Smart material screening machines using smart materials and controls
NASA Astrophysics Data System (ADS)
Allaei, Daryoush; Corradi, Gary; Waigand, Al
2002-07-01
The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
Smart roadside initiative : system requirements specifications.
DOT National Transportation Integrated Search
2015-09-01
This document describes the system requirements specifications (SyRS) for the Smart Roadside Initiative (SRI) Prototype for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal ...
Smart roadside initiative : system design document.
DOT National Transportation Integrated Search
2015-09-01
This document describes the software design for the Smart Roadside Initiative (SRI) for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal electronic commercial vehicle identi...
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
2015-01-01
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system. PMID:26958162
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system.
Next generation smart window display using transparent organic display and light blocking screen.
Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk
2018-04-02
Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.
Shifted Transversal Design smart-pooling for high coverage interactome mapping
Xin, Xiaofeng; Rual, Jean-François; Hirozane-Kishikawa, Tomoko; Hill, David E.; Vidal, Marc; Boone, Charles; Thierry-Mieg, Nicolas
2009-01-01
“Smart-pooling,” in which test reagents are multiplexed in a highly redundant manner, is a promising strategy for achieving high efficiency, sensitivity, and specificity in systems-level projects. However, previous applications relied on low redundancy designs that do not leverage the full potential of smart-pooling, and more powerful theoretical constructions, such as the Shifted Transversal Design (STD), lack experimental validation. Here we evaluate STD smart-pooling in yeast two-hybrid (Y2H) interactome mapping. We employed two STD designs and two established methods to perform ORFeome-wide Y2H screens with 12 baits. We found that STD pooling achieves similar levels of sensitivity and specificity as one-on-one array-based Y2H, while the costs and workloads are divided by three. The screening-sequencing approach is the most cost- and labor-efficient, yet STD identifies about twofold more interactions. Screening-sequencing remains an appropriate method for quickly producing low-coverage interactomes, while STD pooling appears as the method of choice for obtaining maps with higher coverage. PMID:19447967
ERIC Educational Resources Information Center
Domermuth, David
2005-01-01
This article provides a description of an affordable, smart classroom built for the Technology Department at Appalachian State university. The system consists of three basic components: a home theater combo, a tablet PC, and a digital projector, costing a total of $7,300, or $8,800 if a podium, screen, and projector mount are purchased. The…
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
Optoelectronic image processing for cervical cancer screening
NASA Astrophysics Data System (ADS)
Narayanswamy, Ramkumar; Sharpe, John P.; Johnson, Kristina M.
1994-05-01
Automation of the Pap-smear cervical screening method is highly desirable as it relieves tedium for the human operators, reduces cost and should increase accuracy and provide repeatability. We present here the design for a high-throughput optoelectronic system which forms the first stage of a two stage system to automate pap-smear screening. We use a mathematical morphological technique called the hit-or-miss transform to identify the suspicious areas on a pap-smear slide. This algorithm is implemented using a VanderLugt architecture and a time-sequential ANDing smart pixel array.
Enhancing the radiology learning experience with electronic whiteboard technology.
Lipton, Michael L; Lipton, Leah G
2010-06-01
The purpose of this study is to quantitatively evaluate the use of an interactive whiteboard for use in teaching diagnostic radiology and MRI physics. An interactive whiteboard (SMART Board model 3000i) was used during an MRI physics course and diagnostic radiology teaching conferences. A multiquestion instrument was used to quantify responses. Responses are reported as simple percentages of response number and, for ordinal scale questions, the two-tailed Student's t test was used to assess deviation from the neutral response. All of the subjects attended all sessions and completed the assessment questionnaire; 89% of respondents said that image quality of the SMART Board was superior to that of a projector-screen combination, 11% said that the image quality was similar, and none said that it was inferior. Sixty-seven percent of respondents said that the SMART Board's display of diagrams was superior to that of a conventional whiteboard, 33% said it was similar, and none said it was inferior. Participants thought that the smaller SMART Board display compared with the projector screen was an unimportant limitation (p = 0.03). Room lighting did not degrade image quality (p = 0.007), and a trend toward preference for the lighted room (while using the SMART Board) was detected (p = 0.15) but was not significant. The impact of the SMART Board on the visual material and flow of teaching sessions was favorable (p = 0.005). All of the subjects preferred the SMART Board over a traditional projector and screen combination. Learners endorsed that the SMART Board significantly enhanced learning, universally preferring it to the standard projector and screen approach. Major advantages include enhanced engagement of learners; enhanced integration of images and annotations or diagrams, including display of both images and diagrams simultaneously on a single screen; and the ability to review, revise, save, and distribute diagrams and annotated images. Disadvantages include cost and potentially complicated setup in very large auditoriums.
Smart RTI: A Next-Generation Approach to Multilevel Prevention
FUCHS, DOUGLAS; FUCHS, LYNN S.; COMPTON, DONALD L.
2012-01-01
During the past decade, responsiveness to intervention (RTI) has become popular among many practitioners as a means of transforming schooling into a multilevel prevention system. Popularity aside, its successful implementation requires ambitious intent, a comprehensive structure, and coordinated service delivery. An effective RTI also depends on building-based personnel with specialized expertise at all levels of the prevention system. Most agree on both its potential for strengthening schooling and its heavy demand on practitioners. In this article, we describe Smart RTI, which we define as making efficient use of school resources while maximizing students' opportunities for success. In light of findings from recent research, we discuss three important features of Smart RTI: (a) multistage screening to identify risk, (b) multistage assessment to determine appropriate levels of instruction, and (c) a role for special education that supports prevention. PMID:22736805
Karagiozoglou-Lampoudi, Thomais; Daskalou, Efstratia; Lampoudis, Dimitrios; Apostolou, Aggeliki; Agakidis, Charalampos
2015-05-01
The study aimed to test the hypothesis that computer-based calculation of malnutrition risk may enhance the ability to identify pediatric patients at malnutrition-related risk for an unfavorable outcome. The Pediatric Digital Scaled MAlnutrition Risk screening Tool (PeDiSMART), incorporating the World Health Organization (WHO) growth reference data and malnutrition-related parameters, was used. This was a prospective cohort study of 500 pediatric patients aged 1 month to 17 years. Upon admission, the PeDiSMART score was calculated and anthropometry was performed. Pediatric Yorkhill Malnutrition Score (PYMS), Screening Tool Risk on Nutritional Status and Growth (STRONGkids), and Screening Tool for the Assessment of Malnutrition in Pediatrics (STAMP) malnutrition screening tools were also applied. PeDiSMART's association with the clinical outcome measures (weight loss/nutrition support and hospitalization duration) was assessed and compared with the other screening tools. The PeDiSMART score was inversely correlated with anthropometry and bioelectrical impedance phase angle (BIA PhA). The score's grading scale was based on BIA Pha quartiles. Weight loss/nutrition support during hospitalization was significantly independently associated with the malnutrition risk group allocation on admission, after controlling for anthropometric parameters and age. Receiver operating characteristic curve analysis showed a sensitivity of 87% and a specificity of 75% and a significant area under the curve, which differed significantly from that of STRONGkids and STAMP. In the subgroups of patients with PeDiSMART-based risk allocation different from that based on the other tools, PeDiSMART allocation was more closely related to outcome measures. PeDiSMART, applicable to the full age range of patients hospitalized in pediatric departments, graded according to BIA PhA, and embeddable in medical electronic records, enhances efficacy and reproducibility in identifying pediatric patients at malnutrition-related risk for an unfavorable outcome. Patient allocation according to the PeDiSMART score on admission is associated with clinical outcome measures. © 2014 American Society for Parenteral and Enteral Nutrition.
An experience of qualified preventive screening: shiraz smart screening software.
Islami Parkoohi, Parisa; Zare, Hashem; Abdollahifard, Gholamreza
2015-01-01
Computerized preventive screening software is a cost effective intervention tool to address non-communicable chronic diseases. Shiraz Smart Screening Software (SSSS) was developed as an innovative tool for qualified screening. It allows simultaneous smart screening of several high-burden chronic diseases and supports reminder notification functionality. The extent in which SSSS affects screening quality is also described. Following software development, preventive screening and annual health examinations of 261 school staff (Medical School of Shiraz, Iran) was carried out in a software-assisted manner. To evaluate the quality of the software-assisted screening, we used quasi-experimental study design and determined coverage, irregular attendance and inappropriateness proportions in relation with the manual and software-assisted screening as well as the corresponding number of requested tests. In manual screening method, 27% of employees were covered (with 94% irregular attendance) while by software-assisted screening, the coverage proportion was 79% (attendance status will clear after the specified time). The frequency of inappropriate screening test requests, before the software implementation, was 41.37% for fasting plasma glucose, 41.37% for lipid profile, 0.84% for occult blood, 0.19% for flexible sigmoidoscopy/colonoscopy, 35.29% for Pap smear, 19.20% for mammography and 11.2% for prostate specific antigen. All of the above were corrected by the software application. In total, 366 manual screening and 334 software-assisted screening tests were requested. SSSS is an innovative tool to improve the quality of preventive screening plans in terms of increased screening coverage, reduction in inappropriateness and the total number of requested tests.
CRESST Human Performance Knowledge Mapping System
2002-12-01
link subcategories. Semantica Evaluation copy unavailable Visual Mind M H No Cannot add relation labels. Smart Ideas H H No Easy to use. Linking in...Screen Users can access all top-level functions from the main screen shown in Figure 4. The design of the Web favored breadth over depth, which allows...based on whether their propositions match propositions in the expert map. LifeMap PC on the Web /Mac 0 http:/ /www2.ucsc.edu/-mlrg/mlrgtools.html This
Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass
NASA Astrophysics Data System (ADS)
Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan
2013-05-01
Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.
Advances in Materials and System Technology for Portable Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.
2007-01-01
This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.
Smart Board in the Music Classroom
ERIC Educational Resources Information Center
Baker, Jean
2007-01-01
A Smart Board is an interactive whiteboard connected to a computer and a data projector. Images can be projected on the board, and the Smart Board can be used as a computer. A person can control the computer using his finger, and can mark directly on the screen using various colors. Best of all, users can easily import many types of information,…
Benefit-cost analysis of SBIRT interventions for substance using patients in emergency departments.
Horn, Brady P; Crandall, Cameron; Forcehimes, Alyssa; French, Michael T; Bogenschutz, Michael
2017-08-01
Screening, brief intervention, and referral to treatment (SBIRT) has been widely implemented as a method to address substance use disorders in general medical settings, and some evidence suggests that its use is associated with decreased societal costs. In this paper, we investigated the economic impact of SBIRT using data from Screening, Motivational Assessment, Referral, and Treatment in Emergency Departments (SMART-ED), a multisite, randomized controlled trial. Utilizing self-reported information on medical status, health services utilization, employment, and crime, we conduct a benefit-cost analysis. Findings indicate that neither of the SMART-ED interventions resulted in any significant changes to the main economic outcomes, nor had any significant impact on total economic benefit. Thus, while SBIRT interventions for substance abuse in Emergency Departments may be appealing from a clinical perspective, evidence from this economic study suggests resources could be better utilized supporting other health interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Occupant-responsive optimal control of smart facade systems
NASA Astrophysics Data System (ADS)
Park, Cheol-Soo
Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.
An Integrated Rare Earth Elements Supply Chain Strategy
2011-02-24
iron boron magnets in Joint Direct Attack Munitions (JDAM) smart bombs; neodymium-yttrium- aluminum - garnet lasers and range finders in multiple weapon...components Europium 63 computer screens, fluorescent lights Gadolinium 64 magnetic applications, phosphors Terbium 65 phosphors, projection TV’s...Defense Stockpile report advised several production delays of weapons systems were caused by lanthanum, cerium, europium and gadolinium supply
Peterson, Curtis W; Rose, Donny; Mink, Jonah; Levitz, David
2016-05-16
In many developing nations, cervical cancer screening is done by visual inspection with acetic acid (VIA). Monitoring and evaluation (M&E) of such screening programs is challenging. An enhanced visual assessment (EVA) system was developed to augment VIA procedures in low-resource settings. The EVA System consists of a mobile colposcope built around a smartphone, and an online image portal for storing and annotating images. A smartphone app is used to control the mobile colposcope, and upload pictures to the image portal. In this paper, a new app feature that documents clinical decisions using an integrated job aid was deployed in a cervical cancer screening camp in Kenya. Six organizations conducting VIA used the EVA System to screen 824 patients over the course of a week, and providers recorded their diagnoses and treatments in the application. Real-time aggregated statistics were broadcast on a public website. Screening organizations were able to assess the number of patients screened, alongside treatment rates, and the patients who tested positive and required treatment in real time, which allowed them to make adjustments as needed. The real-time M&E enabled by "smart" diagnostic medical devices holds promise for broader use in screening programs in low-resource settings.
Deployment and Validation of a Smart System for Screening of Language Disorders in Primary Care
Martín-Ruiz, María Luisa; Duboy, Miguel Ángel Valero; de la Cruz, Iván Pau
2013-01-01
Neuro-evolutive development from birth until the age of six years is a decisive factor in a child's quality of life. Early detection of development disorders in early childhood can facilitate necessary diagnosis and/or treatment. Primary-care pediatricians play a key role in its detection as they can undertake the preventive and therapeutic actions requested to promote a child's optimal development. However, the lack of time and little specific knowledge at primary-care avoid to applying continuous early-detection anomalies procedures. This research paper focuses on the deployment and evaluation of a smart system that enhances the screening of language disorders in primary care. Pediatricians get support to proceed with early referral of language disorders. The proposed model provides them with a decision-support tool for referral actions to trigger essential diagnostic and/or therapeutic actions for a comprehensive individual development. The research was conducted by starting from a sample of 60 cases of children with language disorders. Validation was carried out through two complementary steps: first, by including a team of seven experts from the fields of neonatology, pediatrics, neurology and language therapy, and, second, through the evaluation of 21 more previously diagnosed cases. The results obtained show that therapist positively accepted the system proposal in 18 cases (86%) and suggested system redesign for single referral to a speech therapist in three remaining cases. PMID:23752564
Deployment and validation of a smart system for screening of language disorders in primary care.
Martín-Ruiz, María Luisa; Duboy, Miguel Ángel Valero; de la Cruz, Iván Pau
2013-06-10
Neuro-evolutive development from birth until the age of six years is a decisive factor in a child's quality of life. Early detection of development disorders in early childhood can facilitate necessary diagnosis and/or treatment. Primary-care pediatricians play a key role in its detection as they can undertake the preventive and therapeutic actions requested to promote a child's optimal development. However, the lack of time and little specific knowledge at primary-care avoid to applying continuous early-detection anomalies procedures. This research paper focuses on the deployment and evaluation of a smart system that enhances the screening of language disorders in primary care. Pediatricians get support to proceed with early referral of language disorders. The proposed model provides them with a decision-support tool for referral actions to trigger essential diagnostic and/or therapeutic actions for a comprehensive individual development. The research was conducted by starting from a sample of 60 cases of children with language disorders. Validation was carried out through two complementary steps: first, by including a team of seven experts from the fields of neonatology, pediatrics, neurology and language therapy, and, second, through the evaluation of 21 more previously diagnosed cases. The results obtained show that therapist positively accepted the system proposal in 18 cases (86%) and suggested system redesign for single referral to a speech therapist in three remaining cases.
Temperature measurement systems in wearable electronics
NASA Astrophysics Data System (ADS)
Walczak, S.; Gołebiowski, J.
2014-08-01
The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.
Microfluidic Devices for Drug Delivery Systems and Drug Screening
Kompella, Uday B.; Damiati, Safa A.
2018-01-01
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948
Smartphone home monitoring of ECG
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka
2012-06-01
A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.
Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong
2015-07-07
Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.
Development of a Smart Diagnostics Platform for Early-Stage Screening of Breast Cancer
2007-04-01
Kawaguchi, H.; Fujimoto, K. A Novel Preparation of Nonsymmetrical Microspheres Using the Langmuir Blodgett Technique. Langmuir 2000, 16, 7882–7886. 64...performance liquid chromatography, gas chromatography, mass spectrometry, and enzyme-linked immunosorbent assay. All of these methods require...important criterion for selection of suitable signal transduction systems. A 10 manuscript describing the stability has been published in Langmuir in 2007
Integrated cockpit display and processor: the best solution for Link-16 applications
NASA Astrophysics Data System (ADS)
Smeyne, Alan L.; Savaya, John
2000-08-01
Link-16 Data Link systems are being added to current avionics systems to provide increased situational awareness and command data. By using a single intelligent display system, the impact to existing aircraft systems to implement Link-16 capabilities is minimized. Litton Guidance & Control Systems (G&CS), a military avionics supplier for more than forty years, provides Open System Architecture (OSA), large screen aircraft display systems. Based on a common set of plug-in modules, these Smart Multi-Function Displays (SMFD) are available in a variety of sizes and processing capabilities, any one of which can meet the Link-16 requirements. Using a single smart SMFD connected to a Link-16 subsystem has many advantages. With digital moving map capability, the SMFD can monitor and display air and ground tracks of both friendly and hostile forces while providing potential threat data to the operator. The SMFD can also monitor vehicle status and mission data to share between friendly air and surface forces. To support the integrated digital battlefield, Link-16 capability is required and the Litton G&CS SMFD provides the processing/display functionality to implement this capability.
Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D
2015-01-01
Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery.
Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D
2015-01-01
Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630
Web Extensible Display Manager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slominski, Ryan; Larrieu, Theodore L.
Jefferson Lab's Web Extensible Display Manager (WEDM) allows staff to access EDM control system screens from a web browser in remote offices and from mobile devices. Native browser technologies are leveraged to avoid installing and managing software on remote clients such as browser plugins, tunnel applications, or an EDM environment. Since standard network ports are used firewall exceptions are minimized. To avoid security concerns from remote users modifying a control system, WEDM exposes read-only access and basic web authentication can be used to further restrict access. Updates of monitored EPICS channels are delivered via a Web Socket using a webmore » gateway. The software translates EDM description files (denoted with the edl suffix) to HTML with Scalable Vector Graphics (SVG) following the EDM's edl file vector drawing rules to create faithful screen renderings. The WEDM server parses edl files and creates the HTML equivalent in real-time allowing existing screens to work without modification. Alternatively, the familiar drag and drop EDM screen creation tool can be used to create optimized screens sized specifically for smart phones and then rendered by WEDM.« less
Wilson, Justin B; Osterhaus, Matt C; Farris, Karen B; Doucette, William R; Currie, Jay D; Bullock, Tammy; Kumbera, Patty
2005-01-01
To perform a retrospective financial analysis on the implementation of a self-insured company's wellness program from the pharmaceutical care provider's perspective and conduct sensitivity analyses to estimate costs versus revenues for pharmacies without resident pharmacists, program implementation for a second employer, the second year of the program, and a range of pharmacist wages. Cost-benefit and sensitivity analyses. Self-insured employer with headquarters in Canton, N.C. 36 employees at facility in Clinton, Iowa. Pharmacist-provided cardiovascular wellness program. Costs and revenues collected from pharmacy records, including pharmacy purchasing records, billing records, and pharmacists' time estimates. All costs and revenues were calculated for the development and first year of the intervention program. Costs included initial and follow-up screening supplies, office supplies, screening/group presentation time, service provision time, documentation/preparation time, travel expenses, claims submission time, and administrative fees. Revenues included initial screening revenues, follow-up screening revenues, group session revenues, and Heart Smart program revenues. For the development and first year of Heart Smart, net benefit to the pharmacy (revenues minus costs) amounted to dollars 2,413. All sensitivity analyses showed a net benefit. For pharmacies without a resident pharmacist, the net benefit was dollars 106; for Heart Smart in a second employer, the net benefit was dollars 6,024; for the second year, the projected net benefit was dollars 6,844; factoring in a lower pharmacist salary, the net benefit was dollars 2,905; and for a higher pharmacist salary, the net benefit was dollars 1,265. For the development and first year of Heart Smart, the revenues of the wellness program in a self-insured company outweighed the costs.
NASA Astrophysics Data System (ADS)
Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John
2013-07-01
Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.
Printable low-cost sensor systems for healthcare smart textiles
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.
A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges.
Ray, Partha Pratim; Dash, Dinesh; De, Debashis
2017-10-02
Rapid growth of sensor and computing platforms have introduced the wearable systems. In recent years, wearable systems have led to new applications across all medical fields. The aim of this review is to present current state-of-the-art approach in the field of wearable system based cancer detection and identify key challenges that resist it from clinical adoption. A total of 472 records were screened and 11 were finally included in this study. Two types of records were studied in this context that includes 45% research articles and 55% manufactured products. The review was performed per PRISMA guidelines where considerations was given to records that were published or reported between 2009 and 2017. The identified records included 4 cancer detecting wearable systems such as breast cancer (36.3%), skin cancer (36.3%), prostate cancer (18.1%), and multi-type cancer (9%). Most works involved sensor based smart systems comprising of microcontroller, Bluetooth module, and smart phone. Few demonstrated Ultra-Wide Band (i.e. UWB) antenna based wearable systems. Skin cancer detecting wearable systems were most comprehensible ones. The current works are gradually progressing with seamless integration of sensory units along with smart networking. However, they lack in cloud computing and long-range communication paradigms. Artificial intelligence and machine learning are key ports that need to be attached with current wearable systems. Further, clinical inertia, lack of awareness, and high cost are altogether pulling back the actual growth of such system. It is well comprehended that upon sincere orientation of all identified challenges, wearable systems would emerge as vital alternative to futuristic cancer detection.
Prototype of smart office system using based security system
NASA Astrophysics Data System (ADS)
Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.
2018-05-01
Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.
Sung, Wen-Tsai; Lin, Jia-Syun
2013-01-01
This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.
Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications
NASA Astrophysics Data System (ADS)
Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.
2017-10-01
In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.
NASA Astrophysics Data System (ADS)
Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.
2016-03-01
The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.
Web Applications and Thin Clients in the Navy
2011-09-01
say thank you to his family and shipmates for all the encouragement and distractions, when he needed them the most. xviii THIS PAGE INTENTIONALLY...to take full advantage of touch screen features, like journal software that converts handwriting to standard text (Mallick, 2003). 5. Smart Pads...outsourcing Web Applications have no direct control or access to the system and therefore no say in how the network is managed (Clouse, n.d.). Any issues
Surface Microbiology of Smartphone Screen Protectors Among Healthcare Professionals.
Raza, Ibrahim; Raza, Awais; Razaa, Syed Ahmad; Sadar, Ahmad Bani; Qureshi, Ahmad Uzair; Talib, Usama; Chi, Gerald
2017-12-26
The use of smartphones with touch screens has become a norm for healthcare professionals (HCP). The risk of smart screen contamination has been proven, and guidelines are available to deal with possible contamination. A large number of smartphone users apply plastic or glass screen protectors onto their mobile phone screens to prevent scratches. However, these materials are not scratch proof, and their antipathogenic properties have not been studied. We have conducted a study to determine the frequency of smartphone screen protector contamination and compared the data with contamination on the bare area on the same mobile screens. The sample size included only HCPs working in acute care settings and having at least eight hours of exposure time every day. A total of 64 samples were collected, which reported 62.5% (n = 40/64) positive culture swabs from the protected areas of the screen and 45.3% (n = 29/64) from the unprotected area of the screen. Micrococcus and Gram-negative rods grew only on samples taken from the protected area whereas the bare area showed no such growth. There was no statistically significant difference in the frequency based on smart screen size, duration of use during duty hours, or the setting where it was used. Smartphone screen protectors from healthcare providers may harbor pathogenic bacteria, especially in acute care settings. Coagulase-negative Staphylococci followed by Bacillus species were the most commonly yielded bacteria among house officers and postgraduate trainees in the present study.
