11

    Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.

  14. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  15. Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

    PubMed Central

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860

  16. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    PubMed

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  17. SMARTE TUTORIAL CD

    EPA Science Inventory

    SMARTe is a web-based decision support tool intended to help revitalization practitioners find information, perform data analysis, communicate, and evaluate future reuse options for a site or area. A tutorial was developed to help users navigate SMARTe. This tutorial is approxima...

  18. SMARTE: IMPROVING REVITALIZATION DECISIONS (BERLIN, GERMANY)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  19. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture

    PubMed Central

    2018-01-01

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen’s d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach. PMID:29584703

  20. The biometric-based module of smart grid system

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  1. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  2. Secure smart grid communications and information integration based on digital watermarking in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing

    2017-02-01

    As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.

  3. Designing of smart home automation system based on Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar; Wattanawisuth, Nattapol; Leeprechanon, Nopbhorn

    2016-03-01

    Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pins of Raspberry Pi by pressing the corresponding key for turning "on" and "off" of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.

  4. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records

    PubMed Central

    Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-01-01

    Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829

  5. Study on smart city construction of Jiujiang based on IOT technology

    NASA Astrophysics Data System (ADS)

    Liu, Zeliang; Wang, Ying; Xu, Qin; Yan, Tao

    2017-06-01

    At present, with the technology of the Internet of things (IOT), building smart city is forming a powerful wave of city, which promotes economic and social development of city. This paper expounds the connotation of smart city, explores the social and economic significance of the construction of smart city, analyzes the present situation of smart city construction in Jiujiang, studies the basic principles development altar get and key construction projects, and puts forward relevant of Jiujiang smart city construction, and puts forward relevant proposals about smart construction in Jiujiang, Jiangxi.

  6. Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report.

    PubMed

    Hayward, Kathryn S; Neibling, Bridee A; Barker, Ruth N

    2015-01-01

    This single-case, mixed-method study explored the feasibility of self-administered, home-based SMART (sensorimotor active rehabilitation training) Arm training for a 57-yr-old man with severe upper-limb disability after a right frontoparietal hemorrhagic stroke 9 mo earlier. Over 4 wk of self-administered, home-based SMART Arm training, the participant completed 2,100 repetitions unassisted. His wife provided support for equipment set-up and training progressions. Clinically meaningful improvements in arm impairment (strength), activity (arm and hand tasks), and participation (use of arm in everyday tasks) occurred after training (at 4 wk) and at follow-up (at 16 wk). Areas for refinement of SMART Arm training derived from thematic analysis of the participant's and researchers' journals focused on enabling independence, ensuring home and user friendliness, maintaining the motivation to persevere, progressing toward everyday tasks, and integrating practice into daily routine. These findings suggest that further investigation of self-administered, home-based SMART Arm training is warranted for people with stroke who have severe upper-limb disability. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  7. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  8. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    PubMed

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  9. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    PubMed

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  10. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    PubMed Central

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-01-01

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.  PMID:28208787

  11. 75 FR 61470 - Smart One Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2943-000] Smart One Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Smart One Energy, LLC's application for market-based rate authority, with an accompanying rate...

  12. Metacognitive components in smart learning environment

    NASA Astrophysics Data System (ADS)

    Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.

    2018-03-01

    Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.

  13. Plasma-Based Detector of Outer-Space Dust Particles

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Brinza, David E.; Henry, Michael D.; Clay, Douglas R.

    2006-01-01

    A report presents a concept for an instrument to be flown in outer space, where it would detect dust particles - especially those associated with comets. The instrument would include a flat plate that would intercept the dust particles. The anticipated spacecraft/dust-particle relative speeds are so high that the impingement of a dust particle on the plate would generate a plasma cloud. Simple electric dipole sensors located equidistantly along the circumference of the plate would detect the dust particle indirectly by detecting the plasma cloud. The location of the dust hit could be estimated from the timing of the detection pulses of the different dipoles. The mass and composition of the dust particle could be estimated from the shapes and durations of the pulses from the dipoles. In comparison with other instruments for detecting hypervelocity dust particles, the proposed instrument offers advantages of robustness, large collection area, and simplicity.

  14. Smart Metamaterial Based on the Simplex Tensegrity Pattern.

    PubMed

    Al Sabouni-Zawadzka, Anna; Gilewski, Wojciech

    2018-04-26

    In the present paper, a novel cellular metamaterial that was based on a tensegrity pattern is presented. The material is constructed from supercells, each of which consists of eight 4-strut simplex modules. The proposed metamaterial exhibits some unusual properties, which are typical for smart structures. It is possible to control its mechanical characteristics by adjusting the level of self-stress or by changing the properties of structural members. A continuum model is used to identify the qualitative properties of the considered metamaterial, and to estimate how the applied self-stress and the characteristics of cables and struts affect the whole structure. The performed analyses proved that the proposed structure can be regarded as a smart metamaterial with orthotropic properties. One of its most important features are unique values of Poisson’s ratio, which can be either positive or negative, depending on the applied control parameters. Moreover, all of the mechanical characteristics of the proposed metamaterial are prone to structural control.

  15. Design and construction of smart cane using infrared laser-based tracking system

    NASA Astrophysics Data System (ADS)

    Wong, Chi Fung; Phitagragsakul, Narikorn; Jornsamer, Patcharaporn; Kaewmeesri, Pimsin; Jantakot, Pimsunan; Locharoenrat, Kitsakorn

    2018-06-01

    Our work is aimed to design and construct the smart cane. The infrared laser-based sensor was used as a distance detector and Arduino board was used as a microcontroller. On the other hand, Bluetooth was used as a wireless communicator and MP3 module together with the headset were used as a voice alert player. Our smart cane is a very effective device for the users under the indoor guidance. That is, the obstacle was detectable 3,000 cm away from the blind people. The white cane was assembled with the laser distance sensor and distance alert sensor served as the compact and light-weight device. Distance detection was very fast and precise when the smart cane was tested for the different obstacles, such as human, wall and wooden table under the indoor area.

  16. Development of Android based Smart Power Saving System

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.

    2017-08-01

    An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.

  17. Surface Measurements of dust/local aerosol properties over Northern China during 2008 China-US joined dust field campaign

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, J.

    2009-12-01

    The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.

  18. A security and privacy preserving e-prescription system based on smart cards.

    PubMed

    Hsu, Chien-Lung; Lu, Chung-Fu

    2012-12-01

    In 2002, Ateniese and Medeiros proposed an e-prescription system, in which the patient can store e-prescription and related information using smart card. Latter, Yang et al. proposed a novel smart-card based e-prescription system based on Ateniese and Medeiros's system in 2004. Yang et al. considered the privacy issues of prescription data and adopted the concept of a group signature to provide patient's privacy protection. To make the e-prescription system more realistic, they further applied a proxy signature to allow a patient to delegate his signing capability to other people. This paper proposed a novel security and privacy preserving e-prescription system model based on smart cards. A new role, chemist, is included in the system model for settling the medicine dispute. We further presented a concrete identity-based (ID-based) group signature scheme and an ID-based proxy signature scheme to realize the proposed model. Main property of an ID-based system is that public key is simple user's identity and can be verified without extra public key certificates. Our ID-based group signature scheme can allow doctors to sign e-prescription anonymously. In a case of a medical dispute, identities of the doctors can be identified. The proposed ID-based proxy signature scheme can improve signing delegation and allows a delegation chain. The proposed e-prescription system based on our proposed two cryptographic schemes is more practical and efficient than Yang et al.'s system in terms of security, communication overheads, computational costs, practical considerations.

  19. Design of Smart-Meter data acquisition device based on Cloud Platform

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-05-01

    In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.

  20. Smart-Phone Based Magnetic Levitation for Measuring Densities

    PubMed Central

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615

  1. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.

  2. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  3. Exploiting Phase Diversity for CDMA2000 1X Smart Antenna Base Stations

    NASA Astrophysics Data System (ADS)

    Kim, Seongdo; Hyeon, Seungheon; Choi, Seungwon

    2004-12-01

    A performance analysis of an access channel decoder is presented which exploits a diversity gain due to the independent magnitude of received signals energy at each of the antenna elements of a smart-antenna base-station transceiver subsystem (BTS) operating in CDMA2000 1X signal environment. The objective is to enhance the data retrieval at cellsite during the access period, for which the optimal weight vector of the smart antenna BTS is not available. It is shown in this paper that the access channel decoder proposed in this paper outperforms the conventional one, which is based on a single antenna channel in terms of detection probability of access probe, access channel failure probability, and Walsh-code demodulation performance.

  4. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.

    PubMed

    Lynggaard, Per; Skouby, Knud Erik

    2016-11-02

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  5. Designing of smart home automation system based on Raspberry Pi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar

    Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pinsmore » of Raspberry Pi by pressing the corresponding key for turning “on” and “off” of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.« less

  6. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    PubMed Central

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346

  7. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    PubMed

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  8. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids.

    PubMed

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-09

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  9. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    PubMed Central

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-01

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced. PMID:29315250

  10. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    PubMed

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  11. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    PubMed Central

    Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544

  12. Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies.

    PubMed

    Podgórski, Daniel; Majchrzycka, Katarzyna; Dąbrowska, Anna; Gralewicz, Grzegorz; Okrasa, Małgorzata

    2017-03-01

    Recent developments in domains of ambient intelligence (AmI), Internet of Things, cyber-physical systems (CPS), ubiquitous/pervasive computing, etc., have led to numerous attempts to apply ICT solutions in the occupational safety and health (OSH) area. A literature review reveals a wide range of examples of smart materials, smart personal protective equipment and other AmI applications that have been developed to improve workers' safety and health. Because the use of these solutions modifies work methods, increases complexity of production processes and introduces high dynamism into thus created smart working environments (SWE), a new conceptual framework for dynamic OSH management in SWE is called for. A proposed framework is based on a new paradigm of OSH risk management consisting of real-time risk assessment and the capacity to monitor the risk level of each worker individually. A rationale for context-based reasoning in SWE and a respective model of the SWE-dedicated CPS are also proposed.

  13. 78 FR 7774 - SmartEnergy Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-779-000] SmartEnergy Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of SmartEnergy...

  14. Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hansell, Richard A.

    2011-01-01

    Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of

  15. A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation

    PubMed Central

    Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji

    2014-01-01

    This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide ‘best’ car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm. PMID:25429416

  16. A cloud-based car parking middleware for IoT-based smart cities: design and implementation.

    PubMed

    Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji

    2014-11-25

    This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide 'best' car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm.

  17. [Smart therapeutics based on synthetic gene circuits].

    PubMed

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  18. Smart and Green Energy (SAGE) for Base Camps Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.

    2014-02-11

    The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.

  19. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    EPA Science Inventory

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  1. Secure positioning technique based on encrypted visible light map for smart indoor service

    NASA Astrophysics Data System (ADS)

    Lee, Yong Up; Jung, Gillyoung

    2018-03-01

    Indoor visible light (VL) positioning systems for smart indoor services are negatively affected by both cochannel interference from adjacent light sources and VL reception position irregularity in the three-dimensional (3-D) VL channel. A secure positioning methodology based on a two-dimensional (2-D) encrypted VL map is proposed, implemented in prototypes of the specific positioning system, and analyzed based on performance tests. The proposed positioning technique enhances the positioning performance by more than 21.7% compared to the conventional method in real VL positioning tests. Further, the pseudonoise code is found to be the optimal encryption key for secure VL positioning for this smart indoor service.

  2. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    PubMed Central

    Shao, Minggang

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258

  3. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.

    PubMed

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  4. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    NASA Astrophysics Data System (ADS)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  5. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  6. Development and evaluation of a novel smart device-based application for burn assessment and management.

    PubMed

    Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K

    2015-06-01

    We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, p<0.001, n=7). The smart device application also provided 5 megapixel photography capabilities, and acute burn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    PubMed Central

    Lynggaard, Per; Skouby, Knud Erik

    2016-01-01

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851

  8. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  9. Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes

    PubMed Central

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-01-01

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095

  10. Clustering-based ensemble learning for activity recognition in smart homes.

    PubMed

    Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli

    2014-07-10

    Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

  11. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  12. Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.

    PubMed

    Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L

    2018-05-28

    Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.

  13. Smart Materials Based on DNA Aptamers: Taking Aptasensing to the Next Level

    PubMed Central

    Mastronardi, Emily; Foster, Amanda; Zhang, Xueru; DeRosa, Maria C.

    2014-01-01

    “Smart” materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications. PMID:24553083

  14. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates

    PubMed Central

    Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-01-01

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927

  15. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    PubMed

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  16. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    NASA Astrophysics Data System (ADS)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  17. The Security Email Based on Smart Card

    NASA Astrophysics Data System (ADS)

    Lina, Zhang; Jiang, Meng Hai.

    Email has become one of the most important communication tools in modern internet society, and its security is an important issue that can't be ignored. The security requirements of Email can be summarized as confidentiality, integrity, authentication and non-repudiation. Recently many researches on IBE (identify based encrypt) have been carried out to solve these security problems. However, because of IBE's fatal flaws and great advantages of PKI (Public Key Infrastructure), PKI is found to be still irreplaceable especially in the applications based on smart card. In this paper, a construction of security Email is presented, then the design of relatively cryptography algorithms and the configuration of certificates are elaborated, and finally the security for the proposed system is discussed.

  18. An automated and integrated framework for dust storm detection based on ogc web processing services

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data

  19. Design of a device to remove lunar dust from space suits for the proposed lunar base

    NASA Technical Reports Server (NTRS)

    Harrington, David; Havens, Jack; Hester, Daniel

    1990-01-01

    The National Aeronautics and Space Administration plans to begin construction of a lunar base soon after the turn of the century. During the Apollo missions, lunar dust proved to be a problem because the dust adhered to all exposed material surfaces. Since lunar dust will be a problem during the establishment and operation of this base, the need exists for a device to remove the dust from space suits before the astronauts enter clean environments. The physical properties of lunar dust were characterized and energy methods for removing the dust were identified. Eight alternate designs were developed to remove the dust. The final design uses a brush and gas jet to remove the dust. The brush bristles are made from Kevlar fibers and the gas jet uses pressurized carbon dioxide from a portable tank. A throttling valve allows variable gas flow. Also, the tank is insulated with Kapton and electrically heated to prevent condensation of the carbon dioxide when the tank is exposed to the cold (- 240 F) lunar night.

  20. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    NASA Astrophysics Data System (ADS)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  1. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  2. Hadoop Oriented Smart Cities Architecture.

    PubMed

    Diaconita, Vlad; Bologa, Ana-Ramona; Bologa, Razvan

    2018-04-12

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.

  3. Hadoop Oriented Smart Cities Architecture

    PubMed Central

    Bologa, Ana-Ramona; Bologa, Razvan

    2018-01-01

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities. PMID:29649172

  4. tranSMART-XNAT Connector tranSMART-XNAT connector-image selection based on clinical phenotypes and genetic profiles.

    PubMed

    He, Sijin; Yong, May; Matthews, Paul M; Guo, Yike

    2017-03-01

    TranSMART has a wide range of functionalities for translational research and a large user community, but it does not support imaging data. In this context, imaging data typically includes 2D or 3D sets of magnitude data and metadata information. Imaging data may summarise complex feature descriptions in a less biased fashion than user defined plain texts and numeric numbers. Imaging data also is contextualised by other data sets and may be analysed jointly with other data that can explain features or their variation. Here we describe the tranSMART-XNAT Connector we have developed. This connector consists of components for data capture, organisation and analysis. Data capture is responsible for imaging capture either from PACS system or directly from an MRI scanner, or from raw data files. Data are organised in a similar fashion as tranSMART and are stored in a format that allows direct analysis within tranSMART. The connector enables selection and download of DICOM images and associated resources using subjects' clinical phenotypic and genotypic criteria. tranSMART-XNAT connector is written in Java/Groovy/Grails. It is maintained and available for download at https://github.com/sh107/transmart-xnat-connector.git. sijin@ebi.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. IoT-based smart garbage system for efficient food waste management.

    PubMed

    Hong, Insung; Park, Sunghoi; Lee, Beomseok; Lee, Jaekeun; Jeong, Daebeom; Park, Sehyun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  6. IoT-Based Smart Garbage System for Efficient Food Waste Management

    PubMed Central

    Lee, Jaekeun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%. PMID:25258730

  7. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing

    2011-07-01

    Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.

  8. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  9. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; hide

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  10. OnCampus: a mobile platform towards a smart campus.

