Science.gov

Sample records for smart sensor technology

  1. Sensor technology for smart homes.

    PubMed

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services.

  2. Sensor technology for smart structures

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.; Dehart, D. W.; Doederlein, T.

    1989-01-01

    Advanced aerospace structures are discussed that will very likely be fabricated with integral sensors, actuators, and microprocessors for monitoring and dynamic control of configuration. The concept of 'smart structures' integrates fiber-optic sensor technology with advanced composite materials, whereby the optical fibers are embedded in a composite material and provide internal sensing capability for monitoring parameters which are important for the safety, performance, and reliability of the material and the structure. Along with other research facilities, NASA has initiated a cooperative program to design, fabricate, and test composite trusses, tubes, and flat panels with embedded optical fibers for testing and developing prototype smart structures. It is shown that fiber-optic sensor technology can be combined with advanced material and structure concepts to produce a new class of materials with internal sensors for health monitoring of structures.

  3. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  4. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  5. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    1991-09-01

    The term 'smart sensors' refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics, and intelligence applications. In a broad sense, they include any sensor system covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of very large scale integration (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performances. Thus, sophisticated signal processing operations will be developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays, on the same focal plane, avoiding complex computing located far away from the sensors. Recently this approach has achieved higher goals by a new and revolutionary sensor concept which introduces inside the sensor some of the basic functions of living eyes, such as dynamic stare, dishomogeneity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor system. This paper concerns the processing techniques limited to the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by a smart pattern correlation thresholding.

  6. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  7. Smart fabric sensors and e-textile technologies: a review

    NASA Astrophysics Data System (ADS)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  8. Smart Sensors

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  9. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  10. Smart Sensors for Smart Hands

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1978-01-01

    Proximity, force-torque, touch and slippage sensors developed or applied by the JPL Teleoperator Project for remote manipulator control are described, including sensor data handling by computers for display and control. Examples are quoted showing the significance of these sensors for manual or computer control of manipulators. An interesting example is a proximity sensor system implemented for a four-claw JSC end effector and tested at the Shuttle Manipulator Training Facility of JSC. New sensing concepts aimed at simplifying the implementation of 'Smart Sensors for Smart Hands' in the space environment are discussed.

  11. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Lai, Xiaosong; Zhao, Xia; Xu, Xin; Zhang, Liang

    2006-02-01

    This paper presents a new parallel distributed structural health monitoring technology based on the wireless sensor network and multi-agent system for large scale engineering structures. The basic idea of this new technology is that of adopting the smart wireless sensor with on-board microprocessor to form the monitoring sensor network and the multi-agent technology to manage the whole health monitoring system. Using this technology, the health monitoring system becomes a distributing parallel system instead of a serial system with all processing work done by the central computer. The functions, the reliability, the flexibility and the speed of the whole system will be greatly improved. In addition, with wireless communication links instead of wires, the system weight and complexity will be lowered. In this paper, the distributed smart wireless sensor network is designed first based on the Berkeley Mote Mica wireless sensor platform. Two kinds of sensor have been adopted: piezoelectric sensors and electric resistance wires. They are connected to a Mica MPR board though a designed charge amplifier circuit or bridge circuit and MTS101 board. Seven kinds of agents are defined for the structural health monitoring system. A distributed health monitoring architecture based on the defined agents is proposed. Finally, a composite structural health monitoring system based on a Mica wireless platform and multi-agent technology is developed to evaluate the efficacy of the new technology. The developed system can successfully monitor the concentrated load position or a loose bolt position.

  12. Smart Sensor Demonstration Payload

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  13. Smart and Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    a health assessment to inform the data acquisition client when sensor performance is suspect. 3.Distributed sample synchronization. Networks of sensors require new ways for synchronizing samples. Standards that address the distributed timing problem (for example, IEEE STD 1588) provide the means to aggregate samples from many distributed smart sensors with sub-microsecond accuracy. 4. Reduction in interconnect. Alternative means are needed to reduce the frequent problems associated with cabling and connectors. Wireless technologies offer the promise of reducing interconnects and simultaneously making it easy to quickly add a sensor to a system.

  14. An Overview of the Development of High Temperature Wireless Smart Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2014-01-01

    The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.

  15. Application of Smart Solid State Sensor Technology in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  16. Smart sensor technology for joint test assembly flights.

    SciTech Connect

    Berry, Nina M.; Sheaffer, Donald A.; Bierbaum, Rene Lynn; Dimkoff, Jason L.; Walsh, Edward J.; Deyle, Travis Jay ); Marx, Kenneth D.; Pancerella, Carmen M.; Doser, Adele Beatrice; Armstrong, Robert C.

    2003-09-01

    The world relies on sensors to perform a variety of tasks from the mundane to sophisticated. Currently, processors associated with these sensors are sufficient only to handle rudimentary logic tasks. Though multiple sensors are often present in such devices, there is insufficient processing power for situational understanding. Until recently, no processors that met the electrical power constraints for embedded systems were powerful enough to perform sophisticated computations. Sandia performs many expensive tests using sensor arrays. Improving the efficacy, reliability and information content resulting from these sensor arrays is of critical importance. With the advent of powerful commodity processors for embedded use, a new opportunity to do just that has presented itself. This report describes work completed under Laboratory-Directed Research and Development (LDRD) Project 26514, Task 1. The goal of the project was to demonstrate the feasibility of using embedded processors to increase the amount of useable information derived from sensor arrays while improving the believability of the data. The focus was on a system of importance to Sandia: Joint Test Assemblies for ICBM warheads. Topics discussed include: (1) two electromechanical systems to provide data, (2) sensors used to monitor those systems, (3) the processors that provide decision-making capability and data manipulation, (4) the use of artificial intelligence and other decision-making software, and (5) a computer model for the training of artificial intelligence software.

  17. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  18. The Sensor Management for Applied Research Technologies (SMART) Project

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; Stephens, Karen

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  19. Smart card technology

    SciTech Connect

    Nelson, R.A.

    1992-09-01

    This report describes smart card techonology and applications, including the use of smart cards as smart badges. The paper illustrates that smart cards are designed with security features, which makes them suitable for security applications. But smart cards also provide multiple functions, so they can support additional applications. The goal of this paper is to inform about the technology, and to inspire thought about possible applications that would benefit if a smart badge were implemented.

  20. Smart and intelligent sensor payload project

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  1. "Smart" Sensor Module

    NASA Technical Reports Server (NTRS)

    Mahajan, Ajay

    2007-01-01

    An assembly that contains a sensor, sensor-signal-conditioning circuitry, a sensor-readout analog-to-digital converter (ADC), data-storage circuitry, and a microprocessor that runs special-purpose software and communicates with one or more external computer(s) has been developed as a prototype of "smart" sensor modules for monitoring the integrity and functionality (the "health") of engineering systems. Although these modules are now being designed specifically for use on rocket-engine test stands, it is anticipated that they could also readily be designed to be incorporated into health-monitoring subsystems of such diverse engineering systems as spacecraft, aircraft, land vehicles, bridges, buildings, power plants, oilrigs, and defense installations. The figure is a simplified block diagram of the "smart" sensor module. The analog sensor readout signal is processed by the ADC, the digital output of which is fed to the microprocessor. By means of a standard RS-232 cable, the microprocessor is connected to a local personal computer (PC), from which software is downloaded into a randomaccess memory in the microprocessor. The local PC is also used to debug the software. Once the software is running, the local PC is disconnected and the module is controlled by, and all output data from the module are collected by, a remote PC via an Ethernet bus. Several smart sensor modules like this one could be connected to the same Ethernet bus and controlled by the single remote PC. The software running in the microprocessor includes driver programs for operation of the sensor, programs that implement self-assessment algorithms, programs that implement protocols for communication with the external computer( s), and programs that implement evolutionary methodologies to enable the module to improve its performance over time. The design of the module and of the health-monitoring system of which it is a part reflects the understanding that the main purpose of a health

  2. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  3. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  4. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  5. Robust site security using smart seismic array technology and multi-sensor data fusion

    NASA Astrophysics Data System (ADS)

    Hellickson, Dean; Richards, Paul; Reynolds, Zane; Keener, Joshua

    2010-04-01

    Traditional site security systems are susceptible to high individual sensor nuisance alarm rates that reduce the overall system effectiveness. Visual assessment of intrusions can be intensive and manually difficult as cameras are slewed by the system to non intrusion areas or as operators respond to nuisance alarms. Very little system intrusion performance data are available other than discrete sensor alarm indications that provide no real value. This paper discusses the system architecture, integration and display of a multi-sensor data fused system for wide area surveillance, local site intrusion detection and intrusion classification. The incorporation of a novel seismic array of smart sensors using FK Beamforming processing that greatly enhances the overall system detection and classification performance of the system is discussed. Recent test data demonstrates the performance of the seismic array within several different installations and its ability to classify and track moving targets at significant standoff distances with exceptional immunity to background clutter and noise. Multi-sensor data fusion is applied across a suite of complimentary sensors eliminating almost all nuisance alarms while integrating within a geographical information system to feed a visual-fusion display of the area being secured. Real-time sensor detection and intrusion classification data is presented within a visual-fusion display providing greatly enhanced situational awareness, system performance information and real-time assessment of intrusions and situations of interest with limited security operator involvement. This approach scales from a small local perimeter to very large geographical area and can be used across multiple sites controlled at a single command and control station.

  6. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  7. Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.

    2008-01-01

    The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.

  8. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  9. Smart fabrics: integrating fiber optic sensors and information networks.

    PubMed

    El-Sherif, Mahmoud

    2004-01-01

    "Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.

  10. Smart Sensors Gather Information for Machine Diagnostics

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Stennis Space Center was interested in using smart sensors to monitor components on test stands and avert equipment failures. Partnering with St. Paul, Minnesota-based Lion Precision through a Cooperative Agreement, the team developed a smart sensor and the associated communication protocols. The same sensor is now commercially available for manufacturing.

  11. Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

    EPA Science Inventory

    Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

  12. AGSM Intelligent Devices/Smart Sensors Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.

  13. Smart sensor for terminal homing

    NASA Astrophysics Data System (ADS)

    Panda, D.; Aggarwal, R.; Hummel, R.

    1980-01-01

    The practical scene matching problem is considered to present certain complications which must extend classical image processing capabilities. Certain aspects of the scene matching problem which must be addressed by a smart sensor for terminal homing are discussed. First a philosophy for treating the matching problem for the terminal homing scenario is outlined. Then certain aspects of the feature extraction process and symbolic pattern matching are considered. It is thought that in the future general ideas from artificial intelligence will be more useful for terminal homing requirements of fast scene recognition and pattern matching.

  14. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  15. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  16. Annotating smart environment sensor data for activity learning.

    PubMed

    Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.

  17. Smart Sensors Assess Structural Health

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  18. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  19. Smart sensor systems for human health breath monitoring applications.

    PubMed

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  20. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  1. Educating next-generation civil engineers about smart structures technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng

    2005-05-01

    The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.

  2. Smart sensor for environmental applications

    NASA Astrophysics Data System (ADS)

    Saint-Pierre, Guillaume; Malecha, Michael M.; Saini, Selwayan; Setford, Steven J.

    2005-07-01

    For the past two decades intensive research has been carried out on the development of environmental sensors. Nevertheless, the applicability of such devices has been hindered by harsh work conditions and the complexity of the sample matrices. A novel approach centres on the integration of sample pre-treatment steps, where the technology involved can be used advantageously for the design of a Micro Total Analysis System (fluid motion and detection enhancement). The synergistic mixed surfactant system allows the development an independent "green" target specific extraction scheme. Amphiphiles are routinely used in the electrophoretic separation process for their intrinsic detection signal enhancement (i.e. by optical/electrochemical methods). They can also be regarded as a means of flow generation (e.g. Marangoni's Flow) in micro-systems. In this perspective, we are currently developing micro-systems based on glass and polymeric substrates (e.g. poly dimethyl silicone). Whilst the surface chemistry of glass substrates allows the integration of mesoporous silica and ceramics, soft lithographic methods, such as micro-moulding or prototyping, renders the design of PDMS substrate simple. While the selectivity of the system may be based on molecular imprinted silicates, biologically compatible ceramics such as titanium dioxide can be used for the design of a single optical/ electrochemical detection cell. All of these previously cited technologies form a standing bridge towards independent, automated, at-/on-line sensor systems.

  3. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  4. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  5. Wafer-Level Vacuum Packaging of Smart Sensors.

    PubMed

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  6. Evaluation of Smart Gun Technologies preliminary report

    SciTech Connect

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  7. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  8. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  9. Study and development of smart sensor using microprocessor and microcontroller

    NASA Astrophysics Data System (ADS)

    Sarma, Utpal

    The trend towards replacing dumb sensors with smart ones has been gathering momentum from last two decades. Smart sensors have a number of advantages compared to their dumb counterparts. Ease of installation and operation, field upgradeability, standalone feature, digital communication interface are few of them. Institute of Electrical and Electronics Engineers, Inc. (IEEE) and National Institute of Standards and Technology (NIST) in 1993 initiated the standardisation for smart sensor. This process generates IEEE Std. 1451.1TM -1999, IEEE Std. 1451.2TM -1997, IEEE Std. 1451.3TM - 2003, IEEE Std. 1451.4TM -2004, IEEE Std. 1451.10TM -2007, IEEE Std. 1451.5TM -2007. At present IEEE P1451.6 and IEEE P1451.7 are the proposed standards of smart sensor. The basic motive behind these standards is to build a common platform for sensor network, transducer interface module, transducer electronic data sheets etc. In the present work the design, fabrication, calibration, and performance of such smart sensor system with their functionalities are discussed. Results based on field trial of this system in a tea factory are also discussed. Initially a smart industrial temperature monitoring and data logging system using INTEL 8086 microprocessor is designed, the detail of which is explained in Chapter 2. Here, a K-type thermocouple is considered as the sensor. It incorporates automatic reference junction compensation, signal conditioning, 12-bit A/D conversion and data transmission via RS232C interface. At the user end, PC software handles data monitoring and recording. Calibration of the system using a mercury thermometer and an oil bath is described. The stability of the reference junction compensation is also tested. Certain improvements are found to be necessary in this system, so the system is modified adding some more features. As the TC response is not linear it is linearised using least square polynomial fitting method. The improvements in error are discussed in Chapter 3

  10. Point-of-care temperature and respiration monitoring sensors for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2006-12-01

    Advances in smart sensors, miniaturization, and related technologies leading to the emergence of smart fabrics are prerequisites to the construction of a point-of-care (POC) system for continuous health monitoring and illness prevention. Low manufacturing cost, light weight, portability and flexibility are among the requirements for smart sensors when embedded into smart fabrics. Organic semiconductor technology has recently been envisioned to meet these requirements, and to encourage the development of organic semiconductor based sensors because of its low process temperature and potential for very low cost manufacturing. In this paper, we present flexible sensors based on an organic semiconductor capable of measuring physiological parameters such as strain and temperature, adopting pentacene thin film transistors (TFTs) and Wheatstone bridge structures. It is expected that these sensors, integrated into textile structures, will enable real time POC monitoring of a patient's respiration rate, skin temperature, body heat flow and body temperature at an early stage.

  11. Piezoresistive sensors for smart textiles

    NASA Astrophysics Data System (ADS)

    Calvert, Paul; Patra, Prabir; Lo, Te-Chen; Chen, Chi H.; Sawhney, Amit; Agrawal, Animesh

    2007-04-01

    We have used inkjet printing to deposit silver conducting lines and small PEDOT (conducting polymer) sensors onto fabrics. The printed conductors penetrate into the fabric and can be shown to coat the individual fibers within the yarn, through the full thickness of the cloth. The PEDOT sensor has a resistance in the region of a few kilo-ohms and is connected to measuring equipment by printed silver lines with a resistance of a few ohms. In this way, local strains can be measured at different sites on a fabric. The PEDOT responds to a tensile strain by a reduction in resistance with a gauge factor (change in resistance/strain) from -5 to -20. This compares with conventional strain gauges where the gauge factor is normally +2. These sensors cycle to strains of over 10%. We have measured gauge factors as a function of the orientation of the sensing line to the fabric axes, to the strain axes for different fabric structures. We can correlate the gauge factor with the extent to which the twisted multifilament yarns are expected to become laterally compressed. In preliminary tests we have shown that these printed sensors can be used to monitor knee and wrist motions and so could be used to provide information in applications such as rehabilitation from joint damage.

  12. Wafer-Level Vacuum Packaging of Smart Sensors

    PubMed Central

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249

  13. Smart Gun Technology project. Final report

    SciTech Connect

    Weiss, D.R.

    1996-05-01

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  14. Smart textile plasmonic fiber dew sensors.

    PubMed

    Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2015-06-01

    We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.

  15. Smart dental practice: capitalising on smart mobile technology.

    PubMed

    Plangger, K; Bredican, J; Mills, A J; Armstrong, J

    2015-08-14

    To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.

  16. Smart technical textiles with integrated POF sensors

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Witt, Jens; Schukar, Marcus

    2008-03-01

    Fiber optic sensors based on polymer optical fibers (POF) take advantage of the high elasticity and high break-down strain of POF. Because of their outstanding elastic properties, POF are well suited for integration into technical textiles like geotextiles and medical textiles. Smart textiles with incorporated POF sensors, able to sense various mechanical and physical quantities, can be realized. The integration of POF as a sensor into geotextiles for monitoring of displacement of soil is very attractive since POF can be used for distributed strain measurement of strain values of more than 40 %. An online monitoring of critical mechanical deformations of geotechnical structures like dikes, dams, slopes, embankments as well as of masonry structures can be ensured. Medical textiles that incorporate POF sensors can control vital physiological parameters like respiratory movement and can be used for wearable health monitoring of patients requiring a continuous medical assistance and treatment. The biocompatibility of POF is an important criterion for selecting POF as a medical sensor. The paper shows selected examples of using POF sensors for the mentioned monitoring purposes.

  17. Top 10 "Smart" Technologies for Schools.

    ERIC Educational Resources Information Center

    Fodeman, Doug; Holzberg, Carol S.; Kennedy, Kristen; McIntire, Todd; McLester, Susan; Ohler, Jason; Parham, Charles; Poftak, Amy; Schrock, Kathy; Warlick, David

    2002-01-01

    Describes 10 smart technologies for education, including voice to text software; mobile computing; hybrid computing; virtual reality; artificial intelligence; telementoring; assessment methods; digital video production; fingerprint recognition; and brain functions. Lists pertinent Web sites for each technology. (LRW)

  18. Smart facility application: exploiting space technology for smart city solution

    NASA Astrophysics Data System (ADS)

    Termizi, A. A. A.; Ahmad, N.; Omar, M. F.; Wahap, N. A.; Zainal, D.; Ismail, N. M.