2017-01-01
Background EDUCERE (“Ubiquitous Detection Ecosystem to Care and Early Stimulation for Children with Developmental Disorders”) is an ecosystem for ubiquitous detection, care, and early stimulation of children with developmental disorders. The objectives of this Spanish government-funded research and development project are to investigate, develop, and evaluate innovative solutions to detect changes in psychomotor development through the natural interaction of children with toys and everyday objects, and perform stimulation and early attention activities in real environments such as home and school. Thirty multidisciplinary professionals and three nursery schools worked in the EDUCERE project between 2014 and 2017 and they obtained satisfactory results. Related to EDUCERE, we found studies based on providing networks of connected smart objects and the interaction between toys and social networks. Objective This research includes the design, implementation, and validation of an EDUCERE smart toy aimed to automatically detect delays in psychomotor development. The results from initial tests led to enhancing the effectiveness of the original design and deployment. The smart toy, based on stackable cubes, has a data collector module and a smart system for detection of developmental delays, called the EDUCERE developmental delay screening system (DDSS). Methods The pilot study involved 65 toddlers aged between 23 and 37 months (mean=29.02, SD 3.81) who built a tower with five stackable cubes, designed by following the EDUCERE smart toy model. As toddlers made the tower, sensors in the cubes sent data to a collector module through a wireless connection. All trials were video-recorded for further analysis by child development experts. After watching the videos, experts scored the performance of the trials to compare and fine-tune the interpretation of the data automatically gathered by the toy-embedded sensors. Results Judges were highly reliable in an interrater agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. Conclusions The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable “performance” as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. PMID:28526666
Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.
Jeschek, Markus; Gerngross, Daniel; Panke, Sven
2016-03-31
Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.
NASA Astrophysics Data System (ADS)
Witthayawiroj, Niti; Nilaphruek, Pongpon
2017-03-01
Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.
Increased Memory Load during Task Completion when Procedures Are Presented on Mobile Screens
ERIC Educational Resources Information Center
Byrd, Keena S.; Caldwell, Barrett S.
2011-01-01
The primary objective of this research was to compare procedure-based task performance using three common mobile screen sizes: ultra mobile personal computer (7 in./17.8 cm), personal data assistant (3.5 in./8.9 cm), and SmartPhone (2.8 in./7.1 cm). Subjects used these three screen sizes to view and execute a computer maintenance procedure.…
Empirical Data Collection and Analysis Using Camtasia and Transana
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom
2009-01-01
One of the possible techniques for collecting empirical data is video recordings of a computer screen with specific screen capture software. This method for collecting empirical data shows how students use the BSCWII (Be Smart Cooperate Worldwide--a web based collaboration/groupware environment) to coordinate their work and collaborate in…
Gardiner, Paula; Sadikova, Ekaterina; Filippelli, Amanda C; Mitchell, Suzanne; White, Laura F; Saper, Robert; Kaptchuk, Ted J; Jack, Brian W; Fredman, Lisa
2015-06-01
Little is known about the use of Stress Management and Relaxation Techniques (SMART) in racially diverse inpatients. We hope to identify socioeconomic status (SES) factors, health behavior factors, and clinical factors associated with the use of SMART. We conducted a secondary analysis of baseline data from 623 hospitalized patients enrolled in the Re-Engineered Discharge (RED) clinical trial. We assessed socio-demographic characteristics and use of SMART. We used bivariate and multivariate logistic regression to test the association of SMART with socio-demographic characteristics, health behaviors, and clinical factors. A total of 26.6% of participants reported using SMART and 23.6% used mind body techniques. Thirty six percent of work disabled patients, 39% of illicit drug users, and 38% of participants with depressive symptoms used SMART. Patients who both reported illicit drug use and screened positive for depression had significantly increased odds of using SMART [OR=4.94, 95% CI (1.59, 15.13)]. Compared to non-Hispanic whites, non-Hispanic blacks [0.55 (0.34-0.87)] and Hispanic/other race individuals [0.40 (0.20-0.76)] were less likely to use SMART. We found greater utilization of SMART among all racial groups compared to previous national studies. In the inner city inpatient setting, patients with depression, illicit drug use, and work disability reported higher rates of using SMART. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
Lighting Control System for Premises with Display Screen Equipment
NASA Astrophysics Data System (ADS)
Kudryashov, A. V.
2017-11-01
The use of Display Screen Equipment (DSE) at enterprises allows one to increase the productivity and safety of production, minimize the number of personnel and leads to the simplification of the work of specialists, but on the other side, changes usual working conditions. If the personnel works with displays, visual fatigue develops more quickly which contributes to the emergence of nervous tension, stress and possible erroneous actions. Low interest of the lighting control system developers towards the rooms with displays is dictated by special requirements for coverage by sanitary and hygienic standards (limiting excess workplace illumination). We decided to create a combined lighting system which works considering daylight illumination and artificial light sources. The brightness adjustment of the LED lamps is carried out according to the DALI protocol, adjustment of the natural illumination by means of smart glasses. The technical requirements for a lighting control system, the structural-functional scheme and the algorithm for controlling the operation of the system have been developed. The elements of control units, sensors and actuators have been selected.
Schodack Smart Roadside Inspection System.
DOT National Transportation Integrated Search
2013-02-01
Under an earlier NYSERDA Agreement (17420) Intelligent Imaging Systems (IIS) supplied and installed Smart Roadside network software and integrated new connected vehicle roadside devices into the Schodack Smart Roadside system. The Smart Roadsid...
Design and implementation of a smart card based healthcare information system.
Kardas, Geylani; Tunali, E Turhan
2006-01-01
Smart cards are used in information technologies as portable integrated devices with data storage and data processing capabilities. As in other fields, smart card use in health systems became popular due to their increased capacity and performance. Their efficient use with easy and fast data access facilities leads to implementation particularly widespread in security systems. In this paper, a smart card based healthcare information system is developed. The system uses smart card for personal identification and transfer of health data and provides data communication via a distributed protocol which is particularly developed for this study. Two smart card software modules are implemented that run on patient and healthcare professional smart cards, respectively. In addition to personal information, general health information about the patient is also loaded to patient smart card. Health care providers use their own smart cards to be authenticated on the system and to access data on patient cards. Encryption keys and digital signature keys stored on smart cards of the system are used for secure and authenticated data communication between clients and database servers over distributed object protocol. System is developed on Java platform by using object oriented architecture and design patterns.
Bottiroli, Sara; Tassorelli, Cristina; Lamonica, Marialisa; Zucchella, Chiara; Cavallini, Elena; Bernini, Sara; Sinforiani, Elena; Pazzi, Stefania; Cristiani, Paolo; Vecchi, Tomaso; Tost, Daniela; Sandrini, Giorgio
2017-01-01
Background: Smart Aging is a Serious games (SGs) platform in a 3D virtual environment in which users perform a set of screening tests that address various cognitive skills. The tests are structured as 5 tasks of activities of daily life in a familiar environment. The main goal of the present study is to compare a cognitive evaluation made with Smart Aging with those of a classic standardized screening test, the Montreal Cognitive Assessment (MoCA). Methods: One thousand one-hundred thirty-one healthy adults aged between 50 and 80 (M = 64.3 ± 8.3) were enrolled in the study. They received a cognitive evaluation with the MoCA and the Smart Aging platform. Participants were grouped according to their MoCA global and specific cognitive domain (i.e., memory, executive functions, working memory, visual spatial elaboration, language, and orientation) scores and we explored differences among these groups in the Smart Aging indices. Results: One thousand eighty-six older adults (M = 64.0 ± 8.0) successfully completed the study and were stratified according to their MoCA score: Group 1 with MoCA < 27 (n = 360); Group 2 with 27 ≥ MoCA < 29 (n = 453); and Group 3 with MoCA ≥ 29 (n = 273). MoCA groups significantly differed in most of the Smart Aging indices considered, in particular as concerns accuracy (ps < 0.001) and time (ps < 0.001) for completing most of the platform tasks. Group 1 was outperformed by the other two Groups and was slower than them in these tasks, which were those supposed to assess memory and executive functions. In addition, significant differences across groups also emerged when considering the single cognitive domains of the MoCA and the corresponding performances in each Smart Aging task. In particular, this platform seems to be a good proxy for assessing memory, executive functions, working memory, and visual spatial processes. Conclusion: These findings demonstrate the validity of Smart Aging for assessing cognitive functions in normal aging. Future studies will validate this platform also in the clinical aging populations. PMID:29209200
Smart Device Use and Perceived Physical and Psychosocial Outcomes among Hong Kong Adolescents
Kwok, Stephen Wai Hang; Lee, Paul Hong; Lee, Regina Lai Tong
2017-01-01
Excessive electronic screen-based activities have been found to be associated with negative outcomes. The aim of this study was to investigate the prevalences and patterns of smart device activities and the purposes and perceived outcomes related to smart device use, and the differences in patterns of smart device activities between adolescents who did and did not perceive these outcomes. The study was a cross-sectional survey of Hong Kong primary and secondary school students. Demographic characteristics, purpose and pattern of the activities, and frequencies of the outcomes were measured. Data from 960 adolescents aged 10–19 were analyzed. Nearly 86% of the sample use smart device daily. The one-week prevalence of perceived sleep deprivation, eye discomfort, musculoskeletal discomfort, family conflict and cyberbullying victimization related to smart device use were nearly 50%, 45%, 40%, 20% and 5% respectively. More than 25% of the respondents were at risk of negative outcomes related to smart device activities for more than 1 h per day, browsing and gaming on at least 4 days per week and watching TV/movies and posting on more than 2 days per week. Their patterns of smart device activities may put a significant number of them at risk of negative outcomes. PMID:28218719
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Gardiner, Paula; Sadikova, Ekaterina; Filippelli, Amanda C.; Mitchell, Suzanne; White, Laura F.; Saper, Robert; Kaptchuk, Ted J.; Jack, Brian W.; Fredman, Lisa
2015-01-01
Objective Little is known about the use of Stress Management and Relaxation Techniques (SMART) in racially diverse inpatients. We hope to identify socioeconomic status (SES) factors, health behavior factors, and clinical factors associated with the use of SMART. Design and Main Outcome Measures We conducted a secondary analysis of baseline data from 623 hospitalized patients enrolled in the Re-Engineered Discharge (RED) clinical trial. We assessed socio-demographic characteristics and use of SMART. We used bivariate and multivariate logistic regression to test the association of SMART with socio-demographic characteristics, health behaviors, and clinical factors. Results A total of 26.6% of participants reported using SMART and 23.6% used mind body techniques. Thirty six percent of work disabled patients, 39% of illicit drug users, and 38% of participants with depressive symptoms used SMART. Patients who both reported illicit drug use and screened positive for depression had significantly increased odds of using SMART [OR=4.94, 95% CI (1.59, 15.13)]. Compared to non-Hispanic whites, non-Hispanic blacks [0.55, (0.34 to 0.87)] and Hispanic/other race individuals [0.40, (0.20 to 0.76)] were less likely to use SMART. Conclusions We found greater utilization of SMART among all racial groups compared to previous national studies. In the inner city inpatient setting, patients with depression, illicit drug use, and work disability reported higher rates of using SMART. PMID:26051576
Comprehensive measures of sound exposures in cinemas using smart phones.
Huth, Markus E; Popelka, Gerald R; Blevins, Nikolas H
2014-01-01
Sensorineural hearing loss from sound overexposure has a considerable prevalence. Identification of sound hazards is crucial, as prevention, due to a lack of definitive therapies, is the sole alternative to hearing aids. One subjectively loud, yet little studied, potential sound hazard is movie theaters. This study uses smart phones to evaluate their applicability as a widely available, validated sound pressure level (SPL) meter. Therefore, this study measures sound levels in movie theaters to determine whether sound levels exceed safe occupational noise exposure limits and whether sound levels in movie theaters differ as a function of movie, movie theater, presentation time, and seat location within the theater. Six smart phones with an SPL meter software application were calibrated with a precision SPL meter and validated as an SPL meter. Additionally, three different smart phone generations were measured in comparison to an integrating SPL meter. Two different movies, an action movie and a children's movie, were measured six times each in 10 different venues (n = 117). To maximize representativeness, movies were selected focusing on large release productions with probable high attendance. Movie theaters were selected in the San Francisco, CA, area based on whether they screened both chosen movies and to represent the largest variety of theater proprietors. Measurements were analyzed in regard to differences between theaters, location within the theater, movie, as well as presentation time and day as indirect indicator of film attendance. The smart phone measurements demonstrated high accuracy and reliability. Overall, sound levels in movie theaters do not exceed safe exposure limits by occupational standards. Sound levels vary significantly across theaters and demonstrated statistically significant higher sound levels and exposures in the action movie compared to the children's movie. Sound levels decrease with distance from the screen. However, no influence on time of day or day of the week as indirect indicator of film attendance could be found. Calibrated smart phones with an appropriate software application as used in this study can be utilized as a validated SPL meter. Because of the wide availability, smart phones in combination with the software application can provide high quantity recreational sound exposure measurements, which can facilitate the identification of potential noise hazards. Sound levels in movie theaters decrease with distance to the screen, but do not exceed safe occupational noise exposure limits. Additionally, there are significant differences in sound levels across movie theaters and movies, but not in presentation time.
Screening and analyzing genes associated with Amur tiger placental development.
Li, Q; Lu, T F; Liu, D; Hu, P F; Sun, B; Ma, J Z; Wang, W J; Wang, K F; Zhang, W X; Chen, J; Guan, W J; Ma, Y H; Zhang, M H
2014-09-26
The Amur tiger is a unique endangered species in the world, and thus, protection of its genetic resources is extremely important. In this study, an Amur tiger placenta cDNA library was constructed using the SMART cDNA Library Construction kit. A total of 508 colonies were sequenced, in which 205 (76%) genes were annotated and mapped to 74 KEGG pathways, including 29 metabolism, 29 genetic information processing, 4 environmental information processing, 7 cell motility, and 5 organismal system pathways. Additionally, PLAC8, PEG10 and IGF-II were identified after screening genes from the expressed sequence tags, and they were associated with placental development. These findings could lay the foundation for future functional genomic studies of the Amur tiger.
Decreasing sugar-sweetened beverage consumption in the rural adolescent population.
Delpier, Terry; Giordana, Sheri; Wedin, Bitsy M
2013-01-01
Adolescent consumption of sugar-sweetened beverages (SSBs) has increased drastically with detrimental effects such as weight gain, weakened bones, dental caries, and associated higher levels of type II diabetes in this population. While in the clinical setting, rural family nurse practitioner (FNP) students, using Kellogg-funded Smart Phones, screened adolescents aged 13 to 17 years for SSB consumption in the previous 24 hours. Adolescents initially were provided with a pamphlet and related oral teaching concerning SSBs by the FNP students, as well as a water bottle to encourage healthy fluid intake. Screening SSB information was loaded onto Smart Phones, which resulted in immediate access by the primary investigator sometimes even hundreds of miles distant. After 30 days, FNP students completed follow-up phone interviews to reassess SSB consumption in the previous 24 hours. Results concerning decreased SSB consumption were statistically significant. Additionally, Smart Phones were instrumental in high-speed data transfer. Both advantages and disadvantages were encountered when using this evolving technology. Copyright © 2013 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.
Gutiérrez García, María Angeles; Martín Ruiz, María Luisa; Rivera, Diego; Vadillo, Laura; Valero Duboy, Miguel Angel
2017-05-19
EDUCERE ("Ubiquitous Detection Ecosystem to Care and Early Stimulation for Children with Developmental Disorders") is an ecosystem for ubiquitous detection, care, and early stimulation of children with developmental disorders. The objectives of this Spanish government-funded research and development project are to investigate, develop, and evaluate innovative solutions to detect changes in psychomotor development through the natural interaction of children with toys and everyday objects, and perform stimulation and early attention activities in real environments such as home and school. Thirty multidisciplinary professionals and three nursery schools worked in the EDUCERE project between 2014 and 2017 and they obtained satisfactory results. Related to EDUCERE, we found studies based on providing networks of connected smart objects and the interaction between toys and social networks. This research includes the design, implementation, and validation of an EDUCERE smart toy aimed to automatically detect delays in psychomotor development. The results from initial tests led to enhancing the effectiveness of the original design and deployment. The smart toy, based on stackable cubes, has a data collector module and a smart system for detection of developmental delays, called the EDUCERE developmental delay screening system (DDSS). The pilot study involved 65 toddlers aged between 23 and 37 months (mean=29.02, SD 3.81) who built a tower with five stackable cubes, designed by following the EDUCERE smart toy model. As toddlers made the tower, sensors in the cubes sent data to a collector module through a wireless connection. All trials were video-recorded for further analysis by child development experts. After watching the videos, experts scored the performance of the trials to compare and fine-tune the interpretation of the data automatically gathered by the toy-embedded sensors. Judges were highly reliable in an interrater agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable "performance" as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. ©María Angeles Gutiérrez García, María Luisa Martín Ruiz, Diego Rivera, Laura Vadillo, Miguel Angel Valero Duboy. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.05.2017.
Perrin, Eliana M; Skinner, Asheley Cockrell
2013-01-01
Regular pediatric care should focus on early obesity prevention and healthy lifestyles and should include obesity screening with sensitive and culturally appropriate communication, beginning at age 2 years. North Carolina is a leader with its Eat Smart, Move More campaign and tools that can help pediatric care providers achieve greater self-efficacy.
Study of Smart Campus Development Using Internet of Things Technology
NASA Astrophysics Data System (ADS)
Widya Sari, Marti; Wahyu Ciptadi, Prahenusa; Hafid Hardyanto, R.
2017-04-01
This paper describes the development of smart campus using Internet of Things (IoT) technology. Through smart campus, it is possible that a campus is connected via online by the outside entity, so that the teaching approach based on technology can be conducted in real time. This research was conducted in smart education, smart parking and smart room. Observation and literature studies were applied as the research method with the related theme for the sake of system design of smart campus. The result of this research is the design of smart campus system that includes smart education development, smart parking and smart room with the sake of Universitas PGRI Yogyakarta as the case study.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
Mining collections of compounds with Screening Assistant 2
2012-01-01
Background High-throughput screening assays have become the starting point of many drug discovery programs for large pharmaceutical companies as well as academic organisations. Despite the increasing throughput of screening technologies, the almost infinite chemical space remains out of reach, calling for tools dedicated to the analysis and selection of the compound collections intended to be screened. Results We present Screening Assistant 2 (SA2), an open-source JAVA software dedicated to the storage and analysis of small to very large chemical libraries. SA2 stores unique molecules in a MySQL database, and encapsulates several chemoinformatics methods, among which: providers management, interactive visualisation, scaffold analysis, diverse subset creation, descriptors calculation, sub-structure / SMART search, similarity search and filtering. We illustrate the use of SA2 by analysing the composition of a database of 15 million compounds collected from 73 providers, in terms of scaffolds, frameworks, and undesired properties as defined by recently proposed HTS SMARTS filters. We also show how the software can be used to create diverse libraries based on existing ones. Conclusions Screening Assistant 2 is a user-friendly, open-source software that can be used to manage collections of compounds and perform simple to advanced chemoinformatics analyses. Its modular design and growing documentation facilitate the addition of new functionalities, calling for contributions from the community. The software can be downloaded at http://sa2.sourceforge.net/. PMID:23327565
Mining collections of compounds with Screening Assistant 2.
Guilloux, Vincent Le; Arrault, Alban; Colliandre, Lionel; Bourg, Stéphane; Vayer, Philippe; Morin-Allory, Luc
2012-08-31
High-throughput screening assays have become the starting point of many drug discovery programs for large pharmaceutical companies as well as academic organisations. Despite the increasing throughput of screening technologies, the almost infinite chemical space remains out of reach, calling for tools dedicated to the analysis and selection of the compound collections intended to be screened. We present Screening Assistant 2 (SA2), an open-source JAVA software dedicated to the storage and analysis of small to very large chemical libraries. SA2 stores unique molecules in a MySQL database, and encapsulates several chemoinformatics methods, among which: providers management, interactive visualisation, scaffold analysis, diverse subset creation, descriptors calculation, sub-structure / SMART search, similarity search and filtering. We illustrate the use of SA2 by analysing the composition of a database of 15 million compounds collected from 73 providers, in terms of scaffolds, frameworks, and undesired properties as defined by recently proposed HTS SMARTS filters. We also show how the software can be used to create diverse libraries based on existing ones. Screening Assistant 2 is a user-friendly, open-source software that can be used to manage collections of compounds and perform simple to advanced chemoinformatics analyses. Its modular design and growing documentation facilitate the addition of new functionalities, calling for contributions from the community. The software can be downloaded at http://sa2.sourceforge.net/.
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
Smart Infrared Inspection System Field Operational Test Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekmann, Adam; Capps, Gary J; Franzese, Oscar
2011-06-01
The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to themore » enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.« less
Smart technologies to enhance social connectedness in older people who live at home.
Morris, Meg E; Adair, Brooke; Ozanne, Elizabeth; Kurowski, William; Miller, Kimberly J; Pearce, Alan J; Santamaria, Nick; Long, Maureen; Ventura, Cameron; Said, Catherine M
2014-09-01
To examine the effectiveness of smart technologies in improving or maintaining the social connectedness of older people living at home. We conducted a systematic review and critical evaluation of research articles published between 2000 and 2013. Article screening, data extraction and quality assessment (using the Downs and Black checklist) were conducted by two independent researchers. Eighteen publications were identified that evaluated the effect of smart technologies on dimensions of social connectedness. Fourteen studies reported positive outcomes in aspects such as social support, isolation and loneliness. There was emerging evidence that some technologies augmented the beneficial effects of more traditional aged-care services. Smart technologies, such as tailored internet programs, may help older people better manage and understand various health conditions, resulting in subsequent improvements in aspects of social connectedness. Further research is required regarding how technological innovations could be promoted, marketed and implemented to benefit older people. © 2014 ACOTA.
This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
Graph Visualization for RDF Graphs with SPARQL-EndPoints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Bond, Nathaniel
2014-07-11
RDF graphs are hard to visualize as triples. This software module is a web interface that connects to a SPARQL endpoint and retrieves graph data that the user can explore interactively and seamlessly. The software written in python and JavaScript has been tested to work on screens as little as the smart phones to large screens such as EVEREST.