    PubMed

    Dong, Xin; Kong, Xiangjie; Zhang, Fulin; Chen, Zhen; Kang, Jialiang

    2016-01-01

    An increasing number of researchers and practitioners are working to develop smart cities. Considerable attention has been paid to the college campus as it is an important component of smart cities. Consequently, the question of how to construct a smart campus has become a topical one. Here, we propose a scheme that can facilitate the construction of a smart and friendly campus. We primarily focus on three aspects of smart campuses. These are: the formation of social circles based on interests mining, the provision of educational guidance based on emotion analysis of information posted on a platform, and development of a secondary trading platform aimed at optimizing the allocation of campus resources. Based on these objectives, we designed and implemented a mobile platform called OnCampus as the first step towards the development of a smart campus that has been introduced in some colleges. We found that OnCampus could successfully accomplish the three above mentioned functions of a smart campus.

  11. Incentive-compatible demand-side management for smart grids based on review strategies

    NASA Astrophysics Data System (ADS)

    Xu, Jie; van der Schaar, Mihaela

    2015-12-01

    Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system's as well as the users' performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

  12. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    PubMed Central

    Lin, Chung-Chih; Yu, Yan-Shuo

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512

  13. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.

    PubMed

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.

  14. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices

    PubMed Central

    2018-01-01

    The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario. PMID:29748468

  15. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices.

    PubMed

    Muñoz, Sergio; Araque, Oscar; Sánchez-Rada, J Fernando; Iglesias, Carlos A

    2018-05-10

    The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario.

  16. Smart Cities and the Idea of Smartness in Urban Development - A Critical Review

    NASA Astrophysics Data System (ADS)

    Husár, Milan; Ondrejička, Vladimír; Ceren Varış, Sıla

    2017-10-01

    The concept of smart cities is becoming another mantra for both developing and developed cities. For instance, Indian government in 2015 announced its objective to build one hundred smart cities all over the country. They clearly stated that they are choosing smart development as the underlying concept for their future growth as a way to foster economic development in smart way to avoid the paths of rapid industrialization and pollution of cities as it took place in Europe and United States. The first of these smart cities, Dholera, is already under construction and it attracts journalists and urban planners from all over the world. The aim of this paper is to critically discuss the theoretical backgrounds and the practices of smart cities and examine the ways the concept is implemented. The paper is based on thorough study of literature and examining the two case studies of Dholera (India) and Songdo (South Korea). Smart city is a contested concept without a unified definition. It stems from the idea of digital and information city promoted using information and communication technologies (ICT) to develop cities. By installation of ICT municipalities obtain large sets of data which are then transformed into effective urban policies. One of the pilot projects of this kind was Rio de Janeiro and building the Center of Operations by IBM Company. City made a great investment into the smart information system before two huge events took place - FIFA World Cup in 2014 and Olympic Games in 2016. The project raised many questions including whether and how it improved the life of its citizens and in what way it made the city smart. The other definition of smart city is the idea of smartness in city development in broader sense. It focuses on smart use of resources, smart and effective management and smart social inclusion. Within this view, the ICTs are one component of the concept, by no means its bread and butter. Technologies can be used in a variety of ways. Problem

  17. Crack identification for reinforced concrete using PZT based smart rebar active sensing diagnostic network

    NASA Astrophysics Data System (ADS)

    Song, N. N.; Wu, F.

    2016-04-01

    An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.

  18. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  19. Dust transport model validation using satellite- and ground-based methods in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahler, Anna-Britt; Thome, Kurt; Yin, Dazhong; Sprigg, William A.

    2006-08-01

    Dust is known to aggravate respiratory diseases. This is an issue in the desert southwestern United States, where windblown dust events are common. The Public Health Applications in Remote Sensing (PHAiRS) project aims to address this problem by using remote-sensing products to assist in public health decision support. As part of PHAiRS, a model for simulating desert dust cycles, the Dust Regional Atmospheric Modeling (DREAM) system is employed to forecast dust events in the southwestern US. Thus far, DREAM has been validated in the southwestern US only in the lower part of the atmosphere by comparison with measurement and analysis products from surface synoptic, surface Meteorological Aerodrome Report (METAR), and upper-air radiosonde. This study examines the validity of the DREAM algorithm dust load prediction in the desert southwestern United States by comparison with satellite-based MODIS level 2 and MODIS Deep Blue aerosol products, and ground-based observations from the AERONET network of sunphotometers. Results indicate that there are difficulties obtaining MODIS L2 aerosol optical thickness (AOT) data in the desert southwest due to low AOT algorithm performance over areas with high surface reflectances. MODIS Deep Blue aerosol products show improvement, but the temporal and vertical resolution of MODIS data limit its utility for DREAM evaluation. AERONET AOT data show low correlation to DREAM dust load predictions. The potential contribution of space- or ground-based lidar to the PHAiRS project is also examined.

  20. Hearing results using the SMart piston prosthesis.

    PubMed

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  1. Multicoil resonance-based parallel array for smart wireless power delivery.

    PubMed

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  2. MEMS- and NEMS-based smart devices and systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2001-11-01

    structures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross- linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.

  3. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    NASA Astrophysics Data System (ADS)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  4. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  5. Smart watch-based coaching with tiotropium and olodaterol ameliorates physical activity in patients with chronic obstructive pulmonary disease

    PubMed Central

    Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C.; Taguchi, Osamu

    2017-01-01

    Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease. PMID:29104624

  6. Smart watch-based coaching with tiotropium and olodaterol ameliorates physical activity in patients with chronic obstructive pulmonary disease.

    PubMed

    Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C; Taguchi, Osamu

    2017-11-01

    Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease.

  7. Security analysis and enhancements of an effective biometric-based remote user authentication scheme using smart cards.

    PubMed

    An, Younghwa

    2012-01-01

    Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.

  8. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  9. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    PubMed Central

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  10. Deep smarts.

    PubMed

    Leonard, Dorothy; Swap, Walter

    2004-09-01

    When a person sizes up a complex situation and rapidly comes to a decision that proves to be not just good but brilliant, you think, "That was smart." After you watch him do this a few times, you realize you're in the presence of something special. It's not raw brainpower, though that helps. It's not emotional intelligence, either, though that, too, is often involved. It's deep smarts. Deep smarts are not philosophical--they're not"wisdom" in that sense, but they're as close to wisdom as business gets. You see them in the manager who understands when and how to move into a new international market, in the executive who knows just what kind of talk to give when her organization is in crisis, in the technician who can track a product failure back to an interaction between independently produced elements. These are people whose knowledge would be hard to purchase on the open market. Their insight is based on know-how more than on know-what; it comprises a system view as well as expertise in individual areas. Because deep smarts are experienced based and often context specific, they can't be produced overnight or readily imported into an organization. It takes years for an individual to develop them--and no time at all for an organization to lose them when a valued veteran walks out the door. They can be taught, however, with the right techniques. Drawing on their forthcoming book Deep Smarts, Dorothy Leonard and Walter Swap say the best way to transfer such expertise to novices--and, on a larger scale, to make individual knowledge institutional--isn't through PowerPoint slides, a Web site of best practices, online training, project reports, or lectures. Rather, the sage needs to teach the neophyte individually how to draw wisdom from experience. Companies have to be willing to dedicate time and effort to such extensive training, but the investment more than pays for itself.

  11. Cultural Heritage in Smart City Environments

    NASA Astrophysics Data System (ADS)

    Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E.

    2017-08-01

    This paper investigates how the historical and cultural heritage of cities is and can be underpinned by means of smart city tools, solutions and applications. Smart cities stand for a conceptual technology-and-innovation driven urban development model. By becoming `smart', cities seek to achieve prosperity, effectiveness and competitiveness on multiple socio-economic levels. Although cultural heritage is one of the many issues addressed by existing smart city strategies, and despite the documented bilateral benefits, our research about the positioning of urban cultural heritage within three smart city strategies (Barcelona, Amsterdam, and London) reveals fragmented approaches. Our findings suggest that the objective of cultural heritage promotion is not substantially addressed in the investigated smart city strategies. Nevertheless, we observe that cultural heritage management can be incorporated in several different strategic areas of the smart city, reflecting different lines of thinking and serving an array of goals, depending on the case. We conclude that although potential applications and approaches abound, cultural heritage currently stands for a mostly unexploited asset, presenting multiple integration opportunities within smart city contexts. We prompt for further research into bridging the two disciplines and exploiting a variety of use cases with the purpose of enriching the current knowledge base at the intersection of cultural heritage and smart cities.

  12. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  13. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  14. Smart Meter Rollout: Intelligente Messsysteme als Schnittstelle zum Kunden im Smart Grid und Smart Market

    NASA Astrophysics Data System (ADS)

    Vortanz, Karsten; Zayer, Peter

    Das Gesetz zur Digitalisierung der Energiewende ist verabschiedet. Ab 2017 sind moderne Messeinrichtungen (mME) und intelligente Messsysteme (iMSys) zu verbauen und zu betreiben. Der "deutsche Weg" für die Einführung von Smart Metern sieht einen stufenweisen Rollout sowie ein Höchstmaß an Informations- und Datensicherheit vor. Dabei spielen iMSys und mME eine wichtige Rolle bei der Neugestaltung der intelligenten Netze (Smart Grids) und des neuen Marktmodells (Smart Market). Dieser Beitrag beschäftigt sich mit den neuen Gesetzen, den Marktrollen und ihren Aufgaben, Datenschutz und Datensicherheit, dem iMSys als sichere Lösung, dem sicheren Betrieb von Smart Meter Gateways, Smart Grid - Smart Market, dem Zusammenspiel zwischen reguliertem Bereich und Markt, den Einsatzbereichen der iMSys sowie den Auswirkungen auf Prozesse und Systeme und gibt Handlungsempfehlungen.

  15. Cotton Dust Exposure and Resulting Respiratory Disorders Among Home-Based Garment Workers.

    PubMed

    Silpasuwan, Pimpan; Prayomyong, Somchit; Sujitrat, Dusit; Suwan-Ampai, Plernpit

    2016-03-01

    Cotton dust exposures and resulting respiratory disorders among Thai home-based garment workers in Bangkok were explored. Structured interviews focused on occupational health assessments of respiratory disorders; workflow process observations, lung function screening tests, and garment dust density assessments were used to gather data. Results revealed that garment workers in this study had worked in home-based tailoring an average of 14.88 years; 88.5% reported average health status, only 2.6% currently smoked cigarettes, and 8.6% had impaired lung function. The prevalence of respiratory disorders in this occupational group was 25%. Significant respiratory tract signs and symptoms were associated with lung function capacity (odds ratio [OR] = 52.15, 95% confidence interval [CI] = [6.49, 419.60]). Long work hours and few preventive behaviors were significantly associated with respiratory disorders (OR = 2.89 and OR = 10.183, respectively). Improving working conditions at home and minimizing fabric dust exposure among garment workers are recommended. © 2015 The Author(s).

  16. An RFID-Based Smart Nest Box: An Experimental Study of Laying Performance and Behavior of Individual Hens

    PubMed Central

    Chen, Yu-Xian

    2018-01-01

    This study designed a radio-frequency identification (RFID)-based Internet of Things (IoT) platform to create the core of a smart nest box. At the sensing level, we have deployed RFID-based sensors and egg detection sensors. A low-frequency RFID reader is installed in the bottom of the nest box and a foot ring RFID tag is worn on the leg of individual hens. The RFID-based sensors detect when a hen enters or exits the nest box. The egg-detection sensors are implemented with a resistance strain gauge pressure sensor, which weights the egg in the egg-collection tube. Thus, the smart nest box makes it possible to analyze the laying performance and behavior of individual hens. An evaluative experiment was performed using an enriched cage, a smart nest box, web camera, and monitoring console. The hens were allowed 14 days to become accustomed to the experimental environment before monitoring began. The proposed IoT platform makes it possible to analyze the egg yield of individual hens in real time, thereby enabling the replacement of hens with egg yield below a pre-defined level in order to meet the overall target egg yield rate. The results of this experiment demonstrate the efficacy of the proposed RFID-based smart nest box in monitoring the egg yield and laying behavior of individual hens. PMID:29538334

  17. An RFID-Based Smart Nest Box: An Experimental Study of Laying Performance and Behavior of Individual Hens.

    PubMed

    Chien, Ying-Ren; Chen, Yu-Xian

    2018-03-14

    This study designed a radio-frequency identification (RFID)-based Internet of Things (IoT) platform to create the core of a smart nest box. At the sensing level, we have deployed RFID-based sensors and egg detection sensors. A low-frequency RFID reader is installed in the bottom of the nest box and a foot ring RFID tag is worn on the leg of individual hens. The RFID-based sensors detect when a hen enters or exits the nest box. The egg-detection sensors are implemented with a resistance strain gauge pressure sensor, which weights the egg in the egg-collection tube. Thus, the smart nest box makes it possible to analyze the laying performance and behavior of individual hens. An evaluative experiment was performed using an enriched cage, a smart nest box, web camera, and monitoring console. The hens were allowed 14 days to become accustomed to the experimental environment before monitoring began. The proposed IoT platform makes it possible to analyze the egg yield of individual hens in real time, thereby enabling the replacement of hens with egg yield below a pre-defined level in order to meet the overall target egg yield rate. The results of this experiment demonstrate the efficacy of the proposed RFID-based smart nest box in monitoring the egg yield and laying behavior of individual hens.

  18. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  19. Security Analysis and Enhancements of an Effective Biometric-Based Remote User Authentication Scheme Using Smart Cards

    PubMed Central

    An, Younghwa

    2012-01-01

    Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server. PMID:22899887

  20. Evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.

  1. Center-Based Child Care in the Pioneer Smart Start Partnerships of North Carolina. UNC Smart Start Evaluation Report.

    ERIC Educational Resources Information Center

    Maxwell, Kelly; Bryant, Donna; Peisner-Feinberg, Ellen; Buysse, Virginia

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under 6 years and their families to ensure that all children enter school healthy and prepared to succeed. This study acquired a baseline measure of the quality of child care in the 12 pioneer Smart Start…

  2. Influence of Desert Dust Intrusions on Ground-based and Satellite Derived Ultraviolet Irradiance in Southeastern Spain

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas

    2012-01-01

    The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.

  3. Data distribution service-based interoperability framework for smart grid testbed infrastructure

    DOE PAGES

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    2016-03-02

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  4. [SmartCare: automatizing clinical guidelines].

    PubMed

    Mersmann, Stefan

    2009-10-01

    In critical care environments, important medical and economic challenges are presented by the enhancement of therapeutic quality and the reduction of therapeutic costs. For this purpose, several clinical studies have demonstrated a positive impact of the adoption of so-called clinical guidelines. Clinical guidelines represent well documented best practices in healthcare and are fundamental aspects of evidence-based medicine. However, at the bedside, such clinical guidelines remain difficult to use by clinical staff. The knowledge-based technology SmartCare allows incorporation of arbitrary computerized clinical guidelines into various medical target systems. SmartCare constitutes a clinical guideline engine because it executes one or more clinical guidelines on a specific medical device. SmartCare was initially applied for the automated control of a mechanical ventilator to assist the process of weaning from a medical device. The methodology allows further applications to be implemented effectively with other medical devices and/or with other appropriate guidelines. In this paper, we report on the methodology and the resulting versatility of such a system, as well as the clinical evaluation of SmartCare/PS and its perspectives.

  5. Comprehensive approach to smart urban development based on Big Data application

    NASA Astrophysics Data System (ADS)

    Kurcheeva, G. I.; Klochkov, G. A.

    2018-05-01

    Despite a certain technological backwardness of the Russian economy, the authors believe that the transition to the «smart city» is possible if one can solve such problems: providing large-scale investment, training and retraining specialists in the field of ICT, increasing innovation managers and consumers, increasing ICT participation in the work of governments, organizations and people, creating the appropriate conditions for the development of the information society. Accordingly, when developing models, it is planned to consider the relationship between quality of life and the existing system of indicators on trends of «smart cities». Monitoring of indicators of quality of life, mutually related indicators of technological development can help us develop the process model. When selecting directions for the main components of the «smart city», let us introduce the evaluation criteria that significantly affect the quality of the values of life. The development of «smart cities» should consider the international experience of the use of breakthrough innovative technology. Research scientists of various countries show a variety of approaches to identifying the main business processes in models of the «smart city». Having the international experience, it is necessary to improve business processes in the construction of a process model «smart city», adapting the model to the characteristics of the national environment.

  6. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  7. One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.