    2016-06-01

    Facilities and amenities management is amongst the core functionalities of local government. Considering the vast area that local government has to manage, a smart solution is extremely inevitable to solve issues such as inefficient maintenance of public parks, drainage system and so forth. Therefore, this paper aims to offer a smart city solution which exploits the benefit of space technology. This proposed solution is one of the modules developed in Spatial Smart City Service Delivery Engine (SSC SDE) Project undertaken by Agensi Angkasa Negara (ANGKASA). Various levels of local government have been chosen to understand real issues faced by them. Based on this data, a Smart Facility application has been developed with the aim to enhance the service delivery by the local government hence improving citizens’ satisfaction. Since this project is still in progress, this paper will merely discussing the concept of this application.

  19. Entity Recognition Via Multimodal Sensor Fusion With Smart Phones

    DTIC Science & Technology

    2015-03-26

    smart phone, it will include a chipset to access a communications network as well as the ability to connect to public and private local wireless...ENTITY RECOGNITION VIA MULTIMODAL SENSOR FUSION WITH SMART PHONES THESIS John E. Nagy, Capt, USAF AFIT-ENG-MS-15-M-023 DEPARTMENT OF THE AIR FORCE...subject to copyright protection in the United States. AFIT-ENG-MS-15-M-023 ENTITY RECOGNITION VIA MULTIMODAL SENSOR FUSION WITH SMART PHONES THESIS

  20. Innovative smart micro sensors for Army weaponry applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene

    2008-03-01

    Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.

  1. Border security and surveillance system with smart cameras and motes in a Sensor Web

    NASA Astrophysics Data System (ADS)

    Guler, Sadiye; Cole, Timothy; Silverstein, Jay; Pushee, Ian; Fairgrieve, Scott

    2010-04-01

    In this paper we describe a prototype surveillance system that leverages smart sensor motes, intelligent video, and Sensor Web technologies to aid in large area monitoring operations and to enhance the security of borders and critical infrastructures. Intelligent video has emerged as a promising tool amid growing concern about border security and vulnerable entry points. However, numerous barriers exist that limit the effectiveness of surveillance video in large area protection; such as the number of cameras needed to provide coverage, large volumes of data to be processed and disseminated, lack of smart sensors to detect potential threats and limited bandwidth to capture and distribute video data. We present a concept prototype that addresses these obstacles by employing a Smart Video Node in a Sensor Web framework. Smart Video Node (SVN) is an IP video camera with automated event detection capability. SVNs are cued by inexpensive sensor motes to detect the existence of humans or vehicles. Based on sensor motes' observations cameras are slewed in to observe the activity and automated video analysis detects potential threats to be disseminated as "alerts". Sensor Web framework enables quick and efficient identification of available sensors, collects data from disparate sensors, automatically tasks various sensors based on observations or events received from other sensors, and receives and disseminates alerts from multiple sensors. The prototype system is implemented by leveraging intuVision's intelligent video, Northrop Grumman's sensor motes and SensorWeb technologies. Implementation of a deployable system with Smart Video Nodes and sensor motes within the SensorWeb platform is currently underway. The final product will have many applications in commercial, government and military systems.

  2. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    PubMed Central

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-01-01

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260

  3. A Review of Rock Bolt Monitoring Using Smart Sensors.

    PubMed

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  4. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  5. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  6. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  7. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  8. Smart Sensors' Role in Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic

  9. Pure random search for ambient sensor distribution optimisation in a smart home environment.

    PubMed

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2011-01-01

    Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.

  10. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  11. Smart Technology in Lung Disease Clinical Trials.

    PubMed

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research.

  12. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  13. Seamonster: A Smart Sensor Web in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Heavner, M. J.; Hood, E.; Connor, C.; Nagorski, S.

    2006-12-01

    The NASA Research Opportunities in Space and Earth Science (ROSES) program is supporting a wireless sensor network project as part of its Advanced Information Systems Technology "Smart Sensor Web" initiative. The project, entitled Seamonster (for SouthEast Alaska MONitoring Network for Science, Telecomm, and Education Research) is led by the University of Alaska Southeast (Juneau) in collaboration with Microsoft- Vexcel in Boulder Colorado. This paper describes both the data acquisition components and science research objectives of Seamonster. The underlying data acquisition concept is to facilitate geophysics data acquisition by providing a wireless backbone for data recovery. Other researchers would be encouraged to emplace their own sensors together with short-range wireless (ZigBee, Bluetooth, etc). Through a common protocol the backbone will receive data from these sensors and relay them to a wired server. This means that the investigator can receive their data via email on a daily basis thereby cutting cost and monitoring sensor health. With environmental hardening and fairly high bandwidth and long range (100kbps/50km to 5mpbs/15km per hop) the network is intended to cover large areas and operate in harsh environments. Low power sensors and intelligent power management within the backbone are the dual ideas to contend with typical power/cost/data dilemmas. Seamonster science will focus over the next three years on hydrology and glaciology in a succession of valleys near Juneau in various stages of deglaciation, in effect providing a synopsis of a millennium-timescale process in a single moment. The instrumentation will include GPS, geophones, digital photography, met stations, and a suite of stream state and water quality sensors. Initial focus is on the Lemon Creek watershed with expansion to follow in subsequent years. The project will ideally expand to include marine and biological monitoring components.

  14. Printable low-cost sensor systems for healthcare smart textiles

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  15. Directed network topologies of smart grain sensors

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette; Nakamura, Tomomichi; Tanizawa, Toshihiro

    2013-03-01

    We employ a recent technique for building complex networks from time series data to construct a directed network embodying time structure to collate the predictive properties of individual granular sensors in a series of biaxial compression tests. For each grain, we reconstruct a static predictive model. This combines a subset selection algorithm and an information theory fitting criterion that selects which other grains in the assembly are best placed to predict a given grain's local stress throughout loading history. The local stress of a grain at each time step is summarized by the magnitude of its particle load vector. A directed network is constructed by representing each grain as a node, and assigning an in-link to a grain from another grain if the latter is selected within the best predictive model of the first grain. The grains with atypically large out-degree are thus the most responsible for predicting the stress history of the other grains: These turn out to be only a few grains which reside inside shear bands. Moreover, these “smart grains” prove to be strongly linked to the mechanism of force chain buckling and intermittent rattler events. That only a small number of grain sensors situated in the shear band are required to accurately capture the rheological response of all other grains in the assembly underlines the crucial importance of nonlocal interactions, espoused by extended continuum theories which posit nonlocal evolution laws. Findings here cast the spotlight on two specific mechanisms as being key to the formulation of robust evolution laws in deforming granular materials under compression and shear: the long held mechanism for energy dissipation of force chain buckling and the sudden switch in roles that a rattler plays as it enters in and out of force chains.

  16. Opportunistic mobility support for resource constrained sensor devices in smart cities.

    PubMed

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-03-02

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  17. Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities

    PubMed Central

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-01-01

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment. PMID:25738767

  18. Smart Structures with Fibre-Optic Technologies

    SciTech Connect

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-08

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  19. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    PubMed

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-06-27

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  20. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    PubMed Central

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951

  1. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities

    PubMed Central

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-01-01

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  2. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities.

    PubMed

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-07-14

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  3. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  4. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  5. Application of smart submunition technology to agribusiness

    NASA Astrophysics Data System (ADS)

    Wangler, Richard J.; McConnell, Robert E., III; Fowler, Keith L.

    1993-05-01

    A range-image sensor for controlling an agricultural spraying system and the military range- image technology upon which the sensor is based are discussed. Initial testing in an orange grove in Orlando, Florida indicates that sensor control optimizes the chemical spraying process and reduces environmental pollution.

  6. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  7. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  8. Energy-efficient vertical transportation with sensor information in smart green buildings

    NASA Astrophysics Data System (ADS)

    Bahn, H.

    2016-08-01

    In modern smart green buildings, sensors can detect various physical status of a building such as temperature, humidity, motion, and light, which can be used for smart living services. This paper presents an energy-efficient vertical transportation by making use of indoor sensor technologies. Specifically, sensors detect elevator users before they push the call button, and then inform to the elevator control system through building networks. By using this information, our system generates a reservation call and controls the moving time and direction of each elevator efficiently. Simulation experiments with a variety of traffic situations show that our elevator control system exhibits significantly better performance than the conventional system that does not use sensor information with respect to passengers’ waiting time and energy consumption.

  9. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  10. Software Technology Readiness for the Smart Grid

    SciTech Connect

    Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

    2011-06-13

    Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

  11. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  12. Gesture recognition for smart home applications using portable radar sensors.

    PubMed

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  13. Smart gun technology requirements preliminary report

    SciTech Connect

    Weiss, D.R.; Brandt, D.J.; Tweet, K.D.

    1995-05-01

    Goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing user-recognizing-and-authorizing surety technologies. This project is funded by the National Institute of Justice. This document reports the projects first objective: to find and document the requirements for a user-recognizing-and-authorizing firearm technology that law enforcement officers will value. This report details the problem of firearm takeaways in law enforcement, the methodology used to develop the law enforcement officers` requirements, and the requirements themselves.

  14. Implantable Smart Technologies (IST): Defining the 'Sting' in Data and Device.

    PubMed

    Haddow, Gill; Harmon, Shawn H E; Gilman, Leah

    2016-09-01

    In a world surrounded by smart objects from sensors to automated medical devices, the ubiquity of 'smart' seems matched only by its lack of clarity. In this article, we use our discussions with expert stakeholders working in areas of implantable medical devices such as cochlear implants, implantable cardiac defibrillators, deep brain stimulators and in vivo biosensors to interrogate the difference facets of smart in 'implantable smart technologies', considering also whether regulation needs to respond to the autonomy that such artefacts carry within them. We discover that when smart technology is deconstructed it is a slippery and multi-layered concept. A device's ability to sense and transmit data and automate medicine can be associated with the 'sting' of autonomy being disassociated from human control as well as affecting individual, group, and social environments.

  15. Enabling Smart Air Conditioning by Sensor Development: A Review

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2016-01-01

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906

  16. Enabling Smart Air Conditioning by Sensor Development: A Review.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2016-11-30

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future.

  17. Smart structures technology and biomechanics research

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Beynnon, Bruce; Krag, Martin

    1996-05-01

    The human musculoskeletal system represents one of the ultimate manifestations of smart structures capabilities. It can sense, actuate, and heal for periods occasionally in excess of one hundred years. As a natural consequence, research and treatment regimes for a variety of musculoskeletal disorders use technologies that are in many respects very similar to that of the more traditional aerospace and civil smart structures technologies. This paper presents an overview of the technologies that are currently in use in orthopaedic practice and research that mimic these more traditional smart structures. This includes a wide variety of instrumentation that can measure loads and motions within the musculoskeletal system, within prostheses (artificial joints and limbs), and within orthoses (devices that limit the motion of joints and limbs). Included are discussions about the instrumentation of spine and hip implants and the use of telemetry to transmit the data, the measurement of spinal motions through goniometers and surface-attached lordosimeters, and the forces involved in ambulation. In addition to the systems that can measure loads and motions, there are some devices that can measure these quantities and respond in such as way as to control the motions or loads. A 'virtual corset' that provides audio and/or tactile feedback to patients to prevent excessive trunk flexion is described.

  18. Smart medical textiles with embedded optical fibre sensors for continuous monitoring of respiratory movements during MRI

    NASA Astrophysics Data System (ADS)

    Witt, J.; Narbonneau, F.; Schukar, M.; Krebber, K.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-09-01

    We report on three respiration sensors based on pure optical technologies developed during the FP6 EU project OFSETH. The developed smart medical textiles can sense elongation up to 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. The sensors, based on silica and polymer fibre, are developed for monitoring of patients during MRI examination. The OFSETH harness allows a continuous measurement of respiration movements while all vitals organs are free for medical staff actions. The sensors were tested in MRI environment and on healthy adults.

  19. Smart wearable body sensors for patient self-assessment and monitoring

    PubMed Central

    2014-01-01

    Background Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. Methods We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Results Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Conclusion Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending. PMID:25232478

  20. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    PubMed

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  1. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    PubMed Central

    Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-01

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777

  2. Fiber optic sensors for smart taxiways

    NASA Astrophysics Data System (ADS)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  3. Online fabric defect inspection using smart visual sensors.

    PubMed

    Li, Yundong; Ai, Jingxuan; Sun, Changqing

    2013-04-09

    Fabric defect inspection is necessary and essential for quality control in the textile industry. Traditionally, fabric inspection to assure textile quality is done by humans, however, in the past years, researchers have paid attention to PC-based automatic inspection systems to improve the detection efficiency. This paper proposes a novel automatic inspection scheme for the warp knitting machine using smart visual sensors. The proposed system consists of multiple smart visual sensors and a controller. Each sensor can scan 800 mm width of web, and can work independently. The following are considered in dealing with broken-end defects caused by a single yarn: first, a smart visual sensor is composed of a powerful DSP processor and a 2-megapixel high definition image sensor. Second, a wavelet transform is used to decompose fabric images, and an improved direct thresholding method based on high frequency coefficients is proposed. Third, a proper template is chosen in a mathematical morphology filter to remove noise. Fourth, a defect detection algorithm is optimized to meet real-time demands. The proposed scheme has been running for six months on a warp knitting machine in a textile factory. The actual operation shows that the system is effective, and its detection rate reaches 98%.

  4. Technology Readiness and the Smart Grid

    SciTech Connect

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  5. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention.

    PubMed

    Axisa, Fabrice; Schmitt, Pierre Michael; Gehin, Claudine; Delhomme, Georges; McAdams, Eric; Dittmar, André

    2005-09-01

    Improvement of the quality and efficiency of healthcare in medicine, both at home and in hospital, is becoming more and more important for patients and society at large. As many technologies (micro technologies, telecommunication, low-power design, new textiles, and flexible sensors) are now available, new user-friendly devices can be developed to enhance the comfort and security of the patient. As clothes and textiles are in direct contact with about 90% of the skin surface, smart sensors and smart clothes with noninvasive sensors are an attractive solution for home-based and ambulatory health monitoring. Moreover, wearable devices or smart homes with exosensors are also potential solutions. All these systems can provide a safe and comfortable environment for home healthcare, illness prevention, and citizen medicine.

  6. Smart Camera Technology Increases Quality

    NASA Technical Reports Server (NTRS)

    2004-01-01

    When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.

  7. Development of smart textiles with embedded fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  8. Flexible pressure sensors for smart protective clothing against impact loading

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhu, Bo; Shu, Lin; Tao, Xiaoming

    2014-01-01

    The development of smart protective clothing will facilitate the quick detection of injuries from contact sports, traffic collisions and other accidents. To obtain real-time information like spatial and temporal pressure distributions on the clothing, flexible pressure sensor arrays are required. Based on a resistive fabric strain sensor we demonstrate all flexible, resistive pressure sensors with a large workable pressure range (0-8 MPa), a high sensitivity (1 MPa-1) and an excellent repeatability (lowest non-repeatability ±2.4% from 0.8 to 8 MPa) that can be inexpensively fabricated using fabric strain sensors and biocompatible polydimethylsiloxane (PDMS). The pressure sensitivity is tunable by using elastomers with different elasticities or by the pre-strain control of fabric strain sensors. Finite element simulation further confirms the sensor design. The simple structure, large workable pressure range, high sensitivity, high flexibility, facile fabrication and low cost of these pressure sensors make them promising candidates for smart protective clothing against impact loading.

  9. Biomimetic smart sensors for autonomous robotic behavior I: acoustic processing

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Xue, Shuwan; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Robotics are rapidly becoming an integral tool on the battlefield and in homeland security, replacing humans in hazardous conditions. To enhance the effectiveness of robotic assets and their interaction with human operators, smart sensors are required to give more autonomous function to robotic platforms. Biologically inspired sensors are an essential part of this development of autonomous behavior and can increase both capability and performance of robotic systems. Smart, biologically inspired acoustic sensors have the potential to extend autonomous capabilities of robotic platforms to include sniper detection, vehicle tracking, personnel detection, and general acoustic monitoring. The key to enabling these capabilities is biomimetic acoustic processing using a time domain processing method based on the neural structures of the mammalian auditory system. These biologically inspired algorithms replicate the extremely adaptive processing of the auditory system yielding high sensitivity over broad dynamic range. The algorithms provide tremendous robustness in noisy and echoic spaces; properties necessary for autonomous function in real world acoustic environments. These biomimetic acoustic algorithms also provide highly accurate localization of both persistent and transient sounds over a wide frequency range, using baselines on the order of only inches. A specialized smart sensor has been developed to interface with an iRobot Packbot® platform specifically to enhance its autonomous behaviors in response to personnel and gunfire. The low power, highly parallel biomimetic processor, in conjunction with a biomimetic vestibular system (discussed in the companion paper), has shown the system's autonomous response to gunfire in complicated acoustic environments to be highly effective.

  10. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.

    PubMed

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.

  11. Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring

    PubMed Central

    Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu

    2015-01-01

    The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512

  12. Multiple sensors-based kernel machine learning in smart environment

    NASA Astrophysics Data System (ADS)

    Li, Jun-Bao; Pan, Jeng-Shyang

    2017-01-01

    Sensor-based monitoring systems use multiple sensors to identify high-level information based on the events that take place in a monitored environment. Identification and health care are important tasks in the smart environment. This paper presents a framework for multisensory multimedia data analysis using a kernel optimization-based principal analysis for identification and health care in a smart environment. Images of faces, palmprints, and fingerprints are used to identify a person, and a wrist pulse signal is used to analyze the person's health condition. The recognition performance evaluations are implemented on the complex dataset of face, palmprint, fingerprint, and wrist pulse signals. The experimental results show that the proposed algorithms perform well for identification and heath analysis.

  13. SMART-1: key technologies and autonomy implementations

    NASA Astrophysics Data System (ADS)

    Elfving, A.; Stagnaro, L.; Winton, A.

    2003-01-01

    SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 Science Plan. The main mission objective of SMART-1 is to demonstrate innovative and key technologies for scientific deep-space missions. One of the key technologies is the solar electric propulsion used as primary propulsion. The electric propulsion will be using 1400 W to transfer the 350 kg spacecraft from an Ariane 5 standard GTO to an elliptic Moon polar orbit, 10000×300 km. The total mission time is 24 months including a maximum of 18 months transfer time. The spacecraft development entered the detailed design and implementation phase in October 1999, under the responsibility of the Swedish Space Cooperation as prime contractor, and the flight acceptance is targeted for the 3rd quarter of 2002. The committed total life cost budget is 84 million Euro. Apart from the in-orbit demonstration of electric propulsion as primary propulsion, SMART-1 is implementing many other enabling technologies for deep-space missions such as deep-space transponder with communication in X-band for uplink and in X- and Ka-band for downlink, highly integrated and radiation tolerant microprocessors, FPGAs and memories, high on-board autonomy driven by ground communication only once per 4 days, maximum available power to electric propulsion by centralised and software-controlled power management, minimum propellant consumption through innovative angular momentum management. In addition, the spacecraft avionics design is tailored to the low-cost philosophy by enabling flexible integration of commercial off the shelf (COTS) equipment. The scientific instruments, five in total, support characterisation of the electric propulsion thrust environment during the long transfer phase and detailed imaging and spectroscopy of the lunar surface in visible, infrared and X-ray during the Moon orbiting phase. Several of the instruments implement new enabling technologies, e.g. swept charge devices

  14. Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.