Bae, Woo Kyun; Kwon, Jihyun; Lee, Hyun Woo; Lee, Sang-Cheol; Song, Eun-Kee; Shim, Hyeok; Ryu, Keun Ho; Song, Jemin; Seo, Sungbo; Yang, Yaewon; Park, Jong-Hyock; Lee, Ki Hyeong; Han, Hye Sook
2018-05-07
There is growing interest in integrating electronic patient-reported outcome (PRO) measures into routine oncology practice for symptom monitoring. Here, we evaluated the feasibility and accessibility of electronic PRO measures using a smartphone (PRO-SMART) for cancer patients receiving routine chemotherapy. The proposed PRO-SMART application obtains daily personal health record (PHR) data from cancer patients via a smartphone. An analysis report of cumulative PHR data is provided to the clinician in a format suitable for upload to electronic medical records (EMRs). Cancer outpatients who had received at least two cycles of chemotherapy and who were scheduled for two more cycles were enrolled. Between February 2015 and December 2016, 111 patients were screened and 101 of these were included. One-hundred patients used PRO-SMART at least once and were included in the final analysis (90.1% overall accessibility among all screened patients). The number of symptomatic adverse events (AEs) related to chemotherapy recorded in EMRs (mean ± standard deviation [SD]) increased from 0.92 ± 0.80 to 2.26 ± 1.80 (P < 0.001), and grading of AEs increased from 0.81 ± 0.69 to 1.00 ± 0.62 (P = 0.029). After using PRO-SMART, the numeric rating scale for pain (mean ± SD) increased from 0.20 ± 0.72 to 0.99 ± 1.55 (P < 0.001). A patient-reported questionnaire revealed that 64.2% of patients found it useful and 83% found it easy to use. This study suggests that the proposed PRO-SMART is feasible and accessible for assessment of symptomatic AEs in cancer patients receiving chemotherapy for a prospective randomized trial.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Verberne, Frank M F; Ham, Jaap; Midden, Cees J H
2012-10-01
We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.
Educating next-generation civil engineers about smart structures technology
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng
2005-05-01
The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.
Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit. PMID:28167999
Carney, Timothy Jay; Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system "smartness." Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit.
Billis, Antonis S.; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S.; Karagianni, Maria
2016-01-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes. PMID:27284457
Billis, Antonis S; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S; Karagianni, Maria; Bamidis, Panagiotis D
2016-03-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes.
Recognition of familiar people with a mobile cloud architecture for Alzheimer patients.
Fardoun, Habib M; Mashat, Abdullah A; Ramirez Castillo, Jaime
2017-02-01
This article aims to the evaluation of a prototypal assistive technology for Alzheimer's disease (AD) patients that helps them to remember personal details of familiar people they meet in their daily lives. An architecture is proposed for a personal information system powered by face recognition, where the main AD patient's interaction is performed in a smart watch device and the face recognition is carried out on the Cloud. A prototype was developed to perform some tests in a real-life scenario. The prototype showed correct results as a personal information system based on face recognition. However, usability flaws were identified in the interaction with the smart watch. Our architecture showed correct performance and we realized that it could be introduced in other fields, apart from assistive technology. However, when being targeted to patients with dementia some usability problems appeared, such as difficulties to read information in a small screen or take a proper photo. These problems should be addressed in further research. Implications for Rehabilitation This article presents a prototypal assistive technology for Alzheimer's disease (AD) patients. It targets AD patients to recognize their familiars, especially in medium-advanced stages of the disease. Analysing pictures taken by a smart watch, which the patient carries, the person in front is recognized and information about him is sent to the watch. This technology enables patients to have all the information of any close person, as a remainder, easing their daily lives, improving their self-esteem and stimulating the patient with novel technology.
Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.
Designing and Securing an Event Processing System for Smart Spaces
ERIC Educational Resources Information Center
Li, Zang
2011-01-01
Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…
Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily
2017-09-06
Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
The application of autostereoscopic display in smart home system based on mobile devices
NASA Astrophysics Data System (ADS)
Zhang, Yongjun; Ling, Zhi
2015-03-01
Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.
Maulik, Pallab K; Kallakuri, Sudha; Devarapalli, Siddhardha; Vadlamani, Vamsi Krishna; Jha, Vivekanand; Patel, Anushka
2017-01-01
Background About 25% of the Indian population experience common mental disorders (CMD) but only 15–25% of them receive any mental health care. Stigma, lack of adequate mental health professionals and mental health services account for this treatment gap, which is worse in rural areas. Our project evaluated task shifting and mobile–technology based electronic decision support systems to enhance the ability of primary care health workers to provide evidence–based mental health care for stress, depression, and suicidal risk in 30 remote villages in the state of Andhra Pradesh, India. Methods The Systematic Medical Appraisal Referral and Treatment (SMART) Mental Health project between May 2014 and April 2016 trained lay village health workers (Accredited Social Health Activists – ASHAs) and primary care doctors to screen, diagnose and manage individuals with common mental disorders using an electronic decision support system. An anti–stigma campaign using multi–media approaches was conducted across the villages at the outset of the project. A pre–post evaluation using mixed methods assessed the change in mental health service utilization by screen positive individuals. This paper reports on the quantitative aspects of that evaluation. Results Training was imparted to 21 ASHAs and 2 primary care doctors. 5007 of 5167 eligible individuals were screened, and 238 were identified as being positive for common mental disorders and referred to the primary care doctors for further management. Out of them, 2 (0.8%) had previously utilized mental health services. During the intervention period, 30 (12.6%) visited the primary care doctor for further diagnosis and treatment, as advised. There was a significant reduction in the depression and anxiety scores between start and end of the intervention among those who had screened positive at the beginning. Stigma and mental health awareness in the broader community improved during the project. Conclusions The intervention led to individuals being screened for common mental disorders by village health workers and increase in mental health service use by those referred to the primary care doctor. The model was deemed feasible and acceptable. The effectiveness of the intervention needs to be demonstrated using more robust randomized controlled trials, while addressing the issues identified that will facilitate scale up. PMID:28400954
Maulik, Pallab K; Kallakuri, Sudha; Devarapalli, Siddhardha; Vadlamani, Vamsi Krishna; Jha, Vivekanand; Patel, Anushka
2017-06-01
About 25% of the Indian population experience common mental disorders (CMD) but only 15-25% of them receive any mental health care. Stigma, lack of adequate mental health professionals and mental health services account for this treatment gap, which is worse in rural areas. Our project evaluated task shifting and mobile-technology based electronic decision support systems to enhance the ability of primary care health workers to provide evidence-based mental health care for stress, depression, and suicidal risk in 30 remote villages in the state of Andhra Pradesh, India. The Systematic Medical Appraisal Referral and Treatment (SMART) Mental Health project between May 2014 and April 2016 trained lay village health workers (Accredited Social Health Activists - ASHAs) and primary care doctors to screen, diagnose and manage individuals with common mental disorders using an electronic decision support system. An anti-stigma campaign using multi-media approaches was conducted across the villages at the outset of the project. A pre-post evaluation using mixed methods assessed the change in mental health service utilization by screen positive individuals. This paper reports on the quantitative aspects of that evaluation. Training was imparted to 21 ASHAs and 2 primary care doctors. 5007 of 5167 eligible individuals were screened, and 238 were identified as being positive for common mental disorders and referred to the primary care doctors for further management. Out of them, 2 (0.8%) had previously utilized mental health services. During the intervention period, 30 (12.6%) visited the primary care doctor for further diagnosis and treatment, as advised. There was a significant reduction in the depression and anxiety scores between start and end of the intervention among those who had screened positive at the beginning. Stigma and mental health awareness in the broader community improved during the project. The intervention led to individuals being screened for common mental disorders by village health workers and increase in mental health service use by those referred to the primary care doctor. The model was deemed feasible and acceptable. The effectiveness of the intervention needs to be demonstrated using more robust randomized controlled trials, while addressing the issues identified that will facilitate scale up.
Mobile medical image retrieval
NASA Astrophysics Data System (ADS)
Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning
2011-03-01
Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in the text. Problems with the many, often incompatible mobile platforms were discovered and are listed in the text. Mobile information access is a quickly growing domain and the constraints of mobile access also need to be taken into account for image retrieval. The demonstrated access to the medical literature is most relevant as the medical literature and their images are clearly the largest knowledge source in the medical field.
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-08-01
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-11-14
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
A Review of the Use of Touch-Screen Mobile Devices by People with Developmental Disabilities
ERIC Educational Resources Information Center
Stephenson, Jennifer; Limbrick, Lisa
2015-01-01
This article presents a review of the research on the use of mobile touch-screen devices such as PDAs, iPod Touches, iPads and smart phones by people with developmental disabilities. Most of the research has been on very basic use of the devices as speech generating devices, as a means of providing video, pictorial and/or audio self-prompting and…
Smith, Melvyn Howard; Hodgson, Julian; Eltringham, Ian Joseph
2010-12-01
As health services move toward universal methicillin-resistant Staphylococcus aureus (MRSA) screening for hospital admissions, the most cost-effective approach is yet to be defined. In this study, one of the largest to date, we evaluated the performance of the BD GeneOhm MRSA assay on the Rotor-Gene 6000 thermal cycler, using samples taken directly from pooled MRSA screens. Results were compared with the same assay performed on the Smart-Cycler II platform and overnight broth culture. Samples yielding discrepant results were subjected to detailed analysis with an in-house PCR and patient note review. A total of 1,428 pooled MRSA screens were tested. Sensitivities and specificities of 85.3% and 95.8% for the Rotor-Gene and 81% and 95.7% for the Smart-Cycler were obtained, compared with broth enrichment. The sensitivity of the BD GeneOhm assay was increased to 100% when the results of in-house PCR and patient note review were taken into account. This study demonstrates that the Rotor-Gene 6000 thermal cycler is a reliable platform for use with the BD GeneOhm assay. It also proves that commercial PCR can be performed direct on pooled samples in selective broth, without the need for overnight incubation.
Personalized drug discovery: HCA approach optimized for rare diseases at Tel Aviv University.
Solmesky, Leonardo J; Weil, Miguel
2014-03-01
The Cell screening facility for personalized medicine (CSFPM) at Tel Aviv University in Israel is devoted to screening small molecules libraries for finding new drugs for rare diseases using human cell based models. The main strategy of the facility is based on smartly reducing the size of the compounds collection in similarity clusters and at the same time keeping high diversity of pharmacophores. This strategy allows parallel screening of several patient derived - cells in a personalized screening approach. The tested compounds are repositioned drugs derived from collections of phase III and FDA approved small molecules. In addition, the facility carries screenings using other chemical libraries and toxicological characterizations of nanomaterials.
Smart Drug Delivery Systems in Cancer Therapy.
Unsoy, Gozde; Gunduz, Ufuk
2018-02-08
Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Varied Impacts of Energy Storage and Photovoltaics on Fossil Fuel Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studarus, Karen E.; Thayer, Brandon L.; Barrett, Emily L.
The emissions consequences of smart grid technologies can be significant but are not always intuitive. This is particularly true in the implementation of energy storage (ES) to enable the installation of solar photovoltaic (PV) systems. Using the web calculator at https://eqt.pnnl.gov and prototypical distribution feeders, this paper explores the COmore » $${_2}$$, SO$${_2}$$ and NO$${_x}$$ impacts of ES deployed with solar PV, where the energy storage system is operated to minimize load variation. Five regions of the country were explored using 15 prototypical distribution feeders and 2015 historical data. Impacts vary in direction, magnitude, and trend, and require a context-dependent screening method for faithful representation.« less
A Stochastic Spiking Neural Network for Virtual Screening.
Morro, A; Canals, V; Oliver, A; Alomar, M L; Galan-Prado, F; Ballester, P J; Rossello, J L
2018-04-01
Virtual screening (VS) has become a key computational tool in early drug design and screening performance is of high relevance due to the large volume of data that must be processed to identify molecules with the sought activity-related pattern. At the same time, the hardware implementations of spiking neural networks (SNNs) arise as an emerging computing technique that can be applied to parallelize processes that normally present a high cost in terms of computing time and power. Consequently, SNN represents an attractive alternative to perform time-consuming processing tasks, such as VS. In this brief, we present a smart stochastic spiking neural architecture that implements the ultrafast shape recognition (USR) algorithm achieving two order of magnitude of speed improvement with respect to USR software implementations. The neural system is implemented in hardware using field-programmable gate arrays allowing a highly parallelized USR implementation. The results show that, due to the high parallelization of the system, millions of compounds can be checked in reasonable times. From these results, we can state that the proposed architecture arises as a feasible methodology to efficiently enhance time-consuming data-mining processes such as 3-D molecular similarity search.
Ubiquitous Robotic Technology for Smart Manufacturing System.
Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.
Ubiquitous Robotic Technology for Smart Manufacturing System
Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206
SMART Careplan System for Continuum of Care
Kim, Young Ah; Jang, Seon Young; Ahn, Meejung; Kim, Kyung Duck
2015-01-01
Objectives This paper describes the integrated Careplan system, designed to manage and utilize the existing Electronic Medical Record (EMR) system; the system also defines key items for interdisciplinary communication and continuity of patient care. Methods We structured the Careplan system to provide effective interdisciplinary communication for healthcare services. The design of the Careplan system architecture proceeded in four steps-defining target datasets; construction of conceptual framework and architecture; screen layout and storyboard creation; screen user interface (UI) design and development, and pilot test and step-by-step deployment. This Careplan system architecture consists of two parts, a server-side and client-side area. On the server-side, it performs the roles of data retrieval and storage from target EMRs. Furthermore, it performs the role of sending push notifications to the client depending on the careplan series. Also, the Careplan system provides various convenient modules to easily enter an individual careplan. Results Currently, Severance Hospital operates the Careplan system and provides a stable service dealing with dynamic changes (e.g., domestic medical certification, the Joint Commission International guideline) of EMR. Conclusions The Careplan system should go hand in hand with key items for strengthening interdisciplinary communication and information sharing within the EMR environment. A well-designed Careplan system can enhance user satisfaction and completed performance. PMID:25705559
SMART Careplan System for Continuum of Care.
Kim, Young Ah; Jang, Seon Young; Ahn, Meejung; Kim, Kyung Duck; Kim, Sung Soo
2015-01-01
This paper describes the integrated Careplan system, designed to manage and utilize the existing Electronic Medical Record (EMR) system; the system also defines key items for interdisciplinary communication and continuity of patient care. We structured the Careplan system to provide effective interdisciplinary communication for healthcare services. The design of the Careplan system architecture proceeded in four steps-defining target datasets; construction of conceptual framework and architecture; screen layout and storyboard creation; screen user interface (UI) design and development, and pilot test and step-by-step deployment. This Careplan system architecture consists of two parts, a server-side and client-side area. On the server-side, it performs the roles of data retrieval and storage from target EMRs. Furthermore, it performs the role of sending push notifications to the client depending on the careplan series. Also, the Careplan system provides various convenient modules to easily enter an individual careplan. Currently, Severance Hospital operates the Careplan system and provides a stable service dealing with dynamic changes (e.g., domestic medical certification, the Joint Commission International guideline) of EMR. The Careplan system should go hand in hand with key items for strengthening interdisciplinary communication and information sharing within the EMR environment. A well-designed Careplan system can enhance user satisfaction and completed performance.
Nair, Bala G; Newman, Shu-Fang; Peterson, Gene N; Schwid, Howard A
2013-01-01
Anesthesia information management systems (AIMS) are being increasingly used in the operating room to document anesthesia care. We developed a system, Smart Anesthesia Manager™ (SAM) that works in conjunction with an AIMS to provide clinical and billing decision support. SAM interrogates AIMS database in near real time, detects issues related to clinical care, billing and compliance, and material waste. Issues and the steps for their resolution are brought to the attention of the anesthesia provider in real time through "pop-up" messages overlaid on top of AIMS screens or text pages. SAM improved compliance to antibiotic initial dose and redose to 99.3 ± 0.7% and 83.9 ± 3.4% from 88.5 ± 1.4% and 62.5 ± 1.6%, respectively. Beta-blocker protocol compliance increased to 94.6 ± 3.5% from 60.5 ± 8.6%. Inadvertent gaps (>15 min) in blood pressure monitoring were reduced to 34 ± 30 min/1000 cases from 192 ± 58 min/1000 cases. Additional billing charge capture of invasive lines procedures worth $144,732 per year and 1,200 compliant records were achieved with SAM. SAM was also able to reduce wastage of inhalation anesthetic agents worth $120,168 per year.
Affinity+: Semi-Structured Brainstorming on Large Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.
2013-04-27
Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.
Moodie, Erica E M; Karran, James C; Shortreed, Susan M
2016-05-14
Personalizing medical care is becoming increasingly popular, particularly mental health care. There is growing interest in formalizing medical decision making based on evolving patient symptoms in an evidence-based manner. To determine optimal sequencing of treatments, the sequences themselves must be studied; this may be accomplished by using a sequential multiple assignment randomized trial (SMART). It has been hypothesized that SMART studies may improve participant retention and generalizability. We examine the hypotheses that SMART studies are more generalizable and have better retention than traditional randomized clinical trials via a case study of a SMART study of antipsychotic medications. We considered the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia study, comparing the trial participant characteristics and overall retention to those of comparable trials found via a review of all related trials conducted from 2000 onwards. A MEDLINE search returned 6435 results for primary screening; ultimately, 48 distinct trials were retained for analysis. The study population in CATIE was similar to, although perhaps less symptomatic than, the study populations of traditional randomized clinical trials (RCTs), suggesting no large gains in generalizability despite the pragmatic nature of the trial. However, CATIE did see good month-by-month retention. SMARTs offer the possibility of studying treatment sequences in a way that a series of traditional RCTs cannot. SMARTs may offer improved retention; however, this case study did not find evidence to suggest greater generalizability using this trial design. ClinicalTrials.gov NCT00014001 . Registered on 6 April 2001.
Bosc, R; Fitoussi, A; Pigneur, F; Tacher, V; Hersant, B; Meningaud, J-P
2017-08-01
The augmented reality on smart glasses allows the surgeon to visualize three-dimensional virtual objects during surgery, superimposed in real time to the anatomy of the patient. This makes it possible to preserve the vision of the surgical field and to dispose of added computerized information without the need to use a physical surgical guide or a deported screen. The three-dimensional objects that we used and visualized in augmented reality came from the reconstructions made from the CT-scans of the patients. These objects have been transferred through a dedicated application on stereoscopic smart glasses. The positioning and the stabilization of the virtual layers on the anatomy of the patients were obtained thanks to the recognition, by the glasses, of a tracker placed on the skin. We used this technology, in addition to the usual locating methods for preoperative planning and the selection of perforating vessels for 12 patients operated on a breast reconstruction, by perforating flap of deep lower epigastric artery. The "hands-free" smart glasses with two stereoscopic screens make it possible to provide the reconstructive surgeon with binocular visualization in the operative field of the vessels identified with the CT-scan. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
Design of Smart Home Systems Prototype Using MyRIO
NASA Astrophysics Data System (ADS)
Ratna Wati, Dwi Ann; Abadianto, Dika
2017-06-01
This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution
statistical summary of the U.S. distribution systems World-class, high spatial/temporal resolution of solar Systems and Scenarios | Grid Modernization | NREL SMART-DS: Synthetic Models for Advanced , Realistic Testing: Distribution Systems and Scenarios SMART-DS: Synthetic Models for Advanced, Realistic
Smart Grid Development: Multinational Demo Project Analysis
NASA Astrophysics Data System (ADS)
Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.
2016-12-01
This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk
The core vision of the smart grid concept is the realization of reliable two-way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-grid GOOSE messages with IEC-61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less
Rieger, Toni; Kerber, Romy; El Halas, Hussein; Pallasch, Elisa; Duraffour, Sophie; Günther, Stephan; Ölschläger, Stephan
2016-01-01
Background. Diagnosis of Ebola virus (EBOV) disease (EVD) requires laboratory testing. Methods. The RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and the derived RealStar Zaire Ebolavirus RT-PCR kit were validated using in vitro transcripts, supernatant of infected cell cultures, and clinical specimens from patients with EVD. Results. The Filovirus Screen kit detected EBOV, Sudan virus, Taï Forest virus, Bundibugyo virus, Reston virus, and Marburg virus and differentiated between the genera Ebolavirus and Marburgvirus. The amount of filovirus RNA that could be detected with a probability of 95% ranged from 11 to 67 RNA copies/reaction on a LightCycler 480 II. The Zaire Ebolavirus kit is based on the Filovirus Screen kit but was optimized for detection of EBOV. It has an improved signal-to-noise ratio at low EBOV RNA concentrations and is somewhat more sensitive than the Filovirus kit. Both kits show significantly lower analytical sensitivity on a SmartCycler II. Clinical evaluation revealed that the SmartCycler II, compared with other real-time PCR platforms, decreases the clinical sensitivity of the Filovirus Screen kit to diagnose EVD at an early stage. Conclusions. The Filovirus Screen kit detects all human-pathogenic filoviruses with good analytical sensitivity if performed on an appropriate real-time PCR platform. High analytical sensitivity is important for early diagnosis of EVD. PMID:27549586
Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...
Design of the smart scenic spot service platform
NASA Astrophysics Data System (ADS)
Yin, Min; Wang, Shi-tai
2015-12-01
With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.
Automating the application of smart materials for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.
2015-03-01
The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of successmore » when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.« less
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...
Automating the application of smart materials for protein crystallization.
Khurshid, Sahir; Govada, Lata; El-Sharif, Hazim F; Reddy, Subrayal M; Chayen, Naomi E
2015-03-01
The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as `smart materials') for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.
Smart Stylet: The development and use of a bedside external ventricular drain image-guidance system
Patil, Vaibhav; Gupta, Rajiv; Estépar, Raúl San José; Lacson, Ronilda; Cheung, Arnold; Wong, Judith M.; Popp, A. John; Golby, Alexandra; Ogilvy, Christopher; Vosburgh, Kirby G.