    PubMed

    Das, Barnan; Cook, Diane J; Krishnan, Narayanan C; Schmitter-Edgecombe, Maureen

    2016-08-01

    Caring for individuals with dementia is frequently associated with extreme physical and emotional stress, which often leads to depression. Smart home technology and advances in machine learning techniques can provide innovative solutions to reduce caregiver burden. One key service that caregivers provide is prompting individuals with memory limitations to initiate and complete daily activities. We hypothesize that sensor technologies combined with machine learning techniques can automate the process of providing reminder-based interventions. The first step towards automated interventions is to detect when an individual faces difficulty with activities. We propose machine learning approaches based on one-class classification that learn normal activity patterns. When we apply these classifiers to activity patterns that were not seen before, the classifiers are able to detect activity errors, which represent potential prompt situations. We validate our approaches on smart home sensor data obtained from older adult participants, some of whom faced difficulties performing routine activities and thus committed errors.

  8. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks.

    PubMed

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-04-25

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.

  9. Identification of dust source regions and dust emission trends across North Africa and the Middle East using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Kalashnikova, O. V.; Garay, M. J.; Notaro, M.

    2017-12-01

    Global arid and semi-arid regions supply 1100 to 5000 Tg of Aeolian dust to the atmosphere each year, primarily from North Africa and secondarily from the Middle East. Previous dust source identification methods, based on either remotely-sensed aerosol optical depth (AOD) or dust activity, yield distinct dust source maps, largely due to the limitations in each method and remote-sensing product. Here we apply a novel motion-based method for dust source identification. Dust plume thickness and motion vectors from Multi-angle Imaging SpectroRadiometer (MISR) Cloud Motion Vector Product (CMVP) are examined to identify the regions with high frequency of fast moving-dust plumes, by season. According to MISR CMVP, Bodele depression is the most important dust source across North Africa, consistent with previous studies. Seasonal variability of dust emission across the North Africa is largely driven by climatology of wind and precipitation, featuring the influence of Sharav Cyclone and western African monsoon. In the Middle East, Iraq, Kuwait, and eastern Saudi Arabia are identified as dust source regions, especially during summer months, when the Middle Eastern Shamal wind is active. Furthermore, dust emission trend at each dust source are diagnosed from the motion-based dust source dataset. Increase in dust emission from the Fertile Crescent, Sahel, and eastern African dust sources are identified from MISR CMVP, implying potential contribution from these dust sources to the upward trend in AOD and dust AOD over the Middle East in the 21st century. By comparing with various dust source identification studies, we conclude that the motion-based identification of dust sources is an encouraging alternative and compliment to the AOD-only source identification method.

  10. Study of Smart Campus Development Using Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Widya Sari, Marti; Wahyu Ciptadi, Prahenusa; Hafid Hardyanto, R.

    2017-04-01

    This paper describes the development of smart campus using Internet of Things (IoT) technology. Through smart campus, it is possible that a campus is connected via online by the outside entity, so that the teaching approach based on technology can be conducted in real time. This research was conducted in smart education, smart parking and smart room. Observation and literature studies were applied as the research method with the related theme for the sake of system design of smart campus. The result of this research is the design of smart campus system that includes smart education development, smart parking and smart room with the sake of Universitas PGRI Yogyakarta as the case study.

  11. ESA SMART-1 mission: review of results and legacy 10 years after launch

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We review ESA's SMART-1 highlights and legacy 10 years after launch. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang'E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to geostationary satellites and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions and exploration. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to

  12. Smart Sensing and Recognition Based on Models of Neural Networks

    DTIC Science & Technology

    1990-11-15

    9P-o ,yY𔄃-’. AD-A230 701 University of Pensylvania Philadelphia, PA 19104-6390 SMART SENSING AND RECOGNITION BASED ON MODELS OF NEURAL NETWORKS ... networks , photonic 1 implementations, nonlinear dynamical signal processing 9 ABSTRACT (Continue on reverse if necessary and identify by block number...not develop in isolation but in synergism with sensory organs and their feature forming networks . This means that development of artificial pattern

  13. The Use of Smart phones in Ophthalmology.

    PubMed

    Zvornicanin, Edita; Zvornicanin, Jasmin; Hadziefendic, Bahrudin

    2014-06-01

    Smart phones are being increasingly used among health professionals. Ophthalmological applications are widely available and can turn smart phones into sophisticated medical devices. Smart phones can be useful instruments for the practice of evidence-based medicine, professional education, mobile clinical communication, patient education, disease self-management, remote patient monitoring or as powerful administrative tools. Several applications are available for different ophthalmological examinations that can assess visual acuity, color vision, astigmatism, pupil size, Amsler grid test and more. Smart phones can be useful ophthalmic devices for taking images of anterior and posterior eye segment. Professional literature and educational material for patients are easily available with use of smart phones. Smart phones can store great amount of informations and are useful for long term monitoring with caution for patient confidentiality. The use of smart phones especially as diagnostic tools is not standardized and results should be carefully considered. Innovative role of smartphone technology and its use in research, education and information sharing makes smart phones a future of ophthalmology and medicine.

  14. SMARTE: SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (BELFAST, IRELAND)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  15. "Smart Forms" in an Electronic Medical Record: documentation-based clinical decision support to improve disease management.

    PubMed

    Schnipper, Jeffrey L; Linder, Jeffrey A; Palchuk, Matvey B; Einbinder, Jonathan S; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing "Smart Forms" to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions.

  16. SMARTE 2007 TUTORIAL - JANUARY 2007 REVISION

    EPA Science Inventory

    SMARTe 2007 is a web-based decision support tool intended to help revitalization practitioners find information, perform data analysis, communicate, and evaluate future reuse options for a site or area. This tutorial CD was developed to help users navigate SMARTe 2007. It is appr...

  17. Analyzing Resiliency of the Smart Grid Communication Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford

    Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less

  18. Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid

    DTIC Science & Technology

    2017-06-01

    Metering Infrastructure on DOD installations. An examination of five case studies highlights the costs and benefits of the Virtual Smart Grid (VSG...studies highlights the costs and benefits of the Virtual Smart Grid (VSG) developed by Space and Naval Warfare Systems Command for use at Marine Corps...41 A. SMART GRID BENEFITS .....................................................................41 B. SUMMARY OF VSG ESTIMATED COSTS AND BENEFITS

  19. Re-evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.

  20. SmartAQnet: remote and in-situ sensing of urban air quality

    NASA Astrophysics Data System (ADS)

    Budde, Matthias; Riedel, Till; Beigl, Michael; Schäfer, Klaus; Emeis, Stefan; Cyrys, Josef; Schnelle-Kreis, Jürgen; Philipp, Andreas; Ziegler, Volker; Grimm, Hans; Gratza, Thomas

    2017-10-01

    Air quality and the associated subjective and health-related quality of life are among the important topics of urban life in our time. However, it is very difficult for many cities to take measures to accommodate today's needs concerning e.g. mobility, housing and work, because a consistent fine-granular data and information on causal chains is largely missing. This has the potential to change, as today, both large-scale basic data as well as new promising measuring approaches are becoming available. The project "SmartAQnet", funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI), is based on a pragmatic, data driven approach, which for the first time combines existing data sets with a networked mobile measurement strategy in the urban space. By connecting open data, such as weather data or development plans, remote sensing of influencing factors, and new mobile measurement approaches, such as participatory sensing with low-cost sensor technology, "scientific scouts" (autonomous, mobile smart dust measurement device that is auto-calibrated to a high-quality reference instrument within an intelligent monitoring network) and demand-oriented measurements by light-weight UAVs, a novel measuring and analysis concept is created within the model region of Augsburg, Germany. In addition to novel analytics, a prototypical technology stack is planned which, through modern analytics methods and Big Data and IoT technologies, enables application in a scalable way.

  1. Medium- and long-term electric power demand forecasting based on the big data of smart city

    NASA Astrophysics Data System (ADS)

    Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie

    2017-08-01

    Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.

  2. A web based tool for storing and visualising data generated within a smart home.

    PubMed

    McDonald, H A; Nugent, C D; Moore, G; Finlay, D D; Hallberg, J

    2011-01-01

    There is a growing need to re-assess the current approaches available to researchers for storing and managing heterogeneous data generated within a smart home environment. In our current work we have developed the homeML Application; a web based tool to support researchers engaged in the area of smart home research as they perform experiments. Within this paper the homeML Application is presented which includes the fundamental components of the homeML Repository and the homeML Toolkit. Results from a usability study conducted by 10 computer science researchers are presented; the initial results of which have been positive.

  3. Exploring the critical quality attributes and models of smart homes.

    PubMed

    Ted Luor, Tainyi; Lu, Hsi-Peng; Yu, Hueiju; Lu, Yinshiu

    2015-12-01

    Research on smart homes has significantly increased in recent years owing to their considerably improved affordability and simplicity. However, the challenge is that people have different needs (or attitudes toward smart homes), and provision should be tailored to individuals. A few studies have classified the functions of smart homes. Therefore, the Kano model is first adopted as a theoretical base to explore whether the functional classifications of smart homes are attractive or necessary, or both. Second, three models and test user attitudes toward three function types of smart homes are proposed. Based on the Kano model, the principal results, namely, two "Attractive Quality" and nine "Indifferent Quality" items, are found. Verification of the hypotheses also indicates that the entertainment, security, and automation functions are significantly correlated with the variables "perceive useful" and "attitude." Cost consideration is negatively correlated with attitudes toward entertainment and automation. Results suggest that smart home providers should survey user needs for their product instead of merely producing smart homes based on the design of the builder or engineer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Data fusion algorithm for rapid multi-mode dust concentration measurement system based on MEMS

    NASA Astrophysics Data System (ADS)

    Liao, Maohao; Lou, Wenzhong; Wang, Jinkui; Zhang, Yan

    2018-03-01

    As single measurement method cannot fully meet the technical requirements of dust concentration measurement, the multi-mode detection method is put forward, as well as the new requirements for data processing. This paper presents a new dust concentration measurement system which contains MEMS ultrasonic sensor and MEMS capacitance sensor, and presents a new data fusion algorithm for this multi-mode dust concentration measurement system. After analyzing the relation between the data of the composite measurement method, the data fusion algorithm based on Kalman filtering is established, which effectively improve the measurement accuracy, and ultimately forms a rapid data fusion model of dust concentration measurement. Test results show that the data fusion algorithm is able to realize the rapid and exact concentration detection.

  5. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Janie; McParland, Chuck; Piette, Mary Ann

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less

  6. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    PubMed

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Sparse estimation of model-based diffuse thermal dust emission

    NASA Astrophysics Data System (ADS)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  8. Analysis of cancer-related fatigue based on smart bracelet devices.

    PubMed

    Shen, Hong; Hou, Honglun; Tian, Wei; Wu, MingHui; Chen, Tianzhou; Zhong, Xian

    2016-01-01

    Fatigue is the most common symptom associated with cancer and its treatment, and profoundly affects all aspects of quality of life for cancer patients. It is very important to measure and manage cancer-related fatigue. Usually, the cancer-related fatigue scores, which estimate the degree of fatigue, are self-reported by cancer patients using standardized assessment tools. But most of the classical methods used for measurement of fatigue are subjective and inconvenient. In this study, we try to establish a new method to assess cancer-related fatigue objectively and accurately by using smart bracelet. All patients with metastatic pancreatic cancer wore smart bracelet for recording the physical activity including step count and sleep time before and after chemotherapy. Meantime, their psychological state was assessed by completing questionnaire tables as cancer-related fatigue scores. Step count record by smart bracelet reflecting the physical performance dramatically decreased in the initial days of chemotherapy and recovered in the next few days. Statistical analysis showed a strong and significant correlation between self-reported cancer-related fatigue and physical performance (P= 0.000, r=-0.929). Sleep time was also significantly correlated with fatigue (P= 0.000, r= 0.723). Multiple regression analysis showed that physical performance and sleep time are significant predictors of fatigue. Measuring activity using smart bracelets may be an appropriate method for quantitative and objective measurement of cancer-related fatigue by using smart bracelet devices.

  9. ESA SMART-1 mission: results and lessons for future lunar exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of

  10. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  11. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  12. A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes

    NASA Astrophysics Data System (ADS)

    Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan

    This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.

  13. Design of the smart scenic spot service platform

    NASA Astrophysics Data System (ADS)

    Yin, Min; Wang, Shi-tai

    2015-12-01

    With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.

  14. Multiple sensor smart robot hand with force control

    NASA Technical Reports Server (NTRS)

    Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal

    1987-01-01

    A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.

  15. SMARTe: A FREE Web-Based Tool To Help Communities Overcome Revitalization Obstacles

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools -electronic) is a web-based decision support tool developed by the Office of Research and Development (ORD) in partnership with the Office of Brownfields and Land Revitali...

  16. The synthesis and application of heparin-based smart drug carrier.

    PubMed

    Li, Qingxuan; Gan, Lu; Tao, Hong; Wang, Qian; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-04-20

    Heparin based polymer drug which could self-assemble into sphere micelle in water was firstly prepared by grafting paclitaxel (PTX) into the hydroxyl of heparin via aconitic bond as pH sensitive spacer. Positive charged drug DOX·HCl and cationic folic acid (CFA) can be further loaded into the polymer drug via electrostatic interaction in aqueous solution so as to prepare smart drug carrier. The drug carrier was able to release more PTX and DOX at pH 4.8 than that at pH 7.4, exhibiting pH sensitivity for two drugs. Furthermore, tumor cell cytotoxicity test proved it possessed significant cytotoxicity against tumor cells MDA-MB-231 as well as its active tumor targeting ability resulting from the loading of CFA. Cellular uptake and intracellular distribution were further revealed by confocal laser scanning microscopy (CLSM). In conclusion, this paper not only provided a simple strategy but also indicated heparin is a versatile platform for the design of smart drug carrier. The as-prepared drug carrier also showed promising potential in chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  18. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-02-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h-1 to 70 km h-1, the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement.

  19. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  20. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks

    PubMed Central

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-01-01

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331

  1. Attack Classification Schema for Smart City WSNs

    PubMed Central

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2017-01-01

    Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many different types of attacks. Therefore, this raises concerns about the reliability of this technology in a smart city context. Traditionally, security measures in WSNs have been proposed to protect specific protocols in an environment with total control of a single network. This approach is not valid for smart cities, as multiple external providers deploy a plethora of WSNs with different security requirements. Hence, a new security perspective needs to be adopted to protect WSNs in smart cities. Considering security issues related to the deployment of WSNs as a main data source in smart cities, in this article, we propose an intrusion detection framework and an attack classification schema to assist smart city administrators to delimit the most plausible attacks and to point out the components and providers affected by incidents. We demonstrate the use of the classification schema providing a proof of concept based on a simulated selective forwarding attack affecting a parking and a sound WSN. PMID:28379192

  2. Attack Classification Schema for Smart City WSNs.

    PubMed

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2017-04-05

    Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many different types of attacks. Therefore, this raises concerns about the reliability of this technology in a smart city context. Traditionally, security measures in WSNs have been proposed to protect specific protocols in an environment with total control of a single network. This approach is not valid for smart cities, as multiple external providers deploy a plethora of WSNs with different security requirements. Hence, a new security perspective needs to be adopted to protect WSNs in smart cities. Considering security issues related to the deployment of WSNs as a main data source in smart cities, in this article, we propose an intrusion detection framework and an attack classification schema to assist smart city administrators to delimit the most plausible attacks and to point out the components and providers affected by incidents. We demonstrate the use of the classification schema providing a proof of concept based on a simulated selective forwarding attack affecting a parking and a sound WSN.

  3. An Approach for Smart Antenna Testbed

    NASA Astrophysics Data System (ADS)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  4. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  5. SMART-1 technology, scientific results and heritage for future space missions

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive

  6. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    PubMed Central

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  7. Electricity Markets, Smart Grids and Smart Buildings

    NASA Astrophysics Data System (ADS)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  8. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hui; Cummings, Marvin; Camino, Fernando

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) basedsmart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  9. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE PAGES

    Yan, Hui; Cummings, Marvin; Camino, Fernando; ...

    2015-08-05

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) basedsmart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  10. Smart Forms” in an Electronic Medical Record: Documentation-based Clinical Decision Support to Improve Disease Management

    PubMed Central

    Schnipper, Jeffrey L.; Linder, Jeffrey A.; Palchuk, Matvey B.; Einbinder, Jonathan S.; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing “Smart Forms” to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions. PMID:18436911

  11. Opto electronic tweezers based smart sweeper for cells/micro-particles sorting

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Kumar, N.