    PubMed

    Townsend, Daphne; Knoefel, Frank; Goubran, Rafik

    2011-01-01

    Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.

  15. Applications of compound eye configurations to smart sensor design

    NASA Astrophysics Data System (ADS)

    Carter, W. H.

    1985-02-01

    The application of compound eyes to the design of smart sensors is reviewed. Special attention is given to features of this class of eyes which might be of particular advantage in these applications. It was found that the compound eyes are much more compact than the human eye. It appears that apposition compound eyes are not very promising for application to smart sensors because of their inherent low resolution and sensitivity. The superposition compound eyes might be of more interest if high quality gradient index lens arrays could be obtained in sufficient quality. It does not appear that this is now the case. Some features of insect eyes such as the corneal nipples, and tracheole layer might definitely be of some value in systems design. The present state of knowledge of compound eyes is far from complete. The true functional operation of the clear zone eyes is not a matter of total agreement between all biologists. Several specific suggestions are made for the application of features from compound eyes to smart sensor systems.

  16. Bridge monitoring based on smart sensor data acquisition system

    NASA Astrophysics Data System (ADS)

    Ehrlich, Jacques; Eymard, Robert; Coche, Georges

    1996-04-01

    The knowledge of loads applied to bridges has to be enhanced in order to actualize national and international codes, like Eurocodes. The nature of traffic loads is extremely complex including such phenomena as dynamic effects, random distribution of damping techniques over the actual trucks, multiple non-linear visco-elastic links in mechanical description of a given truck. For all these reasons, a system of monitoring bridges has been preferred to an unrigorous modelling, in order to get a statistical knowledge of the traffic loads applied to the bridge over large periods. This knowledge under the form of histograms will be useful in order to evaluate extreme load effects and fatigue load effects over the lifetime of the bridge. To achieve these goals, a data acquisition system based on smart sensors extracting and classifying extrema in the traffic loads signal has been developed. At each measurement site a small microsystem is dedicated to the tasks of signal conditioning and sampling, calculation and communication. Each smart sensor can communicate through a numerical data link with its neighbors or with a PC based system controller. In this paper an outline of the problem, the proposed solution based on the smart sensor paradigm, and the results which have been obtained are presented.

  17. Fiber Optic Sensors for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chang, C. C.; Boyer, T.; Sirkis, J. S.

    1996-01-01

    In this paper we describe recently developed fiber sensors which are capable of monitoring the health of smart-structures. The unobstrusive geometry of these sensors make them an excellent choice for embedding the sensor in composite materials to measure internal states of strain in structures and materials. Some of these sensors have gage lengths that can be tailored from tens of microns to many meters. We will describe various demodulation schemes (Pseudo-Heterodyne, Synthetic-Heterodyne, Homodyne, Differential-Cross Multiplier, and Single Channel Phase-Tracker) to obtain high bandwidth measurements, enabling measurement of static to high frequency impact generated strains with a dynamic response exceeding tens of thousands of microstrains. In addition, we will show that we can tailor the fiber sensor to either measure only strain and reject temperature response or measure only the temperature, or measure both temperature and strain simultaneously. We will also demonstrate the ability to measure multiple strain components inside a host simultaneously using a single fiber sensor embedded in the host using a certain sensor type and transverse strain immunity using another sensor type. Additionally we will show the ability to measure temperature up to 100 C using fiber optic sensors.

  18. Shape deposition manufacturing of smart metallic structures with embedded sensors

    NASA Astrophysics Data System (ADS)

    Li, Xiaochun; Golnas, Anastasios; Prinz, Fritz B.

    2000-06-01

    The need to obtain information on the performance and lifetime of a tool in service is of prime importance to many industries. It calls for on-line acquisition of information such as temperature and strain values from tools and structures. With embedded sensors, structures are capable of monitoring parameters at critical locations not accessible to ordinary sensors. To embed sensors in the functional structures, especially structures, Shape Deposition Manufacturing (SDM) is a methodology capable of integrating sensors during the production of tooling or structural components. Thin film sensors and fiber optic sensors have been identified as two promising candidates to be integrated in metallic structures. Embedded thin film strain gages have been characterized in a four-point bending test and the results, showing linearity and no hysteresis, match with those from the theoretical model and commercially available strain gages. Fiber optic sensors have been successfully embedded in nickel and stainless steel structures. The embedded fiber optic sensors have been used to measure temperatures and strains. They provide higher sensitivity, good accuracy, and high temperature capacity. Based on fiber optic sensor embedding techniques, a remote temperature/strain sensing system suitable rotating objects, such as turbine blades, has been developed. The developed techniques can be harnessed for rapid prototyping of smart metallic structures.

  19. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  20. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  1. Smart sensor chip based on bioMEMS

    NASA Astrophysics Data System (ADS)

    Madan, Rajesh; Kumar, Sandeep; Bagga, Ellis; Bajpai, Ram P.; Bharadwaj, Lalit M.

    2004-03-01

    The smart sensor chip for simultaneous detection of a large number of disease markers is the most recent interest in the field of nanobiotechnology. Potential applications include miniaturized sensors to detect biological agents and diseases, biocompatible and improved systems for drug delivery. They are the simplest biomicroelectromechanical system (BioMEMS) devices that offer a very promising future to the development of novel physical, chemical and biological sensors. They can simultaneously detect a large number of antigens, antibodies, DNA molecules, trace metals, hormones, proteins, gases, microorganisms, toxins, chemical warfare agents, explosives etc. in gaseous, vacuum and liquid medium. Smart sensor chips would be of greater use in intensive care units (ICUs) where multiple disease markers are to be assessed precisely in very less time. These sensors employ highly specific biochemical reactions between complementary biomolecules in the same way that nature has used in our body to detect, diagnose and treat various types of diseases. They have aroused considerable interest because of their high specificity, ultra-high sensitivity, simplicity, low cost, less analyte requirement (in μl), less steps involved, non-hazardous procedure, quick response, low power requirement and a unique capability of detecting a large number of analytes simultaneously in a single step.

  2. Development of Mine Explosion Ground Truth Smart Sensors

    DTIC Science & Technology

    2011-09-01

    interest. The two candidates are the GS11-D by Oyo Geospace that is used extensively in seismic monitoring of geothermal fields and the Sensor Nederland SM...Technologies 853 Figure 4. Our preferred sensors and processor for the GTMS. (a) Sensor Nederland SM-6 geophone with emplacement spike. (b

  3. Distributed wireless sensor for smart car seats

    NASA Astrophysics Data System (ADS)

    Baz, A.; Smoker, Jason

    2009-03-01

    A distributed wireless sensor network is embedded inside car seats to enable the measurements of the weight of the occupants, location of their center of gravity, and spatial orientation of their bodies. Based on these measurements, intelligent decisions can be made to ensure their comfort and safety particularly in case of accidents. Appropriate activation of the inflatable bags according to the weight and position of the occupants will be critical to avoiding unnecessary and undesirable injuries.

  4. Introduction to smart card technology and initial medical application.

    PubMed

    Quick, G

    1994-10-01

    Smart card technology is the name applied to the use of a plastic card with an embedded computer chip. Recent development of smart card software has allowed storage and retrieval of medical information, affording the opportunity to provide a standardized, portable, accessible medical record for use in prehospital and emergency department patient encounters. We describe the smart card concept and its initial deployment in a section of a large Midwestern urban area.

  5. Electric propulsion on SMART-1 - a technology milestone

    NASA Astrophysics Data System (ADS)

    Estublier, Denis; Saccoccia, Giorgio; Gonzales Del Amo, Jose

    2007-02-01

    In December 2002, when France's Stentor satellite was all set to use electric propulsion for stationkeeping, ESA's SMART-1 was just completing its first end-to-end spacecraft test. Then Stentor was lost in the Ariane-5 launch failure, making SMART-1 the first and only technology demonstration mission with Hall-effect plasma propulsion. As a result, there was a great deal of interest in the electric propulsion community in SMART-1's flight.

  6. Development of Miniaturized Optimized Smart Sensors (MOSS) for space plasmas

    NASA Technical Reports Server (NTRS)

    Young, D. T.

    1993-01-01

    The cost of space plasma sensors is high for several reasons: (1) Most are one-of-a-kind and state-of-the-art, (2) the cost of launch to orbit is high, (3) ruggedness and reliability requirements lead to costly development and test programs, and (4) overhead is added by overly elaborate or generalized spacecraft interface requirements. Possible approaches to reducing costs include development of small 'sensors' (defined as including all necessary optics, detectors, and related electronics) that will ultimately lead to cheaper missions by reducing (2), improving (3), and, through work with spacecraft designers, reducing (4). Despite this logical approach, there is no guarantee that smaller sensors are necessarily either better or cheaper. We have previously advocated applying analytical 'quality factors' to plasma sensors (and spacecraft) and have begun to develop miniaturized particle optical systems by applying quantitative optimization criteria. We are currently designing a Miniaturized Optimized Smart Sensor (MOSS) in which miniaturized electronics (e.g., employing new power supply topology and extensive us of gate arrays and hybrid circuits) are fully integrated with newly developed particle optics to give significant savings in volume and mass. The goal of the SwRI MOSS program is development of a fully self-contained and functional plasma sensor weighing 1 lb and requiring 1 W. MOSS will require only a typical spacecraft DC power source (e.g., 30 V) and command/data interfaces in order to be fully functional, and will provide measurement capabilities comparable in most ways to current sensors.

  7. CP-OCT sensor guided SMART micro-forceps

    NASA Astrophysics Data System (ADS)

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2014-02-01

    Even the most stable hands have unintended movements on the order of 50-100 microns within 0-15 Hz. Micro-forceps are one of the frequently used microsurgical tools used to grasp thin layers of tissue during microsurgery. Here, a handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps is developed by integrating a fiber-optic common-path optical coherence tomography (CP-OCT) sensor into the micro-forceps. This forceps design could significantly improve performance by canceling unwanted hand tremor during the moment of a grasping. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model.

  8. Low data rate architecture for smart image sensor

    NASA Astrophysics Data System (ADS)

    Darwish, Amani; Sicard, Gilles; Fesquet, Laurent

    2014-03-01

    An innovative smart image sensor architecture based on event-driven asynchronous functioning is presented in this paper. The proposed architecture has been designed in order to control the sensor data flow by extracting only the relevant information from the image sensor and performing spatial and temporal redundancies suppression in video streaming. We believe that this data flow reduction leads to a system power consumption reduction which is essential in mobile devices. In this first proposition, we present our new pixel behaviour as well as our new asynchronous read-out architecture. Simulations using both Matlab and VHDL were performed in order to validate the proposed pixel behaviour and the reading protocol. These simulations results have met our expectations and confirmed the suggested ideas.

  9. Smart gun technologies: One method of eliminating unauthorized firearm use

    SciTech Connect

    Weiss, D.R.

    1994-06-01

    Law enforcement officers work each day with individuals who can become aggressive and violent. Among the worst scenarios, which occur each year and often raise national media attention, an officer has his handgun taken away and used against him. As many as 12 officers per year are killed with their own gun. This problem can be addressed through the integration of modern sensors with control electronics to provide authorized user firearms for law enforcement and even recreational uses. A considerable benefit to law enforcement agencies, as well as society as a whole, would be gained by the application of recommended Smart Gun Technologies (SGT) as a method of limiting the use of firearms to authorized individuals. Sandia National Laboratory has been actively involved in the research and design of technologically sophisticated surety devices for weapons for the DOE and DOD. This experience is now being applied to criminal justice problems by transferring these technologies to commercial industry. In the SGT project Sandia is developing the user requirements that would limit a firearms use to its owner and/or authorized users. Various technologies that are capable of meeting the requirements are being investigated, these range from biometrics identification to radio-controlled devices. Research is presently underway to investigate which technologies represent the best solutions to the problem. Proof of concept demonstration models are being built for the most promising SGT with the intent of technology transfer. Different solutions are recommended for the possible applications: law enforcement, military, and commercial (personal protection/recreational) use.

  10. Fiber Sensor Technology Today

    NASA Astrophysics Data System (ADS)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  11. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    PubMed

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  12. Smart Sensors and Virtual Physiology Human Approach as a Basis of Personalized Therapies in Diabetes Mellitus

    PubMed Central

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646

  13. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments.

    PubMed

    Roy, Nirmalya; Misra, Archan; Cook, Diane

    2016-02-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional 'hidden' context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions.

  14. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments

    PubMed Central

    Misra, Archan; Cook, Diane

    2016-01-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions. PMID:27042240

  15. Validating Knowledge-Based Framework through Mission-Oriented Sensors Array and Smart Sensor Protocol

    NASA Astrophysics Data System (ADS)

    Rodrigues, Douglas; Pires, Rayner M.; Branco, Kalinka R. L. J. C.

    2015-09-01

    This paper addresses the problem of using Service-Oriented Architecture (SOA) in critical embedded systems, mainly in Unmanned Aerial Vehicles (UAVs). We present the use of a SOA approach to provide the integration of the payload in the UAV. The integration is provided by a plug and play protocol named Smart Sensor Protocol (SSP) that validates the SOA approach.

  16. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  17. A real-time smart sensor for high-resolution frequency estimation in power systems.

    PubMed

    Granados-Lieberman, David; Romero-Troncoso, Rene J; Cabal-Yepez, Eduardo; Osornio-Rios, Roque A; Franco-Gasca, Luis A

    2009-01-01

    Power quality monitoring is a theme in vogue and accurate frequency measurement of the power line is a major issue. This problem is particularly relevant for power generating systems since the generated signal must comply with restrictive standards. The novelty of this work is the development of a smart sensor for real-time high-resolution frequency measurement in accordance with international standards for power quality monitoring. The proposed smart sensor utilizes commercially available current clamp, hall-effect sensor or resistor as primary sensor. The signal processing is carried out through the chirp z-transform. Simulations and experimental results show the efficiency of the proposed smart sensor.

  18. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  19. Carbon Dioxide Sensor Technology.

    DTIC Science & Technology

    1983-04-01

    identify the promising sensor concepts is provided in this section along with the basic conclusions that were reached regarding avail- able sensor techniques ...63 Estimated Operating Characteristics ... .......... 65 Conclusions and Recommendations (SAW) ... ......... 68 Calorimetric Technique ...Desired Sensor Properties. .. .. ... .. ... .. ..... 8 Table 2A. Candidate Sensor Techniques . .. .. ... .. ... .. ... 14 Selected for Further Analysis

  20. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  1. Novel hybrid sol-gel materials for smart sensor windows

    NASA Astrophysics Data System (ADS)

    Wencel, Dorota; Higgins, Clare; Guckian, Adrian; McDonagh, Colette; MacCraith, Brian D.

    2005-06-01

    Current sensor trends, such as multianalyte capability, miniaturisation and patternability are important drivers for materials requirements in optical chemical sensors. In particular, issues such as enhanced sensitivity and printablity are key in developing optimised sensor materials for smart windows for bioprocessing applications. This study focuses on combining novel sol-gel-based hybrid matrices with engineered luminescent complexes to produce stable luminescence-based optical sensors with enhanced sensitivity for a range of analytes including oxygen, pH and carbon dioxide. As well as optimising sensor performance, issues such as surface modification of the plastic substrate and compatibility with different deposition techniques were addressed. Hybrid sol-gel matrices were developed using a range of precursors including tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), ethyltriethoxysilane (ETEOS), n-propyltriethoxysilane (PTEOS), phenyltriethoxysilane (PhTEOS), and n-octyltriethoxysilane (C8TEOS). Oxygen sensing, based on luminescence quenching of ruthenium phenanthroline complexes, has been realised with each of these hybrid materials. Furthermore, the possibility of immobilising pH-indicators for pH and carbon dioxide sensing has been investigated with some success. In the context of in-situ monitoring of bioprocesses, issues such as humidity interference as well as the chemical robustness of the multianalyte platform, were addressed.

  2. A smart microelectromechanical sensor and switch triggered by gas

    NASA Astrophysics Data System (ADS)

    Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-07-01

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  3. Automotive Sensors and MEMS Technology

    NASA Astrophysics Data System (ADS)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  4. An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.

    2012-01-01

    In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.

  5. Context Aware Systems, Methods and Trends in Smart Home Technology

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    Context aware applications respond and adapt to changes in the computing environment. It is the concept of leveraging information about the end user to improve the quality of the interaction. New technologies in context-enriched services will use location, presence, social attributes, and other environmental information to anticipate an end user's immediate needs, offering more-sophisticated, situation-aware and usable functions. Smart homes connect all the devices and appliances in your home so they can communicate with each other and with you. Context-awareness can be applied to Smart Home technology. In this paper, we discuss the context-aware tools for development of Smart Home Systems.

  6. Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.

    PubMed

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-23

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  7. Smart healthcare textile sensor system for unhindered-pervasive health monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.

    2012-04-01

    Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.

  8. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  9. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  10. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  11. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  12. Privacy, technology, and norms: the case of Smart Meters.

    PubMed

    Horne, Christine; Darras, Brice; Bean, Elyse; Srivastava, Anurag; Frickel, Scott

    2015-05-01

    Norms shift and emerge in response to technological innovation. One such innovation is Smart Meters - components of Smart Grid energy systems capable of minute-to-minute transmission of consumer electricity use information. We integrate theory from sociological research on social norms and privacy to examine how privacy threats affect the demand for and expectations of norms that emerge in response to new technologies, using Smart Meters as a test case. Results from three vignette experiments suggest that increased threats to privacy created by Smart Meters are likely to provoke strong demand for and expectations of norms opposing the technology and that the strength of these normative rules is at least partly conditional on the context. Privacy concerns vary little with actors' demographic characteristics. These findings contribute to theoretical understanding of norm emergence and have practical implications for implementing privacy protections that effectively address concerns of electricity users.

  13. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  14. Smart Capture Modules for Direct Sensor-to-FPGA Interfaces.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2015-12-16

    Direct sensor-digital device interfaces measure time dependent variables of simple circuits to implement analog-to-digital conversion. Field Programmable Gate Arrays (FPGAs) are devices whose hardware can be reconfigured to work in parallel. They usually do not have analog-to-digital converters, but have many general purpose I/O pins. Therefore, direct sensor-FPGA connection is a good choice in complex systems with many sensors because several capture modules can be implemented to perform parallel analog data acquisition. The possibility to work in parallel and with high frequency clock signals improves the bandwidth compared to sequential devices such as conventional microcontrollers. The price to pay is usually the resolution of measurements. This paper proposes capture modules implemented in an FPGA which are able to perform smart acquisition that filter noise and achieve high precision. A calibration technique is also proposed to improve accuracy. Resolutions of 12 effective number of bits are obtained for the reading of resistors in the range of an example piezoresistive tactile sensor.