2015-01-01
Background Placement accuracy of ventriculostomy catheters is reported in a wide and variable range. Development of an efficient image-guidance system may improve physician performance and patient safety. Objective We evaluate the prototype of Smart Stylet, a new electromagnetic image-guidance system for use during bedside ventriculostomy. Methods Accuracy of the Smart Stylet system was assessed. System operators were evaluated for their ability to successfully target the ipsilateral frontal horn in a phantom model. Results Target registration error across 15 intracranial targets ranged from 1.3 – 4.6 mm (mean 3.1 mm). Using Smart Stylet guidance, a test operator successfully passed a ventriculostomy catheter to a shifted ipsilateral frontal horn 20/20 (100%) times from the frontal approach in a skull phantom. Without Smart Stylet guidance, the operator was successful 4/10 (40 %) from the right frontal approach and 6/10 (60 %) from the left frontal approach. In a separate experiment, resident operators were successful 2/4 (50%) when targeting the shifted ipsilateral frontal horn with Smart Stylet guidance and 0/4 (0 %) without image-guidance using a skull phantom. Conclusions Smart Stylet may improve the ability to successfully target the ventricles during frontal ventriculostomy. PMID:25662506
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-01-01
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-05-04
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
Charron-Prochownik, Denise; Zgibor, Janice C; Peyrot, Mark; Peeples, Malinda; McWilliams, Janis; Koshinsky, Janice; Noullet, William; Siminerio, Linda M
2007-01-01
The purpose of this article is to present the results of the process evaluation and patient experience in completing the Diabetes Self-management Assessment Report Tool (D-SMART), an instrument within the AADE Outcome System to assist diabetes educators to assess, facilitate, and track behavior change in the provision of diabetes self-management education (DSME). The D-SMART was integrated into computer and telephonic systems at 5 sites within the Pittsburgh Regional Initiative for Diabetes Education (PRIDE) network. Data were obtained from 290 patients with diabetes using the system at these programs via paper-and-pencil questionnaires following baseline D-SMART assessments and electronic system measurement of system performance. Process evaluation included time of completion, understanding content, usability of technology, and satisfaction with the system. Patients were 58% female and 85% Caucasian and had a mean age of 58 years. Fifty-six percent of patients had no more than a high school education, and 78% had Internet access at home. Most patients reported completing the D-SMART at home (78%), in 1 attempt (86%) via the Internet (55%), and in less than 30 minutes. Seventy-six percent believed the questions were easy to understand, and 80% did not need assistance. Age was negatively associated with ease of use. Moreover, 76% of patients believed the D-SMART helped them think about their diabetes, with 67% indicating that it gave the diabetes educator good information about themselves and their diabetes. Most (94%) were satisfied with the D-SMART. Level of satisfaction was independent of the system being used. The D-SMART was easily completed at home in 1 attempt, content was understandable, and patients were generally satisfied with the wording of questions and selection of answers. The D-SMART is easy to use and enhanced communication between the patient and clinician; however, elderly patients may need more assistance. Computer-based and telephonic D-SMARTs appear to be feasible and useful assessment methods for diabetes educators.
GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...
The role of smart systems in rendezvous, close proximity operations and docking maneuvers
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.
Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
Pilot symbol-assisted beamforming algorithms in the WCDMA reverse link
NASA Astrophysics Data System (ADS)
Kong, Dongkeon; Lee, Jong H.; Chun, Joohwan; Woo, Yeon Sik; Soh, Ju Won
2001-08-01
We present a pilot symbol-assisted beamforming algorithm and a simulation tool of smart antennas for Wideband Code Division Multiple Access (WCDMA) in reverse link. In the 3GPP WCDMA system smart antenna technology has more room to play with than in the second generation wireless mobile systems such as IS-95 because the pilot symbol in Dedicated Physical Control Channel (DPCCH) can be utilized. First we show a smart antenna structure and adaptation algorithms, and then we explain a low-level smart antenna implementation using Simulink and MATLAB. In the design of our smart antenna system we pay special attention for the easiness of the interface to the baseband modem; Our ultimate goal is to implement a baseband smart antenna chip sets that can easily be added to to-be-existed baseband WCDMA modem units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.
Analysing Smart Metering Systems from a Consumer Perspective
NASA Astrophysics Data System (ADS)
Yesudas, Rani
Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.
Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin
2016-04-19
The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less
Exploration and design of smart home circuit based on ZigBee
NASA Astrophysics Data System (ADS)
Luo, Huirong
2018-05-01
To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.
Implementing a High-Assurance Smart-Card OS
NASA Astrophysics Data System (ADS)
Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.
Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.
Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?
Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D
2012-02-01
The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.
Cybersecurity and Optimization in Smart “Autonomous” Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup
Significant resources have been invested in making buildings “smart” by digitizing, networking and automating key systems and operations. Smart autonomous buildings create new energy efficiency, economic and environmental opportunities. But as buildings become increasingly networked to the Internet, they can also become more vulnerable to various cyber threats. Automated and Internet-connected buildings systems, equipment, controls, and sensors can significantly increase cyber and physical vulnerabilities that threaten the confidentiality, integrity, and availability of critical systems in organizations. Securing smart autonomous buildings presents a national security and economic challenge to the nation. Ignoring this challenge threatens business continuity and the availability ofmore » critical infrastructures that are enabled by smart buildings. In this chapter, the authors address challenges and explore new opportunities in securing smart buildings that are enhanced by machine learning, cognitive sensing, artificial intelligence (AI) and smart-energy technologies. The chapter begins by identifying cyber-threats and challenges to smart autonomous buildings. Then it provides recommendations on how AI enabled solutions can help smart buildings and facilities better protect, detect and respond to cyber-physical threats and vulnerabilities. Next, the chapter will provide case studies that examine how combining AI with innovative smart-energy technologies can increase both cybersecurity and energy efficiency savings in buildings. The chapter will conclude by proposing recommendations for future cybersecurity and energy optimization research for examining AI enabled smart-energy technology.« less
AVQS: attack route-based vulnerability quantification scheme for smart grid.
Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display.
Kim, Dong Ju; Lim, Chi Yeon; Gu, Namyi; Park, Choul Yong
2017-10-01
In the present study, the visual discomfort induced by smart mobile devices was assessed in normal and healthy adults. Fifty-nine volunteers (age, 38.16 ± 10.23 years; male : female = 19 : 40) were exposed to tablet computer screen stimuli (iPad Air, Apple Inc.) for 1 hour. Participants watched a movie or played a computer game on the tablet computer. Visual fatigue and discomfort were assessed using an asthenopia questionnaire, tear film break-up time, and total ocular wavefront aberration before and after viewing smart mobile devices. Based on the questionnaire, viewing smart mobile devices for 1 hour significantly increased mean total asthenopia score from 19.59 ± 8.58 to 22.68 ± 9.39 (p < 0.001). Specifically, the scores for five items (tired eyes, sore/aching eyes, irritated eyes, watery eyes, and hot/burning eye) were significantly increased by viewing smart mobile devices. Tear film break-up time significantly decreased from 5.09 ± 1.52 seconds to 4.63 ± 1.34 seconds (p = 0.003). However, total ocular wavefront aberration was unchanged. Visual fatigue and discomfort were significantly induced by viewing smart mobile devices, even though the devices were equipped with state-of-the-art display technology. © 2017 The Korean Ophthalmological Society
Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display
Kim, Dong Ju; Lim, Chi-Yeon; Gu, Namyi
2017-01-01
Purpose In the present study, the visual discomfort induced by smart mobile devices was assessed in normal and healthy adults. Methods Fifty-nine volunteers (age, 38.16 ± 10.23 years; male : female = 19 : 40) were exposed to tablet computer screen stimuli (iPad Air, Apple Inc.) for 1 hour. Participants watched a movie or played a computer game on the tablet computer. Visual fatigue and discomfort were assessed using an asthenopia questionnaire, tear film break-up time, and total ocular wavefront aberration before and after viewing smart mobile devices. Results Based on the questionnaire, viewing smart mobile devices for 1 hour significantly increased mean total asthenopia score from 19.59 ± 8.58 to 22.68 ± 9.39 (p < 0.001). Specifically, the scores for five items (tired eyes, sore/aching eyes, irritated eyes, watery eyes, and hot/burning eye) were significantly increased by viewing smart mobile devices. Tear film break-up time significantly decreased from 5.09 ± 1.52 seconds to 4.63 ± 1.34 seconds (p = 0.003). However, total ocular wavefront aberration was unchanged. Conclusions Visual fatigue and discomfort were significantly induced by viewing smart mobile devices, even though the devices were equipped with state-of-the-art display technology. PMID:28914003
An Approach for Smart Antenna Testbed
NASA Astrophysics Data System (ADS)
Kawitkar, R. S.; Wakde, D. G.
2003-07-01
The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devicesmore » become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
Teaching Astronomy Classes and Labs in a Smart Classroom
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.
2017-01-01
Saint Anselm College is a small liberal arts college in New Hampshire with an enrollment of approximately 1900 students. All students are required to take one science course with a laboratory component. Introduction to Astronomy is now being offered in regular rotation in the Department of Physics, taking advantage of the new "smart" classrooms with the technology and set up to encourage active learning. These classrooms seat 25 students and feature 5 "pods," each with their own screen that can be hooked up to a student computer or one of the iPads available to the professor. I will present how these classrooms are used for Introduction to Astronomy and related courses under development for active learning. Since the class requires a laboratory component and New Hampshire weather is notably unpredictable, the smart classroom offers an alternative using freely available computer simulations to allow for an alternative indoor laboratory experience.
Design of smart home gateway based on Wi-Fi and ZigBee
NASA Astrophysics Data System (ADS)
Li, Yang
2018-04-01
With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.
Clinical and psychological effects of excessive screen time on children.
Domingues-Montanari, Sophie
2017-04-01
Over recent years, screen time has become a more complicated concept, with an ever-expanding variety of electronic media devices available throughout the world. Television remains the predominant type of screen-based activity among children. However, computer use, video games and ownership of devices, such as tablets and smart phones, are occurring from an increasingly young age. Screen time, in particular, television viewing, has been negatively associated with the development of physical and cognitive abilities, and positively associated with obesity, sleep problems, depression and anxiety. The physiological mechanisms that underlie the adverse health outcomes related to screen time and the relative contributions of different types of screen and media content to specific health outcomes are unclear. This review discusses the positive and negative effects of screen time on the physiological and psychological development of children. Furthermore, recommendations are offered to parents and clinicians. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
The Smart Power Lab at the Energy Systems Integration Facility
Christensen, Dane; Sparn, Bethany; Hannegan, Brian
2018-05-11
Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
The Smart Power Lab at the Energy Systems Integration Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Dane; Sparn, Bethany; Hannegan, Brian
Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.
Lynggaard, Per; Skouby, Knud Erik
2016-11-02
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-02-25
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.
78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...
A rule-based smart automated fertilization and irrigation systems
NASA Astrophysics Data System (ADS)
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
Afanas'ev, M V; Chipanin, E V; Shestakov, V E; Denisov, A V; Fomina, L A; Ostiak, A S; Balakhonov, S V
2013-03-01
The article presents the results of development and practical implementation of system of polymerase chain reaction testing in real-time operation mode to detect agent of plague infield material. In laboratory conditions the system demonstrated good results and hence it was applied in conditions of field laboratory of epidemiologic team during planned epizootologic examination of Gorno-Altaisk hot spot of plague. The sampling consisted of more than 1400 objects. It was demonstrated that high sensitivity and specificity is immanent to proposed system. The adaptation of the system to the real time amplifier "Smart Cycler" (Cephid, USA) having some specific technical characteristics makes it possible to consider the proposed test-system as an effective sensitive and precise instrument for screening studies in the process of regular epizootologic examinations of hot spots of plague.
Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge
2012-01-01
One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
ETHICS OF SMART HOUSE WELFARE TECHNOLOGY FOR OLDER ADULTS: A SYSTEMATIC LITERATURE REVIEW.
Sánchez, Veralia Gabriela; Taylor, Ingrid; Bing-Jonsson, Pia Cecilie
2017-01-01
The University College of Southeast Norway has an on-going project to develop a smart house welfare system to allow older adults and people with disabilities to remain in their homes for as long as they wish in safe, dignified, living conditions. This article reviews reported ethical challenges to implementing smart houses for older adults. A systematic literature review identified twenty-four articles in English, French, Spanish, and Norwegian, which were analyzed and synthesized using Hofmann's question list to investigate the reported ethical challenges. Smart houses offer a promising way to improve access to home care for older adults and people with disabilities. However, important ethical challenges arise when implementing smart houses, including cost-effectiveness, privacy, autonomy, informed consent, dignity, safety, and trust. The identified ethical challenges are important to consider when developing smart house systems. Due to the limitations of smart house technology, designers and users should be mindful that smart houses can achieve a safer and more dignified life-style but cannot solve all the challenges related to ageing, disabilities, and disease. At some point, smart houses can no longer help persons as they develop needs that smart houses cannot meet.
An Embedded Rule-Based Diagnostic Expert System in Ada
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Liberman, Eugene M.
1992-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision
Lynggaard, Per; Skouby, Knud Erik
2016-01-01
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.
Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
Development of a standardized, citywide process for managing smart-pump drug libraries.
Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James
2018-06-15
Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review
Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou
2017-01-01
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
DOT National Transportation Integrated Search
2018-01-01
For this report, researchers have examined smart parking, which is a parking management tool that uses various technologies to aid drivers in efficiently locating and paying for available parking. Smart parking systems allow drivers to know where the...
AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid
Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923
Survey on the use of smart and adaptive engineering systems in medicine.
Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G
2002-11-01
In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Samigulina, Galina A.; Shayakhmetova, Assem S.
2016-11-01
Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.
Use of Dynamic Distortion to Predict and Alleviate Loss of Control
NASA Technical Reports Server (NTRS)
Klyde, David; Liang, Chi-Ying; Alvarez, Daniel
2011-01-01
This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.
An RFID Based Smart Feeder for Hummingbirds.
Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F; Tang, Wei
2015-12-16
We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9-11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future.
An RFID Based Smart Feeder for Hummingbirds
Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F.; Tang, Wei
2015-01-01
We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9–11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future. PMID:26694402
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-01-01
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346
Cyber and physical equipment digital control system in Industry 4.0 item designing company
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.
Coding & Robotics for Young Children? You Bet!
ERIC Educational Resources Information Center
Gadzikowski, Ann
2016-01-01
In 2012, the National Association for the Education of Young Children (NAEYC) revised its position statement regarding the appropriate use of technology in early childhood classrooms. The increased accessibility of touch screens on tablets and smart phones led to this revision, which moves the conversation from the question of "When shall we…
Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.
Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong
2018-06-04
In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.
Comparative advantage between traditional and smart navigation systems
NASA Astrophysics Data System (ADS)
Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan
2013-03-01
The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).
A low-cost method for visible fluorescence imaging.
Tarver, Crissy L; Pusey, Marc
2017-12-01
A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.
Besseris, George J
2018-03-01
Generalized regression neural networks (GRNN) may act as crowdsourcing cognitive agents to screen small, dense and complex datasets. The concurrent screening and optimization of several complex physical and sensory traits of bread is developed using a structured Taguchi-type micro-mining technique. A novel product outlook is offered to industrial operations to cover separate aspects of smart product design, engineering and marketing. Four controlling factors were selected to be modulated directly on a modern production line: 1) the dough weight, 2) the proofing time, 3) the baking time, and 4) the oven zone temperatures. Concentrated experimental recipes were programmed using the Taguchi-type L 9 (3 4 ) OA-sampler to detect potentially non-linear multi-response tendencies. The fused behavior of the master-ranked bread characteristics behavior was smart sampled with GRNN-crowdsourcing and robust analysis. It was found that the combination of the oven zone temperatures to play a highly influential role in all investigated scenarios. Moreover, the oven zone temperatures and the dough weight appeared to be instrumental when attempting to synchronously adjusting all four physical characteristics. The optimal oven-zone temperature setting for concurrent screening-and-optimization was found to be 270-240 °C. The optimized (median) responses for loaf weight, moisture, height, width, color, flavor, crumb structure, softness, and elasticity are: 782 g, 34.8 %, 9.36 cm, 10.41 cm, 6.6, 7.2, 7.6, 7.3, and 7.0, respectively.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system
R. González-Pinzón; R. Haggerty; D.D. Myrold
2012-01-01
The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship...
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all asp...
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decisions support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all a...
Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains guidance and analysis tools for all aspect...
Technology for the Next-Generation-Mobile User Experience
NASA Astrophysics Data System (ADS)
Delagi, Greg
The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!
NASA Astrophysics Data System (ADS)
Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu
2018-05-01
This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.
Combining engineered cell-sensors with multi-agent systems to realize smart environment
NASA Astrophysics Data System (ADS)
Chen, Mei
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
..., and National SMART Reporting Under the Common Origination and Disbursement (COD) System SUMMARY: The... records. Title of Collection: Pell Grant, ACG, and National SMART Reporting under the Common Origination.... Abstract: The Federal Pell Grant, ACG, and National SMART Programs are student financial assistance...
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.
Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali
2017-07-28
Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.
Development of integrated control system for smart factory in the injection molding process
NASA Astrophysics Data System (ADS)
Chung, M. J.; Kim, C. Y.
2018-03-01
In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.
Smart health and innovation: facilitating health-related behaviour change.
Redfern, J
2017-08-01
Non-communicable diseases (NCD) are the leading cause of death globally. Smart health technology and innovation is a potential strategy for increasing reach and for facilitating health behaviour change. Despite rapid growth in the availability and affordability of technology there remains a paucity of published and robust research in the area as it relates to health. The objective of the present paper is to review and provide a snapshot of a variety of contemporary examples of smart health strategies with a focus on evidence and research as it relates to prevention with a CVD management lens. In the present analysis, five examples will be discussed and they include a physician-directed strategy, consumer directed strategies, a public health approach and a screening strategy that utilises external hardware that connects to a smartphone. In conclusion, NCD have common risk factors and all have an association with nutrition and health. Smart health and innovation is evolving rapidly and may help with diagnosis, treatment and management. While on-going research, development and knowledge is needed, the growth of technology development and utilisation offers opportunities to reach more people and achieve better health outcomes at local, national and international levels.
NASA Astrophysics Data System (ADS)
Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.
2016-06-01
Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.
Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-07-15
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology
Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-01-01
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884
Bellevue Smart Traveler And Cellular Telecommunication
DOT National Transportation Integrated Search
1993-05-01
SEATTLE (BELLEVUE) SMART TRAVELER OR SST : PHASE I OF THE BELLEVUE SMART TRAVELER PROJECT WAS FUNDED BY THE FEDERAL TRANSIT ADMINISTRATION UNDER THE ADVANCED PUBLIC TRANSPORTATION SYSTEMS (APTS) PROGRAM. THE GRANTEE, THE MUNICIPALITY OF METROPOLIT...
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
NASA Astrophysics Data System (ADS)
Yang, C. S. Walter; DesRoches, Reginald
2014-03-01
This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza
2016-04-01
This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation in a variety of extreme environments and can be parachuted into the needed locations. The Smart Nanogrid Systems will have sensors that will sense the environmental conditions for the wind turbines and solar panels for maximum energy harvesting as well as identifying the appliances in use. These signal will be sent to a control system to send signal to the energy harvester actuators to maximize the power generation as well as regulating the power, i.e., either send the power to the appliances and consumer devices or send the power to the batteries and capacitors for energy storage, if the power is being generated but there are no consumer appliances in use, making it a "smart nanogrid deployable renewable energy harvesting system."
Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D
2001-10-01
The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.
NASA Astrophysics Data System (ADS)
Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2015-02-01
A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
Smart thermal networks for smart cities - Introduction of concepts and measures
NASA Astrophysics Data System (ADS)
Schmidt, R. R.; Pol, O.; Basciotti, D.; Page, J.
2012-10-01
In order to contribute to high living standards, climate mitigation and energy supply security, future urban energy systems require a holistic approach. In particular an intelligent integration of thermal networks is necessary. This paper will briefly present the "smart city" concept and introduce an associated definition for smart thermal networks defined on three levels: 1. the interaction with urban planning processes and the interface to the overall urban energy system, 2. the adaptation of the temperature level and 3. supply and demand-side management strategies.
Organizational and technological correlates of nurses’ trust in a smart IV pump
Montague, Enid; Asan, Onur; Chiou, Erin
2013-01-01
The aim of this study was to understand technology and system characteristics that contribute to nurses’ ratings of trust in a smart IV pump. Nurse’s trust in new technologies can influence how technologies are used. Trust in technology is defined as a person’s belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, over trust, distrust, and mistrust. Trust in technology is also related to several use specific outcomes, including appropriate use and inappropriate use such as over reliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart IV pump. The survey assessed trust in the IV pump and other elements of the sociotechnical system, individual characteristics, technology characteristics and organizational characteristics. Results show perceptions of usefulness, safety, ease of use and usability are related to ratings of trust in smart IV pumps. Other work system factors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses’ trust in smart IV pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart IV pumps and health systems. Recommendations for appropriately trustworthy smart IV pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems. PMID:23321482
Smart home technologies for health and social care support.
Martin, Suzanne; Kelly, Greg; Kernohan, W George; McCreight, Bernadette; Nugent, Christopher
2008-10-08
The integration of smart home technology to support health and social care is acquiring an increasing global significance. Provision is framed within the context of a rapidly changing population profile, which is impacting on the number of people requiring health and social care, workforce availability and the funding of healthcare systems. To explore the effectiveness of smart home technologies as an intervention for people with physical disability, cognitive impairment or learning disability, who are living at home, and to consider the impact on the individual's health status and on the financial resources of health care. We searched the following databases for primary studies: (a) the Cochrane Effective Practice and Organisation of Care (EPOC) Group Register, (b) the Cochrane Central Register of Controlled Trials (CENTRAL), (The Cochrane Library, issue 1, 2007), and (c) bibliographic databases, including MEDLINE (1966 to March 2007), EMBASE (1980 to March 2007) and CINAHL (1982 to March 2007). We also searched the Database of Abstracts of Reviews of Effectiveness (DARE). We searched the electronic databases using a strategy developed by the EPOC Trials Search Co-ordinator. We included randomised controlled trials (RCTs), quasi-experimental studies, controlled before and after studies (CBAs) and interrupted time series analyses (ITS). Participants included adults over the age of 18, living in their home in a community setting. Participants with a physical disability, dementia or a learning disability were included. The included interventions were social alarms, electronic assistive devices, telecare social alert platforms, environmental control systems, automated home environments and 'ubiquitous homes'. Outcome measures included any objective measure that records an impact on a participant's quality of life, healthcare professional workload, economic outcomes, costs to healthcare provider or costs to participant. We included measures of service satisfaction, device satisfaction and healthcare professional attitudes or satisfaction. One review author completed the search strategy with the support of a life and health sciences librarian. Two review authors independently screened titles and abstracts of results. No studies were identified which met the inclusion criteria. This review highlights the current lack of empirical evidence to support or refute the use of smart home technologies within health and social care, which is significant for practitioners and healthcare consumers.
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
Smart Phones Permitted: How Teachers Use Text Messaging to Collaborate
ERIC Educational Resources Information Center
Cosier, Meghan; Gomez, Audri; McKee, Aja; Maghzi, Kimiya Sohrab
2015-01-01
The use of smart phones by teachers in K-12 education has been contentious. Although teachers are often instructed to put their phones away during instruction, teachers and students can benefit in many ways from using smart phones in the classroom. The use of information systems such as a smart phone can support knowledge sharing and collaboration…
High power microwave hazard facing smart ammunitions
NASA Astrophysics Data System (ADS)
Bohl, J.
1995-03-01
The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.
Mapping and navigational control for a smart wheelchair.
Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F
2012-01-01
A smart wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A smart wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of smart wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current smart wheelchair technology.
