Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web
de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández
2014-01-01
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678
A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.
de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso
2014-06-18
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring
Lin, Chung-Chih; Yu, Yan-Shuo
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.
Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.
NASA Astrophysics Data System (ADS)
Bhattacharya, D.; Painho, M.
2017-09-01
The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.
Long-term real-time structural health monitoring using wireless smart sensor
NASA Astrophysics Data System (ADS)
Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil
2013-04-01
Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.
A Multi-Technology Communication Platform for Urban Mobile Sensing.
Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana
2018-04-12
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.
Smart Water: Energy-Water Optimization in Drinking Water Systems
This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...
A Multi-Technology Communication Platform for Urban Mobile Sensing
Almeida, Rodrigo; Oliveira, Rui
2018-01-01
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175
Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.
Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego
2014-09-17
The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy.
Integration of Multisensor Hybrid Reasoners to Support Personal Autonomy in the Smart Home
Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego
2014-01-01
The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy. PMID:25232910
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Chen, Yu-Xian
2018-01-01
This study designed a radio-frequency identification (RFID)-based Internet of Things (IoT) platform to create the core of a smart nest box. At the sensing level, we have deployed RFID-based sensors and egg detection sensors. A low-frequency RFID reader is installed in the bottom of the nest box and a foot ring RFID tag is worn on the leg of individual hens. The RFID-based sensors detect when a hen enters or exits the nest box. The egg-detection sensors are implemented with a resistance strain gauge pressure sensor, which weights the egg in the egg-collection tube. Thus, the smart nest box makes it possible to analyze the laying performance and behavior of individual hens. An evaluative experiment was performed using an enriched cage, a smart nest box, web camera, and monitoring console. The hens were allowed 14 days to become accustomed to the experimental environment before monitoring began. The proposed IoT platform makes it possible to analyze the egg yield of individual hens in real time, thereby enabling the replacement of hens with egg yield below a pre-defined level in order to meet the overall target egg yield rate. The results of this experiment demonstrate the efficacy of the proposed RFID-based smart nest box in monitoring the egg yield and laying behavior of individual hens. PMID:29538334
Chien, Ying-Ren; Chen, Yu-Xian
2018-03-14
This study designed a radio-frequency identification (RFID)-based Internet of Things (IoT) platform to create the core of a smart nest box. At the sensing level, we have deployed RFID-based sensors and egg detection sensors. A low-frequency RFID reader is installed in the bottom of the nest box and a foot ring RFID tag is worn on the leg of individual hens. The RFID-based sensors detect when a hen enters or exits the nest box. The egg-detection sensors are implemented with a resistance strain gauge pressure sensor, which weights the egg in the egg-collection tube. Thus, the smart nest box makes it possible to analyze the laying performance and behavior of individual hens. An evaluative experiment was performed using an enriched cage, a smart nest box, web camera, and monitoring console. The hens were allowed 14 days to become accustomed to the experimental environment before monitoring began. The proposed IoT platform makes it possible to analyze the egg yield of individual hens in real time, thereby enabling the replacement of hens with egg yield below a pre-defined level in order to meet the overall target egg yield rate. The results of this experiment demonstrate the efficacy of the proposed RFID-based smart nest box in monitoring the egg yield and laying behavior of individual hens.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
SEnviro: a sensorized platform proposal using open hardware and open standards.
Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín
2015-03-06
The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.
SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards
Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín
2015-01-01
The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
SAMuS: Service-Oriented Architecture for Multisensor Surveillance in Smart Homes
Van de Walle, Rik
2014-01-01
The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases. PMID:24778579
[Temperature Measurement with Bluetooth under Android Platform].
Wang, Shuai; Shen, Hao; Luo, Changze
2015-03-01
To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.
Smart healthcare textile sensor system for unhindered-pervasive health monitoring
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.
2012-04-01
Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.
Experiments with Sensor Motes and Java-DSP
ERIC Educational Resources Information Center
Kwon, Homin; Berisha, V.; Atti, V.; Spanias, A.
2009-01-01
Distributed wireless sensor networks (WSNs) are being proposed for various applications including defense, security, and smart stages. The introduction of hardware wireless sensors in a signal processing education setting can serve as a paradigm for data acquisition, collaborative signal processing, or simply as a platform for obtaining,…
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
A Bluetooth-Based Device Management Platform for Smart Sensor Environment
NASA Astrophysics Data System (ADS)
Lim, Ivan Boon-Kiat; Yow, Kin Choong
In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology
Mokhtari, Ghassem; Zhang, Qing; Karunanithi, Mohanraj
2018-01-01
Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario. PMID:29562666
Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology.
Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Zhang, Qing; Karunanithi, Mohanraj
2018-03-19
Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario.
Development of Android based Smart Power Saving System
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.
2017-08-01
An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.
Smart fabric sensors and e-textile technologies: a review
NASA Astrophysics Data System (ADS)
Castano, Lina M.; Flatau, Alison B.
2014-05-01
This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.
Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong
2016-05-21
Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.
Septic safe interactions with smart glasses in health care.
Czuszynski, K; Ruminski, J; Kocejko, T; Wtorek, J
2015-08-01
In this paper, septic safe methods of interaction with smart glasses, due to the health care environment applications consideration, are presented. The main focus is on capabilities of an optical, proximity-based gesture sensor and eye-tracker input systems. The design of both interfaces is being adapted to the open smart glasses platform that is being developed under the eGlasses project. Preliminary results obtained from the proximity sensor show that the recognition of different static and dynamic hand gestures is promising. The experiments performed for the eye-tracker module shown the possibility of interaction with simple Graphical User Interface provided by the near-to-eye display. Research leads to the conclusion of attractiveness of collaborative interfaces for interaction with smart glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devicesmore » become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
Research on Service Platform of Internet of Things for Smart City
NASA Astrophysics Data System (ADS)
Wang, W.; He, Z.; Huang, D.; Zhang, X.
2014-04-01
The application of Internet of Things in surveying and mapping industry basically is at the exploration stage, has not formed a unified standard. Chongqing Institute of Surveying and Mapping (CQISM) launched the research p roject "Research on the Technology of Internet of Things for Smart City". The project focuses on the key technologies of information transmission and exchange on the Internet of Things platform. The data standards of Internet of Things are designed. The real-time acquisition, mass storage and distributed data service of mass sensors are realized. On this basis, CQISM deploys the prototype platform of Internet of Things. The simulation application in Connected Car proves that the platform design is scientific and practical.
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-01-01
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-07-05
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen
In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmitmore » the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.« less
Australian defence requirements and initiatives in smart materials and structures
NASA Astrophysics Data System (ADS)
Wilson, Alan R.; Galea, Stephen C.; Scala, Christine; Wong, Albert
2002-11-01
The Australian Defence Force is increasingly facing escalating costs on through-life support for major platforms (ships, aircraft and land vehicles). The application of smart materials and structures technologies in platform management systems is seen as a very promising approach to reduce these costs and to potentially achieve significant enhancement of platform capability. A new DSTO Key Initiative, 'Smart Materials and Structures', has been recently developed and funded to address these technologies. The Initiative will build on and grow the current activities within DSTO and promote collaboration with external Australian institutes and industry. This paper will present an overview of the Initiative and the generic sensor and system issues inherent in the 'whole-of-platform' and 'whole-of-life' monitoring and management of major defence platforms. Examples for some particular elements of this will be drawn from current work in DSTO. Other presentations in the conference will cover the technical and scientific aspects of these in more detail.
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, Sev; Dufour, Jean-Francois
2012-08-01
The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.
NASA Astrophysics Data System (ADS)
Hosoki, Ai; Nishiyama, Michiko; Choi, Yongwoon; Watanabe, Kazuhiro
2011-05-01
In this paper, we propose discrimination method between a moving human and object by means of a hetero-core fiber smart mat sensor which induces the optical loss change in time. In addition to several advantages such as flexibility, thin size and resistance to electro-magnetic interference for a fiber optic sensor, a hetero-core fiber optic sensor is sensitive to bending action of the sensor portion and independent of temperature fluctuations. Therefore, the hetero-core fiber thin mat sensor can have a fewer sensing portions than the conventional floor pressure sensors, furthermore, can detect the wide area covering the length of strides. The experimental results for human walking tests showed that the mat sensors were reproducibly working in real-time under limiting locations the foot passed in the mat sensor. Focusing on the temporal peak numbers in the optical loss, human walking and wheeled platform moving action induced the peak numbers in the range of 1 - 3 and 5 - 7, respectively, for the 10 persons including 9 male and 1 female. As a result, we conclude that the hetero-core fiber mat sensor is capable of discriminating between the moving human and object such as a wheeled platform focusing on the peak numbers in the temporal optical loss.
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt.
Jayaraman, Prem Prakash; Yavari, Ali; Georgakopoulos, Dimitrios; Morshed, Ahsan; Zaslavsky, Arkady
2016-11-09
Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations.
An innovative and multi-functional smart vibration platform
NASA Astrophysics Data System (ADS)
Olmi, C.; Song, G.; Mo, Y. L.
2007-08-01
Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.
Sensor-Based Human Activity Recognition in a Multi-user Scenario
NASA Astrophysics Data System (ADS)
Wang, Liang; Gu, Tao; Tao, Xianping; Lu, Jian
Existing work on sensor-based activity recognition focuses mainly on single-user activities. However, in real life, activities are often performed by multiple users involving interactions between them. In this paper, we propose Coupled Hidden Markov Models (CHMMs) to recognize multi-user activities from sensor readings in a smart home environment. We develop a multimodal sensing platform and present a theoretical framework to recognize both single-user and multi-user activities. We conduct our trace collection done in a smart home, and evaluate our framework through experimental studies. Our experimental result shows that we achieve an average accuracy of 85.46% with CHMMs.
Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny
2016-03-11
The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.
Recent enhancements to and applications of the SmartBrick structural health monitoring platform
NASA Astrophysics Data System (ADS)
Gunasekaran, A.; Cross, S.; Patel, N.; Sedigh, S.
2012-04-01
The SmartBrick network is an autonomous and wireless solution for structural health monitoring of civil infrastructures. The base station is currently in its third generation and has been laboratory- and field-tested in the United States and Italy. The second generation of the sensor nodes has been laboratory-tested as of publication. In this paper, we present recent enhancements made to hardware and software of the SmartBrick platform. Salient improvements described include the development of a new base station with fully-integrated long-range GSM (cellular) and short-range ZigBee communication. The major software improvement described in this paper is migration to the ZigBee PRO stack, which was carried out in the interest of interoperability. To broaden the application of the platform to critical environments that require survivability and fault tolerance, we have striven to achieve compliance with military standards in the areas of hardware, software, and communication. We describe these efforts and present a survey of the military standards investigated. Also described is instrumentation of a three-span experimental bridge in Washington County, Missouri; with the SmartBrick platform. The sensors, whose output is conditioned and multiplexed; include strain gauges, thermocouples, push potentiometers, and three-axis inclinometers. Data collected is stored on site and reported over the cellular network. Real-time alerts are generated if any monitored parameter falls outside its acceptable range. Redundant sensing and communication provide reliability and facilitate corroboration of the data collected. A web interface is used to issue remote configuration commands and to facilitate access to and visualization of the data collected.
SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE
Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro
2016-01-01
Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors’ data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport. PMID:27011192
Smart Toys Designed for Detecting Developmental Delays
Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R.; Ortega, José Eugenio; Martínez-Yelmo, Isaías
2016-01-01
In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports. PMID:27879626
Smart Toys Designed for Detecting Developmental Delays.
Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R; Ortega, José Eugenio; Martínez-Yelmo, Isaías
2016-11-20
In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-07-10
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-01-01
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205
A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors
Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min
2013-01-01
We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt
Jayaraman, Prem Prakash; Yavari, Ali; Georgakopoulos, Dimitrios; Morshed, Ahsan; Zaslavsky, Arkady
2016-01-01
Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations. PMID:27834862
An u-Service Model Based on a Smart Phone for Urban Computing Environments
NASA Astrophysics Data System (ADS)
Cho, Yongyun; Yoe, Hyun
In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.
An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev
2013-06-07
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.
NASA Astrophysics Data System (ADS)
Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping
2016-04-01
As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-07-22
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-01-01
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265
Wang, Jingang; Gao, Can; Yang, Jie
2014-07-17
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.
Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S. R.; Muruganand, S.
2012-01-01
Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-01-01
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation. PMID:28946659
Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard.
Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok
2017-09-25
An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation.
An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev
2013-01-01
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Kumar, Prashanth S.; Oh, Sechang; Mathur, Gyanesh N.; Rai, Pratyush; Kegley, Lauren
2011-04-01
Heart related ailments have been a major cause for deaths in both men and women in United States. Since 1985, more women than men have died due to cardiac or cardiovascular ailments for reasons that are not well understood as yet. Lack of a deterministic understanding of this phenomenon makes continuous real time monitoring of cardiovascular health the best approach for both early detection of pathophysiological changes and events indicative of chronic cardiovascular diseases in women. This approach requires sensor systems to be seamlessly mounted on day to day clothing for women. With this application in focus, this paper describes a e-bra platform for sensors towards heart rate monitoring. The sensors, nanomaterial or textile based dry electrodes, capture the heart activity signals in form Electrocardiograph (ECG) and relay it to a compact textile mountable amplifier-wireless transmitter module for relay to a smart phone. The ECG signal, acquired on the smart phone, can be transmitted to the cyber space for post processing. As an example, the paper discusses the heart rate estimation and heart rate variability. The data flow from sensor to smart phone to server (cyber infrastructure) has been discussed. The cyber infrastructure based signal post processing offers an opportunity for automated emergency response that can be initiated from the server or the smartphone itself. Detailed protocols for both the scenarios have been presented and their relevance to the present emergency healthcare response system has been discussed.
NASA Astrophysics Data System (ADS)
Dima, M.; Francu, C.
2016-08-01
This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.
Policy 2.0 Platform for Mobile Sensing and Incentivized Targeted Shifts in Mobility Behavior
Semanjski, Ivana; Lopez Aguirre, Angel Javier; De Mol, Johan; Gautama, Sidharta
2016-01-01
Sustainable mobility and smart mobility management play important roles in achieving smart cities’ goals. In this context we investigate the role of smartphones as mobility behavior sensors and evaluate the responsivity of different attitudinal profiles towards personalized route suggestion incentives delivered via mobile phones. The empirical results are based on mobile sensed data collected from more than 3400 people’s real life over a period of six months. The findings show which user profiles are most likely to accept such incentives and how likely they are to result in more sustainable mode choices. In addition we provide insights into tendencies towards accepting more sustainable route options for different trip purposes and illustrate smart city platform potential (for collection of mobility behavior data and delivery of incentives) as a tool for development of personalized mobility management campaigns and policies. PMID:27399700
Advanced Smart Structures Flight Experiments for Precision Spacecraft
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory
2000-07-01
This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.
Generic Module for Collecting Data in Smart Cities
NASA Astrophysics Data System (ADS)
Martinez, A.; Ramirez, F.; Estrada, H.; Torres, L. A.
2017-09-01
The Future Internet brings new technologies to the common life of people, such as Internet of Things, Cloud Computing or Big Data. All this technologies have change the way people communicate and also the way the devices interact with the context, giving rise to new paradigms, as the case of smart cities. Currently, the mobile devices represent one of main sources of information for new applications that take into account the user context, such as apps for mobility, health, of security. Several platforms have been proposed that consider the development of Future Internet applications, however, no generic modules can be found that implement the collection of context data from smartphones. In this research work we present a generic module to collect data from different sensors of the mobile devices and also to send, in a standard manner, this data to the Open FIWARE Cloud to be stored or analyzed by software tools. The proposed module enables the human-as-a-sensor approach for FIWARE Platform.
Nguyen, Duc T; Jung, Jai E
2014-01-01
Social network services (e.g., Twitter and Facebook) can be regarded as social sensors which can capture a number of events in the society. Particularly, in terms of time and space, various smart devices have improved the accessibility to the social network services. In this paper, we present a social software platform to detect a number of meaningful events from information diffusion patterns on such social network services. The most important feature is to process the social sensor signal for understanding social events and to support users to share relevant information along the social links. The platform has been applied to fetch and cluster tweets from Twitter into relevant categories to reveal hot topics.
2005 USSOCOM Chemical, Biological, Radiological Conference and Exhibition
2005-12-08
Cree, Inc. 22 Signal respose to releases 12:42 12:48 12:54 13:0 13:6 13:12 13:18 -2 0 2 4 6 8 10 12 x 10-3 Processed Data for AS-B2-009-09-03-05...acrid smell and onset of nerve agent symptoms Confidential USSOCOM Scenario 3: Chemical Agent Attack • First responders don their Self -Contained...Nuclear (CBRN) detectors Smart Threads is a dynamic, easily expandable, self - configuring platform Smart Threads Integrated Radiation Sensors (STIRS
NASA Astrophysics Data System (ADS)
Jara, A. J.; Bocchi, Y.; Fernandez, D.; Molina, G.; Gomez, A.
2017-09-01
Smart Cities requires the support of context-aware and enriched semantic descriptions to support a scalable and cross-domain development of smart applications. For example, nowadays general purpose sensors such as crowd monitoring (counting people in an area), environmental information (pollution, air quality, temperature, humidity, noise) etc. can be used in multiple solutions with different objectives. For that reason, a data model that offers advanced capabilities for the description of context is required. This paper presents an overview of the available technologies for this purpose and how it is being addressed by the Open and Agile Smart Cities principles and FIWARE platform through the data models defined by the ETSI ISG Context Information Management (ETSI CIM).
Wang, Jingang; Gao, Can; Yang, Jie
2014-01-01
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones
NASA Astrophysics Data System (ADS)
Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali
2014-10-01
Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.
Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544
Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project
NASA Technical Reports Server (NTRS)
Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.
2006-01-01
NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.
The Development of Wireless Body Area Network for Motion Sensing Application
NASA Astrophysics Data System (ADS)
Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.
2018-04-01
The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.
Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite
NASA Astrophysics Data System (ADS)
Rockberger, D.; Abramovich, H.
2014-03-01
The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Spencer, Billie F., Jr.; Park, Jongwoong; Jung, Hyungjo
2012-04-01
Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventional monitoring systems based on wired sensors and centralized data acquisition and processing have been considered to be challenging and costly due to cabling and expensive equipment and maintenance costs. WSSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. Thus, several system identification methods have been implemented to process sensor data and extract essential information, including Natural Excitation Technique with Eigensystem Realization Algorithm, Frequency Domain Decomposition (FDD), and Random Decrement Technique (RDT); however, Stochastic Subspace Identification (SSI) has not been fully utilized in WSSNs, while SSI has the strong potential to enhance the system identification. This study presents a decentralized system identification using SSI in WSSNs. The approach is implemented on MEMSIC's Imote2 sensor platform and experimentally verified using a 5-story shear building model.
A Critical Review of 13 Years of Mobile Game-Based Learning
ERIC Educational Resources Information Center
Giannakas, Filippos; Kambourakis, Georgios; Papasalouros, Andreas; Gritzalis, Stefanos
2018-01-01
With the increasing popularity of smartphones and tablets, game-based learning (GBL) is undergoing a rapid shift to mobile platforms. This transformation is driven by mobility, wireless interfaces, and built-in sensors that these smart devices offer in order to enable blended and context-sensitive mobile learning (m-Learning) activities. Thus,…
Sensor and Video Monitoring of Water Quality at Bristol Floating Harbour
NASA Astrophysics Data System (ADS)
Chen, Yiheng; Han, Dawei
2017-04-01
Water system is an essential component in a smart city for its sustainability and resilience. The harbourside is a focal area of Bristol with new buildings and features redeveloped in the last ten years, attracting numerous visitors by the diversity of attractions and beautiful views. There is a strong relationship between the satisfactory of the visitors and local people with the water quality in the Harbour. The freshness and beauty of the water body would please people as well as benefit the aquatic ecosystems. As we are entering a data-rich era, this pilot project aims to explore the concept of using video cameras and smart sensors to collect and monitor water quality condition at the Bristol harbourside. The video cameras and smart sensors are connected to the Bristol Is Open network, an open programmable city platform. This will be the first attempt to collect water quality data in real time in the Bristol urban area with the wireless network. The videos and images of the water body collected by the cameras will be correlated with the in-situ water quality parameters for research purposes. The successful implementation of the sensors can attract more academic researchers and industrial partners to expand the sensor network to multiple locations around the city covering the other parts of the Harbour and River Avon, leading to a new generation of urban system infrastructure model.