  15. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  16. Design of a smart superstructure FBG torsion sensor

    NASA Astrophysics Data System (ADS)

    Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Lancranjan, Ion I.

    2015-05-01

    The paper presents the results obtained in simulation of a Superstructure Fiber Bragg Grating (SFBG) torsion sensor. The SFBG sensor simulation points to an improved smart composite or metallic parts design to be operated under torsion loads in various applications. SFBG sensor simulation consists of correlating the fiber deformation under applied mechanical loads with the modified FBG characteristic reflection spectrum considering the polarization mode variations. The analyzed SFBG is developed by the selective deposition of on-fiber periodic metal thin films on regular FBGs. The torsion mechanical loads induced shifts in the characteristic reflection spectrum of Bragg wavelength and side bands are analyzed. For obtaining information about an optimal structure of SFBG sensor, simulation is performed for four commercially available photosensitive single mode silica optical fibers having different geometric and optical characteristics, mainly core and clad refractive index values. It is considered that, by using an UV writing technique, Brag gratings are induced into the simulated SFBG. Simulations are performed considering different geometric characteristics of the shaft used as mechanical mount of SFBG. The simulation results are in fairly good agreement with the experimental ones reported in literature.

  17. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    SciTech Connect

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  18. Applying Sensor Web Technology to Marine Sensor Data

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC

  19. Smart sensor-based geospatial architecture for dike monitoring

    NASA Astrophysics Data System (ADS)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  20. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  1. Hybrid wireless smart sensor network for full-scale structural health monitoring of a cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Jo, Hongki; Sim, Sung-Han; Mechitov, Kirill A.; Kim, Robin; Li, Jian; Moinzadeh, Parya; Spencer, B. F., Jr.; Park, Jong Woong; Cho, Soojin; Jung, Hyung-Jo; Yun, Chung-Bang; Rice, Jennifer A.; Nagayama, Tomonori

    2011-04-01

    Rapid advancement of sensor technology has been changing the paradigm of Structural Health Monitoring (SHM) toward a wireless smart sensor network (WSSN). While smart sensors have the potential to be a breakthrough to current SHM research and practice, the smart sensors also have several important issues to be resolved that may include robust power supply, stable communication, sensing capability, and in-network data processing algorithms. This study is a hybrid WSSN that addresses those issues to realize a full-scale SHM system for civil infrastructure monitoring. The developed hybrid WSSN is deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea as a continued effort from the previous year's deployment. Unique features of the new deployment encompass: (1) the world's largest WSSN for SHM to date, (2) power harvesting enabled for all sensor nodes, (3) an improved sensing application that provides reliable data acquisition with optimized power consumption, (4) decentralized data aggregation that makes the WSSN scalable to a large, densely deployed sensor network, (5) decentralized cable tension monitoring specially designed for cable-stayed bridges, (6) environmental monitoring. The WSSN implementing all these features are experimentally verified through a long-term monitoring of the Jindo Bridge.

  2. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  3. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments.

    PubMed

    Thomas, Brian L; Crandall, Aaron S; Cook, Diane J

    2016-04-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care.

  4. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments

    PubMed Central

    Thomas, Brian L.; Crandall, Aaron S.; Cook, Diane J.

    2016-01-01

    Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care. PMID:27453810

  5. Smart Technology Brings Power to the People

    SciTech Connect

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine you’re at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (You’ve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your home’s energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise™ Testbed Demonstration, a project funded primarily by DOE. Through the GridWise™ Demonstration projects, researchers are gaining insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100

  6. Characterization of integrated fiber optic sensors in smart textiles

    NASA Astrophysics Data System (ADS)

    Yuan, Jianming; El-Sherif, Mahmoud A.; Khalil, Saif; Fairneny, James

    2004-03-01

    Smart textiles with integrated fiber optic sensors have been studied for various applications including in-situ measurement of load/deformation on the textiles. Two types of silica multimode optical fibers were successfully integrated into 4/4 Twill-woven and Plain-woven textiles along the warp direction of the textile structures for sensing of applied load conditions. The sensing mechanism is based on the MPD (Modal Power Distribution) technique, which employs the principle of intensity modulation based on modal power redistribution of the propagating light within multimode fibers caused by external perturbations. In the presence of transverse load applied to an integrated optical fiber, the redistribution of the modal power is an indication of the applied load. The spatial modal power redistribution was clearly recorded as a function of the optical intensity profile. Based on the uni-axial tensile test results, the relationship between the mechanical behavior of the textile and the output of the embedded fiber-optic sensor was established and understood. It is clearly demonstrated that the sensitivity and dynamic range of this type of intensity-based sensor is determined by the interaction between the fabric yarns and optical fibers, which are closely related with the textile structure and the type of optical fiber.

  7. Smart Capture Modules for Direct Sensor-to-FPGA Interfaces

    PubMed Central

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2015-01-01

    Direct sensor–digital device interfaces measure time dependent variables of simple circuits to implement analog-to-digital conversion. Field Programmable Gate Arrays (FPGAs) are devices whose hardware can be reconfigured to work in parallel. They usually do not have analog-to-digital converters, but have many general purpose I/O pins. Therefore, direct sensor-FPGA connection is a good choice in complex systems with many sensors because several capture modules can be implemented to perform parallel analog data acquisition. The possibility to work in parallel and with high frequency clock signals improves the bandwidth compared to sequential devices such as conventional microcontrollers. The price to pay is usually the resolution of measurements. This paper proposes capture modules implemented in an FPGA which are able to perform smart acquisition that filter noise and achieve high precision. A calibration technique is also proposed to improve accuracy. Resolutions of 12 effective number of bits are obtained for the reading of resistors in the range of an example piezoresistive tactile sensor. PMID:26694403

  8. Triboluminescent Materials for Smart Optical Damage Sensors for Space Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Penn, B. G.; Miller, J.; Sadate, S.; Batra, A. K.

    2008-01-01

    There is a need to develop a new technique of damage detection for composites, which could detect cracking or delamination from any desired location within a material structure in real time. Recently, triboluminescent materials have been proposed as smart sensors of structural damage. To sense the damage, these materials can be epoxy bonded, coated in a polymer matrix, or embedded in a composite host structure. When the damage or fracture takes place in the host structure, the resultant fracture of triboluminescent crystals creates a light emission. This will warn in real time that structural damage has occurred. The triboluminescent emission of the candidate phosphor has to be bright enough that the light reaching from the point of fracture to the detector through a fiber optic cable is detectable. There are a large number of triboluminescent materials, but few satisfy the above criterion. The authors have synthesized an organic material known as Europium tetrakis (dibenzoylmethide) triethylammonium (EuD4TEA), which is a potential candidate for application as a damage sensor and could be made into a wireless sensor with the addition of microchip, antenna, and electronics. Preliminary results on the synthesis and characterization of this material are presented.

  9. A Framework for Intelligent Rocket Test Facilities with Smart Sensors

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Solano, Wanda; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2003-01-01

    A long-term center goal at the John C. Stennis Space Center (SSC) is the formulation and implementation of a framework for an Intelligent Rocket Test Facility (IRTF), which incorporates distributed smart sensor elements. The IRTF is to provide reliable, high-confident measurements. Specific objectives include: 1. Definition of a framework and architecture that supports implementation of highly autonomous methodologies founded on basic physical principles and embedded knowledge. 2. Modeling of autonomous sensors and processes as self-sufficient, evolutionary elements. 3. Development of appropriate communications protocols to enable the complex interactions that must take place to allow timely and high-quality flow of of information among all the autonomous elements of the system. 4. Development of lab-scale prototypes of key system elements. Though our application is next-generation rocket test facilities, applications for the approach are much wider and include monitoring of shuttle launch operations, air and spacecraft operations and health monitoring, and other large-scale industrial system operations such as found in processing and manufacturing plans. Elements of prototype IRTF have been implemented in preparation for advanced development and validation using rocket test stand facilities as SSC. This work has identified issues that are important to further development of complex network and should be of interest to other working with sensor networks.

  10. Acousto-optic imaging with a smart-pixels sensor

    NASA Astrophysics Data System (ADS)

    Barjean, K.; Contreras, K.; Laudereau, J.-B.; Tinet, E.; Ettori, D.; Ramaz, F.; Tualle, J.-M.

    2015-03-01

    Acousto-optic imaging (AOI) is an emerging technique in the field of biomedical optics which combines the optical contrast allowed by diffuse optical tomography with the resolution of ultrasound (US) imaging. In this work we report the implementation, for that purpose, of a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. We implemented a highly sensitive lock-in detection in each pixel in order to extract the tagged photons after an appropriate in-pixel post-processing. With this system we can acquire images in scattering samples with a spatial resolution in the 2mm range, with an integration time compatible with the dynamic of living biological tissue.

  11. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  12. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1991-01-01

    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described.

  13. Unlocking the potential of smart grid technologies with behavioral science

    PubMed Central

    Sintov, Nicole D.; Schultz, P. Wesley

    2015-01-01

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings. PMID:25914666

  14. Unlocking the potential of smart grid technologies with behavioral science.

    PubMed

    Sintov, Nicole D; Schultz, P Wesley

    2015-01-01

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.

  15. Unlocking the potential of smart grid technologies with behavioral science

    SciTech Connect

    Sintov, Nicole D.; Schultz, P. Wesley

    2015-04-09

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.

  16. Unlocking the potential of smart grid technologies with behavioral science

    DOE PAGES

    Sintov, Nicole D.; Schultz, P. Wesley

    2015-04-09

    Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less

  17. SMART-1 technology preparation for future planetary missions

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Racca, G. D.; Foing, B. H.

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, with the prime objective of demonstrating the use of Solar Electric Primary Propulsion in a planetary mission. Further to this, SMART-1 will test novel spacecraft technologies and will host six instruments carrying out nine technology and science experiments, all aimed at preparing future ESA Cornerstones, including the ESA Mercury Cornerstone (now named BepiColombo) and other future planetary missions under study, as well as solar and fundamental physics missions.

  18. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform.

    PubMed

    Kang, Jungho; Kim, Mansik; Park, Jong Hyuk

    2016-07-05

    With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.

  19. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform

    PubMed Central

    Kang, Jungho; Kim, Mansik; Park, Jong Hyuk

    2016-01-01

    With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699

  20. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    SciTech Connect

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2014-03-07

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  1. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    ScienceCinema

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2016-07-12

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  2. Living in a Smart World with Smart Technology

    ERIC Educational Resources Information Center

    Tech Directions, 2006

    2006-01-01

    Baltimore is an American success story. Since the redevelopment of the Inner Harbor in the late 1970s, Baltimore has set the standard for urban renewal and is now rated as one of the top 10 summer destinations in the world. This year, the city will host the 68th Annual International Technology Education Association (ITEA) Conference. The…

  3. Smart Desktops for Teachers. ECS Issue Paper: Technology.

    ERIC Educational Resources Information Center

    Palaich, Robert M.; Good, Dixie Griffin; Stout, Connie; Vickery, Emily

    This report presents the results of a study of how emerging technologies can help educators deliver standards-based education to K-12 students. The first section of the report provides background on the new technology offerings and defines smart desktop systems. The second section lists critical questions for decisionmakers related to general…

  4. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  5. Multiple sensor smart robot hand with force control

    NASA Technical Reports Server (NTRS)

    Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal

    1987-01-01

    A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.

  6. The damage assessment methodology in cooperation with smart sensors and inspection robots

    NASA Astrophysics Data System (ADS)

    Nitta, Yoshihiro; Ishida, Masami; Onai, Toshio; Watakabe, Morimasa; Nishitani, Akira; Matsui, Chisa

    2014-03-01

    This paper proposes a damage assessment methodology for the non-structural elements, especially the ceiling, in cooperation with the smart sensors and the inspection blimp robot with the Wi-Fi camera. The developed smart sensors use the infrared LEDs in sending the measured data to the inspection blimp robot. The inspection blimp robot integrated in the proposed system has a Wi-Fi camera and an infrared remote control receiver for receiving the data from the smart sensor. In the proposed methodology, the distributed smart sensors firstly detect the damage occurrence. Next, the inspection blimp robots can gather the data from the smart sensors, which transmit the measured data by using an infrared remote control receiver and LED signals. The inspection blimp robot also can inspect the damage location and captures the photographic image of the damage condition. The inspection blimp robot will be able to estimate the damage condition without any process of engineers' on-site-inspection involved. To demonstrate the effectiveness of the inspection blimp robot, the blimp robot is utilized to estimate the aging ceiling of a real structure. For demonstrating the feasibility or possibility of the proposed damage assessment methodology in cooperation with the smart sensors and the inspection blimp robot, the conceptual laboratory experiment is conducted. The proposed methodology will provide valuable information for the repair and maintenance decision making of a damaged structure.

  7. Information and Communication Technology and Electric Vehicles — Paving the Way towards a Smart Community

    NASA Astrophysics Data System (ADS)

    Mase, Kenichi

    A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.

  8. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2014-01-01

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047

  9. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  10. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    PubMed

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  11. How Older Adults Make Decisions regarding Smart Technology: An Ethnographic Approach

    ERIC Educational Resources Information Center

    Davenport, Rick D.; Mann, William; Lutz, Barbara

    2012-01-01

    Comparatively little research has been conducted regarding the smart technology needs of the older adult population despite the proliferation of smart technology prototypes. The purpose of this study was to explore the perceived smart technology needs of older adults with mobility impairments while using an ethnographic research approach to…

  12. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    PubMed

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  13. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    PubMed Central

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-01-01

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.  PMID:28208787

  14. Integration of Smart Board Technology and Effective Teaching

    ERIC Educational Resources Information Center

    Min, Kathryn; Siegel, Christine

    2011-01-01

    The proposed paper reports on the results of a study conducted to explore the influence of SMART Board technology on student engagement in and perception of classroom activities. Using momentary time-sampling procedures, this study examined differences in second grade students' on-task and off-task behaviors during 30-minute math and science…

  15. Triboluminescent Materials for Smart Optical Damage Sensors for Space Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    Triboluminescence is light that is produced by pressure, friction or mechanical shock. New composite materials are constantly being reengi neered in an effort to make lightweight spacecrafts for various NASA missions. For these materials there is interest in monitoring the con dition of the composite in real time to detect any delamination or cr acking due to damage, fatigue or external forces. Methods of periodic inspection of composite structures for mechanical damage such as ult rasonic testing are rather mature. However, there is a need to develop a new technique of damage detection for composites, which could dete ct cracking or delamination from any desired location within a materi al structure in real time. This could provide a valuable tool in the confident use of composite materials for various space applications. Recently, triboluminnescent materials have been proposed as smart sen sors of structural damage. To sense the damage, these materials can b e epoxy bonded or coated in a polymer matrix or embedded in a composi te host structure. When the damage or fracture takes place in the hos t structure, it will lead to the fracture of triboluminescent crystal s resulting in a light emission. This will warn, in real time, that a structural damage has occurred. The triboluminescent emission of the candidate phosphor has to be sufficiently bright, so that the light signal reaching from the point of fracture to the detector through a fiber optic cable is sufficiently strong to be detected. There are a large number of triboluminescent materials, but few satisfy the above criterion. Authors have synthesized a Eu based organic material know n as Europium tetrakis (dibenzoylmethide) triethylammonium .(EuD(sub 4)TEA), one of the bright triboluminescent materials, which is a pote ntial candidate for application as a damage sensor and could be made into a wireless sensor with the addition of microchip, antenna and el ectronics. Preliminary results on the synthesis and

  16. A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities.

    PubMed

    Mora-Mora, Higinio; Gilart-Iglesias, Virgilio; Gil, David; Sirvent-Llamas, Alejandro

    2015-06-10

    Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.

  17. A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities

    PubMed Central

    Mora-Mora, Higinio; Gilart-Iglesias, Virgilio; Gil, David; Sirvent-Llamas, Alejandro

    2015-01-01

    Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal. PMID:26067195

  18. Development of Green Box sensor module technologies for rail applications

    SciTech Connect

    Rey, D.; Breeding, R.; Hogan, J.; Mitchell, J.; McKeen, R.G.; Brogan, J.

    1996-04-01

    Results of a joint Sandia National Laboratories, University of New Mexico, and New Mexico Engineering Research Institute project to investigate an architecture implementing real-time monitoring and tracking technologies in the railroad industry is presented. The work, supported by the New Mexico State Transportation Authority, examines a family of smart sensor products that can be tailored to the specific needs of the user. The concept uses a strap-on sensor package, designed as a value-added component, integrated into existing industry systems and standards. Advances in sensor microelectronics and digital signal processing permit us to produce a class of smart sensors that interpret raw data and transmit inferred information. As applied to freight trains, the sensors` primary purpose is to minimize operating costs by decreasing losses due to theft, and by reducing the number, severity, and consequence of hazardous materials incidents. The system would be capable of numerous activities including: monitoring cargo integrity, controlling system braking and vehicle acceleration, recognizing component failure conditions, and logging sensor data. A cost-benefit analysis examines the loss of revenue resulting from theft, hazardous materials incidents, and accidents. Customer survey data are combined with the cost benefit analysis and used to guide the product requirements definition for a series of specific applications. A common electrical architecture is developed to support the product line and permit rapid product realization. Results of a concept validation, which used commercial hardware and was conducted on a revenue-generating train, are also reported.

  19. Smart infusion technology: a minimum safety standard for intensive care?

    PubMed

    Murdoch, Linda J; Cameron, Victoria L

    There is overwhelming evidence that medication errors present a risk to patients. This risk is highest in the intensive care unit (ICU) setting and even greater when medications are administered via an infusion pump. Standard pumps will not alert for, or prevent, drug calculation, drug unit, button push, or multiple of ten errors when medication delivery data is inputted. However, the literature suggests that smart pumps programmed with hard (unchangeable) limits can significantly reduce drug errors at the point of administration. Staff at St George's Hospital paediatric ICU wanted to implement an infusion pump system that would be immediately effective in reducing medication errors at the point of administration. This article presents an overview of the relevant literature together with clinical examples from the authors' ICU, which demonstrates their experiences with smart pumps. It is the authors' firm belief that smart infusion technology sets a new minimum safety standard for intensive care.

  20. A sensor and video based ontology for activity recognition in smart environments.

    PubMed

    Mitchell, D; Morrow, Philip J; Nugent, Chris D

    2014-01-01

    Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.

  1. SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project

    1999-12-01

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high

  2. Recent Developments in Smart Freezing Technology Applied to Fresh Foods.

    PubMed

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2015-10-13

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh-like quality. In this article, we reviewed the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts has greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during freezing process and help improve product quality and freezing efficiency. We also provided a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies included computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  3. 75 FR 62515 - Notice of Availability of Report on the Communications Requirements of Smart Grid Technologies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... of Availability of Report on the Communications Requirements of Smart Grid Technologies AGENCY..., ``Communications Requirements of Smart Grid Technologies.'' In this report, DOE sets forth recommendations and observations on current and potential communications requirements of the Smart Grid, as well as the types...