Rocha, Paula; Siddiqui, Afzal; Stadler, Michael
2014-12-09
In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less
'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
Fang, Zhi; Wan, Lin-Yan; Chu, Liang-Yin; Zhang, Yan-Qiong; Wu, Jiang-Feng
2015-01-01
In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Dunford, Benjamin B; Perrigino, Matthew; Tucker, Sharon J; Gaston, Cynthia L; Young, Jim; Vermace, Beverly J; Walroth, Todd A; Buening, Natalie R; Skillman, Katherine L; Berndt, Dawn
2017-09-01
We investigated nurse perceptions of smart infusion medication pumps to provide evidence-based insights on how to help reduce work around and improve compliance with patient safety policies. Specifically, we investigated the following 3 research questions: (1) What are nurses' current attitudes about smart infusion pumps? (2) What do nurses think are the causes of smart infusion pump work arounds? and (3) To whom do nurses turn for smart infusion pump training and troubleshooting? We surveyed a large number of nurses (N = 818) in 3 U.S.-based health care systems to address the research questions above. We assessed nurses' opinions about smart infusion pumps, organizational perceptions, and the reasons for work arounds using a voluntary and anonymous Web-based survey. Using qualitative research methods, we coded open-ended responses to questions about the reasons for work arounds to organize responses into useful categories. The nurses reported widespread satisfaction with smart infusion pumps. However, they reported numerous organizational, cultural, and psychological causes of smart pump work arounds. Of 1029 open-ended responses to the question "why do smart pump work arounds occur?" approximately 44% of the causes were technology related, 47% were organization related, and 9% were related to individual factors. Finally, an overwhelming majority of nurses reported seeking solutions to smart pump problems from coworkers and being trained primarily on the job. Hospitals may significantly improve adherence to smart pump safety features by addressing the nontechnical causes of work arounds and by providing more leadership and formalized training for resolving smart pump-related problems.
Smart health monitoring systems: an overview of design and modeling.
Baig, Mirza Mansoor; Gholamhosseini, Hamid
2013-04-01
Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
Smart Columbus : Systems Engineering Management Plan (SEMP) for Smart Columbus Demonstration Program
DOT National Transportation Integrated Search
2018-01-16
The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...
NASA Astrophysics Data System (ADS)
Vortanz, Karsten; Zayer, Peter
Das Gesetz zur Digitalisierung der Energiewende ist verabschiedet. Ab 2017 sind moderne Messeinrichtungen (mME) und intelligente Messsysteme (iMSys) zu verbauen und zu betreiben. Der "deutsche Weg" für die Einführung von Smart Metern sieht einen stufenweisen Rollout sowie ein Höchstmaß an Informations- und Datensicherheit vor. Dabei spielen iMSys und mME eine wichtige Rolle bei der Neugestaltung der intelligenten Netze (Smart Grids) und des neuen Marktmodells (Smart Market). Dieser Beitrag beschäftigt sich mit den neuen Gesetzen, den Marktrollen und ihren Aufgaben, Datenschutz und Datensicherheit, dem iMSys als sichere Lösung, dem sicheren Betrieb von Smart Meter Gateways, Smart Grid - Smart Market, dem Zusammenspiel zwischen reguliertem Bereich und Markt, den Einsatzbereichen der iMSys sowie den Auswirkungen auf Prozesse und Systeme und gibt Handlungsempfehlungen.
ERIC Educational Resources Information Center
Kamsa, Imane; Elouahbi, Rachid; El Khoukhi, Fatima
2018-01-01
Learners' concentration is an essential factor for learning and acquisition. The duration of concentration varies from one individual to another. Some learners have a long duration of concentration; whereas, others have a short one. Leaving the learner in front of a screen for a random duration is a strategy that does not optimize online learning.…
Healthy Start, Grow Smart: Your Newborn.
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
This booklet offers guidance to parents in caring for their newborn babies. Advice is given on the following topics: (1) newborn health screening; (2) what a healthy newborn looks like; (3) newborn reflexes; (4) baby checkups; (5) fathers' role; (6) the baby blues; (7) sleeping position; (8) breast milk; (9) breast feeding; (10) bottle feeding;…
Interactive Whiteboards and Implications for Use in Education
ERIC Educational Resources Information Center
Gibson, Danita C.
2013-01-01
Interactive whiteboards (IWBs) have increasingly become a technology tool used in the educational field. IWBs are touch-sensitive screens that work in conjunction with a computer and a projector, and which are used to display information from a computer. As a qualitative case study, this study investigated the SMART Board-infused instructional…
Practical and Secure Recovery of Disk Encryption Key Using Smart Cards
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Kato, Kazuhiko
In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.
Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang
2016-12-01
It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.
Smart Payload Development for High Data Rate Instrument Systems
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Norton, Charles D.
2007-01-01
This slide presentation reviews the development of smart payloads instruments systems with high data rates. On-board computation has become a bottleneck for advanced science instrument and engineering capabilities. In order to improve the computation capability on board, smart payloads have been proposed. A smart payload is a Localized instrument, that can offload the flight processor of extensive computing cycles, simplify the interfaces, and minimize the dependency of the instrument on the flight system. This has been proposed for the Mars mission, Mars Atmospheric Trace Molecule Spectroscopy (MATMOS). The design of this system is discussed; the features of the Virtex-4, are discussed, and the technical approach is reviewed. The proposed Hybrid Field Programmable Gate Array (FPGA) technology has been shown to deliver breakthrough performance by tightly coupling hardware and software. Smart Payload designs for instruments such as MATMOS can meet science data return requirements with more competitive use of available on-board resources and can provide algorithm acceleration in hardware leading to implementation of better (more advanced) algorithms in on-board systems for improved science data return
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
X-Eye: a novel wearable vision system
NASA Astrophysics Data System (ADS)
Wang, Yuan-Kai; Fan, Ching-Tang; Chen, Shao-Ang; Chen, Hou-Ye
2011-03-01
This paper proposes a smart portable device, named the X-Eye, which provides a gesture interface with a small size but a large display for the application of photo capture and management. The wearable vision system is implemented with embedded systems and can achieve real-time performance. The hardware of the system includes an asymmetric dualcore processer with an ARM core and a DSP core. The display device is a pico projector which has a small volume size but can project large screen size. A triple buffering mechanism is designed for efficient memory management. Software functions are partitioned and pipelined for effective execution in parallel. The gesture recognition is achieved first by a color classification which is based on the expectation-maximization algorithm and Gaussian mixture model (GMM). To improve the performance of the GMM, we devise a LUT (Look Up Table) technique. Fingertips are extracted and geometrical features of fingertip's shape are matched to recognize user's gesture commands finally. In order to verify the accuracy of the gesture recognition module, experiments are conducted in eight scenes with 400 test videos including the challenge of colorful background, low illumination, and flickering. The processing speed of the whole system including the gesture recognition is with the frame rate of 22.9FPS. Experimental results give 99% recognition rate. The experimental results demonstrate that this small-size large-screen wearable system has effective gesture interface with real-time performance.
How to engage end-users in smart energy behaviour?
NASA Astrophysics Data System (ADS)
Valkering, Pieter; Laes, Erik; Kessels, Kris; Uyterlinde, Matthijs; Straver, Koen
2014-12-01
End users will play a crucial role in up-coming smart grids that aim to link end-users and energy providers in a better balanced and more efficient electricity system. Within this context, this paper aims to deliver a coherent view on current good practice in end-user engagement in smart grid projects. It draws from a recent review of theoretical insights from sustainable consumption behaviour, social marketing and innovation systems and empirical insights from recent smart grid projects to create an inventory of common motivators, enablers and barriers of behavioural change, and the end-user engagement principles that can be derived from that. We conclude with identifying current research challenges as input for a research agenda on end-user engagement in smart grids.
Systems Maintenance Automated Repair Tasks (SMART)
NASA Technical Reports Server (NTRS)
2008-01-01
SMART is an interactive decision analysis and refinement software system that uses evaluation criteria for discrepant conditions to automatically provide and populate a document/procedure with predefined steps necessary to repair a discrepancy safely, effectively, and efficiently. SMART can store the tacit (corporate) knowledge merging the hardware specification requirements with the actual "how to" repair methods, sequences, and required equipment, all within a user-friendly interface. Besides helping organizations retain repair knowledge in streamlined procedures and sequences, SMART can also help them in saving processing time and expense, increasing productivity, improving quality, and adhering more closely to safety and other guidelines. Though SMART was developed for Space Shuttle applications, its interface is easily adaptable to any hardware that can be broken down by component, subcomponent, discrepancy, and repair.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
NASA Astrophysics Data System (ADS)
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.
2016-08-01
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T
2016-08-24
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.
2016-01-01
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay. PMID:27553971
Bhawra, Jasmin; Leatherdale, Scott T; Ferguson, Leah; Longo, Justin; Rainham, Daniel; Larouche, Richard; Osgood, Nathaniel
2018-01-01
Background Physical inactivity is the fourth leading cause of death worldwide, costing approximately US $67.5 billion per year to health care systems. To curb the physical inactivity pandemic, it is time to move beyond traditional approaches and engage citizens by repurposing sedentary behavior (SB)–enabling ubiquitous tools (eg, smartphones). Objective The primary objective of the Saskatchewan, let’s move and map our activity (SMART) Study was to develop a mobile and citizen science methodological platform for active living surveillance, knowledge translation, and policy interventions. This methodology paper enumerates the SMART Study platform’s conceptualization, design, implementation, data collection procedures, analytical strategies, and potential for informing policy interventions. Methods This longitudinal investigation was designed to engage participants (ie, citizen scientists) in Regina and Saskatoon, Saskatchewan, Canada, in four different seasons across 3 years. In spring 2017, pilot data collection was conducted, where 317 adult citizen scientists (≥18 years) were recruited in person and online. Citizen scientists used a custom-built smartphone app, Ethica (Ethica Data Services Inc), for 8 consecutive days to provide a complex series of objective and subjective data. Citizen scientists answered a succession of validated surveys that were assigned different smartphone triggering mechanisms (eg, user-triggered and schedule-triggered). The validated surveys captured physical activity (PA), SB, motivation, perception of outdoor and indoor environment, and eudaimonic well-being. Ecological momentary assessments were employed on each day to capture not only PA but also physical and social contexts along with barriers and facilitators of PA, as relayed by citizen scientists using geo-coded pictures and audio files. To obtain a comprehensive objective picture of participant location, motion, and compliance, 6 types of sensor-based (eg, global positioning system and accelerometer) data were surveilled for 8 days. Initial descriptive analyses were conducted using geo-coded photographs and audio files. Results Pictures and audio files (ie, community voices) showed that the barriers and facilitators of active living included intrinsic or extrinsic motivations, social contexts, and outdoor or indoor environment, with pets and favorable urban design featuring as the predominant facilitators, and work-related screen time proving to be the primary barrier. Conclusions The preliminary pilot results show the flexibility of the SMART Study surveillance platform in identifying and addressing limitations based on empirical evidence. The results also show the successful implementation of a platform that engages participants to catalyze policy interventions. Although SMART Study is currently geared toward surveillance, using the same platform, active living interventions could be remotely implemented. SMART Study is the first mobile, citizen science surveillance platform utilizing a rigorous, longitudinal, and mixed-methods investigation to temporally capture behavioral data for knowledge translation and policy interventions. PMID:29588267
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
Hadoop Oriented Smart Cities Architecture.
Diaconita, Vlad; Bologa, Ana-Ramona; Bologa, Razvan
2018-04-12
A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.
Hadoop Oriented Smart Cities Architecture
Bologa, Ana-Ramona; Bologa, Razvan
2018-01-01
A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities. PMID:29649172
Smart Coatings for Launch Site Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz M.
2014-01-01
Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran
2016-01-01
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran
2016-06-27
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.
SMARTE: HELPING COMMUNITIES OVERCOME OBSTACLES TO REVITALIZATION (04/23/07)
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...
SmartWay Truck Tool-Advanced Class: Getting the Most out of Your SmartWay Participation
This EPA presentation provides information on the Advanced SmartWay Truck Tool; it's background, development, participation, data collection, usage, fleet categories, emission metrics, ranking system, performance data, reports, and schedule for 2017.
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
Ridership impacts of South Florida's EASY smart card.
DOT National Transportation Integrated Search
2013-07-01
Smart card-based Automated Fare Collection Systems (AFCS) are being increasingly deployed in transit systems across the US. Miami-Dade Transit (MDT) has recently deployed such a system branded as the EASY Card. The South Florida Regional Transportati...
Smart infrared inspection system field operational test.
DOT National Transportation Integrated Search
2014-04-01
The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles : passing through the system are in need of further inspection by measuring the thermal data from the wheel : components. As a vehicle ...
Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes
NASA Technical Reports Server (NTRS)
Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.
1996-01-01
Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes
An, Omer; Pendino, Vera; D’Antonio, Matteo; Ratti, Emanuele; Gentilini, Marco; Ciccarelli, Francesca D.
2014-01-01
NCG 4.0 is the latest update of the Network of Cancer Genes, a web-based repository of systems-level properties of cancer genes. In its current version, the database collects information on 537 known (i.e. experimentally supported) and 1463 candidate (i.e. inferred using statistical methods) cancer genes. Candidate cancer genes derive from the manual revision of 67 original publications describing the mutational screening of 3460 human exomes and genomes in 23 different cancer types. For all 2000 cancer genes, duplicability, evolutionary origin, expression, functional annotation, interaction network with other human proteins and with microRNAs are reported. In addition to providing a substantial update of cancer-related information, NCG 4.0 also introduces two new features. The first is the annotation of possible false-positive cancer drivers, defined as candidate cancer genes inferred from large-scale screenings whose association with cancer is likely to be spurious. The second is the description of the systems-level properties of 64 human microRNAs that are causally involved in cancer progression (oncomiRs). Owing to the manual revision of all information, NCG 4.0 constitutes a complete and reliable resource on human coding and non-coding genes whose deregulation drives cancer onset and/or progression. NCG 4.0 can also be downloaded as a free application for Android smart phones. Database URL: http://bio.ieo.eu/ncg/ PMID:24608173
Gamification in the context of smart cities
NASA Astrophysics Data System (ADS)
Zica, M. R.; Ionica, A. C.; Leba, M.
2018-01-01
The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.
The research of the malfunction diagnosis and predictions system in the smart electric grid
NASA Astrophysics Data System (ADS)
Wang, Yaqing; Zhang, Guoxing; Xu, Hongbing
2017-03-01
The Chinese smart electric grid constriction has been increasing with the technology development. However, the monitoring equipment and background system which should play important roles did not work as intended and restrict to the efficacy of the smart grid. In this essay, it has researched an intelligentized malfunction diagnosis and predictions system which could work with the existed monitoring equipment to function as whole energy monitoring, common malfunction diagnosis, faulted proactive judgment and automatically elimination.
SMART Platforms: Building the App Store for Biosurveillance
Mandl, Kenneth D.
2013-01-01
Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.
DOT National Transportation Integrated Search
2009-01-01
Can a self-calibrating signal control system lead to wider adoption of adaptive traffic control systems? The focus of Next Generation of Smart Traffic Signals, an Exploratory Advanced Research (EAR) Program project, is a system that-with lit...
An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy.
Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis
2017-03-21
The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system's ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year.
Cyber security challenges in Smart Cities: Safety, security and privacy.
Elmaghraby, Adel S; Losavio, Michael M
2014-07-01
The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the "Internet of Things." Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect.
Organizational and technological correlates of nurses' trust in a smart intravenous pump.
Montague, Enid; Asan, Onur; Chiou, Erin
2013-03-01
The aim of this study was to understand technology and system characteristics that contribute to nurses' ratings of trust in a smart intravenous pump. Nurses' trust in new technologies can influence how technologies are used. Trust in technology is defined as a person's belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, overtrust, distrust, and mistrust. Trust in technology is also related to several use-specific outcomes, including appropriate use and inappropriate use such as overreliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart intravenous pump. The survey assessed trust in the intravenous pump and other elements of the sociotechnical system, individual characteristics, technology characteristics, and organizational characteristics. Results show that perceptions of usefulness, safety, ease of use, and usability are related to ratings of trust in smart intravenous pumps. Other work systemfactors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses' trust in smart intravenous pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart intravenous pumps and health systems. Recommendations for appropriately trustworthy smart intravenous pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems.
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Ohyanagi, Toshio; Sengoku, Yasuhito
2010-02-01
This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
Embedded systems engineering for products and services design.
Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M
2012-01-01
Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varughese, Byji; Dayananda, G. N.; Rao, M. Subba
2008-07-29
The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less
A Petri Net model for distributed energy system
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.
Optical smart card using semipassive communication.
Glaser, I; Green, Shlomo; Dimkov, Ilan
2006-03-15
An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.
Optical smart card using semipassive communication
NASA Astrophysics Data System (ADS)
Glaser, I.; Green, Shlomo; Dimkov, Ilan
2006-03-01
An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Baldridge, Tim
2005-01-01
The goals of the project are: Achieve high business value through a common badging and access control system that integrates with smart cards. Provide physical (versus logical) deployment of smart cards initially. Provides a common consistent and reliable environment into which to release the smart card. Gives opportunity to develop agency-wide consistent processes, practices and policies. Enables enterprise data capture and management. Promotes data validation prior to SC issuance.
From Smart Metering to Smart Grid
NASA Astrophysics Data System (ADS)
Kukuča, Peter; Chrapčiak, Igor
2016-06-01
The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.
NASA Technical Reports Server (NTRS)
Packard, D.; Schmitt, D.
1984-01-01
Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.
Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid
2017-06-01
Metering Infrastructure on DOD installations. An examination of five case studies highlights the costs and benefits of the Virtual Smart Grid (VSG...studies highlights the costs and benefits of the Virtual Smart Grid (VSG) developed by Space and Naval Warfare Systems Command for use at Marine Corps...41 A. SMART GRID BENEFITS .....................................................................41 B. SUMMARY OF VSG ESTIMATED COSTS AND BENEFITS
PLCs used in smart home control
NASA Astrophysics Data System (ADS)
Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.
2016-02-01
This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.
Medically relevant assays with a simple smartphone and tablet based fluorescence detection system.
Wargocki, Piotr; Deng, Wei; Anwer, Ayad G; Goldys, Ewa M
2015-05-20
Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.
NASA Astrophysics Data System (ADS)
Robbins, Hannah; Hu, Sijung; Liu, Changqing
2015-03-01
The demand for rapid screening technologies, to be used outside of a traditional healthcare setting, has been vastly expanding. This is requiring a new engineering platform for faster and cost effective techniques to be easily adopted through forward-thinking manufacturing procedures, i.e., advanced miniaturisation and heterogeneous integration of high performance microfluidics based point-of-care testing (POCT) systems. Although there has been a considerable amount of research into POCT systems, there exist tremendous challenges and bottlenecks in the design and manufacturing in order to reach a clinical acceptability of sensitivity and selectivity, as well as smart microsystems for healthcare. The project aims to research how to enable scalable production of such complex systems through 1) advanced miniaturisation of a physical layout and opto-electronic component allocation through an optimal design; and 2) heterogeneous integration of multiplexed fluorescence detection (MFD) for in vitro POCT. Verification is being arranged through experimental testing with a series of dilutions of commonly used fluorescence dye, i.e. Cy5. Iterative procedures will be engaged until satisfaction of the detection limit, of Cy5 dye, 1.209x10-10 M. The research creates a new avenue of rapid screening POCT manufacturing solutions with a particular view on high performance and multifunctional detection systems not only in POCT, but also life sciences and environmental applications.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
Research and design of smart grid monitoring control via terminal based on iOS system
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
Evaluation -- Northern Virginia Smart Traffic Center (NVSTC) integration program
DOT National Transportation Integrated Search
2002-02-01
The Northern Virginia Smart Traffic Center (NVSTC) Integration Program was an ambitious undertaking to enhance the effectiveness of intelligent transportation systems (ITS) in the Washington metropolitan area by interconnecting regional systems. The ...
Global renewable energy-based electricity generation and smart grid system for energy security.
Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security
Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201
An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy
Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Castedo, Luis
2017-01-01
The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system’s ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year. PMID:28335568
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
Performance evaluation of cognitive radio in advanced metering infrastructure communication
NASA Astrophysics Data System (ADS)
Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md
2016-03-01
Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.
Smart Water: Energy-Water Optimization in Drinking Water Systems
This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...
Smart sign ordering system (phase I) : final report, May 2004.
DOT National Transportation Integrated Search
2004-05-01
The University of Akron has developed an on-line traffic sign ordering system, the Smart Sign Ordering System (SSOS), for the Ohio Department of Transportation (ODOT). The objective of SSOS is to increase the efficiency of the sign ordering process b...
Authentication techniques for smart cards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R.A.
1994-02-01
Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thoroughmore » understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.« less
Study on the system-level test method of digital metering in smart substation
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Yang, Min; Hu, Juan; Li, Fuchao; Luo, Ruixi; Li, Jinsong; Ai, Bing
2017-03-01
Nowadays, the test methods of digital metering system in smart substation are used to test and evaluate the performance of a single device, but these methods can only effectively guarantee the accuracy and reliability of the measurement results of a digital metering device in a single run, it does not completely reflect the performance when each device constitutes a complete system. This paper introduced the shortages of the existing test methods. A system-level test method of digital metering in smart substation was proposed, and the feasibility of the method was proved by the actual test.
ERIC Educational Resources Information Center
Pringle, Janice L.; Melczak, Michael; Johnjulio, William; Campopiano, Melinda; Gordon, Adam J.; Costlow, Monica
2012-01-01
Medical residents do not receive adequate training in screening, brief intervention, and referral to treatment (SBIRT) for alcohol and other drug use disorders. The federally funded Pennsylvania SBIRT Medical and Residency Training program (SMaRT) is an evidence-based curriculum with goals of training residents in SBIRT knowledge and skills and…
Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan
2016-01-01
The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172
Towards a smart non-invasive fluid loss measurement system.
Suryadevara, N K; Mukhopadhyay, S C; Barrack, L
2015-04-01
In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.
The evaluation system of city's smart growth success rates
NASA Astrophysics Data System (ADS)
Huang, Yifan
2018-04-01
"Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.
VizieR Online Data Catalog: SMART97, rigid Earth rotation new solution (Bretagnon+ 1998)
NASA Astrophysics Data System (ADS)
Bretagnon, P.; Francou, G.; Rocher, P.; Simon, J. L.
1998-03-01
The Earth rotation solution SMART97 (Solution du Mouvement de l'Axe de Rotation de la Terre) is an analytical solution of the Earth rotation in the rigid case. It gives the expressions of precession-nutation and rotation of the Earth for the 3 Euler angles ψ, ω, φ as well as for the quantities p, ɛ, χ, and the sidereal time. For the axis of figure (fig), these 7 quantities are given in the dynamical system (dyn) and in the kinematical system (kin). SMART97 also gives the variables ψ and ω, in the dynamical system, for the differences (axis of figure - axis of rotation) (rot) and (axis of figure - axis of the angular momentum) (ang). The accuracy of the solution is better than 2.2 microarcseconds for all these variables over 20000 days, between 1968 and 2023. A program EXAMPLE (Fortran 77) is provided which makes use of the subroutine SMART97 which substitutes the time in the series of the solutions SMART97. (18 data files).
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
Meta-principles for developing smart, sustainable, and healthy cities.
Ramaswami, Anu; Russell, Armistead G; Culligan, Patricia J; Sharma, Karnamadakala Rahul; Kumar, Emani
2016-05-20
Policy directives in several nations are focusing on the development of smart cities, linking innovations in the data sciences with the goal of advancing human well-being and sustainability on a highly urbanized planet. To achieve this goal, smart initiatives must move beyond city-level data to a higher-order understanding of cities as transboundary, multisectoral, multiscalar, social-ecological-infrastructural systems with diverse actors, priorities, and solutions. We identify five key dimensions of cities and present eight principles to focus attention on the systems-level decisions that society faces to transition toward a smart, sustainable, and healthy urban future. Copyright © 2016, American Association for the Advancement of Science.