Health care applications based on mobile phone centric smart sensor network.
Quero, J M; Tarrida, C L; Santana, J J; Ermolov, V; Jantunen, I; Laine, H; Eichholz, J
2007-01-01
This paper presents the MIMOSA architecture and development platform to create Ambient Intelligence applications. MIMOSA achieves this objective by developing a personal mobile-device centric architecture and open technology platform where microsystem technology is the key enabling technology for their realization due to its low-cost, low power consumption, and small size. This paper focuses the demonstration activities carried out in the field of health care. MIMOSA project is a European level initiative involving 15 enterprises and research institutions and universities.
NASA Astrophysics Data System (ADS)
Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young
2017-06-01
Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V = 1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.
Smart Cruise Control: UAV sensor operator intent estimation and its application
NASA Astrophysics Data System (ADS)
Cheng, Hui; Butler, Darren; Kumar, Rakesh
2006-05-01
Due to their long endurance, superior mobility and the low risk posed to the pilot and sensor operator, UAVs have become the preferred platform for persistent ISR missions. However, currently most UAV based ISR missions are conducted through manual operation. Event the simplest tasks, such as vehicle tracking, route reconnaissance and site monitoring, need the sensor operator's undivided attention and constant adjustment of the sensor control. The lack of autonomous behaviour greatly limits of the effectiveness and the capability of UAV-based ISR, especially the use of a large number of UAVs simultaneously. Although fully autonomous UAV based ISR system is desirable, it is still a distant dream due to the complexity and diversity of combat and ISR missions. In this paper, we propose a Smart Cruise Control system that can learn UAV sensor operator's intent and use it to complete tasks automatically, such as route reconnaissance and site monitoring. Using an operator attention model, the proposed system can estimate the operator's intent from how they control the sensor (e.g. camera) and the content of the imagery that is acquired. Therefore, for example, from initially manually controlling the UAV sensor to follow a road, the system can learn not only the preferred operation, "tracking", but also the road appearance, "what to track" in real-time. Then, the learnt models of both road and the desired operation can be used to complete the task automatically. We have demonstrated the Smart Cruise Control system using real UAV videos where roads need to be tracked and buildings need to be monitored.
Smart single-chip gas sensor microsystem
NASA Astrophysics Data System (ADS)
Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.
2001-11-01
Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.
Services Oriented Smart City Platform Based On 3d City Model Visualization
NASA Astrophysics Data System (ADS)
Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.
2014-04-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.
Smartphones as Tools for Delivering Sun-Smart Education to Students
ERIC Educational Resources Information Center
Igoe, Damien; Parisi, Alfio; Carter, Brad
2013-01-01
Smartphones are used widely by the general public and students. They are one of the most popular and easily accessible technologies. These devices were originally designed as a means of communication. However, they have evolved into a mobile computing platform with built in sensors and the ability to access a vast number of applications. This…
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-01-01
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-06-24
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.
Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622
Developing a new wireless sensor network platform and its application in precision agriculture.
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.
Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding
2016-11-18
In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO₂) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO₂ control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO₂ concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO₂ concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.
One size fits all electronics for insole-based activity monitoring.
Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward
2017-07-01
Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.
The Sensor Management for Applied Research Technologies (SMART) Project
NASA Technical Reports Server (NTRS)
Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil;
2007-01-01
NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.
Citizen Sensors for SHM: Towards a Crowdsourcing Platform
Ozer, Ekin; Feng, Maria Q.; Feng, Dongming
2015-01-01
This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490
Multifunctional Web Enabled Ocean Sensor Systems for the Monitoring of a Changing Ocean
NASA Astrophysics Data System (ADS)
Pearlman, Jay; Castro, Ayoze; Corrandino, Luigi; del Rio, Joaquin; Delory, Eric; Garello, Rene; Heuermann, Rudinger; Martinez, Enoc; Pearlman, Francoise; Rolin, Jean-Francois; Toma, Daniel; Waldmann, Christoph; Zielinski, Oliver
2016-04-01
As stated in the 2010 "Ostend Declaration", a major challenge in the coming years is the development of a truly integrated and sustainably funded European Ocean Observing System for supporting major policy initiatives such as the Integrated Maritime Policy and the Marine Strategy Framework Directive. This will be achieved with more long-term measurements of key parameters supported by a new generation of sensors whose costs and reliability will enable broad and consistent observations. Within the NeXOS project, a framework including new sensors capabilities and interface software has been put together that embraces the key technical aspects needed to improve the temporal and spatial coverage, resolution and quality of marine observations. The developments include new, low-cost, compact and integrated sensors with multiple functionalities that will allow for the measurements useful for a number of objectives, ranging from more precise monitoring and modeling of the marine environment to an improved assessment of fisheries. The project is entering its third year and will be demonstrating initial capabilities of optical and acoustic sensor prototypes that will become available for a number of platforms. For fisheries management, there is also a series of sensors that support an Ecosystem Approach to Fisheries (EAF). The greatest capabilities for comprehensive operations will occur when these sensors can be integrated into a multisensory capability on a single platform or multiply interconnected and coordinated platforms. Within NeXOS the full processing steps starting from the sensor signal all the way up to distributing collected environmental information will be encapsulated into standardized new state of the art Smart Sensor Interface and Web components to provide both improved integration and a flexible interface for scientists to control sensor operation. The use of the OGC SWE (Sensor Web Enablement) set of standards like OGC PUCK and SensorML at the instrument to platform integration phase will provide standard mechanisms for a truly plug'n'work connection. Through this, NeXOS Instruments will maintain within themselves specific information about how a platform (buoy controller, AUV controller, Observatory controller) has to configure and communicate with the instrument without the platform needing previous knowledge about the instrument. This mechanism is now being evaluated in real platforms like a Slocum Glider from Teledyne Web research, SeaExplorer Glider from Alseamar, Provor Float from NKE, and others including non commercial platforms like Obsea seafloor cabled observatory. The latest developments in the NeXOS sensors and the integration into an observation system will be discussed, addressing demonstration plans both for a variety of platforms and scientific objectives supporting marine management.
Scalable, Secure Analysis of Social Sciences Data on the Azure Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Deng, Litao; Kumbhare, Alok
2012-05-07
Human activity and interaction data is beginning to be collected at population scales through the pervasiveness of social media and willingness of people to volunteer information. This can allow social science researchers to understand and model human behavior with better accuracy and prediction power. Political and social scientists are starting to correlate such large scale social media datasets with events that impact society as evidence abound of the virtual and physical public spaces intersecting and influencing each other [1,2]. Managers of Cyber Physical Systems such as Smart Power Grid utilities are investigating the impact of consumer behavior on power consumption,more » and the possibility of influencing the usage profile [3]. Data collection is also made easier through technology such as mobile apps, social media sites and search engines that directly collect data, and sensors such smart meters and room occupancy sensors that indirectly measure human activity. These technology platforms also provide a convenient framework for “human sensors” to record and broadcast data for behavioral studies, as a form of crowd sourced citizen science. This has the added advantage of engaging the broader public in STEM activities and help influence public policy.« less
Smart sensors II; Proceedings of the Seminar, San Diego, CA, July 31, August 1, 1980
NASA Astrophysics Data System (ADS)
Barbe, D. F.
1980-01-01
Topics discussed include technology for smart sensors, smart sensors for tracking and surveillance, and techniques and algorithms for smart sensors. Papers are presented on the application of very large scale integrated circuits to smart sensors, imaging charge-coupled devices for deep-space surveillance, ultra-precise star tracking using charge coupled devices, and automatic target identification of blurred images with super-resolution features. Attention is also given to smart sensors for terminal homing, algorithms for estimating image position, and the computational efficiency of multiple image registration algorithms.
Jiménez-Naharro, Raúl; Gómez-Bravo, Fernando; Medina-García, Jonathan; Sánchez-Raya, Manuel; Gómez-Galán, Juan Antonio
2017-01-01
This paper presents a study about hardware attacking and clock signal vulnerability. It considers a particular type of attack on the clock signal in the I2C protocol, and proposes the design of a new sensor for detecting and defending against this type of perturbation. The analysis of the attack and the defense is validated by means of a configurable experimental platform that emulates a differential drive robot. A set of experimental results confirm the interest of the studied vulnerabilities and the efficiency of the proposed sensor in defending against this type of situation. PMID:28346337
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device
He, Xiang; Aloi, Daniel N.; Li, Jia
2015-01-01
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.
He, Xiang; Aloi, Daniel N; Li, Jia
2015-12-14
Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.
Smart Microsystems with Photonic Element and Their Applications to Aerospace Platforms
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Lekki, J.; Sutter, J. K.; Sarkisov, S. S.; Curley, M. J.; Martin, C. E.
2000-01-01
The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth, and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, and processing of the signal occurs at the peripherals that include smart structures and devices. Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the Glenn Research Center (GRC).
Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding
2016-01-01
In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725
An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2016-03-07
The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications.
Minor, Bryan; Doppa, Janardhan Rao; Cook, Diane J
2017-12-01
Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However, there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction , where the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes. Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting activities from sensor data.
Design of the smart scenic spot service platform
NASA Astrophysics Data System (ADS)
Yin, Min; Wang, Shi-tai
2015-12-01
With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.
A Review of Rock Bolt Monitoring Using Smart Sensors.
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-04-05
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.
A Review of Rock Bolt Monitoring Using Smart Sensors
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-01-01
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167
A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring.
Benammar, Mohieddine; Abdaoui, Abderrazak; Ahmad, Sabbir H M; Touati, Farid; Kadri, Abdullah
2018-02-14
The impact of air quality on health and on life comfort is well established. In many societies, vulnerable elderly and young populations spend most of their time indoors. Therefore, indoor air quality monitoring (IAQM) is of great importance to human health. Engineers and researchers are increasingly focusing their efforts on the design of real-time IAQM systems using wireless sensor networks. This paper presents an end-to-end IAQM system enabling measurement of CO₂, CO, SO₂, NO₂, O₃, Cl₂, ambient temperature, and relative humidity. In IAQM systems, remote users usually use a local gateway to connect wireless sensor nodes in a given monitoring site to the external world for ubiquitous access of data. In this work, the role of the gateway in processing collected air quality data and its reliable dissemination to end-users through a web-server is emphasized. A mechanism for the backup and the restoration of the collected data in the case of Internet outage is presented. The system is adapted to an open-source Internet-of-Things (IoT) web-server platform, called Emoncms, for live monitoring and long-term storage of the collected IAQM data. A modular IAQM architecture is adopted, which results in a smart scalable system that allows seamless integration of various sensing technologies, wireless sensor networks (WSNs) and smart mobile standards. The paper gives full hardware and software details of the proposed solution. Sample IAQM results collected in various locations are also presented to demonstrate the abilities of the system.
Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring
Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.
2008-01-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.
Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things.
Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco
2016-03-18
The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential.
Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things
Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco
2016-01-01
The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160
Didactic satellite based on Android platform for space operation demonstration and development
NASA Astrophysics Data System (ADS)
Ben Bahri, Omar; Besbes, Kamel
2018-03-01
Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.
Smart and functional polymer materials for smart and functional microfluidic instruments
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2014-04-01
As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.
Yeh, Kun-Ying; Yeh, Chao-Chi; Tang, Kuan; Wu, Jyun-Yi; Chen, Yun-Ting; Xu, Ming-Xin; Chen, Yunn-Jy; Yang, Yao-Joe; Lu, Shey-Shi
2017-01-01
Sleep apnea is a serious sleep disorder, and the most common type is obstructive sleep apnea (OSA). Untreated OSA will cause lots of potential health problems. Oral appliance therapy is an effective and popular approach for OSA treatment, but making a perfect fit for each patient is time-consuming and decreases its efficiency considerably. This paper proposes a System-on-a-Chip (SoC) enabled sleep monitoring system in a smart oral appliance, which is capable of intelligently collecting the physiological data about tongue movement through the whole therapy. A tunneling sensor array with an ultra-high sensitivity is incorporated to accurately detect the subtle pressure from the tongue. When the device is placed on the wireless platform, the temporary stored data will be retrieved and wirelessly transmitted to personal computers and cloud storages. The battery will be recharged by harvesting external RF power from the platform. A compact prototype module, whose size is 4.5 × 2.5 × 0.9 cm3, is implemented and embedded inside the oral appliance to demonstrate the tongue movement detection in continuous time frames. The functions of this design are verified by the presented measurement results. This design aims to increase efficiency and make it a total solution for OSA treatment. PMID:29035296
NASA Astrophysics Data System (ADS)
Forcier, Bob
2003-09-01
This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.
Towards smart mobility in urban spaces: Bus tracking and information application
NASA Astrophysics Data System (ADS)
Yue, Wong Seng; Chye, Koh Keng; Hoy, Cheong Wan
2017-10-01
Smart city can be defined as an urban space with complete and advanced infrastructure, intelligent networks and platforms, with millions of sensors among which people themselves and their mobile devices. Urban mobility is one of the global smart city project which offers traffic management in real-time, management of passenger transport means, tracking applications and logistics, car sharing services, car park management and more smart mobility services. Due to the frustrated waiting time for the arrival of buses and the difficulty of accessing shuttle bus-related information in a one-stop centre, bus tracking and information application (BTA) is one the proposed solutions to solve the traffic problems in urban spaces. This paper is aimed to design and develop a bus tracking and information application in a selected city in Selangor state, Malaysia. Next, this application also provides an alternative to design public transport tracking and information application for the urban places in Malaysia. Furthermore, the application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future.
In plane optical sensor based on organic electronic devices
NASA Astrophysics Data System (ADS)
Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman
2008-08-01
Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
Marei, Mohamed M; Roussel, Thomas J; Keynton, Robert S; Baldwin, Richard P
2013-11-25
Remote unattended sensor networks are increasingly sought after to monitor the drinking water distribution grid, industrial wastewater effluents, and even rivers and lakes. One of the biggest challenges for application of such sensors is the issue of in-field device calibration. With this challenge in mind, we report here the use of anodic stripping coulometry (ASC) as the basis of a calibration-free micro-fabricated electrochemical sensor (CF-MES) for heavy metal determinations. The sensor platform consisted of a photo-lithographically patterned gold working electrode on SiO2 substrate, which was housed within a custom stopped-flow thin-layer cell, with a total volume of 2-4 μL. The behavior of this platform was characterized by fluorescent particle microscopy and electrochemical studies utilizing Fe(CN)6(3-/4-) as a model analyte. The average charge obtained for oxidation of 500 μM ferrocyanide after 60s over a 10 month period was 176 μC, corresponding to a volume of 3.65 μL (RSD = 2.4%). The response of the platform to copper concentrations ranging from 50 to 7500 ppb was evaluated, and the ASC results showed a linear dependence of charge on copper concentrations with excellent reproducibility (RSD ≤ 2.5%) and accuracy for most concentrations (≤ 5-10% error). The platform was also used to determine copper and mercury mixtures, where the total metallic content was measurable with excellent reproducibility (RSD ≤ 4%) and accuracy (≤ 6% error). Copyright © 2013 Elsevier B.V. All rights reserved.
Dehennis, Andrew; Mortellaro, Mark A; Ioacara, Sorin
2015-07-29
Continuous glucose monitoring (CGM), which enables real-time glucose display and trend information as well as real-time alarms, can improve glycemic control and quality of life in patients with diabetes mellitus. Previous reports have described strategies to extend the useable lifetime of a single sensor from 1-2 weeks to 28 days. The present multisite study describes the characterization of a sensing platform achieving 90 days of continuous use for a single, fully implanted sensor. The Senseonics CGM system is composed of a long-term implantable glucose sensor and a wearable smart transmitter. Study subjects underwent subcutaneous implantation of sensors in the upper arm. Eight-hour clinic sessions were performed every 14 days, during which sensor glucose values were compared against venous blood lab reference measurements collected every 15 minutes using mean absolute relative differences (MARDs). All subjects (mean ± standard deviation age: 43.5 ± 11.0 years; with 10 sensors inserted in men and 14 in women) had type 1 diabetes mellitus. Most (22 of 24) sensors reported glucose values for the entire 90 days. The MARD value was 11.4 ± 2.7% (range, 8.1-19.5%) for reference glucose values between 40-400 mg/dl. There was no significant difference in MARD throughout the 90-day study (P = .31). No serious adverse events were noted. The Senseonics CGM, composed of an implantable sensor, external smart transmitter, and smartphone app, is the first system that uses a single sensor for continuous display of accurate glucose values for 3 months. © 2015 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2016-01-01
The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment. PMID:26959035
Combining engineered cell-sensors with multi-agent systems to realize smart environment
NASA Astrophysics Data System (ADS)
Chen, Mei
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
A Practical Guide to the Open Standards for Unattended Sensors (OSUS)
2018-01-01
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE...in OSUS development and some of the benefits of implementing an OSUS controller as the central processing platform in a smart sensing device. The... controller 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 91 19a. NAME OF
An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring
NASA Astrophysics Data System (ADS)
Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.
2006-12-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.
Carbon Nanofiber Electrode Array for Neurochemical Monitoring
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2017-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
A Smart Spoofing Face Detector by Display Features Analysis.
Lai, ChinLun; Tai, ChiuYuan
2016-07-21
In this paper, a smart face liveness detector is proposed to prevent the biometric system from being "deceived" by the video or picture of a valid user that the counterfeiter took with a high definition handheld device (e.g., iPad with retina display). By analyzing the characteristics of the display platform and using an expert decision-making core, we can effectively detect whether a spoofing action comes from a fake face displayed in the high definition display by verifying the chromaticity regions in the captured face. That is, a live or spoof face can be distinguished precisely by the designed optical image sensor. To sum up, by the proposed method/system, a normal optical image sensor can be upgraded to a powerful version to detect the spoofing actions. The experimental results prove that the proposed detection system can achieve very high detection rate compared to the existing methods and thus be practical to implement directly in the authentication systems.
OnCampus: a mobile platform towards a smart campus.
Dong, Xin; Kong, Xiangjie; Zhang, Fulin; Chen, Zhen; Kang, Jialiang
2016-01-01
An increasing number of researchers and practitioners are working to develop smart cities. Considerable attention has been paid to the college campus as it is an important component of smart cities. Consequently, the question of how to construct a smart campus has become a topical one. Here, we propose a scheme that can facilitate the construction of a smart and friendly campus. We primarily focus on three aspects of smart campuses. These are: the formation of social circles based on interests mining, the provision of educational guidance based on emotion analysis of information posted on a platform, and development of a secondary trading platform aimed at optimizing the allocation of campus resources. Based on these objectives, we designed and implemented a mobile platform called OnCampus as the first step towards the development of a smart campus that has been introduced in some colleges. We found that OnCampus could successfully accomplish the three above mentioned functions of a smart campus.