  4. Initial Analyses and Demonstration of a Soil Moisture Smart Sensor Web Using Data Assimilation and Optimal Control

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Entekhabi, D.; Liu, M.; Teneketzid, D.; Goykhman, Y.; Shuman, D.; Mahajan, A.; Nayyar, A.

    2007-12-01

    We have developed a new concept for a smart sensor web technology for measurements of soil moisture that include spaceborne and in-situ assets. The objective of the technology is to enable a guided/adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of the spaceborne sensors with respect to resolution and accuracy. The sensor nodes are guided to perform as a macro-instrument measuring processes at the scale of the satellite footprint, hence meeting the requirements for the difficult problem of validation of satellite measurements. The science measurement considered is the surface-to-depth profiles of soil moisture estimated from satellite radars and radiometers, with calibration and validation using in- situ sensors. Satellites allow global mapping but with coarse footprints. The total variability in soil-moisture fields comes from variability in processes on various scales. Installing an in-situ network to sample the field for all ranges of variability is impractical. However, a sparser but smarter network can provide the validation estimates by operating in a guided fashion with guidance from its own sparse measurements. The feedback and control take place in the context of a dynamic data assimilation system. The overall design of the smart sensor web including the control architecture, assimilation framework, and actuation hardware will be presented in this paper. The results of initial numerical and laboratory demonstrations of the sensor web concept, which includes a small number of soil moisture sensors and their physical measurement model, a dynamic soil moisture time-evolution model (SWAP), and an optimal control strategy will then be shown.

  5. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  6. Health "Smart" home: information technology for patients at home.

    PubMed

    Rialle, Vincent; Duchene, Florence; Noury, Norbert; Bajolle, Lionel; Demongeot, Jacques

    2002-01-01

    This article reviews the emerging concept of health "Smart" homes (HSH) and its potential through the use of telemedical information systems and communication technologies. HSH systems provide health care services for people with special needs who wish to remain independent and living in their own home. The large diversity of needs in a home-based patient population requires complex technology. Meeting these needs technically requires the use of a distributed approach and the combination of many hardware and software techniques. We also describe the wide scope of new information, communication, and data-acquisition technologies used in home health care. We offer an introduction to the HSH concept in terms of technical, economic, and human requirements. Examples of HSH projects are presented, including a short description of our own smart home and telehealthcare information system project.

  7. Smart Pebble: wireless sensors for structural health monitoring of bridge decks

    NASA Astrophysics Data System (ADS)

    Watters, David G.; Jayaweera, Palitha; Bahr, Alfred J.; Huestis, David L.; Priyantha, Namal; Meline, Robert; Reis, Robert; Parks, Douglas

    2003-08-01

    SRI International is developing a wireless sensor for monitoring the level of chloride ingress into concrete bridge decks. We call this device a Smart Pebble since it has roughly the size and weight of a typical piece of the rock aggregate that is used in such structures. It is "smart" in that it contains a chloride sensor and a radio-frequency identification (RFID) chip that can be queried remotely both to identify it and to indicate chloride concentration levels. The Smart Pebble is also powered remotely, thus precluding the need for any lifetime-limiting batteries. It is designed to be inserted in the bridge deck either during the initial construction (or during refurbishment) or in a back-filled core hole. This paper will discuss the Smart Pebble design, operation, and status.

  8. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1990-01-01

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  9. A fast lightstripe rangefinding system with smart VLSI sensor

    NASA Technical Reports Server (NTRS)

    Gruss, Andrew; Carley, L. Richard; Kanade, Takeo

    1989-01-01

    The focus of the research is to build a compact, high performance lightstripe rangefinder using a Very Large Scale Integration (VLSI) smart photosensor array. Rangefinding, the measurement of the three-dimensional profile of an object or scene, is a critical component for many robotic applications, and therefore many techniques were developed. Of these, lightstripe rangefinding is one of the most widely used and reliable techniques available. Though practical, the speed of sampling range data by the conventional light stripe technique is severely limited. A conventional light stripe rangefinder operates in a step-and-repeat manner. A stripe source is projected on an object, a video image is acquired, range data is extracted from the image, the stripe is stepped, and the process repeats. Range acquisition is limited by the time needed to grab the video images, increasing linearly with the desired horizontal resolution. During the acquisition of a range image, the objects in the scene being scanned must be stationary. Thus, the long scene sampling time of step-and-repeat rangefinders limits their application. The fast range sensor proposed is based on the modification of this basic lightstripe ranging technique in a manner described by Sato and Kida. This technique does not require a sampling of images at various stripe positions to build a range map. Rather, an entire range image is acquired in parallel while the stripe source is swept continuously across the scene. Total time to acquire the range image data is independent of the range map resolution. The target rangefinding system will acquire 1,000 100 x 100 point range images per second with 0.5 percent range accuracy. It will be compact and rugged enough to be mounted on the end effector of a robot arm to aid in object manipulation and assembly tasks.

  10. Spatially distributed smart skin seat sensor for high-resolution real-time occupant position tracking

    NASA Astrophysics Data System (ADS)

    Hubbard, James E., Jr.; Burke, Shawn E.

    1999-07-01

    A 2D spatially distributed smart skin sensor for real-time seat occupant position sensing is presented. The sensor exploits principles of spatial aperture shading of distributed transducers such as piezo-electric polymers and resistors, which are used as the active sensing medium. An example application is presented in which the sensor is used to report passenger position to an automobile air bag control system. The real-time data is used to modulate airbag deployment energies, mitigating passenger injury.

  11. Smart wireless sensor system for lifeline health monitoring under a disaster event

    NASA Astrophysics Data System (ADS)

    Kim, Sehwan; Yoon, Eunbae; Chien, Ting-Chou; Mustafa, Hadil; Chou, Pai H.; Shinozuka, Masanobu

    2011-04-01

    This paper discusses issues of using wireless sensor systems to monitor structures and pipelines in the case of disastrous events. The platforms are deployed and monitored remotely on lifetime systems, such as underground water pipelines. Although similar systems have been proposed for monitoring seismic events and the structure health of bridges and buildings, several fundamental differences necessitate adaptation or redesign of the module. Specifically, rupture detection in water delivery networks must respond to higher frequency and wider bandwidth than those used in the monitoring of seismic events, structures, or bridges. The monitoring and detection algorithms can also impose a wide range of requirements on the fidelity of the acquired data and the flexibility of wireless communication technologies. We employ a non-invasive methodology based on MEMS accelerometers to identify the damage location and to estimate the extent of the damage. The key issues are low-noise power supply, noise floor of sensors, higher sampling rate, and the relationship among displacement, frequency, and acceleration. Based on the mentioned methodology, PipeTECT, a smart wireless sensor platform was developed. The platform was validated on a bench-scale uniaxial shake table, a small-scale water pipe network, and portions of several regional water supply networks. The laboratory evaluation and the results obtained from a preliminary field deployment show that such key factors in the implementation are crucial to ensure high fidelity of the acquired data. This is expected to be helpful in the understanding of lifeline infrastructure behavior under disastrous events.

  12. Evaluation of the impact of furniture on communications performance for ubiquitous deployment of Wireless Sensor Networks in smart homes.

    PubMed

    Bleda, Andrés L; Jara, Antonio J; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain.

  13. Evaluation of the Impact of Furniture on Communications Performance for Ubiquitous Deployment of Wireless Sensor Networks in Smart Homes

    PubMed Central

    Bleda, Andrés L.; Jara, Antonio J.; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F.

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain. PMID:22778653

  14. Smart printing technology for counterfeit deterrence

    NASA Astrophysics Data System (ADS)

    Harrop, Peter J.

    1996-03-01

    Smart (intelligent) printing is the creation of useful patterns beyond alphanumerics and graphics immediately obvious to the human eye. It employs smart inks, patterns, surfaces and substrates. Recent proliferation of color copiers, personal computers and scanners has facilitated a tenfold increase in counterfeiting in many countries over the past three years. Banknotes, cheques, academic certificates, art work, visitors passes, venue tickets and many other artifacts have been compromised. Paradoxically, the best counterfeits produced by some foreign governments and organized crime are rarely the main problem. The secret services of many countries use forensic science to great effect in pursuing these fairly readily identified sources of limited number. Bad counterfeits usually made on color copiers or computers, with or without color scanners, are the most difficult to combat because they are made by very large numbers of casual counterfeiters who may never commit crime again. For instance, counterfeit banknotes intercepted by the Bundesbank have been photocopies in a fluctuating range of 50 - 84% of cases in the last four reported years. Cheque and other document fraud is also inflated by these burgeoning bad copies and here we must add amateurish alterations using copiers or scanners. For instance, a better academic degree can mean a better job, an interbank transfer form can be 'raised' in value by enormous amounts. The issuer of a 'bad' counterfeit does not mind that it is usually picked up on a second transferral. They are long gone by then or, with banknotes, they can deny that they issued it. First priority in reversing the upward trend of counterfeiting must not therefore be the creation of better secret features traceable by forensic laboratories over extended periods of time. Rather we need better and more obvious optically unique features, not easily emulated, that can be spotted in the split second when several, say, banknotes are handed over in a

  15. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    NASA Astrophysics Data System (ADS)

    >Hasan Farooq, Low Tang Jung,

    2013-06-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  16. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  17. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  18. Wearable smart systems: from technologies to integrated systems.

    PubMed

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  19. Smart unattended sensor networks with scene understanding capabilities

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2006-05-01

    Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.

  20. Sensor technology workshop: Structure and goals

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A.

    1991-01-01

    The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  1. Wireless structural health monitoring of cable-stayed bridge using Imote2-platformed smart sensors

    NASA Astrophysics Data System (ADS)

    Ho, Duc-Duy; Nguyen, Khac-Duy; Lee, Po-Young; Hong, Dong-Soo; Lee, So-Young; Kim, Jeong-Tae; Shin, Sung-Woo; Yun, Chung-Bang; Shinozuka, Masanobu

    2012-04-01

    In this study, wireless structural health monitoring (SHM) system of cable-stayed bridge is developed using Imote2- platformed smart sensors. In order to achieve the objective, the following approaches are proposed. Firstly, vibrationand impedance-based SHM methods suitable for the pylon-cable-deck system in cable-stayed bridge are briefly described. Secondly, the multi-scale vibration-impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solarpowered energy harvesting is implemented for autonomous operation of the smart sensor node. Finally, the feasibility and practicality of the multi-scale sensor system is experimentally evaluated on a real cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

  2. Enabling Smart Workflows over Heterogeneous ID-Sensing Technologies

    PubMed Central

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-01-01

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved (Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour, an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitate the development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal. PMID:23202193

  3. Enabling smart workflows over heterogeneous ID-sensing technologies.

    PubMed

    Giner, Pau; Cetina, Carlos; Lacuesta, Raquel; Palacios, Guillermo

    2012-11-05

    Sensing technologies in mobile devices play a key role in reducing the gap between the physical and the digital world. The use of automatic identification capabilities can improve user participation in business processes where physical elements are involved(Smart Workflows). However, identifying all objects in the user surroundings does not automatically translate into meaningful services to the user. This work introduces Parkour,an architecture that allows the development of services that match the goals of each of the participants in a smart workflow. Parkour is based on a pluggable architecture that can be extended to provide support for new tasks and technologies. In order to facilitatethe development of these plug-ins, tools that automate the development process are also provided. Several Parkour-based systems have been developed in order to validate the applicability of the proposal.

  4. Development of mine explosion ground truth smart sensors

    SciTech Connect

    Taylor, Steven R.; Harben, Phillip E.; Jarpe, Steve; Harris, David B.

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business

  5. Potentials and problems in space applications of smart structures technology

    NASA Astrophysics Data System (ADS)

    Eaton, D. C.; Bashford, D. P.

    1994-09-01

    The well known addage 'don't run before you can walk emerging materials. It typically takes ten years before a material is sufficiently well characterized for commercial aerospace application. Much has to be learnt not only about the material properties and their susceptibility to the effects of their working environment but also about the manufacturing process and the most effective configuration related application. No project will accept a product which has no proven reliability and attractive cost effectiveness in its application. The writers firmly believe that smart structures and their related technologies must follow a similar development pattern. Indeed, faced with a range of interdisciplinary problems it seems likely that 'partially smart' techniques may well be the first applications. These will place emphasis on the more readily realizable features for any structural application. Prior use may well have been achieved in other engineering sectors. Because ground based applications are more readily accessible to check and maintain, these are generally the front runners of smart technology usage. Nevertheless, there is a strong potential for the use of smart techniques in space applications if their capabilities can be advantageously introduced when compared with traditional solutions. This paper endeavors to give a critical appraisal of the possibilities and the accompanying problems. A sample overview of related developing space technology is included. The reader is also referred to chapters 90 to 94 in ESA's Structural Materials Handbook (ESA PSS 03 203, issue 1.). It is envisaged that future space applications may include the realization and maintenance of large deployable reflector profiles, the dimensional stability of optical payloads, active noise and vibration control and in orbit health monitoring and control for largely unmanned spacecraft. The possibility of monitoring the health of items such as large cryogenic fuel tanks is a typical longer

  6. Park Smart

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.

  7. Long-term mechanical properties of smart cable based on FBG desensitized encapsulation sensors

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Zhou, Min

    2014-09-01

    In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force ( P b ) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95 P b static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86 P b working range. After 0.95 P b static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.

  8. Smart Home Technologies: Insights into Generation-Specific Acceptance Motives

    NASA Astrophysics Data System (ADS)

    Gaul, Sylvia; Ziefle, Martina

    In this research we examine the generation specific acceptance motives of eHealth technologies in order to assess the likelihood of success for these new technologies. 280 participants (14 - 92 years of age) volunteered to participate in a survey, in which using motives and barriers toward smart home technologies were explored. The scenario envisaged was the use of a medical stent implemented into the body, which monitors automatically the health status and which is able to remotely communicate with the doctor. Participants were asked to evaluate the pros and cons of the usage of this technology, their acceptance motives and potential utilization barriers. In order to understand the complex nature of acceptance, personal variables (age, technical expertise, health status), individual's cognitive concepts toward ageing as well as perceived usefulness were related. Outcomes show that trust, believe in the reliability of technology, privacy and security as well as intimacy facets are essential for acceptance and should be considered in order to proactively design a successful rollout of smart home technologies.

  9. Tech Smart: Making Discerning Technology Choices.

    ERIC Educational Resources Information Center

    McKenzie, Jamie

    2002-01-01

    Addresses the need for careful planning and discernment when adopting new educational technology to ensure gains in student performance and to achieve learning goals. Topics include focusing on philosophical commitments and program purposes; challenging claims; testing; reviewing previous experiences; evaluating; and slowing down the purchase and…

  10. Pedestrian dead reckoning using a novel sensor module that interfaces with modern smart devices

    NASA Astrophysics Data System (ADS)

    Stimac, Philip J.; Demar, Richard W.; Hewitt, Gregory F. S.; McKenna, Mark J.; Jordan, Eric M.; Fordham, Matthew; Haas, John W.

    2015-05-01

    Tracking individuals in areas such as dense urban environments and building interiors is desirable for numerous critical applications, but has been problematic mainly because of the unreliability or unavailability of GPS in many locations of interest. To date, tracking applications that utilize inertial sensors within smart devices have had varied degrees of success: accuracy typically dips below that of standard GPS within minutes and depends strongly on the quality of the sensors in the device, as well as the location that the device is carried on the body. In this paper we present a sensor module that interfaces with modern smart devices and which utilizes a low-cost, commercial-off-the-shelf, 9-axis IMU and pressure sensor to provide an advanced pedestrian dead reckoning solution. The sensor module is designed to communicate with the smart device (e.g., iOS, Android or Windows) via the audio jack and is intended for use as a beltmounted pedestrian tracker. In addition to describing the device hardware and functionality, we present our approach to processing the sensor module data streams to determine a user's position. Results using the prototype sensor module in operationally relevant scenarios is presented and discussed.

  11. Integrating novel technologies to fabricate smart scaffolds.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2008-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix functioning as a scaffold. After isolation and eventual in vitro expansion, cells are seeded on the 3D scaffolds and implanted directly or at a later stage in the patient's body. 3D scaffolds need to satisfy a number of requirements: (i) biocompatibility, (ii) biodegradability and/or bioresorbability, (iii) suitable mechanical properties, (iv) adequate physicochemical properties to direct cell-material interactions matching the tissue to be replaced and (v) ease in regaining the original shape of the damaged tissue and the integration with the surrounding environment. Still, it appears to be a challenge to satisfy all the aforementioned requisites with the biomaterials and the scaffold fabrication technologies nowadays available. 3D scaffolds can be fabricated with various techniques, among which rapid prototyping and electrospinning seem to be the most promising. Rapid prototyping technologies allow manufacturing scaffolds with a controlled, completely accessible pore network--determinant for nutrient supply and diffusion--in a CAD/CAM fashion. Electrospinning (ESP) allows mimicking the extracellular matrix (ECM) environment of the cells and can provide fibrous scaffolds with instructive surface properties to direct cell faith into the proper lineage. Yet, these fabrication methods have some disadvantages if considered alone. This review aims at summarizing conventional and novel scaffold fabrication techniques and the biomaterials used for tissue engineering and drug-delivery applications. A new trend seems to emerge in the field of scaffold design where different scaffolds fabrication technologies and different biomaterials are combined to provide cells with mechanical, physicochemical and biological cues at the macro-, micro- and nano-scale. If merged together, these integrated technologies may lead to the generation

  12. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  13. Flexible Time-Triggered Sampling in Smart Sensor-Based Wireless Control Systems

    PubMed Central

    Xia, Feng; Zhao, Wenhong

    2007-01-01

    Wireless control systems (WCSs) often have to operate in dynamic environments where the network traffic load may vary unpredictably over time. The sampling in sensors is conventionally time triggered with fixed periods. In this context, only worse-than-possible quality of control (QoC) can be achieved when the network is underloaded, while overloaded conditions may significantly degrade the QoC, even causing system instability. This is particularly true when the bandwidth of the wireless network is limited and shared by multiple control loops. To address these problems, a flexible time-triggered sampling scheme is presented in this work. Smart sensors are used to facilitate dynamic adjustment of sampling periods, which enhances the flexibility and resource efficiency of the system based on time-triggered sampling. Feedback control technology is exploited for adapting sampling periods in a periodic manner. The deadline miss ratio in each control loop is maintained at/around a desired level, regardless of workload variations. Simulation results show that the proposed sampling scheme is able to deal with dynamic and unpredictable variations in network traffic load. Compared to conventional time-triggered sampling, it leads to much better QoC in WCSs operating in dynamic environments.

  14. Design of a smart, survivable sensor system for rapid transit applications

    SciTech Connect

    Hogan, J.R.; Mitchell, J.L.