    2018-04-01

    We report on use of opto-electronic tweezers based sorting approach, termed as smart sweepers, for sorting the microscopic particles by using the Dielectrophoretic (DEP) force response of cells on applied a.c. bias frequency. The applied a.c. bias was kept in negative DEP region, close to the crossover frequency of one of the particles. A line shaped intensity pattern, generated by a cylindrical lens, was scanned across the mixture sample. The particles whose cross over frequency was close to the applied bias frequency, experienced negligible negative DEP(n-DEP) force. On the other hand, the other type of particle experienced large repelling force and were forced to move along the scanning direction of the line shaped intensity profile. We, as a proof of concept, demonstrated the working principle of opto electronic smart sweepers by sweeping out the polystyrene particles from a mixture consisting of polystyrene microspheres (PSM) and red blood cells (RBCs) and leaving RBCs in the region of interest.

  12. Design of a mobile brain computer interface-based smart multimedia controller.

    PubMed

    Tseng, Kevin C; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-03-06

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user's physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user's physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user's EEG feature and select music according his/her state. The relationship between the user's state and music sorted by listener's preference was also examined in this study. The experimental results show that real-time music biofeedback according a user's EEG feature may positively improve the user's attention state.

  13. Simple, heart-smart substitutions

    MedlinePlus

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  14. Dust-wall and dust-plasma interaction in the MIGRAINe code

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Tolias, P.; Ratynskaia, S.

    2014-09-01

    The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

  15. Gaussian-based filters for detecting Martian dust devils

    USGS Publications Warehouse

    Yang, F.; Mlsna, P.A.; Geissler, P.

    2006-01-01

    The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.

  16. Depression as a moderator of benefit from Media Smart: a school-based eating disorder prevention program.

    PubMed

    Wilksch, Simon M; Wade, Tracey D

    2014-01-01

    To investigate if baseline depression moderated response to Media Smart, an 8-lesson school-based program previously found to achieve a long-term risk reduction effect in young adolescents. 540 Grade 8 students (M age = 13.62 years, SD = .37) from 4 schools participated with 11 classes receiving the Media Smart program (126 girls; 107 boys) and 13 comparison classes receiving their normal lessons (147 girls; 160 boys). Shape and weight concern, media internalization, body dissatisfaction, dieting, ineffectiveness, and perceived pressure were the outcome variables. Moderation was indicated by significant interaction effects for group (Media Smart; Control) × moderator (high depression; low depression) × time (post-program; 6-month follow-up; 2.5-year follow-up), with baseline entered as a covariate. Such effects were found for shape and weight concern, media internalization, body dissatisfaction, ineffectiveness and perceived pressure. Post-hoc testing found high depression Media Smart participants scored significantly lower than their control counterparts at post-program on shape and weight concern, media internalization and dieting, whereas low depression Media Smart participants scored significantly lower on shape and weight concern at 2.5-year follow-up. Media Smart achieved a reduction in eating disorder risk factors for high-depression participants and a reduced rate of growth in risk factor scores for low-depression participants. Trial registry name: Australian New Zealand Clinical Trials Registry. URL: http://www.anzctr.org.au. Registration identification number: ACTRN12608000545369. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. SMART-1 Results and Lessons for Future Exploration

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    2009-04-01

    We summarise SMART-1 lunar highlights relevant for future lunar exploration. SMART-1 has been useful in the preparation of Selene Kaguya, the Indian lunar mission Chandrayaan-1, Chinese Chang'E 1 , the US Lunar Reconnaissance Orbiter, LCROSS, and subsequent lunar landers (Google Lunar X-prize, International Lunar Network, Moon-NEXT, cargo and manned landers). SMART-1 is contributing to prepare the next steps for exploration: survey of resources, search for ice, monitoring polar illumination, and mapping of sites for potential landings, international robotic villages and for future human activities and lunar bases. Overview of SMART-1 mission and payload: SMART-1 is the first in the programme of ESA's Small Missions for Advanced Research and Technology [1,2,3]. Its first objective has been achieved to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The SMART-1 spacecraft has been launched on 27 Sept. 2003, as an Ariane-5 auxiliary passenger and injected in GTO Geostationary Transfer Orbit. The SMART-1 spacecraft reached on 15 March 2005 a lunar orbit 400-3000 km for a nominal science period of six months, with 1 year extension until impact on 3 September 2006. SMART-1 science payload, with a total mass of some 19 kg, featured many innovative instruments and advanced technologies [1], with a miniaturised high-resolution camera (AMIE) for lunar surface imaging, a near-infrared point-spectrometer (SIR) for lunar mineralogy investigation, and a very compact X-ray spectrometer (D-CIXS) [4-6] for fluorescence spectroscopy and imagery of the Moon's sur-face elemental composition. The payload also included two plasma experiments: SPEDE (Spacecraft Potential, Electron and Dust Experiment) and EPDP (Electric propulsion diagnostic Package), an experiment (KaTE) that demonstrated deep-space telemetry and telecommand communications in the X and Ka-bands, a radio

  18. Park Smart

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.

  19. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    PubMed Central

    Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-01

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777

  20. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    PubMed

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  1. A simplified Suomi NPP VIIRS dust detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  2. A New Dusts Sensor for Cultural Heritage Applications Based on Image Processing

    PubMed Central

    Proietti, Andrea; Leccese, Fabio; Caciotta, Maurizio; Morresi, Fabio; Santamaria, Ulderico; Malomo, Carmela

    2014-01-01

    In this paper, we propose a new sensor for the detection and analysis of dusts (seen as powders and fibers) in indoor environments, especially designed for applications in the field of Cultural Heritage or in other contexts where the presence of dust requires special care (surgery, clean rooms, etc.). The presented system relies on image processing techniques (enhancement, noise reduction, segmentation, metrics analysis) and it allows obtaining both qualitative and quantitative information on the accumulation of dust. This information aims to identify the geometric and topological features of the elements of the deposit. The curators can use this information in order to design suitable prevention and maintenance actions for objects and environments. The sensor consists of simple and relatively cheap tools, based on a high-resolution image acquisition system, a preprocessing software to improve the captured image and an analysis algorithm for the feature extraction and the classification of the elements of the dust deposit. We carried out some tests in order to validate the system operation. These tests were performed within the Sistine Chapel in the Vatican Museums, showing the good performance of the proposed sensor in terms of execution time and classification accuracy. PMID:24901977

  3. Characterization of the Temporal-Spatial Variability of Trans-Atlantic Dust Transport Based on CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2015-01-01

    The trans-Atlantic dust transport has important implications for human and ecosystem health, the terrestrial and oceanic biogeochemical cycle, weather systems, and climate. A reliable assessment of these influences requires the characterization of dust distributions in three dimensions and over long time periods. We provide an observation-based multiyear estimate of trans-Atlantic dust transport by using a 7-year (2007 - 2013) lidar record from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in both cloud-free and above-cloud conditions. We estimate that on a basis of the 7-year average and integration over 10S - 30N, 182 Tg a-1 dust leaves the coast of North Africa at 15W, of which 132 Tg a-1 and 43 Tg a-1 reaches 35W and 75W, respectively. These flux estimates have an overall known uncertainty of (45 - 70). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8 - 48) Tg a-1 or 29 (8 - 50) kg ha-1 a-1. This imported dust could provide about 0.022 (0.006 - 0.037) Tg P of phosphorus per year, equivalent to 23 (7 - 39) g P ha-1 a-1 to fertilize the Amazon rainforest, which is comparable to the loss of phosphorus to rainfall. Significant seasonal variations are observed in both the magnitude of total dust transport and its meridional and vertical distributions. The observed large interannual variability of annual dust transport is highly anti-correlated with the prior-year Sahel Precipitation Index. Comparisons of CALIPSO measurements with surface-based observations and model simulations will also be discussed.

  4. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  5. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  6. Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study.

    PubMed

    Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh

    2018-05-01

    This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.

  7. Impact-Mobilized Dust in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2002-01-01

    We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.

  8. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  9. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

    NASA Astrophysics Data System (ADS)

    Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert

    2017-05-01

    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during

  10. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    PubMed Central

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  11. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer-A Feasibility Study.

    PubMed

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-27

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a "smart washer" with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the "smart washer", increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments.

  12. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study

    PubMed Central

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-01

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811

  13. Research and design of smart grid monitoring control via terminal based on iOS system

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  14. A Community-Based Approach to Leading the Nation in Smart Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-12-31

    Project Objectives The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives: • Built a secure, interoperable, and integrated smart grid infrastructure in northeast central Ohio that demonstrated the ability to maximize distribution system efficiency and reliability and consumer use of demand response programs that reduced energy consumption, peak demand, and fossil fuel emissions. • Actively attracted, educated, enlisted, and retained consumers in innovative business models that provided tools and information reducing consumption and peak demand. • Provided the U.S. Department of Energy (DOE) information to evaluate technologies and preferred smart grid business models to be extended nationally. Projectmore » Description Ohio Power Company (the surviving company of a merger with Columbus Southern Power Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area selected for its concentration and diversity of distribution infrastructure and consumers. It was organized and aligned around: • Technology, implementation, and operations • Consumer and stakeholder acceptance • Data management and benefit assessment Combined, these functional areas served as the foundation of the Project to integrate commercially available products, innovative technologies, and new consumer products and services within a secure two-way communication network between the utility and consumers. The Project included Advanced Metering Infrastructure (AMI), Distribution Management System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR Optimization (VVO), and Consumer Programs (CP). These technologies were combined with two-way consumer communication and information sharing, demand response, dynamic pricing, and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the

  15. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    PubMed

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  16. Design of the smart home system based on the optimal routing algorithm and ZigBee network

    PubMed Central

    Xie, Xiaoxia

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868

  17. Dust Devils Whip by Spirit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1120 (February 26, 2007), the navigation camera aboard NASA's Mars Exploration Rover Spirit captured one of the best dust devils it's seen in its three-plus year mission. The series of navigation camera images were put together to make a dust devil movie.

    The dust devil column is clearly defined and is clearly bent in the down wind direction. Near the end of the movie, the base of the dust devil becomes much wider. The atmospheric science team thinks that this is because the dust devil encountered some sand and therefore produced a 'saltation skirt,' an apron of material that is thrown out of the dust devil because it is too large to be carried up into suspension.

    Also near the end of the movie the dust devil seems to move faster across the surface. This is because Spirit began taking pictures less frequently, and not because the dust devil sped up.

  18. A Framework to Develop Persuasive Smart Environments

    NASA Astrophysics Data System (ADS)

    Lobo, Pedro; Romão, Teresa; Dias, A. Eduardo; Danado, José Carlos

    This paper presents a framework for the creation of context-sensitive persuasive applications. The framework allows the authoring of new persuasive smart environments producing the appropriate feedback to the users based on different sensors spread throughout the environment to capture contextual information. Using this framework, we created an application, Smart Bins, aimed at promoting users' behavioural changes regarding the recycling of waste materials. Furthermore, to evaluate the usability of our authoring tool, we performed user tests to analyze if developers could successfully create the Smart Bins application using the framework. A description of the Smart Bins application, as well as the results of the user tests, are also presented in this paper.

  19. SmartStuff: A case study of a smart water bottle.

    PubMed

    Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E

    2016-08-01

    The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.

  20. Circumstellar Dust in Symbiotic Novae

    NASA Astrophysics Data System (ADS)

    Jurkic, T.; Kotnik-Karuza, D.

    2015-12-01

    We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.

  1. Research of a smart cutting tool based on MEMS strain gauge

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  2. A Standard-Based and Context-Aware Architecture for Personal Healthcare Smart Gateways.

    PubMed

    Santos, Danilo F S; Gorgônio, Kyller C; Perkusich, Angelo; Almeida, Hyggo O

    2016-10-01

    The rising availability of Personal Health Devices (PHDs) capable of Personal Network Area (PAN) communication and the desire of keeping a high quality of life are the ingredients of the Connected Health vision. In parallel, a growing number of personal and portable devices, like smartphones and tablet computers, are becoming capable of taking the role of health gateway, that is, a data collector for the sensor PHDs. However, as the number of PHDs increase, the number of other peripherals connected in PAN also increases. Therefore, PHDs are now competing for medium access with other devices, decreasing the Quality of Service (QoS) of health applications in the PAN. In this article we present a reference architecture to prioritize PHD connections based on their state and requirements, creating a healthcare Smart Gateway. Healthcare context information is extracted by observing the traffic through the gateway. A standard-based approach was used to identify health traffic based on ISO/IEEE 11073 family of standards. A reference implementation was developed showing the relevance of the problem and how the proposed architecture can assist in the prioritization. The reference Smart Gateway solution was integrated with a Connected Health System for the Internet of Things, validating its use in a real case scenario.

  3. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  4. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  5. Crack width monitoring of concrete structures based on smart film

    NASA Astrophysics Data System (ADS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  6. An Ontology-based Context-aware System for Smart Homes: E-care@home.

    PubMed

    Alirezaie, Marjan; Renoux, Jennifer; Köckemann, Uwe; Kristoffersson, Annica; Karlsson, Lars; Blomqvist, Eva; Tsiftes, Nicolas; Voigt, Thiemo; Loutfi, Amy

    2017-07-06

    Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home.

  7. An Ontology-based Context-aware System for Smart Homes: E-care@home

    PubMed Central

    Alirezaie, Marjan; Köckemann, Uwe; Kristoffersson, Annica; Karlsson, Lars; Blomqvist, Eva; Voigt, Thiemo; Loutfi, Amy

    2017-01-01

    Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home. PMID:28684686

  8. Respirable dust measured downwind during rock dust application.

    PubMed

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  9. Smartness as a Cultural Practice in Schools

    ERIC Educational Resources Information Center

    Hatt, Beth

    2012-01-01

    This study explores smartness as a cultural construct rather than a biological capacity. The cultural construction of smartness has broad consequences related to teacher expectations, student academic identity development, and schooling inequities. This study is based on a 1-year ethnography in a kindergarten classroom, and the author investigates…

  10. Coal-Tar-Based Parking Lot Sealcoat: An Unrecognized Source of PAH to Settled House Dust

    PubMed Central

    2010-01-01

    Despite much speculation, the principal factors controlling concentrations of polycyclic aromatic hydrocarbons (PAH) in settled house dust (SHD) have not yet been identified. In response to recent reports that dust from pavement with coal-tar-based sealcoat contains extremely high concentrations of PAH, we measured PAH in SHD from 23 apartments and in dust from their associated parking lots, one-half of which had coal-tar-based sealcoat (CT). The median concentration of total PAH (T-PAH) in dust from CT parking lots (4760 μg/g, n = 11) was 530 times higher than that from parking lots with other pavement surface types (asphalt-based sealcoat, unsealed asphalt, concrete [median 9.0 μg/g, n = 12]). T-PAH in SHD from apartments with CT parking lots (median 129 μg/g) was 25 times higher than that in SHD from apartments with parking lots with other pavement surface types (median 5.1 μg/g). Presence or absence of CT on a parking lot explained 48% of the variance in log-transformed T-PAH in SHD. Urban land-use intensity near the residence also had a significant but weaker relation to T-PAH. No other variables tested, including carpeting, frequency of vacuuming, and indoor burning, were significant. PMID:20063893

  11. Coal-tar-based parking lot sealcoat: An unrecognized source of PAH to settled house dust

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Burbank, T.L.; Ennis, T.E.; Bashara, T.J.

    2010-01-01

    Despite much speculation, the principal factors controlling concentrations of polycyclic aromatic hydrocarbons (PAH) in settled house dust (SHD) have not yet been identified. In response to recent reports that dust from pavement with coaltar-based sealcoat contains extremely high concentrations of PAH, we measured PAH in SHD from 23 apartments and in dust from their associated parking lots, one-half of which had coal-tar-based sealcoat (CT). The median concentration of total PAH (T-PAH) in dust from CT parking lots (4760 ??g/g, n = 11) was 530 times higher than that from parking lots with other pavement surface types (asphalt-based sealcoat, unsealed asphalt, concrete [median 9.0 ??g/g, n = 12]). T-PAH in SHD from apartments with CT parking lots (median 129 ??g/g) was 25 times higher than that in SHD from apartments with parking lots with other pavement surface types (median 5.1 ??g/g). Presence or absence of CT on a parking lot explained 48% of the variance in log-transformed T-PAH in SHD. Urban land-use intensity near the residence also had a significant but weaker relation to T-PAH. No other variables tested, including carpeting, frequency of vacuuming, and indoor burning, were significant. ?? 2010 American Chemical Society.

  12. Smart textiles.

    PubMed

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  13. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  14. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  15. Smart and functional polymer materials for smart and functional microfluidic instruments

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2014-04-01

    As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.