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Bhawra, Jasmin; Leatherdale, Scott T; Ferguson, Leah; Longo, Justin; Rainham, Daniel; Larouche, Richard; Osgood, Nathaniel
2018-01-01
Background Physical inactivity is the fourth leading cause of death worldwide, costing approximately US $67.5 billion per year to health care systems. To curb the physical inactivity pandemic, it is time to move beyond traditional approaches and engage citizens by repurposing sedentary behavior (SB)–enabling ubiquitous tools (eg, smartphones). Objective The primary objective of the Saskatchewan, let’s move and map our activity (SMART) Study was to develop a mobile and citizen science methodological platform for active living surveillance, knowledge translation, and policy interventions. This methodology paper enumerates the SMART Study platform’s conceptualization, design, implementation, data collection procedures, analytical strategies, and potential for informing policy interventions. Methods This longitudinal investigation was designed to engage participants (ie, citizen scientists) in Regina and Saskatoon, Saskatchewan, Canada, in four different seasons across 3 years. In spring 2017, pilot data collection was conducted, where 317 adult citizen scientists (≥18 years) were recruited in person and online. Citizen scientists used a custom-built smartphone app, Ethica (Ethica Data Services Inc), for 8 consecutive days to provide a complex series of objective and subjective data. Citizen scientists answered a succession of validated surveys that were assigned different smartphone triggering mechanisms (eg, user-triggered and schedule-triggered). The validated surveys captured physical activity (PA), SB, motivation, perception of outdoor and indoor environment, and eudaimonic well-being. Ecological momentary assessments were employed on each day to capture not only PA but also physical and social contexts along with barriers and facilitators of PA, as relayed by citizen scientists using geo-coded pictures and audio files. To obtain a comprehensive objective picture of participant location, motion, and compliance, 6 types of sensor-based (eg, global positioning system and accelerometer) data were surveilled for 8 days. Initial descriptive analyses were conducted using geo-coded photographs and audio files. Results Pictures and audio files (ie, community voices) showed that the barriers and facilitators of active living included intrinsic or extrinsic motivations, social contexts, and outdoor or indoor environment, with pets and favorable urban design featuring as the predominant facilitators, and work-related screen time proving to be the primary barrier. Conclusions The preliminary pilot results show the flexibility of the SMART Study surveillance platform in identifying and addressing limitations based on empirical evidence. The results also show the successful implementation of a platform that engages participants to catalyze policy interventions. Although SMART Study is currently geared toward surveillance, using the same platform, active living interventions could be remotely implemented. SMART Study is the first mobile, citizen science surveillance platform utilizing a rigorous, longitudinal, and mixed-methods investigation to temporally capture behavioral data for knowledge translation and policy interventions. PMID:29588267
Smart Sensors Gather Information for Machine Diagnostics
NASA Technical Reports Server (NTRS)
2014-01-01
Stennis Space Center was interested in using smart sensors to monitor components on test stands and avert equipment failures. Partnering with St. Paul, Minnesota-based Lion Precision through a Cooperative Agreement, the team developed a smart sensor and the associated communication protocols. The same sensor is now commercially available for manufacturing.
A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring
Abdaoui, Abderrazak; Ahmad, Sabbir H.M.; Touati, Farid; Kadri, Abdullah
2018-01-01
The impact of air quality on health and on life comfort is well established. In many societies, vulnerable elderly and young populations spend most of their time indoors. Therefore, indoor air quality monitoring (IAQM) is of great importance to human health. Engineers and researchers are increasingly focusing their efforts on the design of real-time IAQM systems using wireless sensor networks. This paper presents an end-to-end IAQM system enabling measurement of CO2, CO, SO2, NO2, O3, Cl2, ambient temperature, and relative humidity. In IAQM systems, remote users usually use a local gateway to connect wireless sensor nodes in a given monitoring site to the external world for ubiquitous access of data. In this work, the role of the gateway in processing collected air quality data and its reliable dissemination to end-users through a web-server is emphasized. A mechanism for the backup and the restoration of the collected data in the case of Internet outage is presented. The system is adapted to an open-source Internet-of-Things (IoT) web-server platform, called Emoncms, for live monitoring and long-term storage of the collected IAQM data. A modular IAQM architecture is adopted, which results in a smart scalable system that allows seamless integration of various sensing technologies, wireless sensor networks (WSNs) and smart mobile standards. The paper gives full hardware and software details of the proposed solution. Sample IAQM results collected in various locations are also presented to demonstrate the abilities of the system. PMID:29443893
TAS::89 0927::TAS RECOVERY - The Lean Green Energy Controller Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeter, John; Wang, Gene; Moss, David
Achieving efficiency improvements and providing demand-response programs have been identified as key elements of our national energy initiative. The residential market is the largest, yet most difficult, segment to engage in efforts to meet these objectives. This project developed Energy Management System that engages the consumer and enables Smart Grid services, applications, and business processes to address this need. Our innovative solution provides smart controller providing dynamic optimization of energy consumption for the residential energy consumer. Our solution extends the technical platform to include a cloud based Internet of Things (IoT) aggregation of data sensors and actuators the go beyondmore » energy management and extend to life style services provided through compelling mobile and console based user experiences.« less
Katapally, Tarun Reddy; Bhawra, Jasmin; Leatherdale, Scott T; Ferguson, Leah; Longo, Justin; Rainham, Daniel; Larouche, Richard; Osgood, Nathaniel
2018-03-27
Physical inactivity is the fourth leading cause of death worldwide, costing approximately US $67.5 billion per year to health care systems. To curb the physical inactivity pandemic, it is time to move beyond traditional approaches and engage citizens by repurposing sedentary behavior (SB)-enabling ubiquitous tools (eg, smartphones). The primary objective of the Saskatchewan, let's move and map our activity (SMART) Study was to develop a mobile and citizen science methodological platform for active living surveillance, knowledge translation, and policy interventions. This methodology paper enumerates the SMART Study platform's conceptualization, design, implementation, data collection procedures, analytical strategies, and potential for informing policy interventions. This longitudinal investigation was designed to engage participants (ie, citizen scientists) in Regina and Saskatoon, Saskatchewan, Canada, in four different seasons across 3 years. In spring 2017, pilot data collection was conducted, where 317 adult citizen scientists (≥18 years) were recruited in person and online. Citizen scientists used a custom-built smartphone app, Ethica (Ethica Data Services Inc), for 8 consecutive days to provide a complex series of objective and subjective data. Citizen scientists answered a succession of validated surveys that were assigned different smartphone triggering mechanisms (eg, user-triggered and schedule-triggered). The validated surveys captured physical activity (PA), SB, motivation, perception of outdoor and indoor environment, and eudaimonic well-being. Ecological momentary assessments were employed on each day to capture not only PA but also physical and social contexts along with barriers and facilitators of PA, as relayed by citizen scientists using geo-coded pictures and audio files. To obtain a comprehensive objective picture of participant location, motion, and compliance, 6 types of sensor-based (eg, global positioning system and accelerometer) data were surveilled for 8 days. Initial descriptive analyses were conducted using geo-coded photographs and audio files. Pictures and audio files (ie, community voices) showed that the barriers and facilitators of active living included intrinsic or extrinsic motivations, social contexts, and outdoor or indoor environment, with pets and favorable urban design featuring as the predominant facilitators, and work-related screen time proving to be the primary barrier. The preliminary pilot results show the flexibility of the SMART Study surveillance platform in identifying and addressing limitations based on empirical evidence. The results also show the successful implementation of a platform that engages participants to catalyze policy interventions. Although SMART Study is currently geared toward surveillance, using the same platform, active living interventions could be remotely implemented. SMART Study is the first mobile, citizen science surveillance platform utilizing a rigorous, longitudinal, and mixed-methods investigation to temporally capture behavioral data for knowledge translation and policy interventions. ©Tarun Reddy Katapally, Jasmin Bhawra, Scott T Leatherdale, Leah Ferguson, Justin Longo, Daniel Rainham, Richard Larouche, Nathaniel Osgood. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 27.03.2018.
Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992
NASA Technical Reports Server (NTRS)
Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)
1993-01-01
The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
Smart Sensors: Why and when the origin was and why and where the future will be
NASA Astrophysics Data System (ADS)
Corsi, C.
2013-12-01
Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
NASA Astrophysics Data System (ADS)
Croitoru, Bogdan; Tulbure, Adrian; Abrudean, Mihail; Secara, Mihai
2015-02-01
The present paper describes a software method for creating / managing one type of Transducer Electronic Datasheet (TEDS) according to IEEE 1451.4 standard in order to develop a prototype of smart multi-sensor platform (with up to ten different analog sensors simultaneously connected) with Plug and Play capabilities over ETHERNET and Wi-Fi. In the experiments were used: one analog temperature sensor, one analog light sensor, one PIC32-based microcontroller development board with analog and digital I/O ports and other computing resources, one 24LC256 I2C (Inter Integrated Circuit standard) serial Electrically Erasable Programmable Read Only Memory (EEPROM) memory with 32KB available space and 3 bytes internal buffer for page writes (1 byte for data and 2 bytes for address). It was developed a prototype algorithm for writing and reading TEDS information to / from I2C EEPROM memories using the standard C language (up to ten different TEDS blocks coexisting in the same EEPROM device at once). The algorithm is able to write and read one type of TEDS: transducer information with standard TEDS content. A second software application, written in VB.NET platform, was developed in order to access the EEPROM sensor information from a computer through a serial interface (USB).
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home.
Liao, Chun-Feng; Chen, Peng-Yu
2017-09-21
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of "end user programmable smart environments".
Fiber optics in composite materials: materials with nerves of glass
NASA Astrophysics Data System (ADS)
Measures, Raymond M.
1990-08-01
A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.
Sociospace: A smart social framework based on the IP Multimedia Subsystem
NASA Astrophysics Data System (ADS)
Hasswa, Ahmed
Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.
Potential applications of smart clothing solutions in health care and personal protection.
Meinander, Harriet; Honkala, Markku
2004-01-01
The rapid development in the fields of sensor and telecommunication technologies has created completely new possibilities also for the textile and clothing field. New smart textile and clothing systems can be developed by integrating sensors in the textile constructions. Application fields for these added-value products are e.g. protective clothing for extreme environments, garments for the health care sector, technical textiles, sport and leisure wear. Some products have already been introduced on the markets, but generally it can be stated that the development is only in its starting phase, and the expectations for the future are big. Many different aspects have to be considered in the development of the wearable technology products for the health care sector: medical problems and their diagnosis, sensor choice, data processing and telecommunication solutions, clothing requirements. A functional product can be achieved only if all aspects work together, and therefore experts from all fields should participate in the RTD projects. In the EC-funded project DE3002 Easytex clothing and textiles for disabled and elderly people were investigated. Some recommendations concerning durability, appearance, comfort, service and safety of products for different special user groups were defined, based on user questionnaires and seminars, general textile and clothing requirements and on laboratory test series."Clothing Area Network--Clan" is a research project aiming to develop a technical concept and technology needed in enabling both wired and wireless data and power transfer between different intelligent modules (user interfaces, sensors, CPU's, batteries etc.) integrated into a smart clothing system. Fire-fighters clothing system is chosen as the development platform, being a very challenging application from which the developed technology can be transferred to other protective clothing systems.
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-01-01
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-06-30
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.
A state-of-the-art assessment of active structures
NASA Technical Reports Server (NTRS)
1992-01-01
A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed.
3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE
NASA Astrophysics Data System (ADS)
Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel
2018-04-01
Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.
3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE
NASA Astrophysics Data System (ADS)
Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel
2018-03-01
Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.
SMART Platforms: Building the App Store for Biosurveillance
Mandl, Kenneth D.
2013-01-01
Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Design of smart sensing components for volcano monitoring
Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.
2009-01-01
In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.
Building environment assessment and energy consumption estimation using smart phones
NASA Astrophysics Data System (ADS)
Li, Xiangli; Zhang, Li; Jia, Yingqi; Wang, Zihan; Jin, Xin; Zhao, Xuefeng
2017-04-01
In this paper, an APP for building indoor environment evaluation and energy consumption estimation based on Android platform is proposed and established. While using the APP, the smart phone built-in sensors are called for real-time monitoring of the building environmental information such as temperature, humidity and noise, etc. the built-in algorithm is developed to calculate the heat and power consumption, and questionnaires, grading and other methods are used to feed back to the space heating system. In addition, with the application of the technology of big data and cloud technology, the data collected by users will be uploaded to the cloud. After the statistics of the uploaded data, regional difference can be obtained, thus providing a more accurate basis for macro-control and research of energy, thermal comfort, greenhouse effect.
Open Source Platform Application to Groundwater Characterization and Monitoring
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.
2017-12-01
Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.
Vázquez, Enrique
2017-01-01
Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers. PMID:29292790
Alvarez-Campana, Manuel; López, Gregorio; Vázquez, Enrique; Villagrá, Víctor A; Berrocal, Julio
2017-12-08
Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers.
Tele-Supervised Adaptive Ocean Sensor Fleet
NASA Technical Reports Server (NTRS)
Lefes, Alberto; Podnar, Gregg W.; Dolan, John M.; Hosler, Jeffrey C.; Ames, Troy J.
2009-01-01
The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms.
Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood
2017-01-01
In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132
Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood
2017-04-15
In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.
Smart Sensors for Launch Vehicles
NASA Astrophysics Data System (ADS)
Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.
2017-12-01
Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
The multi-queue model applied to random access protocol
NASA Astrophysics Data System (ADS)
Fan, Xinlong
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
Sensor technology for smart homes.
Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia
2011-06-01
A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture
Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo
2010-01-01
The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283
Various on-chip sensors with microfluidics for biological applications.
Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W
2014-09-12
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.
Mohamed, Mona A; Hasan, Menna M; Abdullah, Ibrahim H; Abdellah, Ahmed M; Yehia, Ali M; Ahmed, Nashaat; Abbas, Walaa; Allam, Nageh K
2018-08-01
A strategy for trace-level carbon-based electrochemical sensors is investigated via exploring the interesting properties of BaNb 2 O 6 nanofibers (NFs). Utilizing adsorptive stripping square wave voltammetry (ASSWV), an electrochemical sensing platform was developed based on BaNb 2 O 6 nanofibers-modified carbon paste electrode (CPE) for the sensitive detection of lornoxicam (LOR). Different techniques were used to characterize the fabricated BaNb 2 O 6 perovskite NFs. The obtained data show the feasibility to electro-oxidize LOR and paracetamol (PAR) on the surface of the fabricated sensor. The amount of nanofiber and testing conditions were optimized using response surface methodology and ASSWV technique. The optimized BaNb 2 O 6 /CPE sensor exhibits low detection limit of 6.39 × 10 -10 mol L -1 , even in the presence of the co-formulated drug paracetamol (PAR). The sensor was successfully applied for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill
2018-01-01
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill
2018-01-17
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.
Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition
NASA Astrophysics Data System (ADS)
Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan
2016-04-01
The impact of global change, urbanization and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of urban areas, a comprehensive monitoring of these effects remains to be a challenging issue. Open source based electronics and cost-effective sensors are offering a promising approach to explore new possibilities of mobile data acquisition and innovative strategies and thereby support a comprehensive ad-hoc monitoring and the capturing of environmental processes close to real time. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. This ensures a consistent data stream and a rapid data processing. However, the overarching goal is the provision of an integrated service instead of lengthy and arduous data acquisition by hand. Therefore, the system also serves as a data acquisition assistant and gives guidance during the measurements. In technical terms, our monitoring system consists of mobile sensor devices, which can be controlled and managed by a smart phone app (Android). At the moment, the system is able to acquire temperature and humidity in space (GPS) and time (real-time clock) as a built in function. In addition, larger system functionality can be accomplished by adding further sensors for the detection of e.g. fine dust, methane or dissolved organic compounds. From the IT point of view, the system includes a smart phone app and a web service for data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor devices and provides some built-in functions such as simple data visualization or data transmission via e-mail whereas the web service provides the visualization of the data and tools for data processing. In an initial field experiment, a methane monitoring based on our sensor integration platform was performed in the city area of Leipzig (Germany) in late June 2015. The study has shown that an urban monitoring can be conducted based on open source components. Moreover, the system enabled the detection of hot spots and methane emission sources. In September 2015, a larger scaled city monitoring based on the mobile monitoring platform was performed by five independently driving cyclists through the city center of Leipzig (Germany). As a result we were able to instantly show a heat and humidity map of the inner city center as well as an exposure map for each cyclist. This emphasizes the feasibility and high potential of open source based monitoring approaches for future research in the field of urban area monitoring in general, citizen science or the validation of remote sensing data.
Pure random search for ambient sensor distribution optimisation in a smart home environment.
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2011-01-01
Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.
SmartStuff: A case study of a smart water bottle.
Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E
2016-08-01
The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.
Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities
Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer
2015-01-01
A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment. PMID:25738767
Opportunistic mobility support for resource constrained sensor devices in smart cities.
Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer
2015-03-02
A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.
Recommendations Service for Chronic Disease Patient in Multimodel Sensors Home Environment
Hussain, Maqbool; Ali, Taqdir; Khan, Wajahat Ali; Afzal, Muhammad; Latif, Khalid
2015-01-01
Abstract With advanced technologies in hand, there exist potential applications and services built around monitoring activities of daily living (ADL) of elderly people at nursing homes. Most of the elderly people in these facilities are suffering from different chronic diseases such as dementia. Existing technologies are mainly focusing on non-medication interventions and monitoring of ADL for addressing loss of autonomy or well-being. Monitoring and managing ADL related to cognitive behaviors for non-medication intervention are very effective in improving dementia patients' conditions. However, cognitive functions of patients can be improved if appropriate recommendations of medications are delivered at a particular time. Previously we developed the Secured Wireless Sensor Network Integrated Cloud Computing for Ubiquitous-Life Care (SC3). SC3 services were limited to monitoring ADL of elderly people with Alzheimer's disease and providing non-medication recommendations to the patient. In this article, we propose a system called the Smart Clinical Decision Support System (CDSS) as an integral part of the SC3 platform. Using the Smart CDSS, patients are provided with access to medication recommendations of expert physicians. Physicians are provided with an interface to create clinical knowledge for medication recommendations and to observe the patient's condition. The clinical knowledge created by physicians as the knowledge base of the Smart CDSS produces recommendations to the caregiver for medications based on each patient's symptoms. PMID:25559934
Recommendations service for chronic disease patient in multimodel sensors home environment.
Hussain, Maqbool; Ali, Taqdir; Khan, Wajahat Ali; Afzal, Muhammad; Lee, Sungyoung; Latif, Khalid
2015-03-01
With advanced technologies in hand, there exist potential applications and services built around monitoring activities of daily living (ADL) of elderly people at nursing homes. Most of the elderly people in these facilities are suffering from different chronic diseases such as dementia. Existing technologies are mainly focusing on non-medication interventions and monitoring of ADL for addressing loss of autonomy or well-being. Monitoring and managing ADL related to cognitive behaviors for non-medication intervention are very effective in improving dementia patients' conditions. However, cognitive functions of patients can be improved if appropriate recommendations of medications are delivered at a particular time. Previously we developed the Secured Wireless Sensor Network Integrated Cloud Computing for Ubiquitous-Life Care (SC(3)). SC(3) services were limited to monitoring ADL of elderly people with Alzheimer's disease and providing non-medication recommendations to the patient. In this article, we propose a system called the Smart Clinical Decision Support System (CDSS) as an integral part of the SC(3) platform. Using the Smart CDSS, patients are provided with access to medication recommendations of expert physicians. Physicians are provided with an interface to create clinical knowledge for medication recommendations and to observe the patient's condition. The clinical knowledge created by physicians as the knowledge base of the Smart CDSS produces recommendations to the caregiver for medications based on each patient's symptoms.
Platform for monitoring water and solid fluxes in mountainous rivers
NASA Astrophysics Data System (ADS)
Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann
2016-04-01
The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric network and wired communication network). This platform should enable interaction between different sensors, remote management and real-time sensors, sending SMS (Short Message Service) and e-mail alarms, remote data transmission and data archiving. A test of the current platform is planned in 2016 on a site of the French Critical Zone Observatories.
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home
Chen, Peng-Yu
2017-01-01
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of “end user programmable smart environments”. PMID:28934159
AGSM Intelligent Devices/Smart Sensors Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.
Smart image sensors: an emerging key technology for advanced optical measurement and microsystems
NASA Astrophysics Data System (ADS)
Seitz, Peter
1996-08-01
Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.
NASA Astrophysics Data System (ADS)
Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.
2008-12-01
In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.
Simulation of demand-response power management in smart city
NASA Astrophysics Data System (ADS)
Kadam, Kshitija
Smart Grids manage energy efficiently through intelligent monitoring and control of all the components connected to the electrical grid. Advanced digital technology, combined with sensors and power electronics, can greatly improve transmission line efficiency. This thesis proposed a model of a deregulated grid which supplied power to diverse set of consumers and allowed them to participate in decision making process through two-way communication. The deregulated market encourages competition at the generation and distribution levels through communication with the central system operator. A software platform was developed and executed to manage the communication, as well for energy management of the overall system. It also demonstrated self-healing property of the system in case a fault occurs, resulting in an outage. The system not only recovered from the fault but managed to do so in a short time with no/minimum human involvement.
Advanced Ground Systems Maintenance Intelligent Devices/Smart Sensors Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Compiler)
2015-01-01
This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements for use in ground systems.
Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.
Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong
2018-06-04
In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.
Various On-Chip Sensors with Microfluidics for Biological Applications
Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W.