    1994-08-01

    An application of smart sensor technology developed by Sandia National Laboratories has been proposed for real-time monitoring and tracking in the transportation industry. Its primary purpose is to reduce operating costs by improving preventative maintenance scheduling, reducing the number, severity and consequence of accidents and by reducing losses due to theft. The concept uses a strap-on sensor package, the Green Box, that can be attached to any vehicle. The Green Box is designed as a valued-added component, integrated into existing transportation industry systems and standards. The device, designed to provide advanced warning of component failures, would be capable of surviving most typical accidents. In an accident, the system would send a distress signal notifying authorities of the location and condition of the cargo; permitting them to respond in the most effective manner. In addition, the Green Box is adaptable for use as a notification/locator system to enhance the security of operators and passengers for various modes of public transportation. The modular architecture which facilitates system integration in a number of different applications is discussed. A test plan for evaluating performance in both normal and abnormal operating and accident conditions is described.

  15. The need to know caregiver perspectives toward using smart home technology.

    PubMed

    Giger, Jarod T; Markward, Martha

    2011-01-01

    This article reviews the literature on adults with serious mental illness, their caregivers, and smart home technology. The article provides compelling evidence for social workers to undertake research aimed at investigating caregivers' perceptions toward using smart home technology for care of adult family members or friends with a serious mental illness. Empirical support for using smart home technologies with adults with serious mental illness is provided, and recommendations for future social work research are offered.

  16. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  17. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  18. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  19. A Combined Research/Educational Curriculum in Smart Sensors and Integrated Devices.

    ERIC Educational Resources Information Center

    Auner, G. W.; Siy, P.; Naik, R.; Wenger, L.; Liu, G-Y.; Schwiebert, L. J.

    The researchers are developing a new curriculum which integrates ongoing research efforts in the Center for Smart Sensors and Integrated Devices into a cooperative educational and traineeship program. A forerunner to this program was initiated with funding by a National Science Foundation (NSF) Combined Research and Curriculum Development (CRCD)…

  20. Mobile Sensor Technologies Being Developed

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    central command location. Web-based control and interrogation of similar mobile sensor platforms have also been demonstrated. Expected applications of this technology include robotic planetary exploration, astronaut-to-equipment communication, and remote aerospace engine inspections.

  1. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  2. Adaptive electric potential sensors for smart signal acquisition and processing

    NASA Astrophysics Data System (ADS)

    Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.

    2007-07-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.

  3. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  4. Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation

    NASA Astrophysics Data System (ADS)

    Ozer, Ekin; Feng, Maria Q.

    2017-04-01

    Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system

  5. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    NASA Astrophysics Data System (ADS)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  6. A decentralized receptance-based damage detection strategy for wireless smart sensors

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Spencer, Billie F., Jr.; Sim, Sung-Han

    2012-05-01

    Various structural health monitoring strategies have been proposed recently that can be implemented in the decentralized computing environment intrinsic to wireless smart sensor networks (WSSN). Many are based on changes in the experimentally determined flexibility matrix for the structure under consideration. However, the flexibility matrix contains only static information; much richer information is available by considering the dynamic flexibility, or receptance, of the structure. Recently, the stochastic dynamic damage locating vector (SDDLV) method was proposed based on changes of dynamic flexibility matrices employing centrally collected output-only measurements. This paper investigates the potential of the SDDLV method for implementation on a network of wireless smart sensors, where a decentralized, hierarchical, in-network processing approach is used to address issues of scalability of the SDDLV algorithm. Two approaches to aggregate results are proposed that provide robust estimates of damage locations. The efficacy of the developed strategy is first verified using wired sensors emulating a wireless sensor network. Subsequently, the decentralized damage detection strategy is implemented on MEMSIC’s Imote2 smart sensor platform and validated experimentally on a laboratory scale truss bridge.

  7. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    PubMed

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  8. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  9. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    PubMed Central

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850

  10. Neuro-inspired smart image sensor: analog Hmax implementation

    NASA Astrophysics Data System (ADS)

    Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman

    2015-03-01

    Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.

  11. Integrate modelling of smart structures for astronomy: design future technologies

    NASA Astrophysics Data System (ADS)

    Riva, M.; Moschetti, M.

    2016-07-01

    The astronomical instrumentation needs high level of image quality and stability. The quality of images processed by an optical instrument can be referred to the size of the spot and/or the point spread function (p.s.f.), while the stability is related to the displacement of the spot centroid during the observations. The importance of new design procedures for astronomical instruments through the direct design of the materials taking into account their functionalities integrating different approaches (FEM + raytracing) is then enhanced by the new upcoming requirement. Different functional materials can be joined together exploiting each peculiar property in order to realize an integrated structure better known as Smart Structure. They are capable of sensing and reacting to their environment in a predictable and desired manner, through the integration of various elements, such as sensors, actuators, power sources, signal processors, and communications network. The Paper describes possible application related to two main functional materials: piezoelectric materials and Shape Memory Alloys.

  12. Unconventional optical imaging using a high-speed neural network based smart sensor

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.

    2006-05-01

    The advancement of neural network methods and technologies is finding applications in many fields and disciplines of interest to the defense, intelligence, and homeland security communities. Rapidly reconfigurable sensors for real or near-real time signal or image processing can be used for multi-functional purposes such as image compression, target tracking, image fusion, edge detection, thresholding, pattern recognition, and atmospheric turbulence compensation to name a few. A neural network based smart sensor is described that can accomplish these tasks individually or in combination, in real-time or near real-time. As a computationally intensive example, the case of optical imaging through volume turbulence is addressed. For imaging systems in the visible and near infrared part of the electromagnetic spectrum, the atmosphere is often the dominant factor in reducing the imaging system's resolution and image quality. The neural network approach described in this paper is shown to present a viable means for implementing turbulence compensation techniques for near-field and distributed turbulence scenarios. Representative high-speed neural network hardware is presented. Existing 2-D cellular neural network (CNN) hardware is capable of 3 trillion operations per second with peta-operations per second possible using current 3-D manufacturing processes. This hardware can be used for high-speed applications that require fast convolutions and de-convolutions. Existing 3-D artificial neural network technology is capable of peta-operations per second and can be used for fast array processing operations. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented and computational and performance assessments are provided.

  13. SMART-1 Technology and Science Experiments and their Operations

    NASA Astrophysics Data System (ADS)

    Marini, A.; Lumb, R.; Dias-Almeida, M.; Foing, B. H.

    2002-01-01

    SMART-1, the first European mission to the Moon, hosts 10 Technology and science experiments run by 7 on-board instruments. The primary objective of the mission is the demonstration of the solar electric propulsion. Therefore the monitoring of the spacecraft plasma environment and the contamination produced by the Stationary Plasma thruster is a key-task, which will be carried out by two experiments (SPEDE - Spacecraft Potential, Electron and Dust Experiment - and EPDP - Electric propulsion diagnostic Package). SPEDE and EPDP will contribute also to the characterisation of the near-Earth and interplanetary plasma environment and to study the solar wind. A package of three spectroscopy and imaging instruments has been selected to run technology demonstration of miniaturised compact instrument for planetary remote sensing and for carrying out valuable science at the Moon. AMIE (Asteroid-Moon micro-Imager Experiment) is a miniature medium-resolution (30 m at 300 km height) camera, equipped with a fixed panchromatic and 3-colour filter, for Moon topography and imaging support to other experiments. D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer) is based on novel detector and filter/collimator technologies, and will perform the first global mapping of the lunar elemental composition, by looking at X-ray fluorescence in the 0.5-10 keV range. It is supported in its operation by XSM (X-ray Solar Monitor) that also monitors long-term coronal X-ray emission and solar flares. SIR is a miniature near-infrared spectrometer operating in the 0.9-2.6 μm wavelength range and will carry out mineralogical survey of the lunar crust in a previously uncovered bandwidth. Technology experiments for deep space communications are: The SMART-1 Instruments have been integrated in the Spacecraft in the current year and have undergone functional verification following environmental tests. The Experiments will be performed during two distinct phases of the SMART-1 mission

  14. Smart structures technologies for parallel kinematics in handling and assembly

    NASA Astrophysics Data System (ADS)

    Keimer, Ralf; Algermissen, Stephan; Pavlovic, Nenad; Budde, Christoph

    2007-04-01

    Parallel kinematics offer a high potential for increasing performance of machines for handling and assembly. Due to greater stiffness and reduced moving masses compared to typical serial kinematics, higher accelerations and thus lower cycle times can be achieved, which is an essential benchmark for high performance in handling and assembly. However, there are some challenges left to be able to fully exploit the potential of such machines. Some of these challenges are inherent to parallel kinematics, like a low ratio between work and installation space or a considerably changing structural elasticity as a function of the position in work space. Other difficulties arise from high accelerations, which lead to high dynamic loads inducing significant vibrations. While it is essential to cope with the challenges of parallel kinematics in the design-process, smart structures technologies lend themselves as means to face some of these challenges. In this paper a 4-degree of freedom parallel mechanism based on a triglide structure is presented. This machine was designed in a way to overcome the problem of low ratio between work and installation space, by allowing for a change of the structure's configuration with the purpose of increasing the work space. Furthermore, an active vibration suppression was designed and incorporated using rods with embedded piezoceramic actuators. The design of these smart structural parts is discussed and experimental results regarding the vibration suppression are shown. Adaptive joints are another smart structures technology, which can be used to increase the performance of parallel kinematics. The adaptiveness of such joints is reflected in their ability to change their friction attributes, whereas they can be used on one hand to suppress vibrations and on the other hand to change the degrees of freedom (DOF). The vibration suppression is achieved by increasing structural damping at the end of a trajectory and by maintaining low friction

  15. A Smart Wearable Sensor System for Counter-Fighting Overweight in Teenagers

    PubMed Central

    Standoli, Carlo Emilio; Guarneri, Maria Renata; Perego, Paolo; Mazzola, Marco; Mazzola, Alessandra; Andreoni, Giuseppe

    2016-01-01

    PEGASO is a FP7-funded project whose goal is to develop an ICT and mobile-based platform together with an appropriate strategy to tackle the diffusion of obesity and other lifestyle-related illnesses among teenagers. Indeed, the design of an engaging strategy, leveraging a complementary set of technologies, is the approach proposed by the project to promote the adoption of healthy habits such as active lifestyle and balanced nutrition and to effectively counter-fight the emergence of overweight and obesity in the younger population. A technological key element of such a strategy sees the adoption of wearable sensors to monitor teenagers’ activities, which is at the basis of developing awareness about the current lifestyle. This paper describes the experience carried out in the framework of the PEGASO project in developing and evaluating wearable monitoring systems addressed to adolescents. The paper describes the methodological approach based on the co-designing of such a wearable system and the main results that, in the first phase, involved a total of 407 adolescents across Europe in a series of focus groups conducted in three countries for the requirements definition phase. Moreover, it describes an evaluation process of signal reliability during the usage of the wearable system. The main results described here are: (a) a prototype of the standardized experimental protocol that has been developed and applied to test signal reliability in smart garments; (b) the requirements definition methodology through a co-design activity and approach to address user requirements and preferences and not only technological specifications. Such co-design approach is able to support a higher system acceptance and usability together with a sustained adoption of the solution with respect to the traditional technology push system development strategy. PMID:27517929

  16. A Smart Wearable Sensor System for Counter-Fighting Overweight in Teenagers.

    PubMed

    Standoli, Carlo Emilio; Guarneri, Maria Renata; Perego, Paolo; Mazzola, Marco; Mazzola, Alessandra; Andreoni, Giuseppe

    2016-08-10

    PEGASO is a FP7-funded project whose goal is to develop an ICT and mobile-based platform together with an appropriate strategy to tackle the diffusion of obesity and other lifestyle-related illnesses among teenagers. Indeed, the design of an engaging strategy, leveraging a complementary set of technologies, is the approach proposed by the project to promote the adoption of healthy habits such as active lifestyle and balanced nutrition and to effectively counter-fight the emergence of overweight and obesity in the younger population. A technological key element of such a strategy sees the adoption of wearable sensors to monitor teenagers' activities, which is at the basis of developing awareness about the current lifestyle. This paper describes the experience carried out in the framework of the PEGASO project in developing and evaluating wearable monitoring systems addressed to adolescents. The paper describes the methodological approach based on the co-designing of such a wearable system and the main results that, in the first phase, involved a total of 407 adolescents across Europe in a series of focus groups conducted in three countries for the requirements definition phase. Moreover, it describes an evaluation process of signal reliability during the usage of the wearable system. The main results described here are: (a) a prototype of the standardized experimental protocol that has been developed and applied to test signal reliability in smart garments; (b) the requirements definition methodology through a co-design activity and approach to address user requirements and preferences and not only technological specifications. Such co-design approach is able to support a higher system acceptance and usability together with a sustained adoption of the solution with respect to the traditional technology push system development strategy.

  17. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  18. Smart Technology for Training: Promise and Current Status. Research Report 1412.

    ERIC Educational Resources Information Center

    Gray, Wayne D.; And Others

    Intended for use by managers and developers of Army training, this report provides an introduction to "smart technology," which represents the application of cognitive and computer science to Army training problems. Differences between "intelligent tutors"--a major component of smart technology--and conventional…

  19. The Impact of SMART Board Technology on Growth in Mathematics Achievement of Gifted Learners

    ERIC Educational Resources Information Center

    Riska, Patricia A.

    2010-01-01

    This study examined whether SMART Board technology increased growth in mathematics performance of fourth grade gifted students. Gifted students in North Carolina were studied to determine if the use of SMART Board technology during mathematics instruction impacted their growth on standardized state tests. The sample consisted of 175 students from…

  20. Development of built-in type and noninvasive sensor systems for smart artificial heart.

    PubMed

    Yamagishi, Hiromasa; Sankai, Yoshiyuki; Yamane, Takashi; Jikuya, Tomoaki; Tsutsui, Tatsuo

    2003-01-01

    It is very important to grasp the artificial heart condition and the physiologic conditions for the implantable artificial heart. In our laboratory, a smart artificial heart (SAH) has been proposed and developed. An SAH is an artificial heart with a noninvasive sensor; it is a sensorized and intelligent artificial heart for safe and effective treatment. In this study, the following sensor systems for SAH are described: noninvasive blood temperature sensor system, noninvasive blood pressure sensor system, and noninvasive small blood flow sensor system. These noninvasive sensor systems are integrated and included around the artificial heart to evaluate these sensor systems for SAH by the mockup experiments and the animal experiments. The blood temperature could be measured stably by the temperature sensor system. Aortic pressure was estimated, and sucking condition was detected by the pressure sensor system. The blood flow was measured by the flow meter system within 10% error. As a result of these experiments, we confirmed the effectiveness of the sensor systems for SAH.

  1. IEEE 1451.2 based Smart sensor system using ADuc847

    NASA Astrophysics Data System (ADS)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  2. A Human-Centered Smart Home System with Wearable-Sensor Behavior Analysis

    SciTech Connect

    Ji, Jianting; Liu, Ting; Shen, Chao; Wu, Hongyu; Liu, Wenyi; Su, Man; Chen, Siyun; Jia, Zhanpei

    2016-11-17

    Smart home has recently attracted much research interest owing to its potential in improving the quality of human life. How to obtain user's demand is the most important and challenging task for appliance optimal scheduling in smart home, since it is highly related to user's unpredictable behavior. In this paper, a human-centered smart home system is proposed to identify user behavior, predict their demand and schedule the household appliances. Firstly, the sensor data from user's wearable devices are monitored to profile user's full-day behavior. Then, the appliance-demand matrix is constructed to predict user's demand on home environment, which is extracted from the history of appliance load data and user behavior. Two simulations are designed to demonstrate user behavior identification, appliance-demand matrix construction and strategy of appliance optimal scheduling generation.

  3. Integrating smart container technology into existing shipping and law enforcement infrastructure

    NASA Astrophysics Data System (ADS)

    Ferriere, Dale; Pysareva, Khrystyna; Rucinski, Andrzej

    2006-05-01

    While there has been important research and development in the area of smart container technologies, no system design methodologies have yet emerged for integrating this technology into the existing shipping and law enforcement infrastructure. A successful deployment of smart containers requires a precise understanding of how to integrate this new technology into the existing shipping and law enforcement infrastructure, how to establish communication interoperability, and how to establish procedures and protocols related to the operation of smart containers. In addition, this integration needs to be seamless, unobtrusive to commerce, and cost-effective. In order to address these issues, we need to answer the following series of questions: 1) Who will own and operate the smart container technology; 2) Who will be responsible for monitoring the smart container data and notifying first responders; 3) What communication technologies currently used by first responders might be adopted for smart container data transmission; and 4) How will existing cargo manifest data be integrated into smart container data. In short, we need to identify the best practices for smart container ownership and operation. In order to help provide answers to these questions, we have surveyed a sample group of representatives from law enforcement, first responder, regulatory, and private sector organizations. This paper presents smart container infrastructure best practices recommendations obtained from the results of the survey.

  4. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  5. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  6. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping; Zhou, Zhi

    2009-10-01

    Stay cable is one of the most critical structural components of a bridge. However, it readily suffers from fatigue damage, corrosion damage, and their coupled effects. Thus, health monitoring of stay cables is important for ensuring the integrity and safety of a bridge. A smart stay cable assembled with optical fibre Bragg grating (OFBG) strain and temperature sensors was proposed in this study. To protect the OFBG sensors against breakage in application, the OFBG sensors were first incorporated into a glass-fibre-reinforced polymer (GFRP) bar (GFRP-OFBG bar) when the bar was fabricated. To fabricate cables assembled with OFBG sensors, several GFRP-OFBG bars were inserted into the hollows of steel wires and fixed with the steel wires together at the anchorages of the cable. Therefore, the GFRP-OFBG bars can consistently deform with the steel wires in a cable and the smart stay cable can sense its own strain and temperature through OFBG sensors. The fabrication procedure of the smart stay cable was developed and the self-sensing property of the smart stay cable was calibrated. Finally, the application of the smart stay cables on the Tianjing Yonghe Bridge was demonstrated. The fatigue accumulative damage of the smart stay cables was evaluated based on field monitoring strain.

  7. A low-power CMOS smart temperature sensor for RFID application

    NASA Astrophysics Data System (ADS)

    Liangbo, Xie; Jiaxin, Liu; Yao, Wang; Guangjun, Wen

    2014-11-01

    This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is -0.69/+0.85 °C after one-point calibration over a temperature range of -40 to 100 °C. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230 × 225 μm2, and it is suitable for RFID application.

  8. Smart sensors wireless measurement network based on Bluetooth standard

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard; Jablonski, Michal

    2003-09-01

    The paper briefly describes Bluetooth standard and authors" Bluetoth sensors modules construction. At the beginning the short comparison of existing on the market standards of wireless data transmission (IEEE802.11, IEEE802.11b/g, IEEE802.11a, HomeRF, Bluetooth, Radiometrix, Motorola, IrDA) brought out by main firms is presented. Next selected Bluetooth features and functions useful to sensors wireless network creations are discussed. At the end our own Bluetooth sensor based on the newest Ericsson ROK 101 007 module is specified.