  16. OpenSHS: Open Smart Home Simulator.

    PubMed

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  17. OpenSHS: Open Smart Home Simulator

    PubMed Central

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-01-01

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS). PMID:28468330

  18. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  19. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less

  20. A Comprehensive WSN-Based Approach to Efficiently Manage a Smart Grid

    PubMed Central

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-01-01

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators—mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices—making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach. PMID:25310468

  1. A comprehensive WSN-based approach to efficiently manage a Smart Grid.

    PubMed

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-10-10

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach.

  2. Comparative advantage between traditional and smart navigation systems

    NASA Astrophysics Data System (ADS)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  3. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  4. Smart Sensors Gather Information for Machine Diagnostics

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Stennis Space Center was interested in using smart sensors to monitor components on test stands and avert equipment failures. Partnering with St. Paul, Minnesota-based Lion Precision through a Cooperative Agreement, the team developed a smart sensor and the associated communication protocols. The same sensor is now commercially available for manufacturing.

  5. Integrated smart structures wingbox

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1993-09-01

    One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.

  6. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  7. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list

  8. The dust mass in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Barlow, Mike; Marcowith, Alexandre; Tatischef, Vincent

    2016-06-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1 Msun) and potentially responsible for most of the dust production in the early Universe. Observational evidence for this dust production efficiency has remained limited. Herschel observations from 70-500 microns of the 335-year old Cassiopeia A have indicated the presence of ˜0.1 Msun of cool (T˜35 K) dust interior to the reverse shock (Barlow et al. 2010), while Dunne et al. (2009) have claimed a detection of ˜1 Msun of cold (˜20 K) dust, based on SCUBA 850-micron polarimetric data. At sub-millimeter wavelengths, the supernova dust emission is heavily contaminated by interstellar dust emission and by the synchrotron radiation from the SNR. We present the first spatially resolved analysis of the infrared and submillimeter emission of Cas, A at better than 1 parsec resolution, based on our Herschel PACS and SPIRE 70-500um images. We used our PACS IFU and SPIRE FTS spectra to remove the contaminating emission from bright lines (e.g. [OIII]88, [CII]158). We updated the spectral index of the synchrotron emission based on recent Planck data, and extrapolated this synchrotron spectrum from a 3.7 mm VLA image to infrared/submillimeter wavelengths. We modeled the interstellar dust emission using a Galactic dust emission template from Jones et al. (2013), while the ISM dust mass is scaled to reproduce the continuum emission in the SPIRE FTS spectra at wavelengths > 650 micron (after subtraction of synchrotron emission). The UV radiation field that illuminates the ISM dust was constrained through PDR modelling of the [CI] 1-0, 2-1 and CO 4-3 lines observed in the SPIRE FTS spectra, and was found to range between 0.3 G0 and 1.0 G0 in units of the Draine IS radiation field. Within the uncertainties of the radiation field that illuminates the ISM material and the observational errors, we detect a dust mass of up to 0.8 Msun in Cas, A, with an average temperature of 30 K

  9. Constraints on the Interstellar Dust Flux Based on Stardust at Home Search Results

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Westphal, J.; Allen, C.; Anderson, D.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2011-01-01

    Recent advances in active particle selection in the Heidelberg Van de r Graaf (VdG) dust accelerator have led to high-fidelity, low-backgro und calibrations of track sizes in aerogel as a function of particle size and velocity in the difficult regime above 10 km sec..1 and sub micron sizes. To the extent that the VdG shots are analogs for inters tellar dust (ISD) impacts, these new measurements enable us to place preliminary constraints on the ISD flux based on Stardust@home data.

  10. Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device.

    PubMed

    Liao, Shih-Chuan; Peng, Jing; Mauk, Michael G; Awasthi, Sita; Song, Jinzhao; Friedman, Harvey; Bau, Haim H; Liu, Changchun

    2016-06-28

    Nucleic acid amplification-based diagnostics offer rapid, sensitive, and specific means for detecting and monitoring the progression of infectious diseases. However, this method typically requires extensive sample preparation, expensive instruments, and trained personnel. All of which hinder its use in resource-limited settings, where many infectious diseases are endemic. Here, we report on a simple, inexpensive, minimally-instrumented, smart cup platform for rapid, quantitative molecular diagnostics of pathogens at the point of care. Our smart cup takes advantage of water-triggered, exothermic chemical reaction to supply heat for the nucleic acid-based, isothermal amplification. The amplification temperature is regulated with a phase-change material (PCM). The PCM maintains the amplification reactor at a constant temperature, typically, 60-65°C, when ambient temperatures range from 12 to 35°C. To eliminate the need for an optical detector and minimize cost, we use the smartphone's flashlight to excite the fluorescent dye and the phone camera to record real-time fluorescence emission during the amplification process. The smartphone can concurrently monitor multiple amplification reactors and analyze the recorded data. Our smart cup's utility was demonstrated by amplifying and quantifying herpes simplex virus type 2 (HSV-2) with LAMP assay in our custom-made microfluidic diagnostic chip. We have consistently detected as few as 100 copies of HSV-2 viral DNA per sample. Our system does not require any lab facilities and is suitable for use at home, in the field, and in the clinic, as well as in resource-poor settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.

  11. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    PubMed Central

    Tseng, Kevin C.; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state. PMID:25756862

  12. Risk Identification in a Smart Monitoring System Used to Preserve Artefacts Based on Textile Materials

    NASA Astrophysics Data System (ADS)

    Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.

    2018-06-01

    Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.

  13. Two examples of intelligent systems based on smart materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsworth, J.

    1994-12-31

    Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signalsmore » which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.« less

  14. Asian dust events of April 1998

    USGS Publications Warehouse

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  15. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board.

    PubMed

    Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing

    2017-08-09

    A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.

  16. iSMART: Ontology-based Semantic Query of CDA Documents

    PubMed Central

    Liu, Shengping; Ni, Yuan; Mei, Jing; Li, Hanyu; Xie, Guotong; Hu, Gang; Liu, Haifeng; Hou, Xueqiao; Pan, Yue

    2009-01-01

    The Health Level 7 Clinical Document Architecture (CDA) is widely accepted as the format for electronic clinical document. With the rich ontological references in CDA documents, the ontology-based semantic query could be performed to retrieve CDA documents. In this paper, we present iSMART (interactive Semantic MedicAl Record reTrieval), a prototype system designed for ontology-based semantic query of CDA documents. The clinical information in CDA documents will be extracted into RDF triples by a declarative XML to RDF transformer. An ontology reasoner is developed to infer additional information by combining the background knowledge from SNOMED CT ontology. Then an RDF query engine is leveraged to enable the semantic queries. This system has been evaluated using the real clinical documents collected from a large hospital in southern China. PMID:20351883

  17. SmartWay

    EPA Pesticide Factsheets

    SmartWay is an EPA program that helps the freight transportation sector improve supply chain efficiency. SmartWay reduces transportation-related emissions, environmental risks for companies and increases global energy security.

  18. Switchable Materials for Smart Windows.

    PubMed

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  19. Constraints on the Interstellar Dust Flux Based on Stardust@Home Search Results

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Allen, C.; Anderson, D.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Lyverse, P.; Marchant, W.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; von Korff, J.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters

    2011-03-01

    We present constraints on the interstellar dust flux based on Stardust@home search results, informed by recent high-fidelity laboratory calibrations of track sizes in aerogel in the difficult regime above 10 km/s and submicrometer sizes.

  20. Smart cities of the future

    NASA Astrophysics Data System (ADS)

    Batty, M.; Axhausen, K. W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y.

    2012-11-01

    Here we sketch the rudiments of what constitutes a smart city which we define as a city in which ICT is merged with traditional infrastructures, coordinated and integrated using new digital technologies. We first sketch our vision defining seven goals which concern: developing a new understanding of urban problems; effective and feasible ways to coordinate urban technologies; models and methods for using urban data across spatial and temporal scales; developing new technologies for communication and dissemination; developing new forms of urban governance and organisation; defining critical problems relating to cities, transport, and energy; and identifying risk, uncertainty, and hazards in the smart city. To this, we add six research challenges: to relate the infrastructure of smart cities to their operational functioning and planning through management, control and optimisation; to explore the notion of the city as a laboratory for innovation; to provide portfolios of urban simulation which inform future designs; to develop technologies that ensure equity, fairness and realise a better quality of city life; to develop technologies that ensure informed participation and create shared knowledge for democratic city governance; and to ensure greater and more effective mobility and access to opportunities for urban populations. We begin by defining the state of the art, explaining the science of smart cities. We define six scenarios based on new cities badging themselves as smart, older cities regenerating themselves as smart, the development of science parks, tech cities, and technopoles focused on high technologies, the development of urban services using contemporary ICT, the use of ICT to develop new urban intelligence functions, and the development of online and mobile forms of participation. Seven project areas are then proposed: Integrated Databases for the Smart City, Sensing, Networking and the Impact of New Social Media, Modelling Network Performance

  1. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid

  2. The Fertilizing Role of African Dust in the Amazon Rainforest: A First Multiyear Assessment Based on CALIPSO Lidar Observations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Remer, Lorraine A.; Prospero, Joseph M.; Omar, Ali; Winker, David; Yang, Yuekui; Zhang, Yan; hide

    2015-01-01

    The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three dimensional (3D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8 to approximately 48) Tg a(exp -1) or 29 (8 to approximately 50) kg ha(exp -1) a(exp -1). The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multi-year mean estimate of dust deposition matches better with estimates from in-situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.0060.037) Tg P of phosphorus per year, equivalent to 23 (7 to approximately 39) g P ha(exp -1) a(exp -1) to fertilize the Amazon rainforest. This out-of-Basin P input largely compensates the hydrological loss of P from the Basin, suggesting an important role of African dust in preventing phosphorus depletion on time scales of decades to centuries.

  3. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  4. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    NASA Astrophysics Data System (ADS)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  5. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    PubMed

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.

  6. Smart Web-Based Platform to Support Physical Rehabilitation.

    PubMed

    Rybarczyk, Yves; Kleine Deters, Jan; Cointe, Clément; Esparza, Danilo

    2018-04-26

    The enhancement of ubiquitous and pervasive computing brings new perspectives in medical rehabilitation. In that sense, the present study proposes a smart, web-based platform to promote the reeducation of patients after hip replacement surgery. This project focuses on two fundamental aspects in the development of a suitable tele-rehabilitation application, which are: (i) being based on an affordable technology, and (ii) providing the patients with a real-time assessment of the correctness of their movements. A probabilistic approach based on the development and training of ten Hidden Markov Models (HMMs) is used to discriminate in real time the main faults in the execution of the therapeutic exercises. Two experiments are designed to evaluate the precision of the algorithm for classifying movements performed in the laboratory and clinical settings, respectively. A comparative analysis of the data shows that the models are as reliable as the physiotherapists to discriminate and identify the motion errors. The results are discussed in terms of the required setup for a successful application in the field and further implementations to improve the accuracy and usability of the system.

  7. Sociospace: A smart social framework based on the IP Multimedia Subsystem

    NASA Astrophysics Data System (ADS)

    Hasswa, Ahmed

    Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart

  8. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Horanyi, Mihaly; Schmidt, Jürgen; Southworth, Ben

    2015-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon Enceladus eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, as well as to the plume brightness in Cassini imaging, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 5 kg/s. On the other hand, Ingersoll and Ewald (2011) derived a dust production rate of 51 kg/s from photometry of very high phase-angle images of the plume, a method that is sensitive also to particles in the size range of microns and larger. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on numerical simulations of the Enceladus dust plume. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The magnetic field in the vicinity of Enceladus is based on the model by Simon et al. (2012). The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce dust measurements by the Cassini Cosmic Dust Analyzer (CDA) during Cassini plume traversals as well as the snowfall pattern derived from ISS observations of the Enceladus surface (Schenk et al, 2011, EPSC abstract). Based on our simulation results we are able to draw conclusions about the dust production rate as well as wether the Enceladus dust plume constitutes a dusty plasma.

  9. Measuring level of friendliness of smart city: a perceptual study

    NASA Astrophysics Data System (ADS)

    Sani Roychansyah, Muhammad; Felasari, Sushardjanti

    2018-03-01

    Currently the concept of smart city comes not only at the level of discussion, but some cities have stepped in the stage of implementation. Many of promised benefits will be met for the needs of urban residents if the city applies this concept. Conversely, many professionals and scholars are still in doubt about readiness of a city in the application of this concept. Dimension of friendliness of the real city certainly will have some limitations in a smart city that relies more on interactions with information and communication technology (ICT). This new paradigm becomes background of this paper in viewing the friendliness dimension of a smart city based on city residents’ perceptions. This paper uses case of 2 cities that have different level of readiness in the application of smart city. They are Yogyakarta City and Magelang City, both are located in Central Java. The method applied in this paper is quantitative method based on perceptual answer of respondents structured in a Likert Scale. Importance Performance Analysis (IPA) is then used to look at the attributes of smart city’s dimension which will show the relationship of the level of city friendliness and the level of city readiness in an application of smart city. The result briefly shows that the level of city sensitivity in the application of smart city is very influential in viewing the friendliness of the city. The city that is better equipped to meet the needs of its population according to the dimensions of the smart city based on its existing characteristics has higher friendliness. Time period of applying a smart city concept as the City of Yogyakarta has done longer before Magelang City, is not a guarantee that the city then has a better level of friendliness. The urban citizens have appropriate affective aspect to articulate between what they need and what the city has provided.

  10. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  11. Implementing a High-Assurance Smart-Card OS

    NASA Astrophysics Data System (ADS)

    Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.

    Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.

  12. How Much Dust Does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Southworth, B.; Srama, R.; Schmidt, J.; Postberg, F.

    2016-12-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 􏱱5 kg/s. On the other hand, Ingersoll and Ewald (2005) derived a dust production rate of 51 kg/s from the total plume brightness. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on measurements of the plume dust density during the last close Cassini flyby at Enceladus in October 2015. The data match our numerical model for the Enceladus plume. The model is based on a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer (CDA). Our model calculations together with the new density data constrain the Enceladus dust source rate to < 5 kg/s. Based on our simulation results we are able to draw conclusions about the emission of plume particles along the fractures in the south polar terrain.

  13. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  14. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  15. Development , Implementation and Evaluation of a Physics-Base Windblown Dust Emission Model

    EPA Science Inventory

    A physics-based windblown dust emission parametrization scheme is developed and implemented in the CMAQ modeling system. A distinct feature of the present model includes the incorporation of a newly developed, dynamic relation for the surface roughness length, which is important ...

  16. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra

  17. Press touch code: A finger press based screen size independent authentication scheme for smart devices.

    PubMed

    Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.

  18. Press touch code: A finger press based screen size independent authentication scheme for smart devices

    PubMed Central

    Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.

    2017-01-01

    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262

  19. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  20. Activity Learning as a Foundation for Security Monitoring in Smart Homes

    PubMed Central

    Dahmen, Jessamyn; Thomas, Brian L.; Cook, Diane J.; Wang, Xiaobo

    2017-01-01

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed. PMID:28362342

  1. Dust Streams from Tunisia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On October 6, 2001, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) captured this true-color image of a large dust storm blowing northeastward across the Mediterranean Sea from Tunisia. According to Joseph Prospero, professor of atmospheric science at the University of Miami, there is an unusual arc-shaped 'front' to the dust cloud. The storm's shape suggests that the source of the dust is rather small and that the meteorology driving it rather unusual. The dust seems to be coming out of the wadis, dry lakebeds and riverbeds, at the base of the Tell Atlas Mountains in northern Tunisia and eastern Algeria. The dust appears to be blowing toward the island of Sicily, Italy (toward the upper righthand corner). Also notice there is a relatively thin plume of smoke emanating eastward from the top of Mount Etna on Sicily. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  2. Being "SMART" About Adolescent Conduct Problems Prevention: Executing a SMART Pilot Study in a Juvenile Diversion Agency.

    PubMed

    August, Gerald J; Piehler, Timothy F; Bloomquist, Michael L

    2016-01-01

    The development of adaptive treatment strategies (ATS) represents the next step in innovating conduct problems prevention programs within a juvenile diversion context. Toward this goal, we present the theoretical rationale, associated methods, and anticipated challenges for a feasibility pilot study in preparation for implementing a full-scale SMART (i.e., sequential, multiple assignment, randomized trial) for conduct problems prevention. The role of a SMART design in constructing ATS is presented. The SMART feasibility pilot study includes a sample of 100 youth (13-17 years of age) identified by law enforcement as early stage offenders and referred for precourt juvenile diversion programming. Prior data on the sample population detail a high level of ethnic diversity and approximately equal representations of both genders. Within the SMART, youth and their families are first randomly assigned to one of two different brief-type evidence-based prevention programs, featuring parent-focused behavioral management or youth-focused strengths-building components. Youth who do not respond sufficiently to brief first-stage programming will be randomly assigned a second time to either an extended parent- or youth-focused second-stage programming. Measures of proximal intervention response and measures of potential candidate tailoring variables for developing ATS within this sample are detailed. Results of the described pilot study will include information regarding feasibility and acceptability of the SMART design. This information will be used to refine a subsequent full-scale SMART. The use of a SMART to develop ATS for prevention will increase the efficiency and effectiveness of prevention programing for youth with developing conduct problems.