2014-01-01
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip. PMID:25222033
A Self-Assessment Stereo Capture Model Applicable to the Internet of Things
Lin, Yancong; Yang, Jiachen; Lv, Zhihan; Wei, Wei; Song, Houbing
2015-01-01
The realization of the Internet of Things greatly depends on the information communication among physical terminal devices and informationalized platforms, such as smart sensors, embedded systems and intelligent networks. Playing an important role in information acquisition, sensors for stereo capture have gained extensive attention in various fields. In this paper, we concentrate on promoting such sensors in an intelligent system with self-assessment capability to deal with the distortion and impairment in long-distance shooting applications. The core design is the establishment of the objective evaluation criteria that can reliably predict shooting quality with different camera configurations. Two types of stereo capture systems—toed-in camera configuration and parallel camera configuration—are taken into consideration respectively. The experimental results show that the proposed evaluation criteria can effectively predict the visual perception of stereo capture quality for long-distance shooting. PMID:26308004
Compressive sensing based wireless sensor for structural health monitoring
NASA Astrophysics Data System (ADS)
Bao, Yuequan; Zou, Zilong; Li, Hui
2014-03-01
Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-02-09
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.
Annotating smart environment sensor data for activity learning.
Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D
2009-01-01
The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-01-01
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances. PMID:28208787
Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.
Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L
2018-05-28
Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.
Smart Sensor Network for Aircraft Corrosion Monitoring
2010-02-01
Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM) Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and
Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen
2013-01-01
Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.
Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike
2013-01-01
tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.
Intelligent Sensors for Integrated Systems Health Management (ISHM)
NASA Technical Reports Server (NTRS)
Schmalzel, John L.
2008-01-01
IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.
Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India
NASA Astrophysics Data System (ADS)
Mohan, M.
2016-06-01
In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.
SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B
2016-01-01
Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829
VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.
2013-12-06
The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehiclemore » charging with home energy usage« less
Zhao, Kun; Wang, Zhong Lin; Yang, Ya
2016-09-27
Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Klann, Jeffrey G; McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N
2013-05-30
The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of laboratory results. This summarization app can be run in any EHR environment that either supports SMART or runs SMART-enabled i2b2. This i2b2 "clinical bridge" demonstrates a pathway for reusable app development that does not require EHR vendors to immediately adopt the SMART API. Apps can be developed in SMART and run by clinicians in the i2b2 repository, reusing clinical data extracted from EHRs. This may encourage the adoption of SMART by supporting SMART app development until EHRs adopt the platform. It also allows a new variety of clinical SMART apps, fueled by the broad aggregation of data types available in research repositories. The app (including its knowledge base) and SMART-i2b2 are open-source and freely available for download.
Autonomous biomorphic robots as platforms for sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilden, M.; Hasslacher, B.; Mainieri, R.
1996-10-01
The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomousmore » machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.« less
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2009-01-01
Smart Homes offer potential solutions for various forms of independent living for the elderly. The assistive and protective environment afforded by smart homes offer a safe, relatively inexpensive, dependable and viable alternative to vulnerable inhabitants. Nevertheless, the success of a smart home rests upon the quality of information its decision support system receives and this in turn places great importance on the issue of correct sensor deployment. In this article we present a software tool that has been developed to address the elusive issue of sensor distribution within smart homes. Details of the tool will be presented and it will be shown how it can be used to emulate any real world environment whereby virtual sensor distributions can be rapidly implemented and assessed without the requirement for physical deployment for evaluation. As such, this approach offers the potential of tailoring sensor distributions to the specific needs of a patient in a non-evasive manner. The heuristics based tool presented here has been developed as the first part of a three stage project.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
All-printed smart structures: a viable option?
NASA Astrophysics Data System (ADS)
O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory
2014-03-01
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
NASA Astrophysics Data System (ADS)
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-01-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037
Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-23
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
A sensor and video based ontology for activity recognition in smart environments.
Mitchell, D; Morrow, Philip J; Nugent, Chris D
2014-01-01
Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.
Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors
Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian
2013-01-01
Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Smart sensors enable smart air conditioning control.
Cheng, Chin-Chi; Lee, Dasheng
2014-06-24
In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.
Smart Sensors Enable Smart Air Conditioning Control
Cheng, Chin-Chi; Lee, Dasheng
2014-01-01
In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213
Autonomous Landmark Calibration Method for Indoor Localization
Kim, Jae-Hoon; Kim, Byoung-Seop
2017-01-01
Machine-generated data expansion is a global phenomenon in recent Internet services. The proliferation of mobile communication and smart devices has increased the utilization of machine-generated data significantly. One of the most promising applications of machine-generated data is the estimation of the location of smart devices. The motion sensors integrated into smart devices generate continuous data that can be used to estimate the location of pedestrians in an indoor environment. We focus on the estimation of the accurate location of smart devices by determining the landmarks appropriately for location error calibration. In the motion sensor-based location estimation, the proposed threshold control method determines valid landmarks in real time to avoid the accumulation of errors. A statistical method analyzes the acquired motion sensor data and proposes a valid landmark for every movement of the smart devices. Motion sensor data used in the testbed are collected from the actual measurements taken throughout a commercial building to demonstrate the practical usefulness of the proposed method. PMID:28837071
gPhysics--Using Smart Glasses for Head-Centered, Context-Aware Learning in Physics Experiments
ERIC Educational Resources Information Center
Kuhn, Jochen; Lukowicz, Paul; Hirth, Michael; Poxrucker, Andreas; Weppner, Jens; Younas, Junaid
2016-01-01
Smart Glasses such as Google Glass are mobile computers combining classical Head-Mounted Displays (HMD) with several sensors. Therefore, contact-free, sensor-based experiments can be linked with relating, near-eye presented multiple representations. We will present a first approach on how Smart Glasses can be used as an experimental tool for…
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Kim, Kwangsoo; Jin, Seong-il
2015-01-01
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran
2016-01-01
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran
2016-06-27
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.
Addressing Data Veracity in Big Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor
Big data applications such as in smart electric grids, transportation, and remote environment monitoring involve geographically dispersed sensors that periodically send back information to central nodes. In many cases, data from sensors is not available at central nodes at a frequency that is required for real-time modeling and decision-making. This may be due to physical limitations of the transmission networks, or due to consumers limiting frequent transmission of data from sensors located at their premises for security and privacy concerns. Such scenarios lead to partial data problem and raise the issue of data veracity in big data applications. We describemore » a novel solution to the problem of making short term predictions (up to a few hours ahead) in absence of real-time data from sensors in Smart Grid. A key implication of our work is that by using real-time data from only a small subset of influential sensors, we are able to make predictions for all sensors. We thus reduce the communication complexity involved in transmitting sensory data in Smart Grids. We use real-world electricity consumption data from smart meters to empirically demonstrate the usefulness of our method. Our dataset consists of data collected at 15-min intervals from 170 smart meters in the USC Microgrid for 7 years, totaling 41,697,600 data points.« less
Design of Smart Home Systems Prototype Using MyRIO
NASA Astrophysics Data System (ADS)
Ratna Wati, Dwi Ann; Abadianto, Dika
2017-06-01
This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.
3D printed rapid disaster response
NASA Astrophysics Data System (ADS)
Lacaze, Alberto; Murphy, Karl; Mottern, Edward; Corley, Katrina; Chu, Kai-Dee
2014-05-01
Under the Department of Homeland Security-sponsored Sensor-smart Affordable Autonomous Robotic Platforms (SAARP) project, Robotic Research, LLC is developing an affordable and adaptable method to provide disaster response robots developed with 3D printer technology. The SAARP Store contains a library of robots, a developer storefront, and a user storefront. The SAARP Store allows the user to select, print, assemble, and operate the robot. In addition to the SAARP Store, two platforms are currently being developed. They use a set of common non-printed components that will allow the later design of other platforms that share non-printed components. During disasters, new challenges are faced that require customized tools or platforms. Instead of prebuilt and prepositioned supplies, a library of validated robots will be catalogued to satisfy various challenges at the scene. 3D printing components will allow these customized tools to be deployed in a fraction of the time that would normally be required. While the current system is focused on supporting disaster response personnel, this system will be expandable to a range of customers, including domestic law enforcement, the armed services, universities, and research facilities.
Bottiroli, Sara; Tassorelli, Cristina; Lamonica, Marialisa; Zucchella, Chiara; Cavallini, Elena; Bernini, Sara; Sinforiani, Elena; Pazzi, Stefania; Cristiani, Paolo; Vecchi, Tomaso; Tost, Daniela; Sandrini, Giorgio
2017-01-01
Background: Smart Aging is a Serious games (SGs) platform in a 3D virtual environment in which users perform a set of screening tests that address various cognitive skills. The tests are structured as 5 tasks of activities of daily life in a familiar environment. The main goal of the present study is to compare a cognitive evaluation made with Smart Aging with those of a classic standardized screening test, the Montreal Cognitive Assessment (MoCA). Methods: One thousand one-hundred thirty-one healthy adults aged between 50 and 80 (M = 64.3 ± 8.3) were enrolled in the study. They received a cognitive evaluation with the MoCA and the Smart Aging platform. Participants were grouped according to their MoCA global and specific cognitive domain (i.e., memory, executive functions, working memory, visual spatial elaboration, language, and orientation) scores and we explored differences among these groups in the Smart Aging indices. Results: One thousand eighty-six older adults (M = 64.0 ± 8.0) successfully completed the study and were stratified according to their MoCA score: Group 1 with MoCA < 27 (n = 360); Group 2 with 27 ≥ MoCA < 29 (n = 453); and Group 3 with MoCA ≥ 29 (n = 273). MoCA groups significantly differed in most of the Smart Aging indices considered, in particular as concerns accuracy (ps < 0.001) and time (ps < 0.001) for completing most of the platform tasks. Group 1 was outperformed by the other two Groups and was slower than them in these tasks, which were those supposed to assess memory and executive functions. In addition, significant differences across groups also emerged when considering the single cognitive domains of the MoCA and the corresponding performances in each Smart Aging task. In particular, this platform seems to be a good proxy for assessing memory, executive functions, working memory, and visual spatial processes. Conclusion: These findings demonstrate the validity of Smart Aging for assessing cognitive functions in normal aging. Future studies will validate this platform also in the clinical aging populations. PMID:29209200
Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?
Metje, Nicole; Chapman, David N.; Cheneler, David; Ward, Michael; Thomas, Andrew M.
2011-01-01
Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods. PMID:22164027
An Architecture for Intelligent Systems Based on Smart Sensors
NASA Technical Reports Server (NTRS)
Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi
2004-01-01
Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.
Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors
Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.
2012-01-01
Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).
NASA Technical Reports Server (NTRS)
1999-01-01
The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.
Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes.
Chua, Sook-Ling; Foo, Lee Kien
2017-08-18
Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant's activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
Importance of the spatial data and the sensor web in the ubiquitous computing area
NASA Astrophysics Data System (ADS)
Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.
2014-08-01
Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.
SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol
2017-02-01
Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink(R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2015-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review
Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou
2017-01-01
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080
Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer
1997-01-01
A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.
A smart ROV solution for ship hull and harbor inspection
NASA Astrophysics Data System (ADS)
Reed, Scott; Wood, Jon; Vazquez, Jose; Mignotte, Pierre-Yves; Privat, Benjamin
2010-04-01
Hull and harbor infrastructure inspections are frequently performed manually and involve quite a bit of risk and human and monetary resources. In any kind of threat and resource constrained environment, this involves unacceptable levels of risk and cost. Modern Remotely Operated Vehicles are highly refined machines that provide features and capabilities previously unavailable. Operations once carried out by divers can now be carried out more quickly, efficiently and safely by smart enabled ROVs. ROVs are rapidly deployable and capable of continuous, reliable operations in adverse conditions. They also provide a stable platform on which multiple sensors may be mounted and utilized to meet the harbor inspection problem. Automated Control software provides ROV's and their pilots with the capability to inspect complex, constrained environments such as those found in a harbor region. This application and the user interface allow the ROV to automatically conduct complex maneuvers relative to the area being inspected and relieves the training requirements and work load for the pilot, allowing he or she to focus on the primary task of survey, inspection and looking for possible threats (such as IEDs, Limpet Mines, signs of sabotage, etc). Real-time sensor processing tools can be integrated into the smart ROV solution to assist the operator. Automatic Target Recognition (ATR) algorithms are used to search through the sensor data collected by the ROV in real time. These algorithms provide immediate feedback on possible threats and notify the operator of regions that may require manual verification. Sensor data (sonar or video) is also mosaiced, providing the operator with real-time situational awareness and a coverage map of the hull or seafloor. Detected objects may also be placed in the context of the large scale characteristics of the hull (or bottom or pilings) and localized. Within the complex areas such as the harbor pier pilings and the running gear of the ship, real-time 3D reconstruction techniques may be used to process profiling sonar data for similar applications. An observation class ROV equipped with sensors, running an operator in the loop, Automated Surface-Computer (ASC) system can inspect an entire harbor region. These systems can autonomously provide coverage information, identify possible threats and provide the level of control required to operate in confined environments. The system may be controlled autonomously or by the operator. Previous inspection results may also be used for change detection applications. This paper presents the SeeByte Smart ROV and sensor processing technology relevant to the harbor inspection problem. These technologies have been tested extensively in real world applications and trials and are demonstrated using real data and examples.
Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT
NASA Astrophysics Data System (ADS)
Ou, Jinping
2005-06-01
The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.
Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera
NASA Astrophysics Data System (ADS)
Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2015-07-01
Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.
Building-in-Briefcase: A Rapidly-Deployable Environmental Sensor Suite for the Smart Building.
Weekly, Kevin; Jin, Ming; Zou, Han; Hsu, Christopher; Soyza, Chris; Bayen, Alexandre; Spanos, Costas
2018-04-29
A building’s environment has profound influence on occupant comfort and health. Continuous monitoring of building occupancy and environment is essential to fault detection, intelligent control, and building commissioning. Though many solutions for environmental measuring based on wireless sensor networks exist, they are not easily accessible to households and building owners who may lack time or technical expertise needed to set up a system and get quick and detailed overview of environmental conditions. Building-in-Briefcase (BiB) is a portable sensor network platform that is trivially easy to deploy in any building environment. Once the sensors are distributed, the environmental data is collected and communicated to the BiB router via the Transmission Control Protocol/Internet Protocol (TCP/IP) and WiFi technology, which then forwards the data to the central database securely over the internet through a 3G radio. The user, with minimal effort, can access the aggregated data and visualize the trends in real time on the BiB web portal. Paramount to the adoption and continued operation of an indoor sensing platform is battery lifetime. This design has achieved a multi-year lifespan by careful selection of components, an efficient binary communications protocol and data compression. Our BiB sensor is capable of collecting a rich set of environmental parameters, and is expandable to measure others, such as CO 2 . This paper describes the power characteristics of BiB sensors and their occupancy estimation and activity recognition functionality. We have demonstrated large-scale deployment of BiB throughout Singapore. Our vision is that, by monitoring thousands of buildings through BiB, it would provide ample research opportunities and opportunities to identify ways to improve the building environment and energy efficiency.
Building-in-Briefcase: A Rapidly-Deployable Environmental Sensor Suite for the Smart Building
Weekly, Kevin; Jin, Ming; Zou, Han; Hsu, Christopher; Soyza, Chris; Bayen, Alexandre; Spanos, Costas
2018-01-01
A building’s environment has profound influence on occupant comfort and health. Continuous monitoring of building occupancy and environment is essential to fault detection, intelligent control, and building commissioning. Though many solutions for environmental measuring based on wireless sensor networks exist, they are not easily accessible to households and building owners who may lack time or technical expertise needed to set up a system and get quick and detailed overview of environmental conditions. Building-in-Briefcase (BiB) is a portable sensor network platform that is trivially easy to deploy in any building environment. Once the sensors are distributed, the environmental data is collected and communicated to the BiB router via the Transmission Control Protocol/Internet Protocol (TCP/IP) and WiFi technology, which then forwards the data to the central database securely over the internet through a 3G radio. The user, with minimal effort, can access the aggregated data and visualize the trends in real time on the BiB web portal. Paramount to the adoption and continued operation of an indoor sensing platform is battery lifetime. This design has achieved a multi-year lifespan by careful selection of components, an efficient binary communications protocol and data compression. Our BiB sensor is capable of collecting a rich set of environmental parameters, and is expandable to measure others, such as CO2. This paper describes the power characteristics of BiB sensors and their occupancy estimation and activity recognition functionality. We have demonstrated large-scale deployment of BiB throughout Singapore. Our vision is that, by monitoring thousands of buildings through BiB, it would provide ample research opportunities and opportunities to identify ways to improve the building environment and energy efficiency. PMID:29710839
Senior residents' perceived need of and preferences for "smart home" sensor technologies.
Demiris, George; Hensel, Brian K; Skubic, Marjorie; Rantz, Marilyn
2008-01-01
The goal of meeting the desire of older adults to remain independent in their home setting while controlling healthcare costs has led to the conceptualization of "smart homes." A smart home is a residence equipped with technology that enhances safety of residents and monitors their health conditions. The study aim is to assess older adults' perceptions of specific smart home technologies (i.e., a bed sensor, gait monitor, stove sensor, motion sensor, and video sensor). The study setting is TigerPlace, a retirement community designed according to the Aging in Place model. Focus group sessions with fourteen residents were conducted to assess perceived advantages and concerns associated with specific applications, and preferences for recipients of sensor-generated information pertaining to residents' activity levels, sleep patterns and potential emergencies. Sessions were audio-taped; tapes were transcribed, and a content analysis was performed. A total of fourteen older adults over the age of 65 participated in three focus group sessions Most applications were perceived as useful, and participants would agree to their installation in their own home. Preference for specific sensors related to sensors' appearance and residents' own level of frailty and perceived need. Specific concerns about privacy were raised. The findings indicate an overall positive attitude toward sensor technologies for nonobtrusive monitoring. Researchers and practitioners are called upon to address ethical and technical challenges in this emerging domain.
A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges.
Ray, Partha Pratim; Dash, Dinesh; De, Debashis
2017-10-02
Rapid growth of sensor and computing platforms have introduced the wearable systems. In recent years, wearable systems have led to new applications across all medical fields. The aim of this review is to present current state-of-the-art approach in the field of wearable system based cancer detection and identify key challenges that resist it from clinical adoption. A total of 472 records were screened and 11 were finally included in this study. Two types of records were studied in this context that includes 45% research articles and 55% manufactured products. The review was performed per PRISMA guidelines where considerations was given to records that were published or reported between 2009 and 2017. The identified records included 4 cancer detecting wearable systems such as breast cancer (36.3%), skin cancer (36.3%), prostate cancer (18.1%), and multi-type cancer (9%). Most works involved sensor based smart systems comprising of microcontroller, Bluetooth module, and smart phone. Few demonstrated Ultra-Wide Band (i.e. UWB) antenna based wearable systems. Skin cancer detecting wearable systems were most comprehensible ones. The current works are gradually progressing with seamless integration of sensory units along with smart networking. However, they lack in cloud computing and long-range communication paradigms. Artificial intelligence and machine learning are key ports that need to be attached with current wearable systems. Further, clinical inertia, lack of awareness, and high cost are altogether pulling back the actual growth of such system. It is well comprehended that upon sincere orientation of all identified challenges, wearable systems would emerge as vital alternative to futuristic cancer detection.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Mobile Monitoring and Embedded Control System for Factory Environment
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-01-01
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642
Mobile monitoring and embedded control system for factory environment.
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-12-17
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.