Context Aware Systems, Methods and Trends in Smart Home Technology
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Tai-Hoon
Context aware applications respond and adapt to changes in the computing environment. It is the concept of leveraging information about the end user to improve the quality of the interaction. New technologies in context-enriched services will use location, presence, social attributes, and other environmental information to anticipate an end user's immediate needs, offering more-sophisticated, situation-aware and usable functions. Smart homes connect all the devices and appliances in your home so they can communicate with each other and with you. Context-awareness can be applied to Smart Home technology. In this paper, we discuss the context-aware tools for development of Smart Home Systems.
WISESight : a multispectral smart video-track intrusion monitor.
DOT National Transportation Integrated Search
2015-05-01
International Electronic Machines : Corporation (IEM) developed, tested, and : validated a unique smart video-based : intrusion monitoring system for use at : highway-rail grade crossings. The system : used both thermal infrared (IR) and : visible/ne...
EPA’s SepticSmart initiative is a nation-wide public education effort with resources for homeowners with septic systems, local organizations and government leaders to learn how septic systems work and simple, everyday tips on how to properly maintain them.
"Smart" Vehicle Management System: A Necessity for Future Endeavors
NASA Astrophysics Data System (ADS)
Haddock, A. T.; Olden, G. W.; Barnes, P. K.
2018-02-01
The "Smart" Vehicle Management System (VMS) will give an overview of how a robust VMS would enable experiments to be conducted on the spacecraft in both manned and unmanned states, increasing the scientific benefits.
San Diego field operational test of smart call boxes : technical aspects
DOT National Transportation Integrated Search
1997-01-01
Smart call boxes are devices similar to those used as emergency call boxes in California. The basic call box consists of a microprocessor, a cellular transceiver, and a solar power source. The smart call box system also includes data-collection devic...
Interactive teaching and learning with smart phone app in Optoelectronic Instruments course
NASA Astrophysics Data System (ADS)
Hu, Yao; Hao, Qun; Zhou, Ya; Huang, Yifan
2017-08-01
Optoelectronic Instruments is a comprehensive professional course for senior students majored in optical engineering and similar specialties. Due to the low lecturer/ student ratio, typically less than 1:100, most of the students gave up the chance of one-to-one communication with the lecturers even when they were confused about the principle or applications of the instruments. A smart phone App Rain Classroom associated with messaging App Wechat is introduced. It enables the lecturers to receive instant feedback from students through bullet screen, push preview and review materials and post in-class quiz. Investigation also shows that 76% of the students enjoyed the new interactive tool, acknowledging its help in understanding the topic better, improving in-class interaction, and after class communications.
Smart Drill-Down: A New Data Exploration Operator
Joglekar, Manas; Garcia-Molina, Hector; Parameswaran, Aditya
2015-01-01
We present a data exploration system equipped with smart drill-down, a novel operator for interactively exploring a relational table to discover and summarize “interesting” groups of tuples. Each such group of tuples is represented by a rule. For instance, the rule (a, b, ★, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. In the demonstration, conference attendees will be able to use the data exploration system equipped with smart drill-down, and will be able to contrast smart drill-down to traditional drill-down, for various interestingness measures, and resource constraints. PMID:26844008
Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin
2015-08-01
Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.
Testability Design Rating System: Testability Handbook. Volume 1
1992-02-01
4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory
Kawakami, Tomoya; Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko
2014-01-01
In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume "IF-THEN" rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps.
Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-01-01
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927
Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-07-17
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.
Positioning laboratory automation for today's dynamic climate
Vogt, D. G.
1994-01-01
Laboratory automation has existed and matured at Eli Lilly and Company for well over a decade. The author's section serves as a developer of laboratory automation systems for customers within Lilly and embodies ‘robotic friendly’ laboratories with highly technical and experienced personnel. With several systems showing signs of age, second generation ‘smart systems’ have been developed and delivered during the last three years. These systems were built with an ideology different from previous systems. Upon their delivery, the ‘smart systems’ met the customer's functional requirements but the overall acceptance of this ideology is still being debated due to the perception of failure. Much of this perception can be attributed to the delivery of a system heavily dependent on system maintenance, something totally unexpected by the customer. This paper discusses the ideology of a‘smart systems’ and the results following implementation. The events that led to the review and subsequent departure of the ‘smart systems’ ideology are also described. PMID:18924995
Wearable smart systems: from technologies to integrated systems.
Lymberis, A
2011-01-01
Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.
Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1987-01-01
Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.
Cyber security challenges in Smart Cities: Safety, security and privacy
Elmaghraby, Adel S.; Losavio, Michael M.
2014-01-01
The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the “Internet of Things.” Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect. PMID:25685517
In defence of auscultation: a glorious future?
Thompson, W Reid
2017-01-01
Auscultation of the heart using a simple stethoscope continues to be a central aspect of the cardiovascular examination despite declining proficiency and availability of competing technologies such as hand-held ultrasound. In the ears and mind of a trained cardiologist, heart sounds can provide important information to help screen for certain diseases such as valvar lesions and many congenital defects. Using emerging technology, auscultation is poised to undergo a transformation that will simultaneously improve the teaching and evaluation of this important clinical skill and create a new generation of smart stethoscopes, capable of assisting the clinician in quickly and confidently screening for heart disease. These developments have important implications for global health, screening of athletes and recognition of congenital heart disease. PMID:28243316
Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei
2018-01-10
Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
A Petri Net model for distributed energy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopko, Joanna
2015-12-31
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of themore » model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.« less
Hayashi, Aki; Yamaguchi, Satoko; Waki, Kayo; Fujiu, Katsuhito; Hanafusa, Norio; Nishi, Takahiro; Tomita, Hyoe; Kobayashi, Haruka; Fujita, Hideo; Kadowaki, Takashi; Nangaku, Masaomi; Ohe, Kazuhiko
2017-04-20
Diet and fluid restrictions that need continuous self-management are among the most difficult aspects of dialysis treatment. Smartphone applications may be useful for supporting self-management. Our objective is to investigate the feasibility and usability of a novel smartphone-based self-management support system for dialysis patients. We developed the Self-Management and Recording System for Dialysis (SMART-D), which supports self-monitoring of three mortality-related factors that can be modified by lifestyle: interdialytic weight gain and predialysis serum potassium and phosphorus concentrations. Data is displayed graphically, with all data evaluated automatically to determine whether they achieve the values suggested by the Japanese Society for Dialysis Therapy guidelines. In a pilot study, 9 dialysis patients used SMART-D system for 2 weeks. A total of 7 of them completed questionnaires rating their assessment of SMART-D's usability and their satisfaction with the system. In addition, the Kidney Disease Quality of Life scale was compared before and after the study period. All 9 participants were able to use SMART-D with no major problems. Completion rates for body weight, pre- and postdialysis weight, and serum potassium and phosphorus concentrations were, respectively, 89% (SD 23), 95% (SD 7), and 78% (SD 44). Of the 7 participants who completed the usability survey, all were motivated by the sense of security derived from using the system, and 6 of the 7 (86%) reported that using SMART-D helped improve their lifestyle and self-management. Using SMART-D was feasible, and the system was well regarded by patients. Further study with larger scale cohorts and longer study and follow-up periods is needed to evaluate the effects of SMART-D on clinical outcomes and quality of life. ©Aki Hayashi, Satoko Yamaguchi, Kayo Waki, Katsuhito Fujiu, Norio Hanafusa, Takahiro Nishi, Hyoe Tomita, Haruka Kobayashi, Hideo Fujita, Takashi Kadowaki, Masaomi Nangaku, Kazuhiko Ohe. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 20.04.2017.
Fujiu, Katsuhito; Hanafusa, Norio; Nishi, Takahiro; Tomita, Hyoe; Kobayashi, Haruka; Fujita, Hideo; Kadowaki, Takashi; Nangaku, Masaomi; Ohe, Kazuhiko
2017-01-01
Background Diet and fluid restrictions that need continuous self-management are among the most difficult aspects of dialysis treatment. Smartphone applications may be useful for supporting self-management. Objective Our objective is to investigate the feasibility and usability of a novel smartphone-based self-management support system for dialysis patients. Methods We developed the Self-Management and Recording System for Dialysis (SMART-D), which supports self-monitoring of three mortality-related factors that can be modified by lifestyle: interdialytic weight gain and predialysis serum potassium and phosphorus concentrations. Data is displayed graphically, with all data evaluated automatically to determine whether they achieve the values suggested by the Japanese Society for Dialysis Therapy guidelines. In a pilot study, 9 dialysis patients used SMART-D system for 2 weeks. A total of 7 of them completed questionnaires rating their assessment of SMART-D’s usability and their satisfaction with the system. In addition, the Kidney Disease Quality of Life scale was compared before and after the study period. Results All 9 participants were able to use SMART-D with no major problems. Completion rates for body weight, pre- and postdialysis weight, and serum potassium and phosphorus concentrations were, respectively, 89% (SD 23), 95% (SD 7), and 78% (SD 44). Of the 7 participants who completed the usability survey, all were motivated by the sense of security derived from using the system, and 6 of the 7 (86%) reported that using SMART-D helped improve their lifestyle and self-management. Conclusions Using SMART-D was feasible, and the system was well regarded by patients. Further study with larger scale cohorts and longer study and follow-up periods is needed to evaluate the effects of SMART-D on clinical outcomes and quality of life. PMID:28428168
Adaptive electric potential sensors for smart signal acquisition and processing
NASA Astrophysics Data System (ADS)
Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.
2007-07-01
Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.
SmartPark Truck Parking Availability System: Magnetometer Technology Field Operational Test Results
DOT National Transportation Integrated Search
2011-01-01
The purpose of FMCSAs SmartPark initiative is to determine the feasibility of a technology for providing truck parking space availability in real time to truckers on the road. SmartPark consists of two phases. Phase I was a field operational test ...
SmartPark Truck Parking Availability System: Video Technology Field Operational Test Results
DOT National Transportation Integrated Search
2011-01-01
The purpose of FMCSAs SmartPark initiative is to determine the feasibility of a technology for providing truck parking space availability in real time to truckers on the road. SmartPark consists of two phases. Phase I was a field operational test ...
Advanced Ground Systems Maintenance Intelligent Devices/Smart Sensors Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Compiler)
2015-01-01
This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements for use in ground systems.
Smart linkers in polymer-drug conjugates for tumor-targeted delivery.
Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei
2016-01-01
To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.
Intravenous medication safety and smart infusion systems: lessons learned and future opportunities.
Keohane, Carol A; Hayes, Judy; Saniuk, Catherine; Rothschild, Jeffrey M; Bates, David W
2005-01-01
The Institute of Medicine report To Err Is Human: Building a Safe Health System greatly increased national awareness of the need to improve patient safety in general and medication safety in particular. Infusion-related errors are associated with the greatest risk of harm, and "smart" (computerized) infusion systems are currently available that can avert high-risk errors and provide previously unavailable data for continuous quality improvement (CQI) efforts. As healthcare organizations consider how to invest scarce dollars, infusion nurses have a key role to play in assessing need, evaluating technology, and selecting and implementing specific products. This article reviews the need to improve intravenous medication safety. It describes smart infusion systems and the results they have achieved. Finally, it details the lessons learned and the opportunities identified through the use of smart infusion technology at Brigham and Women's Hospital in Boston, Massachusetts.
Deformation Measurements of Smart Aerodynamic Surfaces
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Burner, Alpheus
2005-01-01
Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.
Humidity Sensors Printed on Recycled Paper and Cardboard
Mraović, Matija; Muck, Tadeja; Pivar, Matej; Trontelj, Janez; Pleteršek, Anton
2014-01-01
Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH) at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%). Two different types of capacitor sensors have been investigated: lateral (comb) type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID) chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag's IC to achieve UHF-RFID functionality with data logging capability. PMID:25072347
ERIC Educational Resources Information Center
Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun
2016-01-01
The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…
The role of smart traffic centers in regional system operations : a Hampton Roads case study.
DOT National Transportation Integrated Search
2005-01-01
The objectives of this study were to define the role of smart traffic centers (STCs) in regional systems operations and to help identify performance measures for monitoring the performance of STCs in the scope of regional systems operations. Without ...
The role of advanced sensing in smart cities.
Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P
2012-12-27
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.
The Role of Advanced Sensing in Smart Cities
Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.
2013-01-01
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603
NASA Astrophysics Data System (ADS)
Daminov, Ildar; Tarasova, Ekaterina; Andreeva, Tatyana; Avazov, Artur
2016-02-01
This paper presents the comparison of smart meter deployment business models to determine the most suitable option providing smart meters deployment. Authors consider 3 main business model of companies: distribution grid company, energy supplier (energosbyt) and metering company. The goal of the article is to compare the business models of power companies from massive smart metering roll out in power system of Russian Federation.
Integrity Verification for SCADA Devices Using Bloom Filters and Deep Packet Inspection
2014-03-27
prevent intrusions in smart grids [PK12]. Parthasarathy proposed an anomaly detection based IDS that takes into account system state. In his implementation...Security, 25(7):498–506, 10 2006. [LMV12] O. Linda, M. Manic, and T. Vollmer. Improving cyber-security of smart grid systems via anomaly detection and...6 2012. 114 [PK12] S. Parthasarathy and D. Kundur. Bloom filter based intrusion detection for smart grid SCADA. In Electrical & Computer Engineering
SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol
2017-02-01
Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.
Smart Roadside System for Driver Assistance and Safety Warnings: Framework and Applications
Jang, Jeong Ah; Kim, Hyun Suk; Cho, Han Byeog
2011-01-01
The use of newly emerging sensor technologies in traditional roadway systems can provide real-time traffic services to drivers through Telematics and Intelligent Transport Systems (ITSs). This paper introduces a smart roadside system that utilizes various sensors for driver assistance and traffic safety warnings. This paper shows two road application models for a smart roadside system and sensors: a red-light violation warning system for signalized intersections, and a speed advisory system for highways. Evaluation results for the two services are then shown using a micro-simulation method. In the given real-time applications for drivers, the framework and certain algorithms produce a very efficient solution with respect to the roadway type features and sensor type use. PMID:22164025
Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development
NASA Astrophysics Data System (ADS)
Song, Wang-Cheol
Recently the smart grid has been a hot issue in the research area. The Electric Vehicle (EV) is the most important component in the Smart Grid, having a role of the battery component with high capacity. We have thought how to introduce the EV in the housing development, and for proper operation of the smart grid systems in the housing area the authentication system is essential for the individual houses. We propose an authentication system to discriminate an individual houses, so that the account management component can appropriately operate the electrical charging and billing in the housing estate. The proposed system has an architecture to integrate the charging system outside a house and the monitoring system inside a house.
The U.S. contingent of the U.S.-German Bilateral Working Group is developing Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe). SMARTe is a web-based, decision support system designed to assist stakeholders in developing and evaluating alternative reu...
ERIC Educational Resources Information Center
Giles, Rebecca M.; Shaw, Edward L.
2011-01-01
SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…
Smart sign enhancement, phase 2 : final report, September 2007.
DOT National Transportation Integrated Search
2007-09-01
An on line ordering system, called Smart Sign Ordering System (SSOS), was : developed by The University of Akron for Ohio Department of Transportation (ODOT) : in 2004. Driven by the demand of managing planning, fabrication, packaging and : delivery,...
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan: Hodge, Bri-Mathias
This presentation provides a Smart-DS project overview and status update for the ARPA-e GRID DATA program meeting 2017, including distribution systems, models, and scenarios, as well as opportunities for GRID DATA collaborations.
Smart infrared inspection system field operational test : [technology brief].
DOT National Transportation Integrated Search
2014-04-01
One of the main goals of the Commercial Vehicle : Roadside Technology Corridor (CMVRTC) is to : support and evaluate the use of innovative : technologies that improve commercial truck and bus : safety. The Smart Infrared Inspection System : (SIRIS) w...
Research implementation of the SMART SIGNAL system on Trunk Highway (TH) 13.
DOT National Transportation Integrated Search
2013-02-01
In our previous research, the SMART-SIGNAL (Systematic Monitoring of Arterial Road Traffic and Signals) : system that can collect event-based traffic data and generate comprehensive performance measures has been : successfully developed by the Univer...
Ridership impacts of South Florida's EASY smart card : [summary].
DOT National Transportation Integrated Search
2013-07-01
Transit agencies across the U.S. increasingly are replacing electronic fare reading systems with Advanced Fare Collection (AFC) or smart card systems. In 2009, Miami-Dade Transit (MDT) was the first Florida transit agency to deploy AFC, branded...
NASA Astrophysics Data System (ADS)
Xu, Chong-Yao; Zheng, Xin; Xiong, Xiao-Ming
2017-02-01
With the development of Internet of Things (IoT) and the popularity of intelligent mobile terminals, smart home system has come into people’s vision. However, due to the high cost, complex installation and inconvenience, as well as network security issues, smart home system has not been popularized. In this paper, combined with Wi-Fi technology, Android system, cloud server and SSL security protocol, a new set of smart home system is designed, with low cost, easy operation, high security and stability. The system consists of Wi-Fi smart node (WSN), Android client and cloud server. In order to reduce system cost and complexity of the installation, each Wi-Fi transceiver, appliance control logic and data conversion in the WSN is setup by a single chip. In addition, all the data of the WSN can be uploaded to the server through the home router, without having to transit through the gateway. All the appliance status information and environmental information are preserved in the cloud server. Furthermore, to ensure the security of information, the Secure Sockets Layer (SSL) protocol is used in the WSN communication with the server. What’s more, to improve the comfort and simplify the operation, Android client is designed with room pattern to control home appliances more realistic, and more convenient.
Stream processing health card application.
Polat, Seda; Gündem, Taflan Imre
2012-10-01
In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.
One size fits all electronics for insole-based activity monitoring.
Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward
2017-07-01
Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.
Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer
1997-01-01
A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.
A dynamic vulnerability evaluation model to smart grid for the emergency response
NASA Astrophysics Data System (ADS)
Yu, Zhen; Wu, Xiaowei; Fang, Diange
2018-01-01
Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
Smart Grid Status and Metrics Report Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.
A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papersmore » covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.« less
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb
2014-03-01
In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.
PUCK: An Automated Prompting System for Smart Environments
Das, Barnan; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Seelye, Adriana M.
2014-01-01
The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the “PUCK” prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed. PMID:25364323
Das, Barnan; Cook, Diane J; Schmitter-Edgecombe, Maureen; Seelye, Adriana M
2012-10-01
The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the "PUCK" prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed.
Enabling affordable and efficiently deployed location based smart home systems.
Kelly, Damian; McLoone, Sean; Dishongh, Terry
2009-01-01
With the obvious eldercare capabilities of smart environments it is a question of "when", rather than "if", these technologies will be routinely integrated into the design of future houses. In the meantime, health monitoring applications must be integrated into already complete home environments. However, there is significant effort involved in installing the hardware necessary to monitor the movements of an elder throughout an environment. Our work seeks to address the high infrastructure requirements of traditional location-based smart home systems by developing an extremely low infrastructure localisation technique. A study of the most efficient method of obtaining calibration data for an environment is conducted and different mobile devices are compared for localisation accuracy and cost trade-off. It is believed that these developments will contribute towards more efficiently deployed location-based smart home systems.
Buen Comienzo, Buen Futuro: Su Recien Nacido. (Healthy Start, Grow Smart: Your Newborn).
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
This booklet offers guidance to parents in caring for their newborn babies. Advice is given on the following topics: (1) newborn health screening; (2) what a healthy newborn looks like; (3) newborn reflexes; (4) baby checkups; (5) fathers' role; (6) the baby blues; (7) sleeping position; (8) breast milk; (9) breast feeding; (10) bottle feeding;…
NASA Astrophysics Data System (ADS)
Harrison, Robert; Vera, Daniel; Ahmad, Bilal
2016-10-01
The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.
Smart sign enhancement : executive summary report.
DOT National Transportation Integrated Search
2007-09-01
In the Smart Sign Ordering System (Phase I) the : University of Akron developed an on-line : interactive traffic-sign ordering system for ODOT. : The main focus of SSOS Phase I was to provide : ODOT with a fully automated and networked sign : orderin...
NASA Technical Reports Server (NTRS)
1980-01-01
Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.
Demiris, G; Thompson, H J
2012-01-01
This paper highlights the potential of smart home applications to not only assess mobility determinants for older adults in the home environment but also provide the opportunity for tailored interventions. We present a theoretical framework for assessing mobility parameters and utilizing this information to enable behavior change based on the Health Belief Model. We discuss examples that showcase the potential of smart home systems to not only measure but also improve mobility for community dwelling older adults. Mobility is a complex construct that cannot be addressed with a single monitoring approach or a single intervention. Instead, tailored interventions that address specific needs and behaviors of individuals and take into consideration preferences of older adults and potentially their social network are needed to effectively enforce positive behavior change. Smart home systems have the ability to capture details of one's daily living that could otherwise not be easily obtained; however, such data repositories alone are not sufficient to improve clinical outcomes if appropriate mechanisms for data mining and analysis, as well as tailored response systems are not in place. Unleashing the potential of smart home applications to measure and improve mobility has the potential of transforming elder care and providing potentially cost-effective tools to support independence for older adults. A technologically driven smart home application can maximize its clinical relevance by pursuing interactive features that can lead to behavior change.
Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.
Healthcare Applications of Smart Watches
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung
2016-01-01
Summary Objective The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. Materials and Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. Results 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson’s disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Discussion Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Conclusion Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed. PMID:27623763
Healthcare Applications of Smart Watches. A Systematic Review.
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung; Turner, Anne M
2016-09-14
The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson's disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed.
Burke, Lora E.; Styn, Mindi A.; Glanz, Karen; Ewing, Linda J.; Elci, Okan U.; Conroy, Margaret B.; Sereika, Susan M.; Acharya, Sushama D.; Music, Edvin; Keating, Alison L.; Sevick, Mary Ann
2009-01-01
Background The primary form of treatment for obesity today is behavioral therapy. Self-monitoring diet and physical activity plays an important role in interventions targeting behavior and weight change. The SMART weight loss trial examined the impact of replacing the standard paper record used for self-monitoring with a personal digital assistant (PDA). This paper describes the design, methods, intervention, and baseline sample characteristics of the SMART trial. Methods The SMART trial used a 3-group design to determine the effects of different modes of self-monitoring on short- and long-term weight loss and on adherence to self-monitoring in a 24-month intervention. Participants were randomized to one of three conditions (1) use of a standard paper record (PR); (2) use of a PDA with dietary and physical activity software (PDA); or (3), use of a PDA with the same software plus a customized feedback program (PDA + FB). Results We screened 704 individuals and randomized 210. There were statistically but not clinically significant differences among the three cohorts in age, education, HDL cholesterol, blood glucose and systolic blood pressure. At 24 months, retention rate for the first of three cohorts was 90%. Conclusions To the best of our knowledge, the SMART trial is the first large study to compare different methods of self-monitoring in a behavioral weight loss intervention and to compare the use of PDAs to conventional paper records. This study has the potential to reveal significant details about self-monitoring patterns and whether technology can improve adherence to this vital intervention component. PMID:19665588
Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL -
Video Text Version | Energy Systems Integration Facility | NREL Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version This is the text version for the Smarter Grid Solutions
Smart City: Utilization of IT resources to encounter natural disaster
NASA Astrophysics Data System (ADS)
Hartama, D.; Mawengkang, Herman; Zarlis, M.; Sembiring, R. W.