  3. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust.

    PubMed

    Ginsberg, Gary L; Belleggia, Giuliana

    2017-12-01

    Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  5. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  6. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  7. Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos

    NASA Astrophysics Data System (ADS)

    Jin, C.; Ponti, G.; Haberl, F.; Smith, R.

    2017-10-01

    Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.

  8. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  9. Managing Emergency Situations in the Smart City: The Smart Signal

    PubMed Central

    Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto

    2015-01-01

    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City. PMID:26094626

  10. Managing Emergency Situations in the Smart City: The Smart Signal.

    PubMed

    Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto

    2015-06-18

    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City.

  11. Optical smart card using semipassive communication.

    PubMed

    Glaser, I; Green, Shlomo; Dimkov, Ilan

    2006-03-15

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  12. Optical smart card using semipassive communication

    NASA Astrophysics Data System (ADS)

    Glaser, I.; Green, Shlomo; Dimkov, Ilan

    2006-03-01

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  13. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  14. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  15. Micro-scale pollution mechanism of dust diffusion in a blasting driving face based on CFD-DEM coupled model.

    PubMed

    Yu, Haiming; Cheng, Weimin; Xie, Yao; Peng, Huitian

    2018-05-23

    In order to investigate the diffuse pollution mechanisms of high-concentration dusts in the blasting driving face, the airflow-dust coupled model was constructed based on CFD-DEM coupled model; the diffusion rules of the dusts with different diameters at microscopic scale were analyzed in combination with the field measured results. The simulation results demonstrate that single-exhaust ventilation exhibited more favorable dust suppression performance than single-forced ventilation. Under single-exhaust ventilation condition, the motion trajectories of the dusts with the diameter smaller than 20 μm were close to the airflow streamline and these dusts were mainly distributed near the footway walls; by contrast, under single-forced ventilation condition, the motion trajectories of the dust particles with a diameter range of 20~40 μm were close to the airflow streamlines, and a large number of dusts with the diameter smaller than 20 μm accumulated in the regions 5 m and 17~25 m away from the head-on section. Moreover, under the single-exhaust ventilation, the relationship between dust diameter D and negative-pressured-induced dust emission ratio P can be expressed as P = - 25.03ln(D) + 110.39, and the dust emission ratio was up to 74.36% for 7-μm dusts, and the path-dependent settling behaviors of the dusts mainly occurred around the head-on section; under single-forced ventilation condition, the z value of the dusts with the diameter over 20 μm decreased and the dusts with a diameter smaller than 7 μm are particularly harmful to human health, but their settling ratios were below 22.36%. Graphical abstract The airflow-dust CFD-DEM coupling model was established. The numerical simulation results were verified. The migration laws of airflow field were obtained in a blasting driving face. The diffusion laws of dusts were obtained after blasting.

  16. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  17. Smart Home, Smart Grid, Smart Meter - digitale Konzepte und das Recht an Daten

    NASA Astrophysics Data System (ADS)

    Spiecker genannt Döhmann, Indra

    Modernes Energiemanagement setzt auf ein intelligent gesteuertes Energieinformationsnetz, das Smart Grid. In diesem ist der Smart Meter, die intelligente Messstelle beim Nutzer, ein zentrales Instrument für den wechselseitigen Austausch von Informationen. Allerdings werfen die über diverse Gesetze forcierten Informationsströme erhebliche datenschutzrechtliche Fragen auf. Der Beitrag stellt zentrale datenschutzrechtliche Leitlinien und Probleme vor und behandelt auch offene Fragestellungen.

  18. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  19. Cloud-based robot remote control system for smart factory

    NASA Astrophysics Data System (ADS)

    Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei

    2015-12-01

    With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.

  20. Dubai: A Pioneer Smart City in the Arabian Territory

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays, one of the main issues that the cities are facing is related with how they are dealing with the challenges toward smartness, including infrastructures, economic, social and environmental aspects. In this sense, some of the current challenges on the global scale, trying to find solutions regarding urban societies, are based on the concept of “smart city”. Therefore, is clear that new ideas regarding the cities improvements, which are on the top of global agenda, could be found at the concept of “smart city”. As the literature reveals, this is a topic reason among the researchers, which is in a continuous development, in particular regarding societies, countries or regions where it is emerging, such as in the Arabian territories. Dubai, a city in the United Arab Emirates, is an example where in a short period of time, after the oil discovery in the decade of 1970, one small and badly known urban settlement became a pioneer reference in terms of smart cities requirements. Thus, this article presents background information about smart cities, their assets and key pillars, their smart infrastructures and features in cultural, social and environmental terms. The main goals are based on a theoretical approach, developed in order to get more details about smart cities, regarding the features of the Arabian territories. It argues around the case of Dubai, as a pioneer smart city in the Arab world. Among of the main conclusions, there is the idea that the urban transformation process in contemporary societies to secure the smartness, should apply to the use of ICT / information and communication technologies. This use will increase the efficiency concerns to the natural resources, and provide a high quality of life for citizens. The example of Dubai has shown that the decision-makers have built each sector and part of the city in a solid performance, in order to achieve the smart sustainability concept. This city is nowadays a reference on this matter, not

  1. PUCK: An Automated Prompting System for Smart Environments

    PubMed Central

    Das, Barnan; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Seelye, Adriana M.

    2014-01-01

    The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the “PUCK” prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed. PMID:25364323

  2. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  3. Smart City Through a Flexible Approach to Smart Energy

    NASA Astrophysics Data System (ADS)

    Mutule, A.; Teremranova, J.; Antoskovs, N.

    2018-02-01

    The paper provides an overview of the development trends of the smart city. Over the past decades, the trend of the new urban model called smart city has been gaining momentum, which is an aggregate of the latest technologies, intelligent administration and conscious citizens, which allows the city to actively develop, and effectively and efficiently solve the problems it is facing. Profound changes are also taking place in the energy sector. Researchers and other specialists offer a wide variety of innovative solutions and approaches for the concepts of intelligent cities. The paper reviews and analyses the existing methodological solutions in the field of power industry, as well as provides recommendations how to introduce the common platform on the basis of disparate sources of information on energy resources existing in the city as an optimal solution for developing the city's intelligence, flexibility and sustainability based on its starting conditions.

  4. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  5. A smart phone-based pocket fall accident detection, positioning, and rescue system.

    PubMed

    Kau, Lih-Jen; Chen, Chih-Sheng

    2015-01-01

    We propose in this paper a novel algorithm as well as architecture for the fall accident detection and corresponding wide area rescue system based on a smart phone and the third generation (3G) networks. To realize the fall detection algorithm, the angles acquired by the electronic compass (ecompass) and the waveform sequence of the triaxial accelerometer on the smart phone are used as the system inputs. The acquired signals are then used to generate an ordered feature sequence and then examined in a sequential manner by the proposed cascade classifier for recognition purpose. Once the corresponding feature is verified by the classifier at current state, it can proceed to next state; otherwise, the system will reset to the initial state and wait for the appearance of another feature sequence. Once a fall accident event is detected, the user's position can be acquired by the global positioning system (GPS) or the assisted GPS, and sent to the rescue center via the 3G communication network so that the user can get medical help immediately. With the proposed cascaded classification architecture, the computational burden and power consumption issue on the smart phone system can be alleviated. Moreover, as we will see in the experiment that a distinguished fall accident detection accuracy up to 92% on the sensitivity and 99.75% on the specificity can be obtained when a set of 450 test actions in nine different kinds of activities are estimated by using the proposed cascaded classifier, which justifies the superiority of the proposed algorithm.

  6. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining

  7. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  8. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  9. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  10. DustEM: Dust extinction and emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  11. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    PubMed Central

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  12. Smart windows based on cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.

    2017-02-01

    With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.

  13. Effects of Smart-Tablet-Based Neurofeedback Training on Cognitive Function in Children with Attention Problems.

    PubMed

    Shin, Min-Sup; Jeon, Hyejin; Kim, Miyoung; Hwang, Taeho; Oh, Seo Jin; Hwangbo, Minsu; Kim, Ki Joong

    2016-05-01

    We sought to determine whether smart-tablet-based neurofeedback could improve executive function-including attention, working memory, and self-regulation-in children with attention problems. Forty children (10-12 years old) with attention problems, as determined by ratings on the Conners Parent Rating Scale, were assigned to either a neurofeedback group that received 16 sessions or a control group. A comprehensive test battery that assessed general intelligence, visual and auditory attention, attentional shifting, response inhibition and behavior rating scales were administered to both groups before neurofeedback training. Several neuropsychological tests were conducted at posttraining and follow-up assessment. Scores on several neuropsychological tests and parent behavior rating scales showed significant improvement in the training group but not in the controls. The improvements remained through the follow-up assessment. This study suggests that the smart-tablet-based neurofeedback training program might improve cognitive function in children with attention problems. © The Author(s) 2015.

  14. Use of Satellite and Ground-based Digital Images to Detect and Monitor Dust Storms in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Chavez, P. S.; MacKinnon, D. J.; Reynolds, R. L.; Velasco, M. G.

    2002-12-01

    Wind-induced dust emission from sources in the southwestern United States is not a major contributor to global dust flux, but it is important on a regional and national scale because of its effects on air quality, human health and safety, as well as ecosystem dynamics. Integrated remotely sensed satellite, airborne, and ground-based image data have strong potential to detect and monitor active dust storms and map areas vulnerable to wind erosion in the Southwest. Since 1999, high temporal resolution digital images collected by satellite and a ground-based, automated digital camera station have been used to detect, monitor, and analyze the location, size, frequency, duration, and transport patterns of large dust storms in the central Mojave Desert. One of the biggest dust storms of this past decade occurred on April 15, 2002, when at least several million metric tons of dust were emitted from the central Mojave Desert alone. During this storm, geostationary satellite (GOES) images documented the arrival of two very large dust plumes into the Las Vegas Valley, NV, one from a valley about 40 km to the west and the other from a heavily used area about 170 km to the southwest. Large, rapid increases in levels of PM10 (particulate matter less than 10 micrometers) in the Las Vegas area corresponded with the arrival of these plumes, with PM10 values increasing from a range of approximately 100 to 250 micrograms/m3 to 1,100 to 1,500 micrograms/m3 within 30 minutes. Satellite imaging systems currently available cannot detect and monitor dust storms of the size typically generated in the Southwest on an operational basis or be used to produce models for emission-rate predictions. The satellite imaging system on GOES is the only one available having adequate temporal resolution to detect and monitor active dust storms on a routine basis; however, it can only detect very large dust storms because its spatial and spectral resolutions are very low. A satellite imaging system with

  15. Gerontechnology for demented patients: smart homes for smart aging.

    PubMed

    Frisardi, Vincenza; Imbimbo, Bruno P

    2011-01-01

    In an aging world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly with chronic conditions, especially those with cognitive impairment, can be assisted in their own environment with numerous 'smart' devices that support them in their activity of daily living. A "smart home" is a residence equipped with technology that facilitates monitoring of residents to improve quality of life and promote physical independence, as well as to reduce caregiver burden. Several projects worldwide have been conducted, but some ethical and legal issues are still unresolved and, at present, there is no evidence of the effects of smart homes on health outcomes. Randomized controlled trials are needed to understand the plus and minuses of these projects, but this will only be possible with a widespread proliferation and penetration of smart homes in the social network.

  16. Convolutional Neural Network-Based Embarrassing Situation Detection under Camera for Social Robot in Smart Homes

    PubMed Central

    Sheng, Weihua; Junior, Francisco Erivaldo Fernandes; Li, Shaobo

    2018-01-01

    Recent research has shown that the ubiquitous use of cameras and voice monitoring equipment in a home environment can raise privacy concerns and affect human mental health. This can be a major obstacle to the deployment of smart home systems for elderly or disabled care. This study uses a social robot to detect embarrassing situations. Firstly, we designed an improved neural network structure based on the You Only Look Once (YOLO) model to obtain feature information. By focusing on reducing area redundancy and computation time, we proposed a bounding-box merging algorithm based on region proposal networks (B-RPN), to merge the areas that have similar features and determine the borders of the bounding box. Thereafter, we designed a feature extraction algorithm based on our improved YOLO and B-RPN, called F-YOLO, for our training datasets, and then proposed a real-time object detection algorithm based on F-YOLO (RODA-FY). We implemented RODA-FY and compared models on our MAT social robot. Secondly, we considered six types of situations in smart homes, and developed training and validation datasets, containing 2580 and 360 images, respectively. Meanwhile, we designed three types of experiments with four types of test datasets composed of 960 sample images. Thirdly, we analyzed how a different number of training iterations affects our prediction estimation, and then we explored the relationship between recognition accuracy and learning rates. Our results show that our proposed privacy detection system can recognize designed situations in the smart home with an acceptable recognition accuracy of 94.48%. Finally, we compared the results among RODA-FY, Inception V3, and YOLO, which indicate that our proposed RODA-FY outperforms the other comparison models in recognition accuracy. PMID:29757211

  17. Convolutional Neural Network-Based Embarrassing Situation Detection under Camera for Social Robot in Smart Homes.

    PubMed

    Yang, Guanci; Yang, Jing; Sheng, Weihua; Junior, Francisco Erivaldo Fernandes; Li, Shaobo

    2018-05-12

    Recent research has shown that the ubiquitous use of cameras and voice monitoring equipment in a home environment can raise privacy concerns and affect human mental health. This can be a major obstacle to the deployment of smart home systems for elderly or disabled care. This study uses a social robot to detect embarrassing situations. Firstly, we designed an improved neural network structure based on the You Only Look Once (YOLO) model to obtain feature information. By focusing on reducing area redundancy and computation time, we proposed a bounding-box merging algorithm based on region proposal networks (B-RPN), to merge the areas that have similar features and determine the borders of the bounding box. Thereafter, we designed a feature extraction algorithm based on our improved YOLO and B-RPN, called F-YOLO, for our training datasets, and then proposed a real-time object detection algorithm based on F-YOLO (RODA-FY). We implemented RODA-FY and compared models on our MAT social robot. Secondly, we considered six types of situations in smart homes, and developed training and validation datasets, containing 2580 and 360 images, respectively. Meanwhile, we designed three types of experiments with four types of test datasets composed of 960 sample images. Thirdly, we analyzed how a different number of training iterations affects our prediction estimation, and then we explored the relationship between recognition accuracy and learning rates. Our results show that our proposed privacy detection system can recognize designed situations in the smart home with an acceptable recognition accuracy of 94.48%. Finally, we compared the results among RODA-FY, Inception V3, and YOLO, which indicate that our proposed RODA-FY outperforms the other comparison models in recognition accuracy.

  18. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark.more » The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.« less

  19. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  20. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  1. Evaluation of HeartSmarts, a Faith-Based Cardiovascular Health Education Program.

    PubMed

    Tettey, Naa-Solo; Duran, Pedro A; Andersen, Holly S; Boutin-Foster, Carla

    2017-02-01

    In order to effectively address cardiovascular disease among African Americans, evidence-based health information must be disseminated within a context aligned with the values and beliefs of the population. Faith-based organizations play a critical role in meeting the religious and spiritual needs of many African Americans. Additionally, faith-based organizations can be effective in health promotion. A manual was created by incorporating biblical scriptures relating to health messages drawn from existing health manuals oriented toward African Americans. Lay health educators active in their churches participated in a 12-week training to learn the basics of cardiovascular disease and methods for delivering the program to their congregations' members. After the completion of the training, these lay health educators recruited participants from their respective churches and administered their own 12-week HeartSmarts program. Measurements of participants' systolic and diastolic blood pressure (mmHg), height (in.), weight (lbs.), and waist circumference (in.) were taken, and cardiovascular disease knowledge assessments (based on 20 open-ended questions) were administered at the start and end of the 12-week programs. Fourteen predominantly African American churches in NYC participated. Of the 221 participants, 199 completed the program. There were significant reductions in pretest and posttest total participant averages for systolic BP (4.48 mmHg, p < 0.001), diastolic BP (3.38 mmHg, p < 0.001), weight (3lbs., p = 0.001), and BMI (0.46, p = 0.001). Cardiovascular disease health assessment scores had an average increase of 12.74 correct responses (p < 0.001). The HeartSmarts program may be an effective ecumenical and cultural model for disseminating health messages and reducing cardiovascular risk among African Americans.