Progress on Component Evaluation for Nuclear Explosion Monitoring
2008-09-01
one data logger, Geotech Smart24. For the infrasound sensors tested, the test results allow us to conclude that both sensors had sufficiently quiet...a lower frequency than expected. Sandia was also asked to evaluate the Geotech Smart24 data logger for qualification as a replacement to the Geotech ...results of using 26-bit quantization. Characterization Geotech Smart24 Data-Logger with Active Fortezza Crypto Card Data Signing Over the spring
Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong
2012-06-01
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
NASA Astrophysics Data System (ADS)
Schima, Robert; Goblirsch, Tobias; Paschen, Mathias; Rinke, Karsten; Schelwat, Heinz; Dietrich, Peter; Bumberger, Jan
2016-04-01
The impact of global change, intensive agriculture and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of water catchment areas, a comprehensive monitoring of the ongoing processes and effects remains to be a challenging issue in the field of applied environmental research. Moreover, harsh conditions and a variety of influencing process parameters are representing a particular challenge due to an adaptive in-situ monitoring of vast areas. Today, open source based electronics and cost-effective sensors and sensor components are offering a promising approach to investigate new possibilities of smart phone based mobile data acquisition and comprehensive ad-hoc monitoring of environmental processes. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. The whole monitoring system consists of several mobile sensor devices, a smart phone app (Android) and a web service for data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor device and provides some built-in functions such as data visualization or data transmission via e-mail. Besides the measurement of temperature and humidity in air, the mobile sensor device is able to acquire sensor readings for the content of dissolved organic compounds (λ = 254 nm) and turbidity (λ = 860 nm) of surface water based on the developed optical in-situ sensor probe. Here, the miniaturized optical sensor probe allows the monitoring of even shallow water bodies with a depth of less than 5 cm. Compared to common techniques, the inexpensive sensor parts and robust emitting LEDs allow an improved widespread and comprehensive monitoring due to a higher amount of sensor devices. Furthermore, the system consists of a GPS module, a real-time clock and a GSM unit which allow space and time resolved measurements. On October 6th, 2015 an initial experiment was started at the Bode catchment in the Harz region (Germany). Here, the developed DOC and turbidity sensor probes were installed directly at the riverside next to existing sampling points of a large-scaled long-term observation project. The results show a good correspondence between our sensor development and the installed and established instruments. This represents a decisive and cost-effective contribution in the area of environmental research and the monitoring of vast catchment areas.
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Framework of sensor-based monitoring for pervasive patient care.
Triantafyllidis, Andreas K; Koutkias, Vassilis G; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-09-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors' approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach.
Framework of sensor-based monitoring for pervasive patient care
Koutkias, Vassilis G.; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-01-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors’ approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach. PMID:27733920
A context management system for a cost-efficient smart home platform
NASA Astrophysics Data System (ADS)
Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.
2012-09-01
This paper presents an overview of state-of-the-art architectures for integrating wireless sensor and actuators networks into the Future Internet. Furthermore, we will address advantages and disadvantages of the different architectures. With respect to these criteria, we develop a new architecture overcoming these weaknesses. Our system, called Smart Home Context Management System, will be used for intelligent home utilities, appliances, and electronics and includes physical, logical as well as network context sources within one concept. It considers important aspects and requirements of modern context management systems for smart X applications: plug and play as well as plug and trust capabilities, scalability, extensibility, security, and adaptability. As such, it is able to control roller blinds, heating systems as well as learn, for example, the user's taste w.r.t. to home entertainment (music, videos, etc.). Moreover, Smart Grid applications and Ambient Assisted Living (AAL) functions are applicable. With respect to AAL, we included an Emergency Handling function. It assures that emergency calls (police, ambulance or fire department) are processed appropriately. Our concept is based on a centralized Context Broker architecture, enhanced by a distributed Context Broker system. The goal of this concept is to develop a simple, low-priced, multi-functional, and save architecture affordable for everybody. Individual components of the architecture are well tested. Implementation and testing of the architecture as a whole is in progress.
Active coatings technologies for tailorable military coating systems
NASA Astrophysics Data System (ADS)
Zunino, J. L., III
2007-04-01
The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.
NASA Astrophysics Data System (ADS)
Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph
2017-04-01
The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO/OGC Observations and Measurements standard and initiates the data transmission into the NeXOS Sensor Web infrastructure. Besides these platform-related developments, NeXOS has realised the full path of data transmission from the sensor to the end user application. The conceptual architecture design is implemented by a series of open source SWE software packages provided by 52°North. This comprises especially different SWE server components (i.e. OGC Sensor Observation Service), tools for data visualisation (e.g. the 52°North Helgoland SOS viewer), and an editor for providing SensorML-based metadata (52°North smle). As a result, NeXOS has demonstrated how the SWE standards help to improve marine observation data collection. Within this presentation, we will present the experiences and findings of the NeXOS project and will provide recommendation for future work directions.
Smart wearable body sensors for patient self-assessment and monitoring.
Appelboom, Geoff; Camacho, Elvis; Abraham, Mickey E; Bruce, Samuel S; Dumont, Emmanuel Lp; Zacharia, Brad E; D'Amico, Randy; Slomian, Justin; Reginster, Jean Yves; Bruyère, Olivier; Connolly, E Sander
2014-01-01
Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.
NASA Technical Reports Server (NTRS)
Zaman, Afroz; Bauch, Matthew; Raible, Daniel
2011-01-01
Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.
Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography
NASA Astrophysics Data System (ADS)
Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun
2016-04-01
Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.
Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.
Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark
2009-01-01
Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
Axisa, Fabrice; Schmitt, Pierre Michael; Gehin, Claudine; Delhomme, Georges; McAdams, Eric; Dittmar, André
2005-09-01
Improvement of the quality and efficiency of healthcare in medicine, both at home and in hospital, is becoming more and more important for patients and society at large. As many technologies (micro technologies, telecommunication, low-power design, new textiles, and flexible sensors) are now available, new user-friendly devices can be developed to enhance the comfort and security of the patient. As clothes and textiles are in direct contact with about 90% of the skin surface, smart sensors and smart clothes with noninvasive sensors are an attractive solution for home-based and ambulatory health monitoring. Moreover, wearable devices or smart homes with exosensors are also potential solutions. All these systems can provide a safe and comfortable environment for home healthcare, illness prevention, and citizen medicine.
Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring
Voluntary Noise Mapping for Smart City
NASA Astrophysics Data System (ADS)
Poslončec-Petrić, V.; Vuković, V.; Frangeš, S.; Bačić, Ž.
2016-09-01
One of the main concept objectives of smart cities is to create a quality living environment that is long-term sustainable and economically justified. In that context, modern cities are aware of the exposure to various forms of physical and non-physical pollution that needs to be remediated, eliminated or reduced. To achieve that it is necessary to quality determine the sources and reasons of each pollution. The most prominent examples of physical pollution that affects the quality of life of citizens in cities are light and noise pollution. Noise pollution or noise, is mostly the consequence of road and rail traffic in cities and it directly affects the health of citizens. Traffic control, reduction of peak congestion, dispersion and traffic redirection or building protective barriers, are ways that cities use to reduce the amount of noise or its effects. To make these measures efficient it is necessary to obtain the information related to the level of noise in certain areas, streets, cities. To achieve this, smart cities use noise mapping. The city of Zagreb since 2012, participates in the i-SCOPE project (interoperable Smart City services trough Open Platform for urban Ecosystems). i-SCOPE delivers an open platform on top of which it develops, three "smart city" services: optimization of energy consumption through a service for accurate assessment of solar energy potential and energy loss at building level, environmental monitoring through a real-time environmental noise mapping service leveraging citizen's involvement will who act as distributed sensors city-wide measuring noise levels through an application on their mobile phones and improved inclusion and personal mobility of aging and diversely able citizens through an accurate personal routing service. The students of Faculty of Geodesy University of Zagreb, who enrolled in the course Thematic Cartography, were actively involved in the voluntary data acquisition in order to monitor the noise in real time. In this paper are presented the voluntary acquisitioned data of noise level measurement in Zagreb through a mobile application named Noise Tube, which were used as the basis for creating the dynamic noise map. The paper describes how citizens through voluntarily collected geoinformation can directly influence decision-making in their community, which certainly affects the quality of life.
From Internet of Things to Smart Data for Smart Urban Monitoring
NASA Astrophysics Data System (ADS)
Gastaud, E.
2017-09-01
Cities are facing some of the major challenges of our time: global warming, pollution, waste management, energy efficiency. The territory of the Metropolis of Lyon, France, which brings together 59 municipalities, for a total of 1.3 million inhabitants, has launched a smart city policy aimed, among other things, at finding solutions for these issues. The data platform set up in 2013 is one of the cornerstones of this policy. In this context, the Metropolis of Lyon is deploying solutions that will enable, through the collection of new data, to implement monitoring and action tools in several fields. As part of a European innovation project called "bIoTope", focused on the development of new services based on the Internet of Things, a multidisciplinary team is implementing a system to mitigate the effects of global warming in the city. Thanks to various connected objects allowing a true monitoring of the trees, and by using different data sources, an automatic and intelligent irrigation system is developed. In the field of waste management, several hundred containers in which the inhabitants throw away their used glass for recycling will soon be equipped with fill rate sensors. The main objective is to have this network of sensors interact easily with the container collection trucks. Expected results are an optimization of the collection, thus less fuel consumed, less noise, less traffic jam. The Metropolis of Lyon also participates in the "Smarter Together" project, focused on the development of intelligent duplicable solutions for cities, in the field of energy. A digital tool for analysing consumption and energy production at the level of a neighbourhood is currently being developed. This requires both interfaces with multiple partners, the development of a data model reflecting the reality of the terrain, from the sensors to the buildings, and the implementation of a visualization tool.
Demongeot, Jacques; Virone, Gilles; Duchêne, Florence; Benchetrit, Gila; Hervé, Thierry; Noury, Norbert; Rialle, Vincent
2002-06-01
We deal in this paper with the concept of health smart home (HSH) designed to follow dependent people at home in order to avoid the hospitalisation, limiting hospital sojourns to short acute care or fast specific diagnostic investigations. For elderly people the project of such a HSH has been called AISLE (Apartment with Intelligent Sensors for Longevity Effectiveness). For this purpose, system having three levels of automatic measuring (1) the circadian activity, (2) the vegetative state, and (3) some state variables specific of certain organs involved in precise diseases, has been developed within the framework of a 'Health Integrated Smart Home Information System' (HIS2). HIS2 is an experimental platform for technologic development and clinical evaluation, in order to ensure the medical security and quality of life for patients who need home based medical monitoring. Location sensors are placed in each room of the HIS2, allowing the monitoring of patient's successive daily activity phases within the patient's home environment. We proceed with a sampling in an hourly schedule to detect weak variations of the nycthemeral rhythms. Based on numerous measurements, we establish a mean value with confidence limits of activity variables in normal behaviour permitting to detect for example a sudden abnormal event (like a fall) as well as a chronic pathologic activity (like a pollakiuria), allowing us to define a canonical domain within which the patient's activity is qualified to be 'predictable'. Alerts are set off if the patient's activity deviates from a predictable canonical domain. Moreover, we can follow the cardio-respiratory state by measuring the intensity of the respiratory sinusal arrhythmia in order to quantify the integrity of the bulbar vegetative system, and we finally propose to carefully watch abnormal symptoms like arterial pressure or presence of plasma proteins in the expired air flow for early detecting respectively hypertension or pulmonary oedema.
Smart Roadside System for Driver Assistance and Safety Warnings: Framework and Applications
Jang, Jeong Ah; Kim, Hyun Suk; Cho, Han Byeog
2011-01-01
The use of newly emerging sensor technologies in traditional roadway systems can provide real-time traffic services to drivers through Telematics and Intelligent Transport Systems (ITSs). This paper introduces a smart roadside system that utilizes various sensors for driver assistance and traffic safety warnings. This paper shows two road application models for a smart roadside system and sensors: a red-light violation warning system for signalized intersections, and a speed advisory system for highways. Evaluation results for the two services are then shown using a micro-simulation method. In the given real-time applications for drivers, the framework and certain algorithms produce a very efficient solution with respect to the roadway type features and sensor type use. PMID:22164025
NASA Astrophysics Data System (ADS)
Oks, A.; Katashev, A.; Bernans, E.; Abolins, V.
2017-10-01
The aim of the study was to present a new DAid®Pressure Sock System for feet locomotion monitoring and to verify it’s temporal characteristics by data comparison with the same obtained by two other widely used methods as reference. Designed system is based on sensors which can be knitted directly in the garment or hosiery items. DAid®Pressure Sock System was created for sport and medical applications. Comparison of temporal characteristics of different types of locomotion, obtained using designed system and reference devises, showed good agreement between data.
Smart wireless continence management system for persons with dementia.
Wai, Aung Aung Phyo; Fook, Victor Foo Siang; Jayachandran, Maniyeri; Biswas, Jit; Nugent, Chris; Mulvenna, Maurice; Lee, Jer-En; Kiat, Philp Yap Lian
2008-10-01
Incontinence is highly prevalent in the elderly population, especially in nursing home residents with dementia. It is a distressing and costly health problem that affects not only the patients but also the caregivers. Effective continence management is required to provide quality care, and to eliminate high labor costs and annoyances to the caregivers resulting from episodes of incontinence. This paper presents the design, development, and preliminary deployment of a smart wireless continence management system for dementia-impaired elderly or patients in institutional care settings such as nursing homes and hospitals. Specifically, the mote wireless platform was used to support the deployment of potentially large quantities of wetness sensors with wider coverage and with dramatically less complexity and cost. It consists of an intelligent signal relay mechanism so that the residents are free to move about in the nursing home or hospital and allows personalized continence management service. Preliminary results from a trial in a local nursing home are promising and can significantly improve the quality of care for patients.
Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues.
Alvear, Oscar; Calafate, Carlos T; Cano, Juan-Carlos; Manzoni, Pietro
2018-02-04
Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs.
Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues
2018-01-01
Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs. PMID:29401711
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
From WSN towards WoT: Open API Scheme Based on oneM2M Platforms.
Kim, Jaeho; Choi, Sung-Chan; Ahn, Il-Yeup; Sung, Nak-Myoung; Yun, Jaeseok
2016-10-06
Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions.
From WSN towards WoT: Open API Scheme Based on oneM2M Platforms
Kim, Jaeho; Choi, Sung-Chan; Ahn, Il-Yeup; Sung, Nak-Myoung; Yun, Jaeseok
2016-01-01
Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions. PMID:27782058
DOT National Transportation Integrated Search
2015-06-01
This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...
System Security And Monitoring On Smart Home Using Android
NASA Astrophysics Data System (ADS)
Romadhon, A. S.
2018-01-01
Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.
3D shape measurement system developed on mobile platform
NASA Astrophysics Data System (ADS)
Wu, Zhoujie; Chang, Meng; Shi, Bowen; Zhang, Qican
2017-02-01
Three-dimensional (3-D) shape measurement technology based on structured light has become one hot research field inspired by the increasing requirements. Many methods have been implemented and applied in the industry applications, but most of their equipments are large and complex, cannot be portable. Meanwhile, the popularity of the smart mobile terminals, such as smart phones, provides a platform for the miniaturization and portability of this technology. The measurement system based on phase-shift algorithm and Gray-code pattern under the Android platform on a mobile phone is mainly studied and developed, and it has been encapsulated into a mobile phone application in order to reconstruct 3-D shape data in the employed smart phone easily and quickly. The experimental results of two measured object are given in this paper and demonstrate the application we developed in the mobile platform is effective.
A forty-year history of fiber optic smart structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Scheel, Ingrid U.
2017-04-01
In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.
Sagl, Günther; Resch, Bernd; Blaschke, Thomas
2015-01-01
In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different types of contextual information, thus providing an additional, namely the geo-spatial perspective on the future development of smart cities. PMID:26184221
Sagl, Günther; Resch, Bernd; Blaschke, Thomas
2015-07-14
In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different types of contextual information, thus providing an additional, namely the geo-spatial perspective on the future development of smart cities.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
GOOSE: semantic search on internet connected sensors
NASA Astrophysics Data System (ADS)
Schutte, Klamer; Bomhof, Freek; Burghouts, Gertjan; van Diggelen, Jurriaan; Hiemstra, Peter; van't Hof, Jaap; Kraaij, Wessel; Pasman, Huib; Smith, Arthur; Versloot, Corne; de Wit, Joost
2013-05-01
More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective mission execution. Smart access to all sensor data acts as enabler for questions such as "Is there a person behind this building" or "Alert me when a vehicle approaches". The GOOSE concept has the ambition to provide the capability to search semantically for any relevant information within "all" (including imaging) sensor streams in the entire Internet of sensors. This is similar to the capability provided by presently available Internet search engines which enable the retrieval of information on "all" web pages on the Internet. In line with current Internet search engines any indexing services shall be utilized cross-domain. The two main challenge for GOOSE is the Semantic Gap and Scalability. The GOOSE architecture consists of five elements: (1) an online extraction of primitives on each sensor stream; (2) an indexing and search mechanism for these primitives; (3) a ontology based semantic matching module; (4) a top-down hypothesis verification mechanism and (5) a controlling man-machine interface. This paper reports on the initial GOOSE demonstrator, which consists of the MES multimedia analysis platform and the CORTEX action recognition module. It also provides an outlook into future GOOSE development.
NASA Technical Reports Server (NTRS)
Uldomkesmalee, Suraphol; Suddarth, Steven C.
1997-01-01
VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.
SmartR: an open-source platform for interactive visual analytics for translational research data
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-01-01
Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291
SmartR: an open-source platform for interactive visual analytics for translational research data.
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-07-15
In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
SMART PEBBLES : passive embeddable wireless sensors for chloride ingress monitoring in bridge decks.
DOT National Transportation Integrated Search
2003-06-01
SRI International has developed a wireless sensor for monitoring the level of chloride : ingress into concrete bridge decks. We call this device a Smart Pebble since it has : roughly the size and weight of a typical piece of the rock aggregate tha...
Gesture recognition for smart home applications using portable radar sensors.
Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip
2014-01-01
In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.
Design and construction of smart cane using infrared laser-based tracking system
NASA Astrophysics Data System (ADS)
Wong, Chi Fung; Phitagragsakul, Narikorn; Jornsamer, Patcharaporn; Kaewmeesri, Pimsin; Jantakot, Pimsunan; Locharoenrat, Kitsakorn
2018-06-01
Our work is aimed to design and construct the smart cane. The infrared laser-based sensor was used as a distance detector and Arduino board was used as a microcontroller. On the other hand, Bluetooth was used as a wireless communicator and MP3 module together with the headset were used as a voice alert player. Our smart cane is a very effective device for the users under the indoor guidance. That is, the obstacle was detectable 3,000 cm away from the blind people. The white cane was assembled with the laser distance sensor and distance alert sensor served as the compact and light-weight device. Distance detection was very fast and precise when the smart cane was tested for the different obstacles, such as human, wall and wooden table under the indoor area.
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.
Xiao, Jian; Zou, Xiang; Xu, Wenyao
2017-09-26
"Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.
Simulation of Smart Home Activity Datasets
Synnott, Jonathan; Nugent, Chris; Jeffers, Paul
2015-01-01
A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371
UHF wearable battery free sensor module for activity and falling detection.
Nam Trung Dang; Thang Viet Tran; Wan-Young Chung
2016-08-01
Falling is one of the most serious medical and social problems in aging population. Therefore taking care of the elderly by detecting activity and falling for preventing and mitigating the injuries caused by falls needs to be concerned. This study proposes a wearable, wireless, battery free ultra-high frequency (UHF) smart sensor tag module for falling and activity detection. The proposed tag is powered by UHF RF wave from reader and read by a standard UHF Electronic Product Code (EPC) Class-1 Generation-2 reader. The battery free sensor module could improve the wearability of the wireless device. The combination of accelerometer signal and received signal strength indication (RSSI) from a reader in the passive smart sensor tag detect the activity and falling of the elderly very successfully. The fabricated smart sensor tag module has an operating range of up to 2.5m and conducting in real-time activity and falling detection.
Design and Development of Smart Medicine Box
NASA Astrophysics Data System (ADS)
Rosli, Ekbal; Husaini, Yusnira
2018-03-01
The Smart Medicine Box is successfully designed in helping the introvert patients taking their medicine without help of others. This project is to develop a robotic device that can assist patient to take medicine alone by implementing an IOT apps system for controlling the Smart Medicine Box where it will overcome an emotional disturbance experience by the introvert patients. There are four sensors such as PIR, IR, temperature and ultrasonic sensors use for the project. The purpose of PIR sensor is to detect hand movement near the device, while IR sensor is to detect the line follower on the floor. The LM 35 acts as the detection of the temperature inside the box and the ultrasonic acts as the detection of the obstacle in front of the device. The MIT Apps Invention 2 is used to develop an apps and collect the data from sensors through Arduino microcontroller. A proof of concept design has implemented and demonstrated successfully.