2017-09-01
This study proposes a framework for the utilization of IT resources in the face of natural disasters with the concept of Smart City in urban areas, which often face the earthquake, particularly in the city of North Sumatra and Aceh. Smart City is a city that integrates social development, capital, civic participation, and transportation with the use of information technology to support the preservation of natural resources and improved quality of life. Changes in the climate and environment have an impact on the occurrence of natural disasters, which tend to increase in recent decades, thus providing socio-economic impacts for the community. This study suggests a new approach that combines the Geographic Information System (GIS) and Mobile IT-based Android in the form of Geospatial information to encounter disaster. Resources and IT Infrastructure in implementing the Smart Mobility with Mobile service can make urban areas as a Smart City. This study describes the urban growth using the Smart City concept and considers how a GIS and Mobile Systems can increase Disaster Management, which consists of Preparedness, mitigation, response, and recovery for recovery from natural disasters.
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2005-01-01
A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.
Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra
2012-04-23
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.
Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Jake, L. C.; Curotto, E.
2016-05-01
In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n-dipoles clusters in the n = 8-20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.
Smart wing wind tunnel model design
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.
1997-05-01
To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.
Smart cards--the key to trustworthy health information systems.
Neame, R.
1997-01-01
Some 20 years after they were first developed, "smart cards" are set to play a crucial part in healthcare systems. Last year about a billion were supplied, mainly for use in the financial sector, but their special features make them of particular strategic importance for the health sector, where they offer a ready made solution to some key problems of security and confidentiality. This article outlines what smart cards are and why they are so important in managing health information. I discuss some of the unique features of smart cards that are of special importance in the development of secure and trustworthy health information systems. Smart cards would enable individuals' identities to be authenticated and communications to be secured and would provide the mechanisms for implementing strong security, differential access to data, and definitive audit trails. Patient cards can also with complete security carry personal details, data on current health problems and medications, emergency care data, and pointers to where medical records for the patient can be found. Provider cards can in addition carry authorisations and information on computer set up. PMID:9055719
The Smart Drug Delivery System and Its Clinical Potential
Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning
2016-01-01
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781
Katapally, Tarun Reddy; Bhawra, Jasmin; Leatherdale, Scott T; Ferguson, Leah; Longo, Justin; Rainham, Daniel; Larouche, Richard; Osgood, Nathaniel
2018-03-27
Physical inactivity is the fourth leading cause of death worldwide, costing approximately US $67.5 billion per year to health care systems. To curb the physical inactivity pandemic, it is time to move beyond traditional approaches and engage citizens by repurposing sedentary behavior (SB)-enabling ubiquitous tools (eg, smartphones). The primary objective of the Saskatchewan, let's move and map our activity (SMART) Study was to develop a mobile and citizen science methodological platform for active living surveillance, knowledge translation, and policy interventions. This methodology paper enumerates the SMART Study platform's conceptualization, design, implementation, data collection procedures, analytical strategies, and potential for informing policy interventions. This longitudinal investigation was designed to engage participants (ie, citizen scientists) in Regina and Saskatoon, Saskatchewan, Canada, in four different seasons across 3 years. In spring 2017, pilot data collection was conducted, where 317 adult citizen scientists (≥18 years) were recruited in person and online. Citizen scientists used a custom-built smartphone app, Ethica (Ethica Data Services Inc), for 8 consecutive days to provide a complex series of objective and subjective data. Citizen scientists answered a succession of validated surveys that were assigned different smartphone triggering mechanisms (eg, user-triggered and schedule-triggered). The validated surveys captured physical activity (PA), SB, motivation, perception of outdoor and indoor environment, and eudaimonic well-being. Ecological momentary assessments were employed on each day to capture not only PA but also physical and social contexts along with barriers and facilitators of PA, as relayed by citizen scientists using geo-coded pictures and audio files. To obtain a comprehensive objective picture of participant location, motion, and compliance, 6 types of sensor-based (eg, global positioning system and accelerometer) data were surveilled for 8 days. Initial descriptive analyses were conducted using geo-coded photographs and audio files. Pictures and audio files (ie, community voices) showed that the barriers and facilitators of active living included intrinsic or extrinsic motivations, social contexts, and outdoor or indoor environment, with pets and favorable urban design featuring as the predominant facilitators, and work-related screen time proving to be the primary barrier. The preliminary pilot results show the flexibility of the SMART Study surveillance platform in identifying and addressing limitations based on empirical evidence. The results also show the successful implementation of a platform that engages participants to catalyze policy interventions. Although SMART Study is currently geared toward surveillance, using the same platform, active living interventions could be remotely implemented. SMART Study is the first mobile, citizen science surveillance platform utilizing a rigorous, longitudinal, and mixed-methods investigation to temporally capture behavioral data for knowledge translation and policy interventions. ©Tarun Reddy Katapally, Jasmin Bhawra, Scott T Leatherdale, Leah Ferguson, Justin Longo, Daniel Rainham, Richard Larouche, Nathaniel Osgood. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 27.03.2018.
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
A Smart Power Electronic Multiconverter for the Residential Sector.
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-05-26
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.
A Smart Power Electronic Multiconverter for the Residential Sector
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-01-01
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it. PMID:28587131
Bakker, Anne; Schrieken, Bart A.L.; Hoofwijk, Marthe C.; Olff, Miranda
2017-01-01
Abstract To facilitate easily accessible screening for trauma‐related symptoms, a web‐based application called Smart Assessment on your Mobile (SAM) was developed. In this study, we examined whether SAM was able to accurately identify posttraumatic stress disorder (PTSD) and depression in adults. Eighty‐nine referred police officers completed SAM, containing the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders (DSM)‐5 (PCL‐5) and the Depression Anxiety and Stress Scale (DASS‐21), on their own device prior to a diagnostic interview where the Clinician‐Administered PTSD Scale for DSM‐5 (CAPS‐5) and Structured Clinical Interview for DSM‐IV (SCID‐I/P) were administered. Results showed a substantial agreement between SAM and the diagnostic interview in the assessment of PTSD and depression. An optimal trade‐off between sensitivity (89%) and specificity (68%) levels was found at a cut‐off score of 31 on the PTSD Checklist for DSM‐5 (area under the curve = 0.845, 95% CI [0.765, 0.925], diagnostic odds ratio = 15.97). This is one of the first studies to support the validity and reliability of a mobile screener following trauma. SAM may facilitate screening for trauma‐related symptoms on a large scale and could be a first step in a stepped‐care model for trauma survivors to help identify individuals who need further diagnostics and care. PMID:28948699
New challenges and innovation in forensic toxicology: focus on the "New Psychoactive Substances".
Favretto, Donata; Pascali, Jennifer P; Tagliaro, Franco
2013-04-26
In the recent years, new molecules have appeared in the illicit market, claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects; this heterogeneous and rapidly evolving class of compounds are commonly known as "New Psychoactive Substances" or, less properly, "Smart Drugs" and are easily distributed through the e-commerce or in the so-called "Smart Shops". They include, among other, synthetic cannabinoids, cathinones and tryptamine analogs of psylocin. Whereas cases of intoxication and death have been reported, the phenomenon appears to be largely underestimated and is a matter of concern for Public Health. One of the major points of concern depends on the substantial ineffectiveness of the current methods of toxicological screening of biological samples to identify the new compounds entering the market. These limitations emphasize an urgent need to increase the screening capabilities of the toxicology laboratories, and to develop rapid, versatile yet specific assays able to identify new molecules. The most recent advances in mass spectrometry technology, introducing instruments capable of detecting hundreds of compounds at nanomolar concentrations, are expected to give a fundamental contribution to broaden the diagnostic spectrum of the toxicological screening to include not only all these continuously changing molecules but also their metabolites. In the present paper a critical overview of the opportunities, strengths and limitations of some of the newest analytical approaches is provided, with a particular attention to liquid phase separation techniques coupled to high accuracy, high resolution mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.
Smart Prosthetic Hand Technology - Phase 2
2011-05-01
identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new
A Comparative Study of E-Learning System for Smart Education
ERIC Educational Resources Information Center
An, SangJin; Lee, Eunkyoung; Lee, YoungJun
2013-01-01
Korean government aims to implement SMART education nationwide, so it is planning many ways to provide digital learning contents. There are some ways of distributing digital contents, and each way has its own characteristics. Edunet is a nationwide system for providing educational resource. Cyber Home Learning System is a regional service which…
NASA Technical Reports Server (NTRS)
1999-01-01
The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
High thermal conductivity liquid metal pad for heat dissipation in electronic devices
NASA Astrophysics Data System (ADS)
Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang
2018-05-01
Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.
Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare
NASA Astrophysics Data System (ADS)
de Silva, Liyanage C.; Petra, M. Iskandar; Punchihewa, G. Amal
In this paper we present our research results related to smart monitoring, control and communication with the main objective of energy efficiency and eldercare in mind. One of the main objectives of this research work is to use multitude of different sensors to monitor activities in a smart home and use the results to control the home environment to meet the objectives of energy efficiency and eldercare. Here we present the application of the smart monitoring to a prototype system.
Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment
NASA Astrophysics Data System (ADS)
Borgohain, Tuhin; Borgohain, Amardeep; Borgohain, Rajdeep; Sanyal, Sugata
2015-02-01
The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart grid
Thermal Management Architecture for Future Responsive Spacecraft
NASA Astrophysics Data System (ADS)
Bugby, D.; Zimbeck, W.; Kroliczek, E.
2009-03-01
This paper describes a novel thermal design architecture that enables satellites to be conceived, configured, launched, and operationally deployed very quickly. The architecture has been given the acronym SMARTS for Satellite Modular and Reconfigurable Thermal System and it involves four basic design rules: modest radiator oversizing, maximum external insulation, internal isothermalization and radiator heat flow modulation. The SMARTS philosophy is being developed in support of the DoD Operationally Responsive Space (ORS) initiative which seeks to drastically improve small satellite adaptability, deployability, and design flexibility. To illustrate the benefits of the philosophy for a prototypical multi-paneled small satellite, the paper describes a SMARTS thermal control system implementation that uses: panel-to-panel heat conduction, intra-panel heat pipe isothermalization, radiator heat flow modulation via a thermoelectric cooler (TEC) cold-biased loop heat pipe (LHP) and maximum external multi-layer insulation (MLI). Analyses are presented that compare the traditional "cold-biasing plus heater power" passive thermal design approach to the SMARTS approach. Plans for a 3-panel SMARTS thermal test bed are described. Ultimately, the goal is to incorporate SMARTS into the design of future ORS satellites, but it is also possible that some aspects of SMARTS technology could be used to improve the responsiveness of future NASA spacecraft. [22 CFR 125.4(b)(13) applicable
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
SmartStuff: A case study of a smart water bottle.
Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E
2016-08-01
The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.
Non-isolated high gain DC-DC converter for smart grid- A review
NASA Astrophysics Data System (ADS)
Divya Navamani, J.; Vijayakumar, K.; Lavanya, A.; Mano Raj, A. Jason
2018-04-01
Smart grids are becoming the most interesting and promising alternative for an electric grid system. Power conditioning units and control over the distribution of power is the essential feature for the smart grid system. In this paper, we reviewed several non-isolated high gain topologies derived from boost converter for providing required voltage to the grid tie inverter from renewable energy sources. Steady state analysis of all the topologies is analyzed to compare the performance of the topologies. Simulation is carried out in nL5 simulator and the results are compared and validated with the theoretical results. This paper is a guide to the researchers to choose the best topology for the smart grid application.
Managing Emergency Situations in the Smart City: The Smart Signal.
Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto
2015-06-18
In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City.
NASA Astrophysics Data System (ADS)
Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.
2018-06-01
Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-06-24
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.
Managing medical and insurance information through a smart-card-based information system.
Lambrinoudakis, C; Gritzalis, S
2000-08-01
The continuously increased mobility of patients and doctors, in conjunction with the existence of medical groups consisting of private doctors, general practitioners, hospitals, medical centers, and insurance companies, pose significant difficulties on the management of patients' medical data. Inevitably this affects the quality of the health care services provided. The evolving smart card technology can be utilized for the implementation of a secure portable electronic medical record, carried by the patient herself/himself. In addition to the medical data, insurance information can be stored in the smart card thus facilitating the creation of an "intelligent system" supporting the efficient management of patient's data. In this paper we present the main architectural and functional characteristics of such a system. We also highlight how the security features offered by smart cards can be exploited in order to ensure confidentiality and integrity of the medical data stored in the patient cards.
Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng
2016-11-01
Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives
Weng, Lin; Xie, Jingwei
2017-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25732665
Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives.
Weng, Lin; Xie, Jingwei
2015-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracho, Riccardo; Linvill, Carl; Sedano, Richard
With the vision to transform the power sector, Mexico included in the new laws and regulations deployment of smart grid technologies and provided various attributes to the Ministry of Energy and the Energy Regulatory Commission to enact public policies and regulation. The use of smart grid technologies can have a significant impact on the integration of variable renewable energy resources while maintaining reliability and stability of the system, significantly reducing technical and non-technical electricity losses in the grid, improving cyber security, and allowing consumers to make distributed generation and demand response decisions. This report describes for Mexico's Ministry of Energymore » (SENER) an overall approach (Optimal Feasible Pathway) for moving forward with smart grid policy development in Mexico to enable increasing electric generation from renewable energy in a way that optimizes system stability and reliability in an efficient and cost-effective manner.« less
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings. PMID:25914666
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.
Unlocking the potential of smart grid technologies with behavioral science.
Sintov, Nicole D; Schultz, P Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-04-09
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
Unlocking the potential of smart grid technologies with behavioral science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintov, Nicole D.; Schultz, P. Wesley
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
DOT National Transportation Integrated Search
2010-01-01
The Smart Grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a : network of embedded systems deployed for their cyber control. Our objective is to qualitatively and quantitatively analyze ...
Automatic Processing of Current Affairs Queries
ERIC Educational Resources Information Center
Salton, G.
1973-01-01
The SMART system is used for the analysis, search and retrieval of news stories appearing in Time'' magazine. A comparison is made between the automatic text processing methods incorporated into the SMART system and a manual search using the classified index to Time.'' (14 references) (Author)
DOT National Transportation Integrated Search
2015-06-01
This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...
System Security And Monitoring On Smart Home Using Android
NASA Astrophysics Data System (ADS)
Romadhon, A. S.
2018-01-01
Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.
The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less
Propellant production and useful materials: Hardware data from components and the systems
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1992-01-01
Research activities at the University of Arizona/NASA Space Engineering Research Center are described; the primary emphasis is on hardware development and operation. The research activities are all aimed toward introducing significant cost reductions through the utilization of resources locally available at extraterrestrial sites. The four logical aspects include lunar, Martian, support, and common technologies. These are described in turn. The hardware realizations are based upon sound scientific principles which are used to screen a host of interesting and novel concepts. Small scale feasibility studies are used as the screen to allow only the most promising concepts to proceed. Specific examples include: kg/day-class oxygen plant that uses CO2 as the feed stock, spent stream utilization to produce methane and 'higher' compounds (using hydrogen from a water electrolysis plant), separation of CO from the CO2, reduction of any iron bearing silicate (lunar soils), production of structural components, smart sensors and autonomous controls, and quantitative computer simulation of extraterrestrial plants. The most important feature of all this research continues to be the training of high-quality students for our future in space.
Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world.
Yu, Bing; Nagarajan, Vivek Krishna; Ferris, Daron G
2015-01-01
Oral and cervical cancers are a growing global health problem that disproportionately impacts women and men living in the developing world. The high death rate in developing countries is largely due to the fact that these countries do not have the appropriate medical infrastructure and resources to support the organized screening and diagnostic programs that are available in the developed world. Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, easy-to-use, and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current fiber-optic DRS systems have not been designed to be robust and reliable for use in developing countries. They are subject to various sources of systematic or random errors, arising from the uncontrolled probe-tissue interface and lack of real-time calibration, use bulky and expensive optical components, and require extensive training. This chapter describes a portable DRS device that is specifically designed for detection of oral and cervical cancers in resource-poor settings. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The size and cost of the smart fiber-optic DRS system may be further reduced by incorporating a smartphone based spectrometer.
NASA Astrophysics Data System (ADS)
Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy
2014-10-01
The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.
Sociospace: A smart social framework based on the IP Multimedia Subsystem
NASA Astrophysics Data System (ADS)
Hasswa, Ahmed
Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.
NASA Astrophysics Data System (ADS)
Brei, Diann
2011-09-01
The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.
Dispenser printed electroluminescent lamps on textiles for smart fabric applications
NASA Astrophysics Data System (ADS)
de Vos, Marc; Torah, Russel; Tudor, John
2016-04-01
Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.
Anguera, Joaquin A; Jordan, Joshua T; Castaneda, Diego; Gazzaley, Adam; Areán, Patricia A
2016-01-01
Advances in mobile technology have resulted in federal and industry-level initiatives to facilitate large-scale clinical research using smart devices. Although the benefits of technology to expand data collection are obvious, assumptions about the reach of mobile research methods ( access ), participant willingness to engage in mobile research protocols ( engagement ), and the cost of this research ( cost ) remain untested. To assess the feasibility of a fully mobile randomised controlled trial using assessments and treatments delivered entirely through mobile devices to depressed individuals. Using a web-based research portal, adult participants with depression who also owned a smart device were screened, consented and randomised to 1 of 3 mental health apps for treatment. Assessments of self-reported mood and cognitive function were conducted at baseline, 4, 8 and 12 weeks. Physical and social activity was monitored daily using passively collected phone use data. All treatment and assessment tools were housed on each participant's smart phone or tablet. A cognitive training application, an application based on problem-solving therapy, and a mobile-sensing application promoting daily activities. Access : We screened 2923 people and enrolled 1098 participants in 5 months. The sample characteristics were comparable to the 2013 US census data. Recruitment via Craigslist.org yielded the largest sample. Engagement : Study engagement was high during the first 2 weeks of treatment, falling to 44% adherence by the 4th week. Cost : The total amount spent on for this project, including staff costs and β testing, was $314 264 over 2 years. These findings suggest that mobile randomised control trials can recruit large numbers of participants in a short period of time and with minimal cost, but study engagement remains challenging. NCT00540865.
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
On architecting and composing engineering information services to enable smart manufacturing
Ivezic, Nenad; Srinivasan, Vijay
2016-01-01
Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing. PMID:27840595
SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B
2016-01-01
Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829
Lessons learned from the development of health applications in a tertiary hospital.
Park, Joong-Yeol; Lee, Guna; Shin, Soo-Yong; Kim, Jeong Hun; Han, Hye-Won; Kwon, Tae-Wan; Kim, Woo Sung; Lee, Jae Ho
2014-03-01
Adoption of smart devices for hospital use has been increasing with the development of health applications (apps) for patient point-of-care and hospital management. To promote the use of health apps, we describe the lessons learned from developing 12 health apps in the largest tertiary hospital in Korea. We reviewed and analyzed 12 routinely used apps in three categories-Smart Clinic, Smart Patient, and Smart Hospital-based on target users and functions. The log data for each app were collected from the date of release up until December 2012. Medical personnel accessed a mobile electronic medical record app classified as Smart Clinic an average of 452 times per day. Smart Hospital apps are actively used to communicate with each other. Patients logged on to a mobile personal health record app categorized as Smart Patient an average of 222 times per day. As the mobile trend, the choice of supporting operating system (OS) is more difficult. By developing these apps, a monitoring system is needed for evaluation. We described the lessons learned regarding OS support, device choice, and developmental strategy. The OS can be chosen according to market share or hospital strategic plan. Smartphones were favored compared with tablets. Alliance with an information technology company can be the best way to develop apps. Health apps designed for smart devices can be used to improve healthcare. However, to develop health apps, hospitals must define their future goals and carefully consider all the aspects.
Are You Smart Enough?: How Colleges' Obsession with Smartness Shortchanges Students
ERIC Educational Resources Information Center
Astin, Alexander W.
2017-01-01
The social and economic inequities in America's K-12 education system are well known, what with a rapidly expanding system of expensive private schools and the striking contrasts between urban and suburban public schools. America's higher education system, on the other hand, is generally regarded as far more equitable, given that each of the fifty…
Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-01-01
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965
ERIC Educational Resources Information Center
Domermuth, David
2005-01-01
This article provides a description of an affordable, smart classroom system that was built for the Technology Department at Appalachian State University in Boone, NC. In the hope that other educators might find his department's experience useful, this author, David Domermuth (the department's coordinator of manufacturing) describes the system,…
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
2016-07-14
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Cyber-Physical System Security of a Power Grid: State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Cyber-Physical System Security of Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Jeffery E.
2012-01-31
Abstract—This panel presentation will provide perspectives of cyber-physical system security of smart grids. As smart grid technologies are deployed, the interconnected nature of these systems is becoming more prevalent and more complex, and the cyber component of this cyber-physical system is increasing in importance. Studying system behavior in the face of failures (e.g., cyber attacks) allows a characterization of the systems’ response to failure scenarios, loss of communications, and other changes in system environment (such as the need for emergent updates and rapid reconfiguration). The impact of such failures on the availability of the system can be assessed and mitigationmore » strategies considered. Scenarios associated with confidentiality, integrity, and availability are considered. The cyber security implications associated with the American Recovery and Reinvestment Act of 2009 in the United States are discussed.« less
Massaroni, C; Ciocchetti, M; Di Tomaso, G; Saccomandi, P; Caponero, M A; Polimadei, A; Formica, D; Schena, E
2016-08-01
Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of an MR-compatible smart textiles based on FOSs for respiratory monitoring. The system consists of six fiber Bragg grating (FBG) sensors glued on the textile to monitor six compartments of the chest wall (i.e., right and left upper thorax, right and left abdominal rib cage, and right and left abdomen). This solution allows monitoring both global respiratory parameters and each compartment volume change. The system converts thoracic movements into strain measured by the FBGs. The positioning of the FBGs was optimized by experiments performed using an optoelectronic system. The feasibility of the smart textile was assessed on 6 healthy volunteers. Experimental data were compared to the ones estimated by an optoelectronic plethysmography used as reference. Promising results were obtained on both breathing period (maximum percentage error is 1.14%), inspiratory and expiratory period, as well as on total volume change (mean percentage difference between the two systems was ~14%). The Bland-Altman analysis shows a satisfactory accuracy for the parameters under investigation. The proposed system is safe and non-invasive, MR-compatible, and allows monitoring compartmental volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Ron
The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. Themore » local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.« less
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
None
2018-02-13
NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.