  2. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  3. SmartHome: a domotic framework based on smart sensing and actuator network to reduce energy wastes

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; De Rango, Floriano; Falbo, Domenico; Barletta, Domenico

    2014-05-01

    Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.

  4. Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Ryder, Claire; Estellés, Victor; Segura, Sara; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Tsekeri, Alexandra; Smith, Helen; Ulanowski, Zbigniew; O'Sullivan, Debbie; Brooke, Jennifer; Pradhan, Yaswant; Buxmann, Joelle

    2018-04-01

    In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.

  5. Ethernet-based smart networked elements (sensors and actuators)

    NASA Astrophysics Data System (ADS)

    Mata, Carlos T.; Perotti, José M.; Oostdyk, Rebecca L.; Lucena, Angel

    2006-05-01

    This paper outlines the present design approach for the Ethernet-Based Smart Networked Elements (SNE) being developed by NASA's Instrumentation Branch and the Advanced Electronics and Technology Development Laboratory of ASRC Aerospace Corporation at Kennedy Space Center (KSC). The SNEs are being developed as part of the Integrated Intelligent Health Management System (IIHMS), jointly developed by Stennis Space Center (SSC), KSC, and Marshall Space Flight Center (MSFC). SNEs are sensors/actuators with embedded intelligence, capable of networking among themselves and with higher-level systems (external processors and controllers) to provide not only instrumentation data but also associated data validity qualifiers. NASA KSC has successfully developed and preliminarily demonstrated this new generation of SNEs. SNEs that collect pressure, strain, and temperature measurements (including cryogenic temperature ranges) have been developed and tested in the laboratory and are ready for demonstration in the field.

  6. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    PubMed

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  7. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  8. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  9. Design and preliminary assessment of a smart textile for respiratory monitoring based on an array of Fiber Bragg Gratings.

    PubMed

    Massaroni, C; Ciocchetti, M; Di Tomaso, G; Saccomandi, P; Caponero, M A; Polimadei, A; Formica, D; Schena, E

    2016-08-01

    Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of an MR-compatible smart textiles based on FOSs for respiratory monitoring. The system consists of six fiber Bragg grating (FBG) sensors glued on the textile to monitor six compartments of the chest wall (i.e., right and left upper thorax, right and left abdominal rib cage, and right and left abdomen). This solution allows monitoring both global respiratory parameters and each compartment volume change. The system converts thoracic movements into strain measured by the FBGs. The positioning of the FBGs was optimized by experiments performed using an optoelectronic system. The feasibility of the smart textile was assessed on 6 healthy volunteers. Experimental data were compared to the ones estimated by an optoelectronic plethysmography used as reference. Promising results were obtained on both breathing period (maximum percentage error is 1.14%), inspiratory and expiratory period, as well as on total volume change (mean percentage difference between the two systems was ~14%). The Bland-Altman analysis shows a satisfactory accuracy for the parameters under investigation. The proposed system is safe and non-invasive, MR-compatible, and allows monitoring compartmental volumes.

  10. A smart growth evaluation model based on data envelopment analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaokun; Guan, Yongyi

    2018-04-01

    With the rapid spread of urbanization, smart growth (SG) has attracted plenty of attention from all over the world. In this paper, by the establishment of index system for smart growth, data envelopment analysis (DEA) model was suggested to evaluate the SG level of the current growth situation in cities. In order to further improve the information of both radial direction and non-radial detection, we introduced the non-Archimedean infinitesimal to form C2GS2 control model. Finally, we evaluated the SG level in Canberra and identified a series of problems, which can verify the applicability of the model and provide us more improvement information.

  11. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  12. How Early Holocene Greening of the Afro-Asian Dust Belt Changed Sources of Mineral Dust in West Asia

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Sharifi, A.; Goes, L. M.; Clement, A. C.; Canuel, E. A.; Naderi Beni, A.; Ahmady-Birgani, H.

    2016-12-01

    Production, transport and deposition of mineral dust have significant temporal and spatial impacts on different components of the Earth systems. In modern times, dust plumes can be associated with their source origin(s) using satellite and land-based measurements and back-trajectory reconstruction of air masses. Reconstructing past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and their potential source origins. In this contribution, we present a 13,000-year record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in sources of dust over West Asia. The geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from times of high dust fluxes during the Younger Dryas, and that of the mid-late Holocene. This indicates that the composition of mineral dust deposited at the receptor site changed as a function of prevailing atmospheric circulation regimes and land exposure. Simulations of atmospheric circulation over the region show the Northern Hemisphere Westerly Jet (NHWJ) was displaced poleward across the study area during the early Holocene when solar insolation was higher. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia to dominate dust export to West Asia during this period, in contrast to the dominant western and southwest Asian and Eastern African sources that prevail during the modern period.

  13. Hardware accelerator design for change detection in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  14. A new physically-based windblown dust emission parametrization in CMAQ

    EPA Science Inventory

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a phys...

  15. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  16. Smart roadside initiative : user manual.

    DOT National Transportation Integrated Search

    2015-09-01

    This document provides the user instructions for the Smart Roadside Initiative (SRI) applications including mobile and web-based SRI applications. These applications include smartphone-enabled information exchange and notification, and software compo...

  17. SMARTE: HELPING COMMUNITIES OVERCOME OBSTACLES TO REVITALIZATION (04/23/07)

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  18. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  19. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive

  20. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    USGS Publications Warehouse

    Griffin, Dale W.; Kubilay, Nilgün; Kocak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    2007-01-01

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (

  1. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  2. Dust Observations by Faraday Cups Onboard Spektr-R

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.

    2017-12-01

    Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.

  3. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  4. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    PubMed

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  5. Smart homes - current features and future perspectives.

    PubMed

    Chan, Marie; Campo, Eric; Estève, Daniel; Fourniols, Jean-Yves

    2009-10-20

    In an ageing world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly and disabled can be assisted in their own environment 24h a day with numerous 'smart' devices. The concept of the smart home is a promising and cost-effective way of improving home care for the elderly and the disabled in a non-obtrusive way, allowing greater independence, maintaining good health and preventing social isolation. Smart homes are equipped with sensors, actuators, and/or biomedical monitors. The devices operate in a network connected to a remote centre for data collection and processing. The remote centre diagnoses the ongoing situation and initiates assistance procedures as required. The technology can be extended to wearable and in vivo implantable devices to monitor people 24h a day both inside and outside the house. This review describes a selection of projects in developed countries on smart homes examining the various technologies available. Advantages and disadvantages, as well as the impact on modern society, are discussed. Finally, future perspectives on smart homes as part of a home-based health care network are presented.

  6. The evaluation system of city's smart growth success rates

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    "Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.

  7. Design of Smart Home Systems Prototype Using MyRIO

    NASA Astrophysics Data System (ADS)

    Ratna Wati, Dwi Ann; Abadianto, Dika

    2017-06-01

    This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.

  8. Towards Smart and Resilient City: A Conceptual Model

    NASA Astrophysics Data System (ADS)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  9. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  10. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. R & D of smart FRP-OFBG-based steel strand and its application in monitoring of prestressing loss for RC

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Zhou, Hui; Huang, Ying; Ou, Jinping

    2008-03-01

    The long-term monitoring and performance evaluation techniques for the steel strand based pre-stressed structures are still not mature yet, especially for the prestressing loss monitoring and prediction. The main problem of this issue is lack of reliable monitoring techniques. To resolve this problem, in this paper, a new kind of quasi-distributed smart steel strand based on FRP-OFBG(Fiber Reinforced Polymer-Optical Fiber Bragg Grating) has been developed and its pre-stress monitoring principle has been also given. The test of the post-tension pre-stressed concrete beam with bonded tendons and its tensioning experiments have been conducted. And the prestressing loss of the steel strands has been monitored using the FBG in it. Researches results indicate that this kind of smart steel strand can monitor both instant loss and permanent loss of the prestressing successfully, and it can preferably describe the pre-stress loss state of the pre-stressed structure. Compared with the traditional monitoring instrument, this kind of smart steel strand owns distinct advantages and broad application foregrounds.

  12. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  13. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a

  14. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  15. Making a Smart Campus in Saudi Arabia

    ERIC Educational Resources Information Center

    Abuelyaman, Eltayab Salih

    2008-01-01

    Prince Sultan University (PSU) in Riyadh, Saudi Arabia, has conceptualized what it means to be a smart campus after surveying similar notions worldwide. A "smart" campus requires smart teachers, smart technology, and smart pedagogical centers. It deploys smart teachers and gives them smart tools and ongoing support to do their jobs…

  16. Smart markers for watershed-based cell segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2012-01-01

    Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  17. Trust in smart systems: sharing driving goals and giving information to increase trustworthiness and acceptability of smart systems in cars.

    PubMed

    Verberne, Frank M F; Ham, Jaap; Midden, Cees J H

    2012-10-01

    We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.

  18. Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping

    In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.

  19. New Results and Synthesis from SMART-1

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2012-07-01

    We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light re ection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify SMART-1 peaks of quasi-eternal light" and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators. SMART-1 Scitech or public websites: sci.esa.int/smart-1 or www.esa.int/smart-1 References [1] Foing

  20. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators.

    PubMed

    Leeladhar; Raturi, Parul; Singh, J P

    2018-02-27

    Photomechanical actuation is the conversion of light energy into mechanical energy through some smart materials. Infrared-responsive smart materials have become an emerging field of research due to easy availability and eco-friendly nature of their stimulus in the form of sunlight, which contains about 50% of near-infrared(nIR) making these materials useful at macro-scale photoactuator applications. Here, we demonstrate fabrication of highly versatile nIR triggered photoactuators based on graphene oxide/polycarbonate bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation and wavelength-selective response. The photoactuators are realized by vacuum filtration of graphene oxide/water dispersion through polycarbonate membrane resulting graphene oxide/polymer bilayer structure. The photoactuation response was measured in the form of deflection from equilibrium position as a result of infrared-irradiation. The deflection is caused by the generated thermal stress at the interface of bilayers due to mismatch of thermal expansion coefficient as a results of nIR absorption by graphene oxide and subsequent temperature rise. A maximum deflection of 12 mm (circular-shaped structure with diameter 28 mm) with corresponding bending curvature of 0.33 cm -1 was shown by this photoactuator for illumination intensity of 106 mW/cm 2 . Few applications of these photoactuators such as sunlight-driven smart curtain, infrared actuated curtain and self-folding box are also demonstrated.

  1. Lunar Dust-Tolerant Electrical Connector

    NASA Technical Reports Server (NTRS)

    Herman, Jason; Sadick, Shazad; Roberts, Dustyn

    2010-01-01

    An electrical connector was developed that is tolerant of the presence of lunar dust. Novel features of the connector include the use of a permeable membrane to act both as a dust barrier and as a wiper to limit the amount of dust that makes its way into the internal chamber of the connector. The development focused on the Constellation lunar extravehicular activity (EVA) spacesuit s portable life support system (PLSS) battery recharge connector; however, continued research is applying this technology to other lunar surface systems such as lunar rover subsystems and cryogenic fluid transfer connections for in-situ resource utilization (ISRU) applications. Lunar dust has been identified as a significant and present challenge in future exploration missions. In addition to posing contamination and health risks for human explorers, the interlocking, angular nature of lunar dust and its broad grain size distribution make it particularly harmful to mechanisms with which it may come into contact. All Apollo lunar missions experienced some degree of equipment failure because of dust, and it appears that dust accumulation on exposed material is unavoidable and difficult to reverse. Both human EVA and ISRU activities are on the mission horizon and are paramount to the establishment of a permanent human base on the Moon. Reusable and dust-tolerant connection mechanisms are a critical component for mission success. The need for dust-tolerant solutions is also seen in utility work and repair, mass transit applications, construction, mining, arctic and marine environments, diving (search and rescue), and various operations in deserts, where dust or sand clogging and coating different mechanisms and connections may render them difficult to operate or entirely inoperable.

  2. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    NASA Astrophysics Data System (ADS)

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  3. A Dynamic Enhancement With Background Reduction Algorithm: Overview and Application to Satellite-Based Dust Storm Detection

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.

    2017-12-01

    This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.

  4. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  5. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    PubMed

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  6. House dust mites, our intimate associates.

    PubMed

    Nadchatram, M

    2005-06-01

    House dust mites have lived in human contact from time immemorial. Human dander or dead skin constitutes the major organic component of the house dust ecosystem. Because the mites feed on dander, dust mites and human association will continue to co-exist as part of our environment. Efficient house-keeping practice is the best form of control to reduce infestation. However, special precautions are important when individuals are susceptible or sensitive to dust mites. House dust mites are responsible for causing asthma, rhinitis and contact dermatitis. The respiratory allergies are caused by the inhalation of dead or live mites, their faecal matter or other byproducts. Immune factors are of paramount importance in the development of dust related or mite induced respiratory diseases. House dust mites were found in some 1,000 samples of dust taken from approximately 330 dwellings in Peninsular Malaysia and Singapore. Mattresses, carpets, corners of a bedroom, and floor beneath the bed are favourable dust mite habitats. The incriminating species based on studies here and elsewhere, as well as many other species of dust mites of unknown etiological importance are widely distributed in Malaysian homes. Density of dust mites in Malaysia and Singapore is greater than in temperate countries. Prevention and control measures with reference to subjects sensitive to dust mite allergies, including chemical control described in studies conducted in Europe and America are discussed. However, a cost free and most practical way to remove mites, their faecal matter and other products is to resort to sunning the bedding and carpets to kill the living mites, and then beaten and brushed to remove the dust and other components.

  7. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  8. Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains.

    PubMed

    Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung

    2016-12-14

    In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase.

  9. Smart Point Cloud: Definition and Remaining Challenges

    NASA Astrophysics Data System (ADS)

    Poux, F.; Hallot, P.; Neuville, R.; Billen, R.

    2016-10-01

    Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  10. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed

  11. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  12. Cometary Dust

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  13. Dust release rates and dust-to-gas mass ratios of eight comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; De Almeida, A. A.; Huebner, W. F.

    1992-01-01

    Mass release rates of dust and mass ratios of dust-to-gas release rates of Comets Thiele (1985m), Wilson (1986l), P/Borrelly (1987p), Liller (1988a), Bradfield (1987s), Hartley-Good (1985l), P/Giacobini-Zinner (1984e), and P/Halley (1982i) are estimated from the analysis of continuum flux measurements at optical wavelengths. An attempt is made to estimate the size of each comet nucleus on the basis of water-ice sublimation (vaporization), assuming that the nucleus is spherical and only a fraction of its surface area is active. Where possible, the dust mass release rates are compared with those obtained by other investigators in the optical and IR wavelength regions. Good agreement with results based on IR observations is found.

  14. SMART Power Systems for ANTS Missions

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.

    2005-02-01

    Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.

  15. Comparing Dynamic Treatment Regimes Using Repeated-Measures Outcomes: Modeling Considerations in SMART Studies

    PubMed Central

    Lu, Xi; Nahum-Shani, Inbal; Kasari, Connie; Lynch, Kevin G.; Oslin, David W.; Pelham, William E.; Fabiano, Gregory; Almirall, Daniel

    2016-01-01

    A dynamic treatment regime (DTR) is a sequence of decision rules, each of which recommends a treatment based on a patient’s past and current health status. Sequential, multiple assignment, randomized trials (SMARTs) are multi-stage trial designs that yield data specifically for building effective DTRs. Modeling the marginal mean trajectories of a repeated-measures outcome arising from a SMART presents challenges, because traditional longitudinal models used for randomized clinical trials do not take into account the unique design features of SMART. We discuss modeling considerations for various forms of SMART designs, emphasizing the importance of considering the timing of repeated measures in relation to the treatment stages in a SMART. For illustration, we use data from three SMART case studies with increasing level of complexity, in autism, child attention deficit hyperactivity disorder (ADHD), and adult alcoholism. In all three SMARTs we illustrate how to accommodate the design features along with the timing of the repeated measures when comparing DTRs based on mean trajectories of the repeated-measures outcome. PMID:26638988

  16. Comparing dynamic treatment regimes using repeated-measures outcomes: modeling considerations in SMART studies.

    PubMed

    Lu, Xi; Nahum-Shani, Inbal; Kasari, Connie; Lynch, Kevin G; Oslin, David W; Pelham, William E; Fabiano, Gregory; Almirall, Daniel

    2016-05-10

    A dynamic treatment regime (DTR) is a sequence of decision rules, each of which recommends a treatment based on a patient's past and current health status. Sequential, multiple assignment, randomized trials (SMARTs) are multi-stage trial designs that yield data specifically for building effective DTRs. Modeling the marginal mean trajectories of a repeated-measures outcome arising from a SMART presents challenges, because traditional longitudinal models used for randomized clinical trials do not take into account the unique design features of SMART. We discuss modeling considerations for various forms of SMART designs, emphasizing the importance of considering the timing of repeated measures in relation to the treatment stages in a SMART. For illustration, we use data from three SMART case studies with increasing level of complexity, in autism, child attention deficit hyperactivity disorder, and adult alcoholism. In all three SMARTs, we illustrate how to accommodate the design features along with the timing of the repeated measures when comparing DTRs based on mean trajectories of the repeated-measures outcome. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Optic fiber sensor-based smart bridge cable with functionality of self-sensing

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Jinping, Ou

    2013-02-01

    Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.