Simulation of Smart Home Activity Datasets.
Synnott, Jonathan; Nugent, Chris; Jeffers, Paul
2015-06-16
A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.
Hybrid-Aware Model for Senior Wellness Service in Smart Home.
Jung, Yuchae
2017-05-22
Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors-such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)-were used for monitoring movements of seniors. For context-awareness, environmental sensors-such as gas, fire, smoke, dust, temperature, and light sensors-were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio.
Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850
Sensor Fusion and Smart Sensor in Sports and Biomedical Applications.
Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz
2016-09-23
The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.
Enabling Smart Air Conditioning by Sensor Development: A Review
Cheng, Chin-Chi; Lee, Dasheng
2016-01-01
The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906
Virtual Sensor Test Instrumentation
NASA Technical Reports Server (NTRS)
Wang, Roy
2011-01-01
Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.
Designing and Securing an Event Processing System for Smart Spaces
ERIC Educational Resources Information Center
Li, Zang
2011-01-01
Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…
Assessment of modern smartphone sensors performance on vehicle localization in urban environments
NASA Astrophysics Data System (ADS)
Lazarou, Theodoros; Danezis, Chris
2017-09-01
The advent of Global Navigation Satellite Systems (GNSS) initiated a revolution in Positioning, Navigation and Timing (PNT) applications. Besides the enormous impact on geospatial data acquisition and reality capture, satellite navigation has penetrated everyday life, a fact which is proved by the increasing degree of human reliance on GNSS-enabled smart devices to perform casual activities. Nevertheless, GNSS does not perform well in all cases. Specifically, in GNSS-challenging environments, such as urban canyons or forested areas, navigation performance may be significantly degraded or even nullified. Consequently, positioning is achieved by combining GNSS with additional heterogeneous information or sensors, such as inertial sensors. To date, most smartphones are equipped with at least accelerometers and gyroscopes, besides GNSS chipsets. In the frame of this research, difficult localization scenarios were investigated to assess the performance of these low-cost inertial sensors with respect to higher grade GNSS and IMU systems. Four state-of-the-art smartphones were mounted on a specifically designed on-purpose build platform along with reference equipment. The platform was installed on top of a vehicle, which was driven by a predefined trajectory that included several GNSS-challenging parts. Consequently, positioning and inertial readings were acquired by smartphones and compared to the information collected by the reference equipment. The results indicated that although the smartphone GNSS receivers have increased sensitivity, they were unable to produce an acceptable solution for more than 30% of the driven course. However, all smartphones managed to identify, up to a satisfactory degree, distinct driving features, such as curves or bumps.
van Kasteren, Yasmin; Bradford, Dana; Zhang, Qing; Karunanithi, Mohan; Ding, Hang
2017-06-13
An ongoing challenge for smart homes research for aging-in-place is how to make sense of the large amounts of data from in-home sensors to facilitate real-time monitoring and develop reliable alerts. The objective of our study was to explore the usefulness of a routine-based approach for making sense of smart home data for the elderly. Maximum variation sampling was used to select three cases for an in-depth mixed methods exploration of the daily routines of three elderly participants in a smart home trial using 180 days of power use and motion sensor data and longitudinal interview data. Sensor data accurately matched self-reported routines. By comparing daily movement data with personal routines, it was possible to identify changes in routine that signaled illness, recovery from bereavement, and gradual deterioration of sleep quality and daily movement. Interview and sensor data also identified changes in routine with variations in temperature and daylight hours. The findings demonstrated that a routine-based approach makes interpreting sensor data easy, intuitive, and transparent. They highlighted the importance of understanding and accounting for individual differences in preferences for routinization and the influence of the cyclical nature of daily routines, social or cultural rhythms, and seasonal changes in temperature and daylight hours when interpreting information based on sensor data. This research has demonstrated the usefulness of a routine-based approach for making sense of smart home data, which has furthered the understanding of the challenges that need to be addressed in order to make real-time monitoring and effective alerts a reality. ©Yasmin van Kasteren, Dana Bradford, Qing Zhang, Mohan Karunanithi, Hang Ding. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 13.06.2017.
van Kasteren, Yasmin; Bradford, Dana; Karunanithi, Mohan; Ding, Hang
2017-01-01
Background An ongoing challenge for smart homes research for aging-in-place is how to make sense of the large amounts of data from in-home sensors to facilitate real-time monitoring and develop reliable alerts. Objective The objective of our study was to explore the usefulness of a routine-based approach for making sense of smart home data for the elderly. Methods Maximum variation sampling was used to select three cases for an in-depth mixed methods exploration of the daily routines of three elderly participants in a smart home trial using 180 days of power use and motion sensor data and longitudinal interview data. Results Sensor data accurately matched self-reported routines. By comparing daily movement data with personal routines, it was possible to identify changes in routine that signaled illness, recovery from bereavement, and gradual deterioration of sleep quality and daily movement. Interview and sensor data also identified changes in routine with variations in temperature and daylight hours. Conclusions The findings demonstrated that a routine-based approach makes interpreting sensor data easy, intuitive, and transparent. They highlighted the importance of understanding and accounting for individual differences in preferences for routinization and the influence of the cyclical nature of daily routines, social or cultural rhythms, and seasonal changes in temperature and daylight hours when interpreting information based on sensor data. This research has demonstrated the usefulness of a routine-based approach for making sense of smart home data, which has furthered the understanding of the challenges that need to be addressed in order to make real-time monitoring and effective alerts a reality. PMID:28611014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David
The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor, thermocouple, and capacitive-based smart brick sensor interfacing; 4) Interfacing of the smart bricks with embedded sensors with wireless motes thus yielding a complete signal chain. This end-to-end data collection system was tested on a furnace heated to 1350 °C; 5) Development of a slag penetration model and a nonlinear unknown input filter for the data from the embedded sensors for estimating temperature and extent of slag penetration.« less
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-04-25
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-01-01
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331
Sense, decide, act, communicate (SDAC): next generation of smart sensor systems
NASA Astrophysics Data System (ADS)
Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian
2004-09-01
The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.
Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.
Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton
2017-04-21
Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.
Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example
Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton
2017-01-01
Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf. PMID:28430147
Smart border: ad-hoc wireless sensor networks for border surveillance
NASA Astrophysics Data System (ADS)
He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser
2011-06-01
Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
Uav Photogrammetric Solution Using a Raspberry pi Camera Module and Smart Devices: Test and Results
NASA Astrophysics Data System (ADS)
Piras, M.; Grasso, N.; Jabbar, A. Abdul
2017-08-01
Nowadays, smart technologies are an important part of our action and life, both in indoor and outdoor environment. There are several smart devices very friendly to be setting, where they can be integrated and embedded with other sensors, having a very low cost. Raspberry allows to install an internal camera called Raspberry Pi Camera Module, both in RGB band and NIR band. The advantage of this system is the limited cost (< 60 euro), their light weight and their simplicity to be used and embedded. This paper will describe a research where a Raspberry Pi with the Camera Module was installed onto a UAV hexacopter based on arducopter system, with purpose to collect pictures for photogrammetry issue. Firstly, the system was tested with aim to verify the performance of RPi camera in terms of frame per second/resolution and the power requirement. Moreover, a GNSS receiver Ublox M8T was installed and connected to the Raspberry platform in order to collect real time position and the raw data, for data processing and to define the time reference. IMU was also tested to see the impact of UAV rotors noise on different sensors like accelerometer, Gyroscope and Magnetometer. A comparison of the achieved results (accuracy) on some check points of the point clouds obtained by the camera will be reported as well in order to analyse in deeper the main discrepancy on the generated point cloud and the potentiality of these proposed approach. In this contribute, the assembling of the system is described, in particular the dataset acquired and the results carried out will be analysed.
Smart radio: spectrum access for first responders
NASA Astrophysics Data System (ADS)
Silvius, Mark D.; Ge, Feng; Young, Alex; MacKenzie, Allen B.; Bostian, Charles W.
2008-04-01
This paper details the Wireless at Virginia Tech Center for Wireless Telecommunications' (CWT) design and implementation of its Smart Radio (SR) communication platform. The CWT SR can identify available spectrum within a pre-defined band, rendezvous with an intended receiver, and transmit voice and data using a selected quality of service (QoS). This system builds upon previous cognitive technologies developed by CWT for the public safety community, with the goal of providing a prototype mobile communications package for military and public safety First Responders. A master control (MC) enables spectrum awareness by characterizing the radio environment with a power spectrum sensor and an innovative signal detection and classification module. The MC also enables spectrum and signal memory by storing sensor results in a knowledge database. By utilizing a family radio service (FRS) waveform database, the CWT SR can create a new communication link on any designated FRS channel frequency using FM, BPSK, QPSK, or 8PSK modulations. With FM, it supports analog voice communications with legacy hand-held FRS radios. With digital modulations, it supports IP data services, including a CWT developed CVSD-based VoIP protocol. The CWT SR coordinates spectrum sharing between analog primary users and digital secondary users by applying a simple but effective channel-change protocol. It also demonstrates a novel rendezvous protocol to facilitate the detection and initialization of communications links with neighboring SR nodes through the transmission of frequency-hopped rendezvous beacons. By leveraging the GNU Radio toolkit, writing key modules entirely in Python, and utilizing the USRP hardware front-end, the CWT SR provides a dynamic spectrum test bed for future smart and cognitive radio research.
Du, Guofeng; Li, Zhao; Song, Gangbing
2018-05-23
Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.
NASA Astrophysics Data System (ADS)
Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.
2018-06-01
Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.
Design of Smart-Meter data acquisition device based on Cloud Platform
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-05-01
In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.
Distributed ice accretion sensor for smart aircraft structures
NASA Technical Reports Server (NTRS)
Gerardi, J. J.; Hickman, G. A.
1989-01-01
A distributed ice accretion sensor is presented, based on the concept of smart structures. Ice accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to ice thickness. It is suggested that this method may be used to detect ice over large areas with minimal hardware. Results are presented from preliminary tests to measure simulated ice growth.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Research and development of smart wearable health applications: the challenge ahead.
Lymberis, Andreas
2004-01-01
Continuous monitoring of physiological and physical parameters is necessary for the assessment and management of personal health status. It can significantly contribute to the reduction of healthcare cost by avoiding unnecessary hospitalisations and ensuring that those who need urgent care get it sooner. In conjunction with cost-effective telemedicine platforms, ubiquitous health monitoring can significantly contribute to the enhancement of disease prevention and early diagnosis, disease management, treatment and home rehabilitation. Latest developments in the area of micro and nanotechnologies, information processing and wireless communication offer, today, the possibility for minimally (or non) invasive biomedical measurement but also wearable sensing, processing and data communication. Although the systems are being developed to satisfy specific user needs, a number of common critical issues have to be tackled to achieve reliable and acceptable smart health wearable applications e.g. biomedical sensors, user interface, clinical validation, data security and confidentiality, scenarios of use, decision support, user acceptance and business models. Major technological achievements have been realised the last few years. Cutting edge development combining functional clothing and integrated electronics open a new research area and possibilities for body sensing and communicating health parameters. This paper reviews the current status of research and development on smart wearable health systems and applications and discusses the outstanding issues and future challenges.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
An Overview of the Development of High Temperature Wireless Smart Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2014-01-01
The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.
Smart Phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing
2013-07-01
Smart phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing by Amethist S. Finch , Matthew Coppock, Justin R...Chemical, Biological, and Explosives Sensing Amethist S. Finch , Matthew Coppock, Justin R. Bickford, Marvin A. Conn, Thomas J. Proctor, and...Explosives Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amethist S. Finch , Matthew Coppock, Justin R
Smart article: application of intelligent platforms in next generation biomedical publications.
Mohammadi, Babak; Saeedi, Marjan; Haghpanah, Vahid
2017-01-01
Production of scientific data has been accelerated exponentially though ease of access to the required knowledge is still challenging. Hence, the emergence of new frameworks to allow more efficient storage of information would be beneficial. Attaining intelligent platforms enable the smart article to serve as a forum for exchanging idea among experts of academic disciplines for a rapid and efficient scientific discourse.
A Combined Research/Educational Curriculum in Smart Sensors and Integrated Devices.
ERIC Educational Resources Information Center
Auner, G. W.; Siy, P.; Naik, R.; Wenger, L.; Liu, G-Y.; Schwiebert, L. J.
The researchers are developing a new curriculum which integrates ongoing research efforts in the Center for Smart Sensors and Integrated Devices into a cooperative educational and traineeship program. A forerunner to this program was initiated with funding by a National Science Foundation (NSF) Combined Research and Curriculum Development (CRCD)…
Smart medical systems with application to nutrition and fitness in space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiologic status in real time. In a smart medical system, sensor arrays assess subject status, which is interpreted by computer processors that analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, thus closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend inflight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near-infrared spectroscopy can be used to non-invasively measure several blood and tissue parameters that are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The non-invasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors is also described.
Smart Medical Systems with Application to Nutrition and Fitness in Space
NASA Technical Reports Server (NTRS)
Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.
2002-01-01
Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiological status in real time. In a smart medical system sensor arrays assess subject status, which are interpreted by computer processors which analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared spectroscopy can be used to noninvasively measure several blood and tissue parameters which are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors are also described.
Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing
He, Juan; Yang, Han; Zhang, Yayun; Yu, Jie; Miao, Longfei; Song, Yonghai; Wang, Li
2016-01-01
Herein, a smart porous material, Cu-hemin metal-organic-frameworks (Cu-hemin MOFs), was synthesized via assembling of Cu2+ with hemin to load glucose oxidase (GOD) for electrochemical glucose biosensing for the first time. The formation of the Cu-hemin MOFs was verified by scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms, UV-vis absorption spectroscopy, fluorescence spectroscopy, thermal analysis and electrochemical techniques. The results indicated that the Cu-hemin MOFs showed a ball-flower-like hollow cage structure with a large specific surface area and a large number of mesopores. A large number of GOD molecules could be successfully loaded in the pores of Cu-hemin MOFs to keep their bioactivity just like in a solution. The GOD/Cu-hemin MOFs exhibited both good performance toward oxygen reduction reaction via Cu-hemin MOFs and catalytic oxidation of glucose via GOD, superior to other GOD/MOFs and GOD/nanomaterials. Accordingly, the performance of GOD/Cu-hemin MOFs-based electrochemical glucose sensor was enhanced greatly, showing a wide linear range from 9.10 μM to 36.0 mM and a low detection limit of 2.73 μM. Moreover, the sensor showed satisfactory results in detection of glucose in human serum. This work provides a practical design of new electrochemical sensing platform based on MOFs and biomolecules. PMID:27811998
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
NASA Astrophysics Data System (ADS)
Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.
2016-10-01
The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.
Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.
Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen
2016-07-01
Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behavior in the home and predicting clinical scores of the residents. To accomplish this goal, we propose a clinical assessment using activity behavior (CAAB) approach to model a smart home resident's daily behavior and predict the corresponding clinical scores. CAAB uses statistical features that describe characteristics of a resident's daily activity performance to train machine learning algorithms that predict the clinical scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years. We obtain a statistically significant correlation ( r=0.72) between CAAB-predicted and clinician-provided cognitive scores and a statistically significant correlation ( r=0.45) between CAAB-predicted and clinician-provided mobility scores. These prediction results suggest that it is feasible to predict clinical scores using smart home sensor data and learning-based data analysis.
SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid
Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin
2016-01-01
The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573
SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.
Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin
2016-03-31
The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.
NASA Astrophysics Data System (ADS)
Radchenko, Andro
River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour progress and topology. Smart Rocks Network wireless communication is based on the magnetoinductive (MI) link, at low (125 KHz) frequency, allowing for signal to penetrate through the water, rocks, and the bridge structure. The dissertation describes the Smart Rocks Network implementation, its electronic design and the electromagnetic/computational intelligence techniques used for the network mapping.
NASA Astrophysics Data System (ADS)
Chen, Yang; Hao, Lina; Yang, Hui; Gao, Jinhai
2017-12-01
Ionic polymer metal composite (IPMC) as a new smart material has been widely concerned in the micromanipulation field. In this paper, a novel two-finger gripper which contains an IPMC actuator and an ultrasensitive force sensor is proposed and fabricated. The IPMC as one finger of the gripper for mm-sized objects can achieve gripping and releasing motion, and the other finger works not only as a support finger but also as a force sensor. Because of the feedback signal of the force sensor, this integrated actuating and sensing gripper can complete gripping miniature objects in millimeter scale. The Kriging model is used to describe nonlinear characteristics of the IPMC for the first time, and then the control scheme called simultaneous perturbation stochastic approximation adjusting a proportion integration differentiation parameter controller with a Kriging predictor wavelet filter compensator is applied to track the gripping force of the gripper. The high precision force tracking in the foam ball manipulation process is obtained on a semi-physical experimental platform, which demonstrates that this gripper for mm-sized objects can work well in manipulation applications.
Data upload capability of 3G mobile phones.
Moon, Jon K; Barden, Charles M; Wohlers, Erica M
2009-01-01
Mobile phones are becoming an important platform to measure free-living energy balance and to support weight management therapies. Sensor data, camera images and user input are needed by clinicians and researchers in close to real time. We assessed upload (reverse link) data transport rates for 2007-2008 model mobile phones on two major US wireless systems. Even the slowest phone (EVDO Rev 0) reliably uploaded 40 MB of data in less than 1 h. More than 95% of file uploads were successful in tests that simulated normal phone use over 3 d. Practical bandwidth and data currency from typical smart phones will likely keep pace with the data needs of energy balance studies and weight management therapy.
Roh, Eun; Hwang, Byeong-Ung; Kim, Doil; Kim, Bo-Yeong; Lee, Nae-Eung
2015-06-23
Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.
Jin, Han; Huynh, Tan-Phat; Haick, Hossam
2016-07-13
Flexible and wearable electronic sensors are useful for the early diagnosis and monitoring of an individual's health state. Sampling of volatile organic compounds (VOCs) derived from human breath/skin or monitoring abrupt changes in heart-beat/breath rate should allow noninvasive monitoring of disease states at an early stage. Nevertheless, for many reported wearable sensing devices, interaction with the human body leads incidentally to unavoidable scratches and/or mechanical cuts and bring about malfunction of these devices. We now offer proof-of-concept of nanoparticle-based flexible sensor arrays with fascinating self-healing abilities. By integrating a self-healable polymer substrate with 5 kinds of functionalized gold nanoparticle films, a sensor array gives a fast self-healing (<3 h) and attractive healing efficiency in both the substrate and sensing films. The proposed platform was used in sensing pressure variation and 11 kinds of VOCs. The sensor array had satisfactory sensitivity, a low detection limit, and promising discrimination features in monitoring both of VOCs and pressure variation, even after full healing. These results presage a new type of smart sensing device, with a desirable performance in the possible detection and/or clinical application for a number of different purposes.
On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies
Irschik, Hans; Krommer, Michael; Vetyukov, Yury
2010-01-01
In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates. PMID:22219679
On the use of piezoelectric sensors in structural mechanics: some novel strategies.
Irschik, Hans; Krommer, Michael; Vetyukov, Yury
2010-01-01
In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates.
Flexible Transparent Electronic Gas Sensors.
Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming
2016-07-01
Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... activities are to enable effective sharing, integration, standardization, and analysis of heterogeneous data from collaborative translational research by mobilizing the tranSMART open- source and open-data...: (a) Establish and sustain tranSMART as the preferred data sharing and analytics platform for...
J2ME and smart phones as platform for a Bluetooth body area network for patient-telemonitoring.
Morón, M J; Luque, J R; Botella, A A; Cuberos, E J; Casilari, E; Díaz-Estrella, A
2007-01-01
A prototype of a system based on a Bluetooth Body Area Network (BAN) for continuous and wireless telemonitoring of patients' biosignals is presented. Smart phones and Java (J2ME) have been selected as platform to build a central node in patients' BAN. A midlet running in the smart phone compiles information about patient's location and health status. The midlet encrypts and retransmits it to the server through 802.11 or GPRS/UMTS. Besides when an alerting condition is detected, the midlet generates a MMS and a SMS to be sent to patients' relatives and to physician, respectively. Additionally, the system provides to physicians the possibility of configuring BAN's parameters remotely, from a PC or even a smart phone.