ERIC Educational Resources Information Center
Twyman Hoff, Pamela
2016-01-01
In African American culture competing value systems shape the definition and value of smartness. This article will explore African American "sayins" as a tool to transmit the counter-hegemonic cultural value of smartness. "Sayins," a facet of the African American oral tradition, are drawn from the deep structures of African…
Smart and functional polymer materials for smart and functional microfluidic instruments
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2014-04-01
As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.
SmartWay 2.0 Partner Assessment Tools and Data Management System
A set of calculator tools used by SmartWay partners to assess their envirnomental performance, including calculation of their annual emissions of CO2, NOx, and PM, and a data system to manage the information. Different tools are available for carrier partners in the four main tr...
DOT National Transportation Integrated Search
2013-12-01
This study aims to integrate commercial measurement and communication components into a scour : monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its : performance in laboratory and field conditions for t...
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
Development of smart spray systems to enhance delivery of pesticides in field nursery production
USDA-ARS?s Scientific Manuscript database
Two smart sprayer prototypes have been developed and are being evaluated with a goal of increasing pesticide application efficiency and minimizing environmental impact in field nursery production sites. The first prototype, a modified hydraulic vertical boom system, utilizes ultrasonic sensors to d...
2012-01-01
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed “smart grid” contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household’s electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments. PMID:22540990
Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, H. M.; Jake, L. C.; Curotto, E., E-mail: curotto@arcadia.edu
2016-05-07
In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n–dipoles clusters in themore » n = 8–20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.« less
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
Zhou, Yuan; Lu, Yanming; Zhu, Haojin; Zhang, Yanhan; Li, Yaqin; Yu, Qing
2018-01-01
To explore the effect of a smart nebulizing device on the rate of adherence to inhaled corticosteroid (ICS) in children with positive Asthma Predictive Index. In total, 65 children with positive Asthma Predictive Index and under the age of 5 years who visited our hospital from October 2015 through October 2016, were randomly assigned to receive conventional nebulization or smart nebulization. The smart nebulizer was connected to smart phones via an App. The following information was collected: rate of adherence to ICS, frequency of emergency visits or hospitalizations, application of antibiotics or oral steroids, and wheezing progression or improvement. The rate of adherence to ICS was 86.67% (26/30), 76.67% (23/30), and 67.33% (20/30) in the smart nebulization group, and 62.86% (22/35), 51.42% (18/35), and 40.00% (14/35) in the conventional nebulization group after 4-, 8-, and 12-week therapy, respectively. There were significant differences between the 2 groups at all of the time points ( P <0.05). Both day- and night-time wheezing scores were significantly lower in the smart nebulization group than those of the conventional nebulization group after 4-, 8-, and 12-week therapy ( P <0.05). The frequency of emergency visits, comorbidity of respiratory infection, antibiotics or systemic steroid usage, and therapeutic cost for additional treatment during the 12-week study period, was significantly lower in the smart nebulization group than that in the conventional nebulization group ( P <0.05). A smart electronic nebulization device could significantly improve the rate of adherence to ICS in children under the age of 5 years, and thus could significantly reduce the frequency of emergency visits and respiratory infections as well as the usage of antibiotics or systemic steroids.
Hardware accelerator design for change detection in smart camera
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil
2011-10-01
Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.
Privacy Sensitive Surveillance for Assisted Living - A Smart Camera Approach
NASA Astrophysics Data System (ADS)
Fleck, Sven; Straßer, Wolfgang
An elderly woman wanders about aimlessly in a home for assisted living. Suddenly, she collapses on the floor of a lonesome hallway. Usually it can take over two hours until a night nurse passes this spot on her next inspection round. But in this case she is already on site after two minutes, ready to help. She has received an alert message on her beeper: "Inhabitant fallen in hallway 2b". The source: the SmartSurv distributed network of smart cameras for automated and privacy respecting video analysis.Welcome to the future of smart surveillance Although this scenario is not yet daily practice, it shall make clear how such systems will impact the safety of the elderly without the privacy intrusion of traditional video surveillance systems.
J2ME and smart phones as platform for a Bluetooth body area network for patient-telemonitoring.
Morón, M J; Luque, J R; Botella, A A; Cuberos, E J; Casilari, E; Díaz-Estrella, A
2007-01-01
A prototype of a system based on a Bluetooth Body Area Network (BAN) for continuous and wireless telemonitoring of patients' biosignals is presented. Smart phones and Java (J2ME) have been selected as platform to build a central node in patients' BAN. A midlet running in the smart phone compiles information about patient's location and health status. The midlet encrypts and retransmits it to the server through 802.11 or GPRS/UMTS. Besides when an alerting condition is detected, the midlet generates a MMS and a SMS to be sent to patients' relatives and to physician, respectively. Additionally, the system provides to physicians the possibility of configuring BAN's parameters remotely, from a PC or even a smart phone.
Lamb Wave Multitouch Ultrasonic Touchscreen.
Firouzi, Kamyar; Nikoozadeh, Amin; Carver, Thomas E; Khuri-Yakub, Butrus Pierre T
2016-12-01
Touchscreen sensors are widely used in many devices such as smart phones, tablets, and laptops with diverse applications. We present the design, analysis, and implementation of an ultrasonic touchscreen system that utilizes the interaction of transient Lamb waves with objects in contact with the screen. It attempts to improve on the existing ultrasound technologies, with the potential of addressing some of the weaknesses of the dominant technologies, such as the capacitive or resistive ones. Compared with the existing ultrasonic and acoustic modalities, among other advantages, it provides the capability of detecting several simultaneous touch points and also a more robust performance. The localization algorithm, given the hardware design, can detect several touch points with a very limited number of measurements (one or two). This in turn can significantly reduce the manufacturing cost.
A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes
NASA Astrophysics Data System (ADS)
Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan
This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.
Smart ventilation energy and indoor air quality performance in residential buildings: A review
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
2017-12-30
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Smart ventilation energy and indoor air quality performance in residential buildings: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
Improving Smart Home Concept with the Internet of Things Concept Using RaspberryPi and NodeMCU
NASA Astrophysics Data System (ADS)
Amri, Yasirli; Andri Setiawan, Mukhammad
2018-03-01
The Internet of things (IoT) is getting more tractions in recent years. One of the usage scenario of IoT is smart home. Smart home basically provides home automation for installed devices at home such as thermostat, lighting, air conditioning, etc and allows devices connected to the Internet to be monitored and controlled remotely by user. However many studies on smart home concept focusing only on few main features. They still lack of important usage of IoT i.e. providing energy efficiency, energy monitoring, dealing with security, and managing privacy. This paper proposes a smart home system with RaspberryPi and NodeMCU as the backend that not only serves as home automation and merely a switch replacement, but to also record and report important things to the owner of the house e.g. when someone trespasses the house (security perimeter), or to report the calculation of how much money has been spent in consuming the electrical appliances. We successfully examine our proposed system in a real life working scenario. The communication between user and the system is done using Telegram Bot.
Machine learning in smart home control systems - Algorithms and new opportunities
NASA Astrophysics Data System (ADS)
Berg, Ivan A.; Khorev, Oleg E.; Matvevnina, Arina I.; Prisjazhnyj, Alexey V.
2017-11-01
Worldwide, more and more attention is paid to issues related to a smart home. If in 2000 Scopus registered 25 publications with about "smart house", in 2016 their number increased up to 1600. The top three countries with interest in smart home technologies include the United States, China and India. Corporations begin to offer their package solutions for automation of the intellectual home, dozens of start-ups around the creation of technology are established. Where is such interest from? What can offer intelligent home technologies? What can an end user receive?
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Baggu, Murali
This paper evaluated the impact of smart inverter Volt-VAR function on voltage reduction energy saving and power quality in electric power distribution systems. A methodology to implement the voltage reduction optimization was developed by controlling the substation LTC and capacitor banks, and having smart inverters participate through their autonomous Volt-VAR control. In addition, a power quality scoring methodology was proposed and utilized to quantify the effect on power distribution system power quality. All of these methodologies were applied to a utility distribution system model to evaluate the voltage reduction energy saving and power quality under various PV penetrations and smartmore » inverter densities.« less
Reusing models of actors and services in smart homecare to improve sustainability.
Walderhaug, Ståle; Stav, Erlend; Mikalsen, Marius
2008-01-01
Industrial countries are faced with a growing elderly population. Homecare systems with assistive smart house technology enable elderly to live independently at home. Development of such smart home care systems is complex and expensive and there is no common reference model that can facilitate service reuse. This paper proposes reusable actor and service models based on a model-driven development process where end user organizations and domain healthcare experts from four European countries have been involved. The models, specified using UML can be reused actively as assets in the system design and development process and can reduce development costs, and improve interoperability and sustainability of systems. The models are being evaluated in the European IST project MPOWER.
Bio-inspired device: a novel smart MR spring featuring tendril structure
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok
2016-01-01
Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.
Photonic elements in smart systems for use in aerospace platforms
NASA Astrophysics Data System (ADS)
Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood
1998-07-01
To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.
Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite
NASA Astrophysics Data System (ADS)
Rockberger, D.; Abramovich, H.
2014-03-01
The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.
Venkatesh, M P; Kumar, T M Pramod; Avinash, B S; Kumar, G Sheela
2013-04-01
Periodontitis is an inflammatory condition affecting teeth resulting in progressive destruction of periodontal ligaments, resorption of alveolar bone and loss of teeth. Treatment of periodontitis includes surgical and non surgical management. Systemic antibiotics are also used for the treatment of periodontitis. The aim of this research was to formulate smart gel system of azithromycin (AZT) and to evaluate in vitro and in vivo for non-surgical treatment of chronic periodontitis. Azithromycin dihydrate, used systemically in the treatment of periodontitis, was formulated into smart gels using biodegradable, thermosensitive polymer Pluronic® F-127 (PF-127) and Hydroxy Ethyl Cellulose (HEC) as copolymer. The prepared smart gels were evaluated for sterility, content uniformity, gelation temperature and time, syringeability, rheological behavior, in vitro diffusion and in vivo efficacy in human patients. The prepared smart gels were clear and transparent, sterile, thermoresponsive and injectable. Viscosity of gels increased with increase in concentration of polymer/co-polymer and also with temperature. They gelled in short response time below the body temperature. In vitro release studies showed controlled drug release which was influenced significantly by the properties and concentration of PF-127 and HEC. In vivo efficacy studies showed a significant improvement (p <0.001) in clinical parameters such as gingival index, probing pocket depth, clinical attachment level, bleeding index and plaque index. The developed azithromycin smart gel system is a novel approach for the treatment of chronic periodontitis since it reduces the dose and side effects, bypasses the usual surgical procedures and improves patient compliance.
Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera
NASA Astrophysics Data System (ADS)
Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2015-07-01
Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.
Smart textiles: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Cherenack, Kunigunde; van Pieterson, Liesbeth
2012-11-01
Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.
Modular telerobot control system for accident response
NASA Astrophysics Data System (ADS)
Anderson, Richard J. M.; Shirey, David L.
1999-08-01
The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.
Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2009-07-01
EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.
Best Development Practices: A Primer for Smart Growth
Best Development Practices: A Primer for Smart Growth lists specific practices to achieve development principles that mix land uses, support transportation options, protect natural systems, and provide housing choices.
Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V
2012-08-27
The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing.
2012-01-01
The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly growing. PMID:22876798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta
This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology tomore » implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.« less
Emerging Subsea Networks: SMART Cable Systems for Science and Society
NASA Astrophysics Data System (ADS)
Howe, B. M.; Butler, R.; Joint Task Force, U.
2016-02-01
The subsea telecommunications cable industry is approaching a prospective new era: deploying SMART subsea cable systems (SMART = Science Monitoring And Reliable Telecommunication). The current global, commercial cable infrastructure consists of 1 Gm of cable, being refreshed now and expanding in the future. The SMART concept is to add a small external sensor package along the cable system at its optical repeaters to transmit important real-time environmental data via a dedicated wavelength or overhead channel in the transmission system, avoiding any impact on the commercial traffic. These small, reliable, existing sensors would precisely measure temperature, pressure and three-axis acceleration across the world's ocean floor over an extended period of time, being deployed using standard cable-laying procedures on new or refurbished cables, but not requiring maintenance through the 2-3 decade life of the cable systems. The game-changing factor is the urgent international need for ocean environmental data related to mitigating climate and sea-level change and improving tsunami and slope failure hazard warnings. Societal costs incurred by these are reaching billions of dollars and hundreds of thousands of deaths. Pressures for new and urgent public policies are evident from the 5th IPCC Assessment, USA-China agreement on limiting greenhouse gas emissions, clear evidence for rapid global warming, 21st Session of the Conference of the Parties to the UNFCCC (December 2015, Paris), and the scale of the costs of inaction. To support revised public policies and actions, decision-makers, industry leaders, and the public are seeking key scientific data, which will necessitate new sources of funding. Hence, the emergence of new SMART cable systems offered by the subsea telecommunications industry will provide new market opportunities, engage additional non-traditional users, and make profound societal contributions. The Joint Task Force (JTF) on SMART Subsea Cable Systems established by three UN agencies (ITU, WMO, and UNESCO IOC) is helping facilitate this transformation. http://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx or google 'jtf cable'
ERIC Educational Resources Information Center
Warnock, Stuart H.; Boykin, Nancy J.; Tung, Wei Chih
2011-01-01
Literature on educational technology touts its potential for enhancing student outcomes such as learning, satisfaction, and performance. But are these benefits universal and do they apply to all applications and/or forms of educational technology? This study focuses on one such system, the Smart Board Technology System (SBTS) and the impact its…
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-01-01
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation. PMID:28946659
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard.
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-09-25
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Registration system of cloud campus by using android smart tablet.
Kamada, Shin; Ichimura, Takumi; Shigeyasu, Tetsuya; Takemoto, Yasuhiko
2014-01-01
Near Field Communication (NFC) standard covers communication protocols and data exchange formats. NFC technology is one of radio-frequency identification (RFID) standards. In Japan, Felica card is a popular way to identify the unique ID. We developed the attendance management system (AMS) as the Android application which works in the smart tablet with NFC. Generally, the AMS in the university is fixed to the wall and each student touches or slides his/her own card to the dedicated equipment. Because a teacher can use his/her own smart tablet and/or smartphone, the attendance records are viewed anytime and anywhere. Moreover, we developed the collecting system between PC and some tablets by using Android beam. Any personal data are encrypted and the file can be transferred over the NFC Bluetooth Handover between PC Linux and smart tablet. By the mining of the collected records, early discovery for chronic non-attenders are extracted in educational affairs section. In this paper, a registration system on the cloud campus system by using the personal smartphone with NFC is developed. The system enables to introduce the university courses that are open to the general public.
Pneumonia risk stratification in tropical Australia: does the SMART-COP score apply?
Davis, Joshua S; Cross, Gail B; Charles, Patrick G P; Currie, Bart J; Anstey, Nicholas M; Cheng, Allen C
2010-02-01
To examine the performance in tropical northern Australia of SMART-COP, a simple scoring system developed in temperate Australia to predict the need for intensive respiratory or vasopressor support (IRVS) in pneumonia patients. A prospective observational study of patients admitted to Royal Darwin Hospital in the Northern Territory with sepsis between August 2007 and May 2008. Chest x-rays were reviewed to confirm pneumonia, and each patient's SMART-COP score was assessed against the need for IRVS. Of 206 patients presenting with radiologically confirmed pneumonia, 184 were eligible for inclusion. The mean age of patients was 50.1 years, 65% were Indigenous and 56% were men. Overall, 38 patients (21%) required IRVS, and 18 patients (10%) died by Day 30. A SMART-COP score of >or= 3 had a sensitivity of only 71% for predicting the need for IRVS and 67% for 30-day mortality. As the variables most strongly associated with IRVS were serum albumin level < 35 g/L (odds ratio, 6.8) and Indigenous status (odds ratio, 2.3), we tested a modified scoring system (SMART-COP) that used a higher weighting for albumin and included Indigenous status. A SMART-COP score of >or= 3 had a sensitivity of 97% for IRVS and 100% for 30-day mortality. The SMART-COP score underestimates the severity of pneumonia in tropical northern Australia, but can be improved by using locally relevant additions.
Towards an Iterated Game Model with Multiple Adversaries in Smart-World Systems.
He, Xiaofei; Yang, Xinyu; Yu, Wei; Lin, Jie; Yang, Qingyu
2018-02-24
Diverse and varied cyber-attacks challenge the operation of the smart-world system that is supported by Internet-of-Things (IoT) (smart cities, smart grid, smart transportation, etc.) and must be carefully and thoughtfully addressed before widespread adoption of the smart-world system can be fully realized. Although a number of research efforts have been devoted to defending against these threats, a majority of existing schemes focus on the development of a specific defensive strategy to deal with specific, often singular threats. In this paper, we address the issue of coalitional attacks, which can be launched by multiple adversaries cooperatively against the smart-world system such as smart cities. Particularly, we propose a game-theory based model to capture the interaction among multiple adversaries, and quantify the capacity of the defender based on the extended Iterated Public Goods Game (IPGG) model. In the formalized game model, in each round of the attack, a participant can either cooperate by participating in the coalitional attack, or defect by standing aside. In our work, we consider the generic defensive strategy that has a probability to detect the coalitional attack. When the coalitional attack is detected, all participating adversaries are penalized. The expected payoff of each participant is derived through the equalizer strategy that provides participants with competitive benefits. The multiple adversaries with the collusive strategy are also considered. Via a combination of theoretical analysis and experimentation, our results show that no matter which strategies the adversaries choose (random strategy, win-stay-lose-shift strategy, or even the adaptive equalizer strategy), our formalized game model is capable of enabling the defender to greatly reduce the maximum value of the expected average payoff to the adversaries via provisioning sufficient defensive resources, which is reflected by setting a proper penalty factor against the adversaries. In addition, we extend our game model and analyze the extortion strategy, which can enable one participant to obtain more payoff by extorting his/her opponents. The evaluation results show that the defender can combat this strategy by encouraging competition among the adversaries, and significantly suppress the total payoff of the adversaries via setting the proper penalty factor.
Towards an Iterated Game Model with Multiple Adversaries in Smart-World Systems †
Yang, Xinyu; Yu, Wei; Lin, Jie; Yang, Qingyu
2018-01-01
Diverse and varied cyber-attacks challenge the operation of the smart-world system that is supported by Internet-of-Things (IoT) (smart cities, smart grid, smart transportation, etc.) and must be carefully and thoughtfully addressed before widespread adoption of the smart-world system can be fully realized. Although a number of research efforts have been devoted to defending against these threats, a majority of existing schemes focus on the development of a specific defensive strategy to deal with specific, often singular threats. In this paper, we address the issue of coalitional attacks, which can be launched by multiple adversaries cooperatively against the smart-world system such as smart cities. Particularly, we propose a game-theory based model to capture the interaction among multiple adversaries, and quantify the capacity of the defender based on the extended Iterated Public Goods Game (IPGG) model. In the formalized game model, in each round of the attack, a participant can either cooperate by participating in the coalitional attack, or defect by standing aside. In our work, we consider the generic defensive strategy that has a probability to detect the coalitional attack. When the coalitional attack is detected, all participating adversaries are penalized. The expected payoff of each participant is derived through the equalizer strategy that provides participants with competitive benefits. The multiple adversaries with the collusive strategy are also considered. Via a combination of theoretical analysis and experimentation, our results show that no matter which strategies the adversaries choose (random strategy, win-stay-lose-shift strategy, or even the adaptive equalizer strategy), our formalized game model is capable of enabling the defender to greatly reduce the maximum value of the expected average payoff to the adversaries via provisioning sufficient defensive resources, which is reflected by setting a proper penalty factor against the adversaries. In addition, we extend our game model and analyze the extortion strategy, which can enable one participant to obtain more payoff by extorting his/her opponents. The evaluation results show that the defender can combat this strategy by encouraging competition among the adversaries, and significantly suppress the total payoff of the adversaries via setting the proper penalty factor. PMID:29495291
Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs
2012-01-01
Smart homes for the aging population have recently started attracting the attention of the research community. The “health state” of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario. PMID:26007727
Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs
2015-05-21
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Coenen, J. W.; Mao, Y.; Gonzalez-Julian, J.; Bram, M.
2017-12-01
Smart tungsten-based alloys are under development as plasma-facing components for a future fusion power plant. Smart alloys are planned to adjust their properties depending on environmental conditions: acting as a sputter-resistant plasma-facing material during plasma operation and suppressing the sublimation of radioactive tungsten oxide in case of an accident on the power plant. New smart alloys containing yttrium are presently in the focus of research. Thin film smart alloys are featuring an remarkable 105-fold suppression of mass increase due to an oxidation as compared to that of pure tungsten at 1000 °C. Newly developed bulk smart tungsten alloys feature even better oxidation resistance compared to that of thin films. First plasma test of smart alloys under DEMO-relevant conditions revealed the same mass removal as for pure tungsten due to sputtering by plasma ions. Exposed smart alloy samples demonstrate the superior oxidation performance as compared to tungsten-chromium-titanium systems developed earlier.
Smart particles for noble drug delivery system.
Park, Cheolyoung; Kim, Jihoon; Jang, Seunghyun; Woo, Hee-Gweon; Ko, Young Chun; Sohn, Honglae
2010-05-01
Optically encoded smart particles were prepared for noble drug delivery materials. Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by applying a computer-generated pseudo-square wave current waveform. This DBR PSi film was lifted off from the Si substrate and thermally oxidized to convert PSi to porous silicon dioxide (PSD). DBR PSD film was derivatized with 20(S)-Camptothecin (CPT) and fractured by ultrasono-method to give smart particles. DBR PSD smart particles exhibited a sharp photonic band gap in the optical reflectivity spectrum. Optical characteristic of PSD smart particles retained DBR photonic property in aqueous buffer solution. The release of CPT and change of reflection wavelength were measured by UV-vis and reflectance spectrometer, respectively. The intensity of differential peak from reflection resonances of the smart particles was increased with a drug release. The blue shift of reflection peak resulted in the decrease of refractive index of PSD smart particles during the drug release. The concentration of released drug exhibited an linear relationship with a release time.
Managing Emergency Situations in the Smart City: The Smart Signal
Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto
2015-01-01
In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City. PMID:26094626
Assessing Smart Phones for Generating Life-space Indicators.
Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge
2013-04-01
Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.
SMART Power Systems for ANTS Missions
NASA Astrophysics Data System (ADS)
Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.
2005-02-01
Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains papers on the following topics: NREN Security Issues: Policies and Technologies; Layer Wars: Protect the Internet with Network Layer Security; Electronic Commission Management; Workflow 2000 - Electronic Document Authorization in Practice; Security Issues of a UNIX PEM Implementation; Implementing Privacy Enhanced Mail on VMS; Distributed Public Key Certificate Management; Protecting the Integrity of Privacy-enhanced Electronic Mail; Practical Authorization in Large Heterogeneous Distributed Systems; Security Issues in the Truffles File System; Issues surrounding the use of Cryptographic Algorithms and Smart Card Applications; Smart Card Augmentation of Kerberos; and An Overview of the Advanced Smart Card Access Control System.more » Selected papers were processed separately for inclusion in the Energy Science and Technology Database.« less
Leveraging AMI data for distribution system model calibration and situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less