  9. Using smart phone sensors to detect transportation modes.

    PubMed

    Xia, Hao; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2014-11-04

    The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary) state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle) and wait (remaining at a location for a short period; e.g., waiting at a red traffic light). These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users.

  10. Using Smart Phone Sensors to Detect Transportation Modes

    PubMed Central

    Xia, Hao; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2014-01-01

    The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary) state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle) and wait (remaining at a location for a short period; e.g., waiting at a red traffic light). These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users. PMID:25375756

  11. Designing Smart Health Care Technology into the Home of the Future

    SciTech Connect

    Warren, S.; Craft, R.L.; Bosma, J.T.

    1999-04-07

    The US health care industry is experiencing a substantial paradigm shift with regard to home care due to the convergence of several technology areas. Increasingly-capable telehealth systems and the internet are not only moving the point of care closer to the patient, but the patient can now assume a more active role in his or her own care. These technologies, coupled with (1) the migration of the health care industry to electronic patient records and (2) the emergence of a growing number of enabling health care technologies (e.g., novel biosensors, wearable devices, and intelligent software agents), demonstrate unprecedented potential for delivering highly automated, intelligent health care in the home. This editorial paper presents a vision for the implementation of intelligent health care technology in the home of the future, focusing on areas of research that have the highest potential payoff given targeted government funding over the next ten years. Here, intelligent health care technology means smart devices and systems that are aware of their context and can therefore assimilate information to support care decisions. A systems perspective is used to describe a framework under which devices can interact with one another in a plug-and-play manner. Within this infrastructure, traditionally passive sensors and devices will have read/write access to appropriate portions of an individual's electronic medical record. Through intelligent software agents, plug-and-play mechanisms, messaging standards, and user authentication tools, these smart home-based medical devices will be aware of their own capabilities, their relationship to the other devices in the home system, and the identity of the individual(s) from whom they acquire data. Information surety technology will be essential to maintain the confidentiality of patient-identifiable medical information and to protect the integrity of geographically dispersed electronic medical records with which each home

  12. Broadband Electric-Field Sensor Array Technology

    DTIC Science & Technology

    2012-08-05

    and lithium niobate is a promising technology for broadband electric field sensor arrays. The results of this research program advance the state-of...interfaces without the use of an intermediate layer. Direct bonding typically requires very flat surfaces, demanding process technology , and...REPORT Broadband Electric-Field Sensor Array Technology 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report the development of a broadband electric

  13. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture

    PubMed Central

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-01-01

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205

  14. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

    PubMed

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-07-10

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  15. Independence and shared decision making: the role of smart home technology in empowering older adults.

    PubMed

    Demiris, George

    2009-01-01

    This study aims to explore the concepts of independence and shared decision making in the context of smart home technologies for older adults. We conducted a Delphi study with three rounds involving smart home designers, and researchers as well as community dwelling older adults. While there were differences in the way different stakeholders define these concepts, the study findings provide clear implications for the design, implementation and evaluation of smart home applications.

  16. Intelligent instance selection of data streams for smart sensor applications

    NASA Astrophysics Data System (ADS)

    Galan, Magdiel; Liu, Huan; Torkkola, Kari

    2005-03-01

    The purpose of our work is to mine streaming data from a variety of hundreds of automotive sensors in order to develop methods to minimize driver distraction from in-vehicle communications and entertainment systems such as audio/video devices, cellphones, PDAs, Fax, eMail, and other messaging devices. Our endeavor is to create a safer driving environment, by providing assistance in the form of warning, delaying, or re-routing, incoming signals if the assistance system detects that the driver is performing, or is about to perform, a critical maneuver, such as passing, changing lanes, making a turn, or during a sudden evasive maneuver. To accomplish this, our assistance system relies on maneuver detection by continuously evaluating various embedded vehicle sensors, such as speed, steering, acceleration, lane distance, and many others, combined into representing an instance of the "state" of the vehicle. One key issue is how to effectively and efficiently monitor many sensors with constant data streams. Data streams have their unique characteristics and may produce data that is not relevant or pertinent to a maneuver. We propose an adaptive sampling method that takes advantage of these unique characteristics and develop algorithms that attempt to select relevant and important instances to determine which sensors to monitor and how to provide quick and effective responses to this type of mission critical situations. This work can be extended to many similar sensor applications with data streams.

  17. Integrating modelling and smart sensors for environmental and human health.

    PubMed

    Reis, Stefan; Seto, Edmund; Northcross, Amanda; Quinn, Nigel W T; Convertino, Matteo; Jones, Rod L; Maier, Holger R; Schlink, Uwe; Steinle, Susanne; Vieno, Massimo; Wimberly, Michael C

    2015-12-01

    Sensors are becoming ubiquitous in everyday life, generating data at an unprecedented rate and scale. However, models that assess impacts of human activities on environmental and human health, have typically been developed in contexts where data scarcity is the norm. Models are essential tools to understand processes, identify relationships, associations and causality, formalize stakeholder mental models, and to quantify the effects of prevention and interventions. They can help to explain data, as well as inform the deployment and location of sensors by identifying hotspots and areas of interest where data collection may achieve the best results. We identify a paradigm shift in how the integration of models and sensors can contribute to harnessing 'Big Data' and, more importantly, make the vital step from 'Big Data' to 'Big Information'. In this paper, we illustrate current developments and identify key research needs using human and environmental health challenges as an example.

  18. Integrating modelling and smart sensors for environmental and human health

    PubMed Central

    Reis, Stefan; Seto, Edmund; Northcross, Amanda; Quinn, Nigel W.T.; Convertino, Matteo; Jones, Rod L.; Maier, Holger R.; Schlink, Uwe; Steinle, Susanne; Vieno, Massimo; Wimberly, Michael C.

    2015-01-01

    Sensors are becoming ubiquitous in everyday life, generating data at an unprecedented rate and scale. However, models that assess impacts of human activities on environmental and human health, have typically been developed in contexts where data scarcity is the norm. Models are essential tools to understand processes, identify relationships, associations and causality, formalize stakeholder mental models, and to quantify the effects of prevention and interventions. They can help to explain data, as well as inform the deployment and location of sensors by identifying hotspots and areas of interest where data collection may achieve the best results. We identify a paradigm shift in how the integration of models and sensors can contribute to harnessing ‘Big Data’ and, more importantly, make the vital step from ‘Big Data’ to ‘Big Information’. In this paper, we illustrate current developments and identify key research needs using human and environmental health challenges as an example. PMID:26644778

  19. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  20. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    PubMed Central

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  1. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  2. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  3. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  4. Gaussian beam displacement sensor for monitoring interstory drift in smart buildings

    NASA Astrophysics Data System (ADS)

    Bennett, Kim D.; Hoover, C. W., III; Chen, Ru Z.; Plone, M. D.

    1994-05-01

    A method for measuring lateral displacements in structures is proposed based on the motion of a Gaussian optical beam. A sensor is designed and constructed using the free space output of a single mode optical fiber, which well approximates the Gaussian intensity distribution, and is tested in both quasi-static and dynamic displacement modes. Good agreement between the experimental data and the predicted output is obtained for small displacements of the size expected in real buildings. It is envisioned that this sensor could serve as the input to an active control system used to stabilize smart buildings experiencing earthquake and wind loads.

  5. The Next-Generation Power Electronics Technology for Smart Grids

    NASA Astrophysics Data System (ADS)

    Akagi, Hirofumi

    This paper presents an overview of the next-generation power electronics technology for the Japanese-version smart grid. It focuses on a grid-level battery energy storage system, a grid-level STATCOM (STATic synchronous COMpensator), and a 6.6-kV BTB (Back-To-Back) system for power flow control between two power distribution feeders. These power electronic devices play an important role in achieving load frequency control and voltage regulation. Their circuit configurations based on modular multilevel cascade PWM converters are characterized by flexible system design, low voltage steps, and low EMI (Electro-Magnetic Interference) emission. Their downscaled laboratory models are designed, constructed, and tested to verify the viability and effectiveness of the circuit configurations and control methods.

  6. Emerging roles for telemedicine and smart technologies in dementia care

    PubMed Central

    Bossen, Ann L; Kim, Heejung; Williams, Kristine N; Steinhoff, Andreanna E; Strieker, Molly

    2015-01-01

    Demographic aging of the world population contributes to an increase in the number of persons diagnosed with dementia (PWD), with corresponding increases in health care expenditures. In addition, fewer family members are available to care for these individuals. Most care for PWD occurs in the home, and family members caring for PWD frequently suffer negative outcomes related to the stress and burden of observing their loved one’s progressive memory and functional decline. Decreases in cognition and self-care also necessitate that the caregiver takes on new roles and responsibilities in care provision. Smart technologies are being developed to support family caregivers of PWD in a variety of ways, including provision of information and support resources online, wayfinding technology to support independent mobility of the PWD, monitoring systems to alert caregivers to changes in the PWD and their environment, navigation devices to track PWD experiencing wandering, and telemedicine and e-health services linking caregivers and PWD with health care providers. This paper will review current uses of these advancing technologies to support care of PWD. Challenges unique to widespread acceptance of technology will be addressed and future directions explored. PMID:26636049

  7. FPGA-based fused smart sensor for real-time plant-transpiration dynamic estimation.

    PubMed

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  8. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    PubMed Central

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  9. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  10. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  11. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow.

    PubMed

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-12-15

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system.

  12. Sensor Technology and Performance Characteristics

    EPA Science Inventory

    The US EPA is currently involved in detailed laboratory and/or field studies involving a wide variety of low cost air quality sensors currently being made available to potential citizen scientists. These devices include sensors associated with the monitoring of nitrogen dioxide (...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    EPA Science Inventory

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  14. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    PubMed Central

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  15. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-01

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system. PMID:26840316

  16. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  17. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments.

    PubMed

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-07-02

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  18. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    PubMed Central

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-01-01

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital. PMID:24991942

  19. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  20. Designing and Securing an Event Processing System for Smart Spaces

    ERIC Educational Resources Information Center

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  1. The smart highway project: Smart highways, smart vehicles, smart engineering

    NASA Technical Reports Server (NTRS)

    Pethtel, Ray D.

    1996-01-01

    The Smart Highway project is a six mile, limited access roadway being built between Interstate 81 and Blacksburg, Virginia. The initial construction segment will be two miles long and is designed to serve as a test bed and test track for Intelligent Transportation Systems (ITS) research. The Center for Transportation Research (CTR) at Virginia Tech is developing three evaluation tools for its ITS research including DYNAVIMTS (a software framework), and the FLASH Lab (a 1/15th scale model highway and vehicle system). The Smart Highway rounds out the Center's evaluation methodology by allowing full scale operational tests, evaluations, and research under both experimental and conventional traffic conditions. Currently under development is a concept for a fully automated highway using a 'Cooperative Infrastructure Managed System' which involves ultra wide band communication beacons installed in the infrastructure with appropriate sensors, receivers and processors on board the vehicles. The project is part of the research program funded by the National Automated Highway System Consortium. The CTR hopes to develop the automated concept to prototype status by 1997. Other smart transportation and smart engineering concepts are proposed. This presentation will address the goals and objectives of the Smart Highway project, overview its status and importance to the region, and identify some of the transportation technology now under development and planned in the future.

  2. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    NASA Astrophysics Data System (ADS)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  3. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks.

    PubMed

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2016-06-13

    In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens' quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.

  4. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks

    PubMed Central

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2016-01-01

    In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens’ quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%. PMID:27304957

  5. Sensor technology to support Aging in Place.

    PubMed

    Rantz, Marilyn J; Skubic, Marjorie; Miller, Steven J; Galambos, Colleen; Alexander, Greg; Keller, James; Popescu, Mihail

    2013-06-01

    Older adults want to age in place at home. Sensor technology has the potential to help by monitoring individuals' health status, detecting emergency situations, and notifying health care providers. Researchers at the University of Missouri are investigating the impact of registered nurse care coordination and technology on the ability of older adults to age in place. Technology coupled with care coordination has improved clinical outcomes. This article presents an overview of the Aging in Place research, TigerPlace as a Missouri-sponsored Aging in Place facility, and the sensor technology developed to support Aging in Place.

  6. Implications of smart wear technology for family caregiving relationships: focus group perceptions.

    PubMed

    Hall, Scott S; Kandiah, Jayanthi; Saiki, Diana; Nam, Jinhee; Harden, Amy; Park, Soonjee

    2014-10-01

    Technological advances in monitoring vulnerable care-recipients are on the rise. Recent and future development of Smart Wear technology (devices integrated into clothing that monitor care-recipients) might assist family caregivers with tasks related to caring for young children, relatives with disabilities, and frail spouses or parents. However, the development and use of this technology in family caregiving contexts is in its infancy. Focus group interviews of family caregivers were conducted to explore perspectives regarding the potential integration of Smart Wear technology into their family caregiving. Responses were analyzed qualitatively for themes related to perceptions of how Smart Wear could impact relationships between caregivers and care-recipients. Three major themes emerged: quality and quantity of interaction, boundary issues, and implications for anxiety. Implications and recommendations are discussed regarding maximizing the potential benefits of Smart Wear technology in ways that promote and protect healthy relationships among caregivers and care-recipients.

  7. Health smart cards: merging technology and medical information.

    PubMed

    Ward, Sherry R

    2003-01-01

    Smart cards are credit card-sized plastic cards, with an embedded dime-sized Integrated Circuit microprocessor chip. Smart cards can be used for keyless entry, electronic medical records, etc. Health smart cards have been in limited use since 1982 in Europe and the United States, and several barriers including lack of infrastructure, low consumer confidence, competing standards, and cost continue to be addressed.

  8. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.

    PubMed

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-12-30

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  9. SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE.

    PubMed

    Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro

    2016-03-22

    Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors' data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport.

  10. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System

    PubMed Central

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-01-01

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics. PMID:28042820

  11. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  12. Smart Sensors Based on Integrated Optics and Microelectromechanical Systems

    DTIC Science & Technology

    2007-11-02

    systems (MEMS), and digital signal processing (DSP). The synergistic integration of these three technologies provides the advantages of high...the digital battlefield. MEMS technology enables the fabrication of three dimensional , miniature (micron-sized features), and environmentally...MEMS Flexure Beam ………………………………………. 6 2.3 A Novel Digital Demodulation Algorithm ……………………………………………….. 11 2.3.1 Dynamic Range of

  13. In situ fabricated smart material active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Lin, Bin

    2004-02-01

    Structural health monitoring (SHM) is currently using piezoelectric wafer active sensors (PWAS) permanently attached to the structure with adhesives. This is often a burdensome and time-consuming task, especially for large structures such as aircraft, bridges, etc. In addition, there are critical applications where the rigid piezoceramic wafers cannot conform to curved surfaces. Another important issue is the long term durability of the bonded interface between the PWAS and the structure, which is often the durability weak link. An in-situ fabricated smart sensor may offer better durability. This paper considers the possibility of fabricating the PWAS directly to the substrate structure in order to alleviate these problems. The paper starts with a review of the state of the art in active composite fabrication. Then, two concepts are considered: the piezomagnetic composite sensor and the piezoelectric composite PWAS. The piezomagnetic composite was fabricated using Terfenol-D magnetostrictive powder in a fiber reinforced composite beam. The strain-induced magnetic field was detected with a Lakeshore gaussmeter. The piezoelectric composite sensor was prepared by mixing lead zirconate titanate (PZT) particles in an epoxy resin. The mixture was applied onto the structural surface using a mask. After curing, the piezo composite was sanded down to the desired thickness and poled under a high electric field. The resulting in-situ composite PWAS was utilized as a sensor for dynamic vibration and impact. Characterization of the in-situ composite PWAS on aluminum structure have been recorded and compared with ceramic PWAS before and after poling. To evaluate the performance of the in-situ composite PWAS, both vibration and impact tests were conducted. Both experiments indicated that in-situ fabrication of active materials composites poses itself as a good candidate for reliable low-cost option for SHM smart sensor fabrication.

  14. The Savannah River Technology Center, a leader in sensor technology

    SciTech Connect

    Stewart, W.C.

    1993-12-01

    This publication highlights the capabilities and achievements of the Savannah River Technology Center in the field of sensor technology. Sensors are developed to provide solutions for environmental and chemical analysis. Most of their sensor systems are based upon fiber optics. Fiber optic probes function in three main modes: as a reflected light probe, from opaque samples; as a transreflectance probe, which sample light reflected back from samples which can pass light; and a flow cell, which monitors light transmitted through a path which passes the process stream being tested. The sensor group has developed fiber optic based temperature probes, has combined fiber optics with sol-gel technology to monitor process streams using chemical indicators, has done development work on slip stream on-line sampling of chemical process streams, has developed software to aid in the analysis of chemical solutions, and has applied this technology in a wide range of emerging areas.

  15. Implementing Smart School Technology at the Secondary Level.

    ERIC Educational Resources Information Center

    Stallard, Charles K.

    This paper describes the characteristics of "smart schools" and offers guidelines for developing such schools. Smart schools are defined as having three features: (1) they are computer networked via local area networks in order to share information through teleconferencing, databases, and electronic mail; (2) they are connected beyond…

  16. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    SciTech Connect

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.; Zimmerle, D.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  17. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    SciTech Connect

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth; Roche, Robin; Earle, Lieko; Christensen, Dane; Bauleo, Pablo; Zimmerle, Daniel

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  18. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry

    PubMed Central

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-01

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859

  19. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    PubMed

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  20. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry.

    PubMed

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-07

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm.

  1. Investigation of various criteria for evaluation of aluminum thin foil ''smart sensors'' images

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Eremin, A. V.; Lyubutin, P. S.; Burkov, M. V.

    2014-10-01

    Various criteria for processing of aluminum foil ''smart sensors'' images for fatigue evaluation of carbon fiber reinforced polymer (CFRP) were analyzed. There are informative parameters used to assess image quality and surface relief and accordingly to characterize the fatigue damage state of CFRP. The sensitivity of all criteria to distortion influences, particularly, to Gaussian noise, blurring and JPEG compression was investigated. The main purpose of the research is related to the search of informative parameters for fatigue evaluation, which are the least sensitive to different distortions.

  2. Smart City Surveillance Through Low-Cost Fiber Sensors in Metropolitan Optical Networks

    NASA Astrophysics Data System (ADS)

    Bourmpos, Michail; Argyris, Apostolos; Syvridis, Dimitris

    2014-05-01

    A continuously growing number of municipalities has optical fiber networks supporting communications at their disposal. These fiber installations can also be utilized to convey low data optical signals from a large number of deployed sensing elements, usually positioned in critical infrastructure locations, providing a variety of useful information. Such information can be used in the context of a "smart city" to provide citizens with higher-level services or even to proactively ensure public security and safety. This work demonstrates a fiber sensing network based on low-cost fiber Bragg grating sensors that are able to appropriately oversee diverse monitoring parameters.