The Smart Health Initiative in China: The Case of Wuhan, Hubei Province.
Fan, Meiyu; Sun, Jian; Zhou, Bin; Chen, Min
2016-03-01
To introduce smart health in Wuhan, and provide some references for other cities. As the largest mega-city in central China, Wuhan is investing large amounts of resources to push forward the development of Smart Wuhan and Health Wuhan, and it has unique features. It is one of the centerpieces of China's New Healthcare Reform, and great hope is put on it to help solve the conflict between limited healthcare resources and the large population of patients. How to plan and design smart health is important. The construction of Wuhan Smart Health includes some aspects as follows, like requirement analysis, the establishment of objectives and blueprint, the architecture design of regional health information platform, evaluation and implementation, problems and solutions, and so on. Wuhan Smart Health has obtained some achievements in health network, information systems, resident's health records, information standard, and the first phase of municipal health information platform. The focus of this article is the whole construction process of smart health in Wuhan. Although there are some difficulties during this period, some smart health services and management have been reflected. Compared with other cities or countries, Wuhan Smart Health has its own advantages and disadvantages. This study aims to provide a reference for other cities. Because smart health of Wuhan is characteristic in construction mode. Though still in the initial stage, it has great potentials in the future.
Ultra-low power wireless sensing for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie
2011-04-01
Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.
Smart wheelchair: integration of multiple sensors
NASA Astrophysics Data System (ADS)
Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.
2017-10-01
The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.
Sensor Fusion and Smart Sensor in Sports and Biomedical Applications
Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz
2016-01-01
The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260
Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1987-01-01
Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.
Posture and activity recognition and energy expenditure prediction in a wearable platform.
Sazonova, Nadezhda; Browning, Raymond; Melanson, Edward; Sazonov, Edward
2014-01-01
The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here we describe use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time prediction and display of time spent in various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we introduce new algorithms that require substantially less computational power. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a four-hour stay in a room calorimeter. Use of Multinomial Logistic Discrimination (MLD) for posture and activity classification resulted in an accuracy comparable to that of Support Vector Machines (SVM) (90% vs. 95%-98%) while reducing the running time by a factor of 190 and reducing the memory requirement by a factor of 104. Per minute EE estimation using activity-specific models resulted in an accurate EE prediction (RMSE of 0.53 METs vs. RMSE of 0.69 METs using previously reported SVM-branched models). These results demonstrate successful implementation of real-time physical activity monitoring and EE prediction system on a wearable platform.
Securing resource constraints embedded devices using elliptic curve cryptography
NASA Astrophysics Data System (ADS)
Tam, Tony; Alfasi, Mohamed; Mozumdar, Mohammad
2014-06-01
The use of smart embedded device has been growing rapidly in recent time because of miniaturization of sensors and platforms. Securing data from these embedded devices is now become one of the core challenges both in industry and research community. Being embedded, these devices have tight constraints on resources such as power, computation, memory, etc. Hence it is very difficult to implement traditional Public Key Cryptography (PKC) into these resource constrained embedded devices. Moreover, most of the public key security protocols requires both public and private key to be generated together. In contrast with this, Identity Based Encryption (IBE), a public key cryptography protocol, allows a public key to be generated from an arbitrary string and the corresponding private key to be generated later on demand. While IBE has been actively studied and widely applied in cryptography research, conventional IBE primitives are also computationally demanding and cannot be efficiently implemented on embedded system. Simplified version of the identity based encryption has proven its competence in being robust and also satisfies tight budget of the embedded platform. In this paper, we describe the choice of several parameters for implementing lightweight IBE in resource constrained embedded sensor nodes. Our implementation of IBE is built using elliptic curve cryptography (ECC).
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.
2006-01-01
Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.
Smart and intelligent sensor payload project
2009-04-01
Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).
NASA Astrophysics Data System (ADS)
Gaviña, J. R.; Uy, F. A.; Carreon, J. D.
2017-06-01
There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.
Smart CMOS image sensor for lightning detection and imaging.
Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor
2013-03-01
We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement
Xiao, Jian; Zou, Xiang
2017-01-01
“Smart Pavement” is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor—ePave—to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system’s performance and explore the trade-off. PMID:28954430
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
Wearable photoplethysmography device prototype for wireless cardiovascular monitoring
NASA Astrophysics Data System (ADS)
Kviesis-Kipge, E.; Grabovskis, A.; Marcinkevics, Z.; Mecnika, V.; Rubenis, O.
2014-05-01
The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic range 89.84 dB. However, in-vivo condition tests revealed lower noise and higher accuracy achieved by applying the multiple photodiodes sensor. We concluded that the proposed PPG device prototype is simple and reliable, and therefore, can be utilized in low-cost smart garments.
de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A
2018-04-24
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.
de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.
2018-01-01
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099
Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539
Conductive polymer sensor arrays for smart orthopaedic implants
NASA Astrophysics Data System (ADS)
Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.
2017-04-01
This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.
Control systems using modal domain optical fiber sensors for smart structure applications
NASA Technical Reports Server (NTRS)
Lindner, Douglas K.; Reichard, Karl M.
1991-01-01
Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.
Demonstration of the CDMA-mode CAOS smart camera.
Riza, Nabeel A; Mazhar, Mohsin A
2017-12-11
Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.
Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization.
Lozano, Álvaro; Caridad, Javier; De Paz, Juan Francisco; Villarrubia González, Gabriel; Bajo, Javier
2018-05-08
New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach.
Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization
De Paz, Juan Francisco
2018-01-01
New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach. PMID:29738472
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments.
Roy, Nirmalya; Misra, Archan; Cook, Diane
2016-02-01
Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional 'hidden' context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions.
Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments
Misra, Archan; Cook, Diane
2016-01-01
Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions. PMID:27042240
Luan, Shiwei; Gude, Dana; Prakash, Punit; Warren, Steve
2014-01-01
Behavior tracking with severely disabled children can be a challenge, since dealing directly with a child's behavior is more immediately pressing than the need to record an event for tracking purposes. By the time a paraeducator (`para') is able to break away and record events, behavior counts can be forgotten. This paper presents a paraeducator glove design that can help to track behaviors with minimal distraction by allowing a paraeducator to touch their thumb to one of their other four fingers, where each finger represents a different behavior. Count data are packaged by a microcontroller board on the glove and then sent wirelessly to a smart phone via a Bluetooth Low Energy (BLE) link. A customized BLE profile was designed for this application to promote real-time recording. These data can be forwarded to a database for further analysis. This para glove design addresses basic needs of a wearable device that employs BLE, including local data collection, BLE data transmission, and remote data recording. More functional sensors can be added to this platform to support other wearable scenarios.
Photonic elements in smart systems for use in aerospace platforms
NASA Astrophysics Data System (ADS)
Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood
1998-07-01
To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.
Silicon ball grid array chip carrier
Palmer, David W.; Gassman, Richard A.; Chu, Dahwey
2000-01-01
A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.
The asthma mobile health study, smartphone data collected using ResearchKit.
Chan, Yu-Feng Yvonne; Bot, Brian M; Zweig, Micol; Tignor, Nicole; Ma, Weiping; Suver, Christine; Cedeno, Rafhael; Scott, Erick R; Gregory Hershman, Steven; Schadt, Eric E; Wang, Pei
2018-05-22
Widespread adoption of smart mobile platforms coupled with a growing ecosystem of sensors including passive location tracking and the ability to leverage external data sources create an opportunity to generate an unprecedented depth of data on individuals. Mobile health technologies could be utilized for chronic disease management as well as research to advance our understanding of common diseases, such as asthma. We conducted a prospective observational asthma study to assess the feasibility of this type of approach, clinical characteristics of cohorts recruited via a mobile platform, the validity of data collected, user retention patterns, and user data sharing preferences. We describe data and descriptive statistics from the Asthma Mobile Health Study, whereby participants engaged with an iPhone application built using Apple's ResearchKit framework. Data from 6346 U.S. participants, who agreed to share their data broadly, have been made available for further research. These resources have the potential to enable the research community to work collaboratively towards improving our understanding of asthma as well as mobile health research best practices.
A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.
Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres
2016-05-28
Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.
Intelligent Sensors: Strategies for an Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
VOLTTRON - An Intelligent Agent Platform for the Smart Grid
None
2018-05-16
The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-01-01
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-05-04
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
Sensor Transmission Power Schedule for Smart Grids
NASA Astrophysics Data System (ADS)
Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.
2017-11-01
Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).
Occupancy-driven smart register for building energy saving (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Zhangjie; Wang, Ya S.
2017-04-01
The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise shape and air flow control. The performance and the specification of the smart registers will be characterized experimentally. Its capacity of regulating airflow, forming air curtain will be demonstrated.
Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.
1990-02-01
This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to calculate strain magnitude and actuator control signals for simple structures.
NASA SMART Probe: Breast Cancer Application
NASA Technical Reports Server (NTRS)
Mah, Robert W.; Norvig, Peter (Technical Monitor)
2000-01-01
There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display. PMID:29387797
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.
Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung
2018-01-01
Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.
Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid
2017-07-19
Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Recent developments on layerwise mechanics for the analysis of composite laminates and structures with piezoelectric actuators and sensors are reviewed. The mechanics implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite structures. The corresponding finite-element implementations for the static and dynamic analysis of smart piezoelectric composite structures are also summarized. Select application illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local dynamic response of thin and/or thick laminated piezoelectric plates.
Innovative and applied research on big data platforms of smart heritage
NASA Astrophysics Data System (ADS)
Qiu, J.; Li, J.; Sun, H.
2015-08-01
Big data has huge commercial value and potential. Under the background of big data, a heritage site is faced with a number of questions and challenges such as, how to accelerate industrial innovation, benign competition and the creation of new business value. Based on the analysis of service data from the national archaeological site and park, Yuan Ming Yuan, this paper investigates the common problems of site management operations such as, inappropriate cultural interpretation, insufficient consumer demand and so on. In order to solve these operational problems, a new service system called the "one platform - three systems" was put forward. This system includes the smart heritage platform and three management systems: the smart heritage management system, the 3-O (Online-Offline-Onsite) service system and the digital explanation system. Combined with the 3-O marketing operation, the platform can realize bidirectional interaction between heritage site management units and tourists, which can also benefit visitors to the heritage site by explaining the culture and history of the heritage site, bring about more demand for cultural information and expand the social and economic benefits.
NASA Astrophysics Data System (ADS)
van der Heide, J. J.; Grus, M. M.; Nouwens, J. C. A. J.
2017-09-01
The Netherlands is a densely populated country. Cities in the metropolitan area (Randstad) will be growing at a fast pace in the coming decades1. Cities like Amsterdam and Rotterdam are being overrun by tourists. Climate change effects are noticed in cities (heavy rains for instance). Call for circular economy rises. Traffic increases. People are more self-reliant. Public space is shared by many functions. These challenges call for smart answers, more specific and directly than ever before. Sensor data is a cornerstone of these answers. In this paper we'll discuss the approaches of Dutch initiatives using sensor data as the new language to live a happy life in our cities. Those initiatives have been bundled in a knowledge platform called "Making sense for society" 1 https://www.cbs.nl/nl-nl/nieuws/2016/37/pbl-cbs-prognose-groei-steden-zet-door (in dutch)
Analysis and design of energy monitoring platform for smart city
NASA Astrophysics Data System (ADS)
Wang, Hong-xia
2016-09-01
The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.
Intelligent Sensors: An Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions
NASA Astrophysics Data System (ADS)
Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin
2018-01-01
In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.
FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation
Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo
2010-01-01
Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...
2018-01-01
With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less
Smart insole sensors for sports and rehabilitation
NASA Astrophysics Data System (ADS)
Tamm, Tarmo; Pärlin, Karel; Tiimus, Tõnis; Leemets, Kaur; Terasmaa, Tõnis; Must, Indrek
2014-04-01
A light-weight, soft, robust and low cost sensory system integrated into the inner soles of footwear is being developed that channels information to a mobile device, allowing to assess the ergonomics of the technique applied and to achieve improved performance in several fields of sport, to develop orthopedic footwear or monitor elevated plantar pressures for several fields of medicine, including early detection of diabetic foot ulceration. The advantages and disadvantages of several sensory material types were considered in the present work, focusing on signal reproducibility for periodic pressure measurements, response frequency and long-term stability, especially after extended load periods. Promising results were obtained for both capacitive and resistive sensory materials, utilizing virtually the same electronics platform for both types.
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
As sensors and computers become smaller and smaller, it becomes possible to add intelligence or smartness to common items. This is already seen in smart appliances, cars that diagnose their own maintenance problems, and military hardware that is something straight out of a science fiction book. In this article, the author looks at a design…
An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices
2018-01-01
The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario. PMID:29748468
An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices.
Muñoz, Sergio; Araque, Oscar; Sánchez-Rada, J Fernando; Iglesias, Carlos A
2018-05-10
The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
A review of smart homes- present state and future challenges.
Chan, Marie; Estève, Daniel; Escriba, Christophe; Campo, Eric
2008-07-01
In the era of information technology, the elderly and disabled can be monitored with numerous intelligent devices. Sensors can be implanted into their home for continuous mobility assistance and non-obtrusive disease prevention. Modern sensor-embedded houses, or smart houses, cannot only assist people with reduced physical functions but help resolve the social isolation they face. They are capable of providing assistance without limiting or disturbing the resident's daily routine, giving him or her greater comfort, pleasure, and well-being. This article presents an international selection of leading smart home projects, as well as the associated technologies of wearable/implantable monitoring systems and assistive robotics. The latter are often designed as components of the larger smart home environment. The paper will conclude by discussing future challenges of the domain.
SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO
NASA Astrophysics Data System (ADS)
Kaiser, Clemens; Sjöberg, Fredrik; Delcura, Juan Manuel; Eilertsen, Baard
2008-07-01
Orbital Satellite Services Limited (OSSL) is a satellite servicing company that is developing an orbit life extension vehicle (OLEV) to extend the operational lifetime of geostationary satellites. The industrial consortium of SSC (Sweden), Kayser-Threde (Germany) and Sener (Spain) is in charge to develop and industrialize the space and ground segment. It is a fully commercial program with support of several space agencies during the development phase. The business plan is based on life extension for high value commercial satellites while also providing the satellite operators with various fleet management services such as graveyard burns, slot transfers and on orbit protection against replacement satellite or launch failures. The OLEV spacecraft will be able to dock with a geostationary satellite and uses an electrical propulsion system to extend its life by taking over the attitude control and station keeping functions. The OLEV system is building on the SMART-1 platform developed by Swedish Space Corporation. It was developed for ESA as a technology test-bed to demonstrate the use of electrical propulsion for interplanetary orbit transfer manoeuvres. The concept is called SMART-OLEV and takes advantage of the low cost, low mass SMART-1 platform by a maximum use of recurrent platform technology.
2018-01-01
Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events. PMID:29614060
Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just
2018-04-03
Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.
Latest Development in Advanced Sensors at Kennedy Space Center (KSC)
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)
2002-01-01
Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.
Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.
2011-12-01
We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
NASA Astrophysics Data System (ADS)
Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John
2013-07-01
Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel Hewlett; Milos Manic; Craig Rieger
2012-08-01
When utilized properly, energy management systems (EMS) can offer significant energy savings by optimizing the efficiency of heating, ventilation, and air-conditioning (HVAC) systems. However, difficulty often arises due to the constraints imposed by the need to maintain an acceptable level of comfort for a building’s occupants. This challenge is compounded by the fact that human comfort is difficult to define in a measurable way. One way to address this problem is to provide a building manager with direct feedback from the building’s users. Still, this data is relative in nature, making it difficult to determine the actions that need tomore » be taken, and while some useful comfort correlations have been devised, such as ASHRAE’s Predicted Mean Vote index, they are rules of thumb that do not connect individual feedback with direct, diverse feedback sensing. As they are a correlation, quantifying effects of climate, age of buildings and associated defects such as draftiness, are outside the realm of this correlation. Therefore, the contribution of this paper is the Wireless Embedded Smart Block for Environment Sensing (WESBES); an affordable wireless sensor platform that allows subjective human comfort data to be directly paired with temporospatially correlated objective sensor measurements for use in EMS. The described device offers a flexible research platform for analyzing the relationship between objective and subjective occupant feedback in order to formulate more meaningful measures of human comfort. It could also offer an affordable and expandable option for real world deployment in existing EMS.« less
Smart walking stick for blind people: an application of 3D printer
NASA Astrophysics Data System (ADS)
Ikbal, Md. Allama; Rahman, Faidur; Ali, Md. Ripon; Kabir, M. Hasnat; Furukawa, Hidemitsu
2017-04-01
A prototype of the smart walking stick has been designed and characterized for the people who are visually impaired. In this study, it was considered that the proposed system will alert visuallyimpaired people over the obstacles which are in front of blind people as well as the obstacles of the street such as a manhole, when the blind people are walking in the street. The proposed system was designed in two stages, i.e. hardware and software which makes the system as a complete prototype. Three ultrasonic sonar sensors were used to detect in front obstacle and street surface obstacle such as manhole. Basically the sensor transmits an electromagnetic wave which travels toward the obstacle and back to the sensor receiver. The distance between the sensor and the obstacle is calculated from the received signal. The calculated distance value is compared with the pre-defined value and determines whether the obstacle is present or not. The 3D CAD software was used to design the sensor holder. An Up-Mini 3D printer was used to print the sensor holders which were mounted on the walking stick. Therefore, the sensors were fixed in the right position. Another sensor was used for the detecting the water on the walking street. The performance for detecting the obstacles and water indicate the merit of smart walking stick.
Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.
Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes
2015-07-24
The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.
Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone
2014-01-01
Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs <40 g, we quantified mercury(II) ion concentration in water samples by using a two-color ratiometric method employing light-emitting diodes (LEDs) at 523 and 625 nm, where a custom-developed smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time. PMID:24437470
Multiple sensor smart robot hand with force control
NASA Technical Reports Server (NTRS)
Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal
1987-01-01
A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.
Using Smart City Technology to Make Healthcare Smarter.
Cook, Diane J; Duncan, Glen; Sprint, Gina; Fritz, Roschelle
2018-04-01
Smart cities use information and communication technologies (ICT) to scale services include utilities and transportation to a growing population. In this article we discuss how smart city ICT can also improve healthcare effectiveness and lower healthcare cost for smart city residents. We survey current literature and introduce original research to offer an overview of how smart city infrastructure supports strategic healthcare using both mobile and ambient sensors combined with machine learning. Finally, we consider challenges that will be faced as healthcare providers make use of these opportunities.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646
Wafer-Level Vacuum Packaging of Smart Sensors
Hilton, Allan; Temple, Dorota S.
2016-01-01
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-12-30
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-01-01
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831
Front end design of smartphone-based mobile health
NASA Astrophysics Data System (ADS)
Zhang, Changfan; He, Lingsong; Gao, Zhiqiang; Ling, Cong; Du, Jianhao
2015-02-01
Mobile health has been a new trend all over the world with the rapid development of intelligent terminals and mobile internet. It can help patients monitor health in-house and is convenient for doctors to diagnose remotely. Smart-phone-based mobile health has big advantages in cost and data sharing. Front end design of it mainly focuses on two points: one is implementation of medical sensors aimed at measuring kinds of medical signal; another is acquisition of medical signal from sensors to smart phone. In this paper, the above two aspects were both discussed. First, medical sensor implementation was proposed to refer to mature measurement solutions with ECG (electrocardiograph) sensor design taken for example. And integrated chip using can simplify design. Then second, typical data acquisition architecture of smart phones, namely Bluetooth and MIC (microphone)-based architecture, were compared. Bluetooth architecture should be equipped with an acquisition card; MIC design uses sound card of smart phone instead. Smartphone-based virtual instrument app design corresponding to above acquisition architecture was discussed. In experiments, Bluetooth and MIC architecture were used to acquire blood pressure and ECG data respectively. The results showed that Bluetooth design can guarantee high accuracy during the acquisition and transmission process, and MIC design is competitive because of low cost and convenience.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs
2012-01-01
Smart homes for the aging population have recently started attracting the attention of the research community. The “health state” of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario. PMID:26007727
Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs
2015-05-21
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
Stream processing health card application.
Polat, Seda; Gündem, Taflan Imre
2012-10-01
In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.