  18. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    NASA Astrophysics Data System (ADS)

    Griffin, Dale W.; Kubilay, Nilgün; Koçak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (<1.0%) of the actual microbial population in any given environment, dust-borne microorganisms and other associated constituents (organic detritus, toxins, etc.) may play a significant role in the regional human and ecosystem health.

  19. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    DOE PAGES

    Jin, Sheng; Li, Shengtai; Isella, Andrea; ...

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively.more » Finally, implications for the planet formation as well as the limitations of this scenario are discussed.« less

  20. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  1. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  2. VO₂ thermochromic smart window for energy savings and generation.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-24

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  3. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  4. Smart dental practice: capitalising on smart mobile technology.

    PubMed

    Plangger, K; Bredican, J; Mills, A J; Armstrong, J

    2015-08-14

    To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.

  5. The Market for Smart Growth

    EPA Pesticide Factsheets

    Based on several studies of market demand, the authors determined that consumer demand for smart growth would translate into more than 600,000 houses out of the approximately 2 million new housing units built in 2007.

  6. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  7. How Do Martian Dust Devils Vary Throughout the Sol?

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.

    2016-12-01

    Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such

  8. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    PubMed Central

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  9. A New Controller for a Smart Walker Based on Human-Robot Formation

    PubMed Central

    Valadão, Carlos; Caldeira, Eliete; Bastos-Filho, Teodiano; Frizera-Neto, Anselmo; Carelli, Ricardo

    2016-01-01

    This paper presents the development of a smart walker that uses a formation controller in its displacements. Encoders, a laser range finder and ultrasound are the sensors used in the walker. The control actions are based on the user (human) location, who is the actual formation leader. There is neither a sensor attached to the user’s body nor force sensors attached to the arm supports of the walker, and thus, the control algorithm projects the measurements taken from the laser sensor into the user reference and, then, calculates the linear and angular walker’s velocity to keep the formation (distance and angle) in relation to the user. An algorithm was developed to detect the user’s legs, whose distances from the laser sensor provide the information necessary to the controller. The controller was theoretically analyzed regarding its stability, simulated and validated with real users, showing accurate performance in all experiments. In addition, safety rules are used to check both the user and the device conditions, in order to guarantee that the user will not have any risks when using the smart walker. The applicability of this device is for helping people with lower limb mobility impairments. PMID:27447634

  10. Sensor Transmission Power Schedule for Smart Grids

    NASA Astrophysics Data System (ADS)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  11. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  12. Schodack Smart Roadside Inspection System.

    DOT National Transportation Integrated Search

    2013-02-01

    Under an earlier NYSERDA Agreement (17420) Intelligent Imaging Systems (IIS) supplied and installed Smart Roadside network software and integrated new connected vehicle roadside devices into the Schodack Smart Roadside system. The Smart Roadsid...

  13. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  14. Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, David; Horanyi, Mihaly; Poppe, Andrew

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.

  15. Smart Sustainable Islands VS Smart Sustainable Cities

    NASA Astrophysics Data System (ADS)

    Pantazis, D. N.; Moussas, V. C.; Murgante, B.; Daverona, A. C.; Stratakis, P.; Vlissidis, N.; Kavadias, A.; Economou, D.; Santimpantakis, K.; Karathanasis, B.; Kyriakopoulou, V.; Gadolou, E.

    2017-09-01

    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.

  16. Correlation Between Cometary Gas/Dust Ratios and Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Harrington, Olga; Womack, Maria; Lastra, Nathan

    2017-10-01

    We compiled CO-based gas/dust ratios for several comets out to heliocentric distances, rh, of 8 au to probe whether there is a noticeable change in comet behavior over the range that water-ice sublimation starts. Previously, gas/dust ratios were calculated for an ensemble of comets using Q(CO2)/efp values derived from infrared measurements, which showed that the gas/dust ratio follows a rh-2 within 4 AU, but is flat at greater distances (Bauer et al. 2015). Our project focuses on gas/dust ratios for which CO is assumed to be the dominant gas, in order to test whether similar breaks in slope occur for CO. The gas/dust ratios were calculated from measurements of CO production rates (mostly from millimeter-wavelength spectroscopy) and reflected sunlight of comets (mostly via reported visual magnitudes of dusty comets). We present our new CO-based gas/dust ratios at different heliocentric distances, compare them to existing CO2-based gas/dust ratios, and discuss implications for CO-driven and CO2-driven activity. We discuss O.H. acknowledges support from the Hartmann Student Travel Grant program. M.W. acknowledges support from NSF grant AST-1615917.

  17. Seasonal Variation and Exposure Risks of Perchlorate in Soil, Indoor Dust, and Outdoor Dust in China.

    PubMed

    Li, Yiwen; Liao, Ruoying; Gan, Zhiwei; Qu, Bing; Wang, Rong; Chen, Mengqin; Ding, Sanglan; Su, Shijun

    2018-04-25

    A total of 97 paired soil, outdoor dust, and indoor dust samples were collected in the national scale of China in summer, and the perchlorate levels were compared with those in soil and outdoor dust samples collected in winter in our previous study. The median perchlorate concentrations in the outdoor dust, indoor dust, and soil samples were 8.10, 11.4, and 0.05 mg/kg, respectively, which were significantly lower than those in the winter samples due to the natural factors and human activities. No significant differences in perchlorate concentrations were found between Northern and Southern China in the dust samples, whereas the difference was obtained in the soil samples. In the terms of possible source, the perchlorate levels in the outdoor dust exhibited strong correlation with SO 4 2- (r 2  = 0.458**) and NO 3 - (r 2  = 0.389**), indicating part of perchlorate in outdoor environment was likely from atmospheric oxidative process in summer. The perchlorate, SO 4 2- , and Cl - levels in the indoor dust were significantly related to those in the outdoor dust, suggesting that outdoor contaminants might be an important source for indoor environment. Furthermore, the human exposure to perchlorate was under relatively safe state in China except for special sites or periods with high perchlorate levels. Dust made an unexpected contribution of 41.3% to the total daily perchlorate intake for children, whereas 2.46% for adults in China based on biomonitoring, which deserves more attention.

  18. Smart drug release systems based on stimuli-responsive polymers.

    PubMed

    Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei

    2013-07-01

    Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.

  19. Managing medical and insurance information through a smart-card-based information system.

    PubMed

    Lambrinoudakis, C; Gritzalis, S

    2000-08-01

    The continuously increased mobility of patients and doctors, in conjunction with the existence of medical groups consisting of private doctors, general practitioners, hospitals, medical centers, and insurance companies, pose significant difficulties on the management of patients' medical data. Inevitably this affects the quality of the health care services provided. The evolving smart card technology can be utilized for the implementation of a secure portable electronic medical record, carried by the patient herself/himself. In addition to the medical data, insurance information can be stored in the smart card thus facilitating the creation of an "intelligent system" supporting the efficient management of patient's data. In this paper we present the main architectural and functional characteristics of such a system. We also highlight how the security features offered by smart cards can be exploited in order to ensure confidentiality and integrity of the medical data stored in the patient cards.

  20. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  1. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  2. Landscape Design Process of Lakewood Nava Park BSD City Based on Smart Growth Concept

    NASA Astrophysics Data System (ADS)

    Islami, M. Z.; Kaswanto, R. L.

    2017-10-01

    A comfortable and green housing area in a city is a must for the people live in a city. The rapid development in a city caused greater need for land. This problem happens simultaneously with environmental problem globally such as growing number of people, pollution, excessive exploitation of resource, and decreasing in ethic of land uses. The design of Lakewood Nava Park BSD City prioritizes on pedestrian and walkable environment to apprehend those problems. Lakewood Nava Park is a landscape design project conducted by landscape consultant company, Sheils Flynn Asia. The concept of Smart Growth used as a recommendation for Lakewood Nava Park design. Smart Growth is a city planning and transportation theory which expand a city into a walkable city. The method used on this research is a comparison between landscape design process and Booth theory, also analyze ten principle concept of Smart Growth at the project. Generally, the comparison between design process and Booth theory resulted a slight difference in term and separate phase. The analysis result from Smart Growth concept is around 70% has been applied, and the rest 30% applied after the design has been built. By using Smart Growth principle, the purpose of Lakewood Nava Park design can be applied well.

  3. uFarm: a smart farm management system based on RFID

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsuk; Lee, Moonsup; Jung, Jonghyuk; Lee, Hyunwook; Kim, Taehyoun

    2007-12-01

    Recently, the livestock industry in Korea has been threatened by many challenges such as low productivity due to labor intensiveness, global competition compelled by the Free Trade Agreement (FTA), and emerging animal disease issues such as BSE or foot-and-mouth. In this paper, we propose a smart farm management system, called uFarm, which would come up with such challenges by automating farm management. First, we automate labor-intensive jobs using equipments based on sensors and actuators. The automation subsystem can be controlled by remote user through wireless network. Second, we provide real-time traceability of information on farm animals using the radio-frequency identification (RFID) method and embedded data server with network connectivity.

  4. NREL: SMARTS - About SMARTS

    Science.gov Websites

    its references list. To use SMARTS, users construct text files of 20-30 lines of simple text and ' output consists of spreadsheet-compatible American Standard Code for Information Interchange (ASCII) text

  5. The dust environment of comet 67P/Churyumov-Gerasimenko: results from Monte Carlo dust tail modelling applied to a large ground-based observation data set

    NASA Astrophysics Data System (ADS)

    Moreno, Fernando; Muñoz, Olga; Gutiérrez, Pedro J.; Lara, Luisa M.; Snodgrass, Colin; Lin, Zhong Y.; Della Corte, Vincenzo; Rotundi, Alessandra; Yagi, Masafumi

    2017-07-01

    We present an extensive data set of ground-based observations and models of the dust environment of comet 67P/Churyumov-Gerasimenko covering a large portion of the orbital arc from about 4.5 au pre-perihelion through 3.0 au post-perihelion, acquired during the current orbit. In addition, we have also applied the model to a dust trail image acquired during this orbit, as well as to dust trail observations obtained during previous orbits, in both the visible and the infrared. The results of the Monte Carlo modelling of the dust tail and trail data are generally consistent with the in situ results reported so far by the Rosetta instruments Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and Grain Impact Analyser and Dust Accumulator (GIADA). We found the comet nucleus already active at 4.5 au pre-perihelion, with a dust production rate increasing up to ˜3000 kg s-1 some 20 d after perihelion passage. The dust size distribution at sizes smaller than r = 1 mm is linked to the nucleus seasons, being described by a power law of index -3.0 during the comet nucleus southern hemisphere winter but becoming considerably steeper, with values between -3.6 and -4.3, during the nucleus southern hemisphere summer, which includes perihelion passage (from about 1.7 au inbound to 2.4 au outbound). This agrees with the increase of the steepness of the dust size distribution found from GIADA measurements at perihelion showing a power index of -3.7. The size distribution at sizes larger than 1 mm for the current orbit is set to a power law of index -3.6, which is near the average value of insitu measurements by OSIRIS on large particles. However, in order to fit the trail data acquired during past orbits previous to the 2009 perihelion passage, a steeper power-law index of -4.1 has been set at those dates, in agreement with previous trail modelling. The particle sizes are set at a minimum of r = 10 μm, and a maximum size, which increases with decreasing heliocentric

  6. Capitalized design of smart medicine box for elderly person based on quality function deployment (QFD)

    NASA Astrophysics Data System (ADS)

    Lestari, Brina Cindy; Dewi, Dyah Santhi; Widodo, Rusminto Tjatur

    2017-11-01

    The elderly who has a particular disease need to take some medicines in everyday with correct dosages and appropriate by time schedules. However, the elderly frequently forget to take medicines because of their memory weakened. Consequently, the product innovation of elderly healthcare is required for helping elderly takes some medicine more easily. This research aims to develop a smart medicine box by applying quality function deployment method. The first step is identifying elderly requirements through an ethnographic approach by interviewing thirty-two of elderly people as respondents. Then, the second step is translated elderly requirements to technical parameter for designing a smart medicine box. The smart box design is focused on two main requirements which have highest importance rating including alarm reminder for taking medicine and automatic medicine box. Finally, the prototype design has been created and tested by using usability method. The result shown that 90% from ten respondents have positive respond on the feature of smart medicine box. The voice of alarm reminder smart medicine box is easy to understand by elderly people for taking medicines.

  7. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun

    2018-06-01

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  8. Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?

    PubMed

    Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D

    2012-02-01

    The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.

  9. 75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...

  10. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  11. Metal contamination in campus dust of Xi'an, China: a study based on multivariate statistics and spatial distribution.

    PubMed

    Chen, Hao; Lu, Xinwei; Li, Loretta Y; Gao, Tianning; Chang, Yuyu

    2014-06-15

    The concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in campus dust from kindergartens, elementary schools, middle schools and universities of Xi'an, China were determined by X-ray fluorescence spectrometry. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were used to analyze the data and to identify possible sources of these metals in the dust. The spatial distributions of metals in urban dust of Xi'an were analyzed based on the metal concentrations in campus dusts using the geostatistics method. The results indicate that dust samples from campuses have elevated metal concentrations, especially for Pb, Zn, Co, Cu, Cr and Ba, with the mean values of 7.1, 5.6, 3.7, 2.9, 2.5 and 1.9 times the background values for Shaanxi soil, respectively. The enrichment factor results indicate that Mn, Ni, V, As and Ba in the campus dust were deficiently to minimally enriched, mainly affected by nature and partly by anthropogenic sources, while Co, Cr, Cu, Pb and Zn in the campus dust and especially Pb and Zn were mostly affected by human activities. As and Cu, Mn and Ni, Ba and V, and Pb and Zn had similar distribution patterns. The southwest high-tech industrial area and south commercial and residential areas have relatively high levels of most metals. Three main sources were identified based on correlation coefficient analysis, PCA, CA, as well as spatial distribution characteristics. As, Ni, Cu, Mn, Pb, Zn and Cr have mixed sources - nature, traffic, as well as fossil fuel combustion and weathering of materials. Ba and V are mainly derived from nature, but partly also from industrial emissions, as well as construction sources, while Co principally originates from construction. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. This Is Smart Growth - Publication

    EPA Pesticide Factsheets

    This Is Smart Growth illustrates how communities can turn their visions into reality, using smart growth techniques to improve development. The report features 40 places around the country that have found success by implementing smart growth principles.

  13. GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  14. SMART INIT GRAPHICS

    Science.gov Websites

    NAM Smart Init Graphics This page displays 5km NAM forecast output made from the "smartinit DISCLAIMER: The Smart Init tool is in its developmental stage, and there is much work to be done. Feedback is

  15. Smart homes for people with neurological disability: state of the art.

    PubMed

    Gentry, Tony

    2009-01-01

    Smart home technology can include environmental adaptations that allow remote control of home appliances, electronic communication, safety monitoring and automated task cueing, any of which may prove useful for people with neurological disability. This article outlines currently available smart home technologies, examines the burgeoning research in this area, discusses clinical and consumer resources and reviews ethical, funding and professional training considerations for smart home applications. I conclude that more outcomes-based research and collaboration among stakeholders is essential in order to establish guidance for designing, selecting and implementing individualized smart home solutions for those with neurological disability.

  16. SMART GUIDANCE AND SMARTE - TOOLS FOR DEVELOPING SITE SPECIFIC REDEVELOPMENT PLANS

    EPA Science Inventory

    Site-specific Management Approaches and Redevelopment Tools (SMART) Guidance and its electronic counterpart, SMARTe are being developed jointly with the German Federal Ministry of Education and Research and the Interstate Technology Regulatory Council. These products will assist ...