Scattering Control Using Nonlinear Smart Metasurface with Internal Feedback
NASA Astrophysics Data System (ADS)
Semenikhina, D. V.; Semenikhin, A. I.
2017-05-01
The ideology of creation of a nonlinear smart metasurface with internal feedback for the adaptive control by spectral composition of scattered field is offered. The metasurface contains a lattice of strip elements with nonlinear loads-sensors. They are included in a circuit of internal feedback for the adaptive control of scattered field. Numerically it is shown that maximal levels of the second harmonic in the spectrum of scattered far field correspond to maximum of voltage rectified on metasurface. Experimentally the prototype of the plane smart covering on the basis of the metasurface in the form of strip lattice with controlled nonlinear loads-sensors is investigated for an idea confirmation.
SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System
Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya
2016-01-01
Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics. PMID:28042820
SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.
Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya
2016-12-30
Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.
García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime
2018-03-27
Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen's d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach.
2018-01-01
Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen’s d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach. PMID:29584703
NASA Astrophysics Data System (ADS)
Cristaudo, D.; Bruder, B. L.; Puleo, J. A.
2016-12-01
Millions of unexploded ordnance (munitions) are located in the waters off of US coasts. They canmigrate to the beach and become a peril to local beach users. The research objective is to quantifythe small scale processes on the beach face responsible for munition mobility. Several experimentsat different sites with different wave and bathymetry conditions will be conducted. Realisticsurrogate munitions were constructed to facilitate the future experiments. Six different munitiontypes were replicated, selecting a range of calibers covering a variety of dimensions from 20 mmto 155 mm. The surrogates are made "smart" by designing them to house several internal sensors(the quantity depends on the available space inside the surrogate itself) that will aid in estimatingthe characteristics of their mobility. Each smart surrogate replicates the mass, center of gravity,and moment of inertia of the actual munition as close as possible. The sensors used inside the smartsurrogate munitions include: inertial motion units (IMU) to derive the surrogate position; Ubisenseultra-wideband tags for positioning in dry conditions; a Slamstick shock sensor to quantify thewave impact force on the surrogate; photocells to detect rolling and burial; and a pressure sensorto measure the water depth. The procedure of designing the smart surrogate munitions and sensorcapabilities will be presented.
Prototype of smart office system using based security system
NASA Astrophysics Data System (ADS)
Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.
2018-05-01
Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.
Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.
Townsend, Daphne; Knoefel, Frank; Goubran, Rafik
2011-01-01
Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.
All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.
Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi
2016-01-30
This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.
All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement
Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi
2016-01-01
This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system. PMID:26840316
A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel
NASA Astrophysics Data System (ADS)
Pathak, Akhilesh Kumar; Singh, Vinod Kumar
2017-12-01
In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
Posture and activity recognition and energy expenditure estimation in a wearable platform.
Sazonov, Edward; Hegde, Nagaraj; Browning, Raymond C; Melanson, Edward L; Sazonova, Nadezhda A
2015-07-01
The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here, we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare the use of support vector machines (SVM), multinomial logistic discrimination (MLD), and multilayer perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a 4-h stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (∼ 95%) while reducing the running time and the memory requirements by a factor of >10 3. Comparison of per-minute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE = 0.78 kcal/min for SVM and MLD activity classification, 0.77 kcal/min for MLP versus RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE estimation on a wearable platform.
Application of Smart Solid State Sensor Technology in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.
2008-01-01
Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.
Collegial Activity Learning between Heterogeneous Sensors.
Feuz, Kyle D; Cook, Diane J
2017-11-01
Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.
A Human-Centered Smart Home System with Wearable-Sensor Behavior Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianting; Liu, Ting; Shen, Chao
Smart home has recently attracted much research interest owing to its potential in improving the quality of human life. How to obtain user's demand is the most important and challenging task for appliance optimal scheduling in smart home, since it is highly related to user's unpredictable behavior. In this paper, a human-centered smart home system is proposed to identify user behavior, predict their demand and schedule the household appliances. Firstly, the sensor data from user's wearable devices are monitored to profile user's full-day behavior. Then, the appliance-demand matrix is constructed to predict user's demand on home environment, which is extractedmore » from the history of appliance load data and user behavior. Two simulations are designed to demonstrate user behavior identification, appliance-demand matrix construction and strategy of appliance optimal scheduling generation.« less
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
NASA programs in advanced sensors and measurement technology for aeronautical applications
NASA Astrophysics Data System (ADS)
Conway, Bruce A.
NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.
NASA Astrophysics Data System (ADS)
Kang, Won-Seok; Son, Chang-Sik; Lee, Sangho; Choi, Rock-Hyun; Ha, Yeong-Mi
2017-07-01
In this paper, we introduce a wellness software platform, called WellnessHumanCare, is a semi-automatic wellness management software platform which has the functions of complex wellness data acquisition(mental, physical and environmental one) with smart wearable devices, complex wellness condition analysis, private-aware online/offline recommendation, real-time monitoring apps (Smartphone-based, Web-based) and so on and we has demonstrated a wellness management service with 79 participants (experimental group: 39, control group: 40) who has worked at experimental group (H Corp.) and control group (K Corp.), Korea and 3 months in order to show the efficiency of the WellnessHumanCare.
Detection of Social Interaction in Smart Spaces.
Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian
2010-02-01
The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.
Detection of Social Interaction in Smart Spaces
Cook, Diane J.; Crandall, Aaron; Singla, Geetika; Thomas, Brian
2010-01-01
The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds. PMID:20953347
Integrated Rapid-Diagnostic-Test Reader Platform on a Cellphone
Mudanyali, Onur; Dimitrov, Stoyan; Sikora, Uzair; Padmanabhan, Swati; Navruz, Isa; Ozcan, Aydogan
2012-01-01
We demonstrate a cellphone based Rapid-Diagnostic-Test (RDT) reader platform that can work with various lateral flow immuno-chromatographic assays and similar tests to sense the presence of a target analyte in a sample. This compact and cost-effective digital RDT reader, weighing only ~65 grams, mechanically attaches to the existing camera unit of a cellphone, where various types of RDTs can be inserted to be imaged in reflection or transmission modes under light-emitting-diode (LED) based illumination. Captured raw images of these tests are then digitally processed (within less than 0.2 sec/image) through a smart application running on the cellphone for validation of the RDT as well as for automated reading of its diagnostic result. The same smart application running on the cellphone then transmits the resulting data, together with the RDT images and other related information (e.g., demographic data) to a central server, which presents the diagnostic results on a world-map through geo-tagging. This dynamic spatio-temporal map of various RDT results can then be viewed and shared using internet browsers or through the same cellphone application. We tested this platform using malaria, tuberculosis (TB) as well as HIV RDTs by installing it on both Android based smart-phones as well as an iPhone. Providing real-time spatio-temporal statistics for the prevalence of various infectious diseases, this smart RDT reader platform running on cellphones might assist health-care professionals and policy makers to track emerging epidemics worldwide and help epidemic preparedness. PMID:22596243
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
The role of local interaction mechanics in fiber optic smart structures
NASA Astrophysics Data System (ADS)
Sirkis, J. S.; Dasgupta, A.
1993-04-01
The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.
Infrasound Sensor Calibration and Response
2012-09-01
infrasound calibration chamber. Under separate funding a number of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and...of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and workstation, an LVDT sensor for piston phone phase measurement, a...20 samples per second on a GeoTech Instruments DL 24 digitizer. Fifty cycles of data were fit with the Matlab function NLINFIT that gave the peak
Applications of FRP-OFBG sensors on bridge cables
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping
2005-05-01
It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.
Learning under uncertainty in smart home environments.
Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris
2008-01-01
Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.
Smart garments for safety improvement of emergency/disaster operators.
Curone, Davide; Dudnik, Gabriela; Loriga, Giannicola; Luprano, Jean; Magenes, Giovanni; Paradiso, Rita; Tognetti, Alessandro; Bonfiglio, Annalisa
2007-01-01
The main purpose of the European project ProeTEX is to develop equipment to improve safety, coordination and efficiency of emergency disaster intervention personnel like fire-fighters or civil protection rescuers. The equipment consists of a new generation of "smart" garments, integrating wearable sensors which will allow monitoring physiological parameters, position and activity of the user, as like as environmental variables of the operating field in which rescuers are working: both commercial and newly developed textile and fibre based sensors will be included. The garments will also contain an electronic box to process data collected by the sensors and a communication system enabling the transmission of data to the other rescuers and to a monitoring station. Also a "smart" victim patch will be developed: a wearable garment which will allow monitoring physiological parameters of injured civilians involved in disasters, with the aim of optimizing their survival management.
An mHealth Framework to Improve Birth Outcomes in Benue State, Nigeria: A Study Protocol.
Ezeanolue, Echezona Edozie; Gbadamosi, Semiu Olatunde; Olawepo, John Olajide; Iwelunmor, Juliet; Sarpong, Daniel; Eze, Chuka; Ogidi, Amaka; Patel, Dina; Onoka, Chima
2017-05-26
The unprecedented coverage of mobile technology across the globe has led to an increase in the use of mobile health apps and related strategies to make health information available at the point of care. These strategies have the potential to improve birth outcomes, but are limited by the availability of Internet services, especially in resource-limited settings such as Nigeria. Our primary objective is to determine the feasibility of developing an integrated mobile health platform that is able to collect data from community-based programs, embed collected data into a smart card, and read the smart card using a mobile phone-based app without the need for Internet access. Our secondary objectives are to determine (1) the acceptability of the smart card among pregnant women and (2) the usability of the smart card by pregnant women and health facilities in rural Nigeria. We will leverage existing technology to develop a platform that integrates a database, smart card technology, and a mobile phone-based app to read the smart cards. We will recruit 300 pregnant women with one of the three conditions-HIV, hepatitis B virus infection, and sickle cell trait or disease-and four health facilities in their community. We will use Glasgow's Reach, Effectiveness, Adoption, Implementation, and Maintenance framework as a guide to assess the implementation, acceptability, and usability of the mHealth platform. We have recruited four health facilities and 300 pregnant women with at least one of the eligible conditions. Over the course of 3 months, we will complete the development of the mobile health platform and each participant will be offered a smart card; staff in each health facility will receive training on the use of the mobile health platform. Findings from this study could offer a new approach to making health data from pregnant women available at the point of delivery without the need for an Internet connection. This would allow clinicians to implement evidence-based interventions in real time to improve health outcomes. ClinicalTrials.gov NCT03027258; https://clinicaltrials.gov/ct2/show/NCT03027258 (Archived by WebCite at http://www.webcitation.org/6owR2D0kE). ©Echezona Edozie Ezeanolue, Semiu Olatunde Gbadamosi, John Olajide Olawepo, Juliet Iwelunmor, Daniel Sarpong, Chuka Eze, Amaka Ogidi, Dina Patel, Chima Onoka. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 26.05.2017.
A New Controller for a Smart Walker Based on Human-Robot Formation
Valadão, Carlos; Caldeira, Eliete; Bastos-Filho, Teodiano; Frizera-Neto, Anselmo; Carelli, Ricardo
2016-01-01
This paper presents the development of a smart walker that uses a formation controller in its displacements. Encoders, a laser range finder and ultrasound are the sensors used in the walker. The control actions are based on the user (human) location, who is the actual formation leader. There is neither a sensor attached to the user’s body nor force sensors attached to the arm supports of the walker, and thus, the control algorithm projects the measurements taken from the laser sensor into the user reference and, then, calculates the linear and angular walker’s velocity to keep the formation (distance and angle) in relation to the user. An algorithm was developed to detect the user’s legs, whose distances from the laser sensor provide the information necessary to the controller. The controller was theoretically analyzed regarding its stability, simulated and validated with real users, showing accurate performance in all experiments. In addition, safety rules are used to check both the user and the device conditions, in order to guarantee that the user will not have any risks when using the smart walker. The applicability of this device is for helping people with lower limb mobility impairments. PMID:27447634
SNE Industrial Fieldbus Interface
NASA Technical Reports Server (NTRS)
Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos
2011-01-01
Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.
A new smart traffic monitoring method using embedded cement-based piezoelectric sensors
NASA Astrophysics Data System (ADS)
Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin
2015-02-01
Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h-1 to 70 km h-1, the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement.
Design and implementation of smart sensor nodes for wireless disaster monitoring systems
NASA Astrophysics Data System (ADS)
Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung
2004-07-01
A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.
Priorities and developments of sensors, samplers and methods for key marine biological observations.
NASA Astrophysics Data System (ADS)
Simmons, Samantha; Chavez, Francisco; Pearlman, Jay
2016-04-01
Over the last two decades or more, physical oceanography has seen a significant growth in in-situ sensors and platforms including fixed point and cable observatories, Argo floats, gliders and AUVs to supplement satellites for creating a 3-D view of the time-varying global ocean temperature and salinity structures. There are important developments recently for biogeochemists for monitoring nitrate, chemical contaminants, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance, it is paramount that new biological sensor systems be developed. Some promising sensor systems based on, but not limited to acoustic, chemical, genomic or imaging techniques, can sense from microbes to whales, are on the horizon. These techniques can be applied in situ with either real time or recorded data and can be captured and returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Two steps are envisioned to meeting the challenges. The first is to identify the priority biological variables to focus observation requirements and planning. The second is to address new sensors that can fill the gaps in current capabilities for biological observations. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors.
Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line
Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun
2015-01-01
A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119
Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.
Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun
2015-12-30
A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.
NASA Astrophysics Data System (ADS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Utterbach, Lucas; Bandhil, Pavan; Figueroa, Fernando
2006-05-01
This paper describes the application of intelligent sensors in the Integrated Systems Health Monitoring (ISHM) as applied to a rocket test stand. The development of intelligent sensors is attempted as an integrated system approach, i.e. one treats the sensors as a complete system with its own physical transducer, A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements associated with the rocket tests stands. These smart elements can be sensors, actuators or other devices. Though the immediate application is the monitoring of the rocket test stands, the technology should be generally applicable to the ISHM vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent sensors (PIS) and Virtual Intelligent Sensors (VIS).
NASA Technical Reports Server (NTRS)
Lansaw, John; Schmalzel, John; Figueroa, Jorge
2009-01-01
John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make a health assessment to inform the data acquisition client when sensor performance is suspect. 3.Distributed sample synchronization. Networks of sensors require new ways for synchronizing samples. Standards that address the distributed timing problem (for example, IEEE STD 1588) provide the means to aggregate samples from many distributed smart sensors with sub-microsecond accuracy. 4. Reduction in interconnect. Alternative means are needed to reduce the frequent problems associated with cabling and connectors. Wireless technologies offer the promise of reducing interconnects and simultaneously making it easy to quickly add a sensor to a system.
Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.
Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin
2017-11-01
Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Takahashi, Hidetoshi; Tomimatsu, Yutaka; Kobayashi, Takeshi; Isozaki, Akihiro; Itoh, Toshihiro; Maeda, Ryutaro; Matsumoto, Kiyoshi; Shimoyama, Isao
2014-02-01
This paper reports on a smart, intermittent driven particle sensor with an airflow trigger. A lead zirconate titanate cantilever functions as the trigger, which detects an airflow change without requiring a power supply to drive the sensing element. Because an airflow change indicates that the particle concentration has changed, the trigger switches the optical particle counter from sleep mode to active mode only when the particle concentration surrounding the sensor changes. The sensor power consumption in sleep mode is 100 times less than that in the active mode. Thus, this intermittent driven method significantly reduces the total power consumption of the particle sensor. In this paper, we fabricate a prototype of the particle sensor and demonstrate that the optical particle counter can be switched on by the fabricated trigger and thus that the particle concentration can be measured.
Design of sensor node platform for wireless biomedical sensor networks.
Xijun, Chen; -H Meng, Max; Hongliang, Ren
2005-01-01
Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
Smart home in a box: usability study for a large scale self-installation of smart home technologies.
Hu, Yang; Tilke, Dominique; Adams, Taylor; Crandall, Aaron S; Cook, Diane J; Schmitter-Edgecombe, Maureen
2016-07-01
This study evaluates the ability of users to self-install a smart home in a box (SHiB) intended for use by a senior population. SHiB is a ubiquitous system, developed by the Washington State University Center for Advanced Studies in Adaptive Systems (CASAS). Participants involved in this study are from the greater Palouse region of Washington State, and there are 13 participants in the study with an average age of 69.23. The SHiB package, which included several different types of components to collect and transmit sensor data, was given to participants to self-install. After installation of the SHiB, the participants were visited by researchers for a check of the installation. The researchers evaluated how well the sensors were installed and asked the resident questions about the installation process to help improve the SHiB design. The results indicate strengths and weaknesses of the SHiB design. Indoor motion tracking sensors are installed with high success rate, low installation success rate was found for door sensors and setting up the Internet server.
Smart home in a box: usability study for a large scale self-installation of smart home technologies
Hu, Yang; Tilke, Dominique; Adams, Taylor; Crandall, Aaron S.; Schmitter-Edgecombe, Maureen
2017-01-01
This study evaluates the ability of users to self-install a smart home in a box (SHiB) intended for use by a senior population. SHiB is a ubiquitous system, developed by the Washington State University Center for Advanced Studies in Adaptive Systems (CASAS). Participants involved in this study are from the greater Palouse region of Washington State, and there are 13 participants in the study with an average age of 69.23. The SHiB package, which included several different types of components to collect and transmit sensor data, was given to participants to self-install. After installation of the SHiB, the participants were visited by researchers for a check of the installation. The researchers evaluated how well the sensors were installed and asked the resident questions about the installation process to help improve the SHiB design. The results indicate strengths and weaknesses of the SHiB design. Indoor motion tracking sensors are installed with high success rate, low installation success rate was found for door sensors and setting up the Internet server. PMID:28936390
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
NASA Astrophysics Data System (ADS)
Witthayawiroj, Niti; Nilaphruek, Pongpon
2017-03-01
Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.
Robotic-assisted surgery in ophthalmology.
de Smet, Marc D; Naus, Gerrit J L; Faridpooya, Koorosh; Mura, Marco
2018-05-01
Provide an overview of the current landscape of robotics in ophthalmology, including the pros and cons of system designs, the clinical development path, and the likely future direction of the field. Robots designed for eye surgery should meet certain basic requirements. Three designs are currently being developed: smart surgical tools such as the steady hand, comanipulation devices and telemanipulators using either a fixed or virtual remote center of motion. Successful human intraocular surgery is being performed using the Preceyes surgical system. Another telemanipulation robot, the da Vinci Surgical System, has been used to perform a pterygium repair in humans and was successful in ex-vivo corneal surgery despite its nonophthalmic design. Apart from Preceyes' BV research platform, none of the currently eye-specific systems has reached a commercial stage. Systems are likely to evolve from robotic assistance during specific procedural steps to semiautonomous surgery, as smart sensors are introduced to enhance the basic functionalities of robotic systems. Robotics is still in its infancy in ophthalmology but is rapidly reaching a stage wherein it will be introduced into everyday ophthalmic practice. It will most likely be introduced first for demanding vitreo-retinal procedures, followed by anterior segment applications.
The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory
NASA Astrophysics Data System (ADS)
Shakur, Asif; Connor, Rainor
2018-03-01
With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and cost-saving achieved by replacing a plethora of traditional laboratory sensors, wires, and equipment clutter with the smart cart are reported here.
Smart textile plasmonic fiber dew sensors.
Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza
2015-06-01
We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.
Using Citygml to Deploy Smart-City Services for Urban Ecosystems
NASA Astrophysics Data System (ADS)
Prandi, F.; De Amicis, R.; Piffer, S.; Soave, M.; Cadzow, S.; Gonzalez Boix, E.; D'Hont, E.
2013-05-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, becomes a key factor to trigger true user-driven innovation. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The goal of this paper is to introduce the i-SCOPE (interoperable Smart City services through an Open Platform for urban Ecosystems) project methodology and implementations together with key technologies and open standards. Based on interoperable 3D CityGML UIMs, the aim of i-Scope is to deliver an open platform on top of which it possible to develop, within different domains, various "smart city" services. Moreover, in i-SCOPE different issues, transcending the mere technological domain, are being tackled, including aspects dealing with social and environmental issues. Indeed several tasks including citizen awareness, crowd source and voluntary based data collection as well as privacy issue concerning involved people should be considered.