  3. Smart Order Routing Technology in the New European Equity Trading Landscape

    NASA Astrophysics Data System (ADS)

    Ende, Bartholomäus; Gomber, Peter; Lutat, Marco

    In Europe, fragmentation of execution venues has been triggered by increasing competition among markets and a new regulatory environment set up by MiFID. Against this background, IT-based sophisticated order routing systems (Smart Order Routing systems) promise to assure efficiency despite fragmented markets. This raises the question on the relevance and economic value of this technology in European equity trading. Based on order book data for EURO STOXX 50 securities of ten European electronic execution venues, this paper assesses the potential of Smart Order Routing technology by measuring the performance of actual executions in European order book trading relative to a Smart Order Router implementation that detects and accesses best European prices. We identify 6.71% full trade troughs and 6.45% partial trade-throughs in our dataset enabling for significant absolute and relative savings. This indicates that Smart Order Routing technology can provide business value by improving order executions in European cross-tradable equities.

  4. Brain temperature measurement: A study of in vitro accuracy and stability of smart catheter temperature sensors.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Wu, Zhizhen; Ahn, Chong H; LeDoux, David; Shutter, Lori A; Hartings, Jed A; Narayan, Raj K

    2012-02-01

    The injured brain is vulnerable to increases in temperature after severe head injury. Therefore, accurate and reliable measurement of brain temperature is important to optimize patient outcome. In this work, we have fabricated, optimized and characterized temperature sensors for use with a micromachined smart catheter for multimodal intracranial monitoring. Developed temperature sensors have resistance of 100.79 ± 1.19Ω and sensitivity of 67.95 mV/°C in the operating range from15-50°C, and time constant of 180 ms. Under the optimized excitation current of 500 μA, adequate signal-to-noise ratio was achieved without causing self-heating, and changes in immersion depth did not introduce clinically significant errors of measurements (<0.01°C). We evaluated the accuracy and long-term drift (5 days) of twenty temperature sensors in comparison to two types of commercial temperature probes (USB Reference Thermometer, NIST-traceable bulk probe with 0.05°C accuracy; and IT-21, type T type clinical microprobe with guaranteed 0.1°C accuracy) under controlled laboratory conditions. These in vitro experimental data showed that the temperature measurement performance of our sensors was accurate and reliable over the course of 5 days. The smart catheter temperature sensors provided accuracy and long-term stability comparable to those of commercial tissue-implantable microprobes, and therefore provide a means for temperature measurement in a microfabricated, multimodal cerebral monitoring device.

  5. Optic fiber sensor-based smart bridge cable with functionality of self-sensing

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Jinping, Ou

    2013-02-01

    Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.

  6. Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range.

    PubMed

    Awqatty, Becker; Samaddar, Shayak; Cash, Kevin J; Clark, Heather A; Dubach, J Matthew

    2014-10-21

    The advanced functionality of portable devices such as smart phones provides the necessary hardware to potentially perform complex diagnostic measurements in any setting. Recent research and development have utilized cameras and data acquisition properties of smart phones to create diagnostic approaches for a variety of diseases or pollutants. However, in concentration measurements, such as blood glucose, the performance of handheld diagnostic devices depends largely on the sensing mechanism. To expand measurements to multiple components, often necessary in medical tests, with a single diagnostic device, robust platform based sensors are needed. Here, we developed a suite of dual wavelength fluorescent sensors with response characteristics necessary to measure each component of a basic metabolic panel, a common clinical measurement. Furthermore, the response of these sensors could be measured with a simple optical setup to convert a smart phone into a fluorescence measurement instrument. This approach could be used as a mobile basic metabolic panel measurement system for point of care diagnostics.

  7. SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE

    PubMed Central

    Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro

    2016-01-01

    Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors’ data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport. PMID:27011192

  8. Characterization, Monitoring and Sensor Technology Integrated Program

    SciTech Connect

    Not Available

    1993-04-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D&D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project.

  9. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  10. Assessment of the Impact of Smart Board Technology System Use on Student Learning, Satisfaction, and Performance

    ERIC Educational Resources Information Center

    Warnock, Stuart H.; Boykin, Nancy J.; Tung, Wei Chih

    2011-01-01

    Literature on educational technology touts its potential for enhancing student outcomes such as learning, satisfaction, and performance. But are these benefits universal and do they apply to all applications and/or forms of educational technology? This study focuses on one such system, the Smart Board Technology System (SBTS) and the impact its…

  11. Indoor-Outdoor Detection Using a Smart Phone Sensor

    PubMed Central

    Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei

    2016-01-01

    In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users’ current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station’s signal strength in different environments, and identified the users’ current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability. PMID:27669252

  12. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  13. Technology and science from Earth to Moon: SMART-1 experiments and their operations

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Lumb, R.; Racca, G. D.; Foing, B. H.; Dias-Almeida, M.

    2002-10-01

    SMART-1, the first European mission to the Moon aimed at demonstrating the Solar Electric propulsion hosts 10 Technology and Science experiments. The monitoring of the spacecraft plasma environment and the thruster contamination produced by thruster is carried out by SPEDE (Spacecraft Potential, Electron and Dust Experiment) and EPDP (Electric Propulsion Diagnostic Package). The miniaturised remote sensing instruments on-board SMART-1 are: AMIE (Advanced Moon micro-Imager Experiment), D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer), supported in its operation by XSM (X-ray Solar Monitor), and SIR (SMART-1 Infrared Spectrometer). Technology experiments for deep-space communications and navigation are: KATE (Ka-Band TT&C Experiment), based on X/Kaband transponder which also supports RSIS (Radio-Science Investigations for SMART-1), Laser-link, demonstrating a deep-space laser communication link and OBAN (On-Board Autonomous Navigation experiment). The Experiments will be performed during two distinct phases of the SMART-1 mission, including 17-month Earth escape phase and a nominal 6-month operational phase in elliptical Moon orbit. The SMART-1 STOC (Science and Technology Operations Co-ordination) carries out the planning and co-ordination of the Technology and science experiments.

  14. Organizational and technological correlates of nurses’ trust in a smart IV pump

    PubMed Central

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-01-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses’ ratings of trust in a smart IV pump. Nurse’s trust in new technologies can influence how technologies are used. Trust in technology is defined as a person’s belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, over trust, distrust, and mistrust. Trust in technology is also related to several use specific outcomes, including appropriate use and inappropriate use such as over reliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart IV pump. The survey assessed trust in the IV pump and other elements of the sociotechnical system, individual characteristics, technology characteristics and organizational characteristics. Results show perceptions of usefulness, safety, ease of use and usability are related to ratings of trust in smart IV pumps. Other work system factors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses’ trust in smart IV pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart IV pumps and health systems. Recommendations for appropriately trustworthy smart IV pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems. PMID:23321482

  15. Organizational and technological correlates of nurses' trust in a smart intravenous pump.

    PubMed

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-03-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses' ratings of trust in a smart intravenous pump. Nurses' trust in new technologies can influence how technologies are used. Trust in technology is defined as a person's belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, overtrust, distrust, and mistrust. Trust in technology is also related to several use-specific outcomes, including appropriate use and inappropriate use such as overreliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart intravenous pump. The survey assessed trust in the intravenous pump and other elements of the sociotechnical system, individual characteristics, technology characteristics, and organizational characteristics. Results show that perceptions of usefulness, safety, ease of use, and usability are related to ratings of trust in smart intravenous pumps. Other work systemfactors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses' trust in smart intravenous pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart intravenous pumps and health systems. Recommendations for appropriately trustworthy smart intravenous pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems.

  16. A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances

    PubMed Central

    Granados-Lieberman, David; Valtierra-Rodriguez, Martin; Morales-Hernandez, Luis A.; Romero-Troncoso, Rene J.; Osornio-Rios, Roque A.

    2013-01-01

    Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage (Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through HT and Parseval's theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively. PMID:23698264

  17. A technique for autonomous structural damage detection with smart wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Mao, Y. K.; Tang, Y. L.; Wang, J. X.

    2010-03-01

    In this paper, a distributed structural damage detection approach is proposed for large size structures under limited input and output measurements. A large size structure is decomposed into small size substructures based on its finite element formulation. Interaction effect between adjacent substructures is considered as 'additional unknown inputs' to each substructure. By sequentially utilizing the extended Kalman estimator for the extended state vector and the least squares estimation for the unmeasured inputs, the approach can not only estimate the 'additional unknown inputs' based on their formulations but also identify structural dynamic parameters, such as the stiffness and damping of each substructure. Local structural damage in the large size structure can be detected by tracking the changes in the identified values of structural dynamic parameters at element level, e.g., the degrading of stiffness parameters. Numerical example of detecting structural local damages in a large-size plane truss bridge illustrates the efficiency of the proposed approach. A new smart wireless sensor network is developed by the authors to combine with the proposed approach for autonomous structural damage detection of large size structures. The distributed structural damage detection approach can be embedded into the smart wireless sensor network based on its two-level cluster-tree topology architecture and the distributed computation capacity of each cluster head.

  18. A Hilbert transform-based smart sensor for detection, classification, and quantification of power quality disturbances.

    PubMed

    Granados-Lieberman, David; Valtierra-Rodriguez, Martin; Morales-Hernandez, Luis A; Romero-Troncoso, Rene J; Osornio-Rios, Roque A

    2013-04-25

    Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage (Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through HT and Parseval's theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

  19. Smart Sensor for Real-Time Quantification of Common Symptoms Present in Unhealthy Plants

    PubMed Central

    Contreras-Medina, Luis M.; Osornio-Rios, Roque A.; Torres-Pacheco, Irineo; Romero-Troncoso, Rene de J.; Guevara-González, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Plant responses to physiological function disorders are called symptoms and they are caused principally by pathogens and nutritional deficiencies. Plant symptoms are commonly used as indicators of the health and nutrition status of plants. Nowadays, the most popular method to quantify plant symptoms is based on visual estimations, consisting on evaluations that raters give based on their observation of plant symptoms; however, this method is inaccurate and imprecise because of its obvious subjectivity. Computational Vision has been employed in plant symptom quantification because of its accuracy and precision. Nevertheless, the systems developed so far lack in-situ, real-time and multi-symptom analysis. There exist methods to obtain information about the health and nutritional status of plants based on reflectance and chlorophyll fluorescence, but they use expensive equipment and are frequently destructive. Therefore, systems able of quantifying plant symptoms overcoming the aforementioned disadvantages that can serve as indicators of health and nutrition in plants are desirable. This paper reports an FPGA-based smart sensor able to perform non-destructive, real-time and in-situ analysis of leaf images to quantify multiple symptoms presented by diseased and malnourished plants; this system can serve as indicator of the health and nutrition in plants. The effectiveness of the proposed smart-sensor was successfully tested by analyzing diseased and malnourished plants. PMID:22368496

  20. Smart sensor for real-time quantification of common symptoms present in unhealthy plants.

    PubMed

    Contreras-Medina, Luis M; Osornio-Rios, Roque A; Torres-Pacheco, Irineo; Romero-Troncoso, Rene de J; Guevara-González, Ramon G; Millan-Almaraz, Jesus R

    2012-01-01

    Plant responses to physiological function disorders are called symptoms and they are caused principally by pathogens and nutritional deficiencies. Plant symptoms are commonly used as indicators of the health and nutrition status of plants. Nowadays, the most popular method to quantify plant symptoms is based on visual estimations, consisting on evaluations that raters give based on their observation of plant symptoms; however, this method is inaccurate and imprecise because of its obvious subjectivity. Computational Vision has been employed in plant symptom quantification because of its accuracy and precision. Nevertheless, the systems developed so far lack in-situ, real-time and multi-symptom analysis. There exist methods to obtain information about the health and nutritional status of plants based on reflectance and chlorophyll fluorescence, but they use expensive equipment and are frequently destructive. Therefore, systems able of quantifying plant symptoms overcoming the aforementioned disadvantages that can serve as indicators of health and nutrition in plants are desirable. This paper reports an FPGA-based smart sensor able to perform non-destructive, real-time and in-situ analysis of leaf images to quantify multiple symptoms presented by diseased and malnourished plants; this system can serve as indicator of the health and nutrition in plants. The effectiveness of the proposed smart-sensor was successfully tested by analyzing diseased and malnourished plants.

  1. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  2. The Potential for Quantum Technology Gravity Sensors

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2016-04-01

    Gravity measurements are widely used in geophysics for the detection of subsurface cavities such as sinkhole and past mine workings. The chief advantage of gravity compared to other geophysical techniques is that it is passive method which cannot be shielded by intervening features or ground giving it no theoretical limitations on penetration depth beyond the resolution of the instrument, and that it responds to an absence of mass as opposed to a proxy ground property like other techniques. However, current instruments are limited both by their resolution and by sources of environmental noise. This can be overcome with the imminent arrival of gravity sensors using quantum technology (QT) currently developed and constructed by the QT-Hub in Sensors and Metrology, which promise a far greater resolution. The QT sensor uses a technique called atom interferometry, where cold atoms are used as ideal test-masses to create a gravity sensor which can measure a gravity gradient rather than an absolute value. This suppresses several noise sources and creates a sensor useful in everyday applications. The paper will present computer simulations of buried targets and noise sources to explore the potential uses of these new sensors for a range of applications including pipes, tunnels and mine shafts. This will provide information on the required resolution and sensitivity of any new sensor if it is to deliver the promised step change in geophysical detection capability.

  3. Assessment of Sensor Technologies for Advanced Reactors

    SciTech Connect

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.; Kisner, Roger A.; Britton, Jr, Charles L.; Wootan, D. W.; Anheier, Jr, N. C.; Diaz, A. A.; Hirt, E. H.; Chien, H. T.; Sheen, S.; Bakhtiari, Sasan; Gopalsami, S.; Heifetz, A.; Tam, S. W.; Park, Y.; Upadhyaya, B. R.; Stanford, A.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  4. Smart nanosystems: Bio-inspired technologies that interact with the host environment

    PubMed Central

    Kwon, Ester J.; Lo, Justin H.; Bhatia, Sangeeta N.

    2015-01-01

    Nanoparticle technologies intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Here, we describe smart nanosystems classified in two categories: (i) those that sense the host environment and respond and (ii) those that first prime the host environment to interact with engineered nanoparticles. Smart nanosystems have the potential to produce personalized diagnostic and therapeutic schema by using the local environment to drive material behavior and ultimately improve human health. PMID:26598694

  5. Report of the sensor cooler technology panel

    NASA Technical Reports Server (NTRS)

    Ross, Ronald; Castles, S.; Gautier, N.; Kittel, P.; Ludwigsen, J.

    1991-01-01

    The Sensor Cooler Technology Panel identified three major areas in which technology development must be supported in order to meet the system performance requirements for the Astrotech 21 mission set science objectives. They are: long life vibration free refrigerators; mechanical refrigeration for 2 K to 5 K; and flight testing of emerging prototype refrigerators. A development strategy and schedule were recommended for each of the three areas.

  6. NSF/ESF Workshop on Smart Structures and Advanced Sensors, Santorini Island, Greece, June 26-28, 2005: Structural Actuation and Adaptation Working Group

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Tomizuka, Masayoshi; Bergman, Lawrence; Carpenter, Bernie; Salzano, Carmine; Bairrao, rogerio; Deraemaker, Arnaud; Magonette, Georges; Rodellar, Jose; Kadirkamanathan, Visaken

    2005-01-01

    This document is a result of discussions that took place during the workshop. It describes current state of research and development (R&D) in the areas of structural actuation and adaptation in the context of smart structures and advanced sensors (SS&AS), and provides an outlook to guide future R&D efforts to develop technologies needed to build SS&AS. The discussions took place among the members of the Structural Actuation and Adaptation Working Group, as well as in general sessions including all four working groups. Participants included members of academia, industry, and government from the US and Europe, and representatives from China, Japan, and Korea.

  7. Optimization of piezoelectric energy harvester for wireless smart sensors in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2013-04-01

    Wireless sensor network is one of the prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. Nowadays, most of vibration based energy harvesters are designed at resonance. However, as railway vibration frequency is a wide band range, how to design an energy harvester working at that range is critical. In this paper, the energy consumption of the wireless smart sensor platform, Imote2, at different working states were investigated. Based on the energy consumption, a design of a bimorph cantilever piezoelectric energy harvester has been optimized to generate maximum average power between a wide-band frequency range. Significant power and current outputs have been increased after optimal design. Finally, the rechargeable battery life for supplying the Imote2 for railway monitoring is predicted by using the optimized piezoelectric energy harvesting system.

  8. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    PubMed Central

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B.; van Dieën, Jaap H.

    2016-01-01

    Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation. PMID:27834911

  9. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  10. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    PubMed

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  11. Passive autonomous infrared sensor technology

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz

    1987-10-01

    This study was conducted in response to the DoD's need for establishing understanding of algorithm's modules for passive infrared sensors and seekers and establishing a standardized systematic procedure for applying this understanding to DoD applications. We quantified the performances of Honeywell's Background Adaptive Convexity Operator Region Extractor (BACORE) detection and segmentation modules, as functions of a set of image metrics for both single-frame and multiframe processing. We established an understanding of the behavior of the BACORE's internal parameters. We characterized several sets of stationary and sequential imagery and extracted TIR squared, TBIR squared, ESR, and range for each target. We generated a set of performance models for multi-frame processing BACORE that could be used to predict the behavior of BACORE in image metric space. A similar study was conducted for another of Honeywell's segmentors, namely Texture Boundary Locator (TBL), and its performances were quantified. Finally, a comparison of TBL and BACORE on the same data base and same number of frames was made.

  12. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  13. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls

    SciTech Connect

    Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay; Chong, Edwin K. P.; Hale, Elaine

    2016-03-01

    The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.

  14. Integration of GMR Sensors with Different Technologies

    PubMed Central

    Cubells-Beltrán, María-Dolores; Reig, Càndid; Madrenas, Jordi; De Marcellis, Andrea; Santos, Joana; Cardoso, Susana; Freitas, Paulo P.

    2016-01-01

    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications. PMID:27338415

  15. Smart learning services based on smart cloud computing.

    PubMed

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  16. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  17. Wireless network system based multi-non-invasive sensors for smart home

    NASA Astrophysics Data System (ADS)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  18. Chemical sensors technology development planning workshop

    SciTech Connect

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  19. Development of a smart home simulator for use as a heuristic tool for management of sensor distribution.

    PubMed

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2009-01-01

    Smart Homes offer potential solutions for various forms of independent living for the elderly. The assistive and protective environment afforded by smart homes offer a safe, relatively inexpensive, dependable and viable alternative to vulnerable inhabitants. Nevertheless, the success of a smart home rests upon the quality of information its decision support system receives and this in turn places great importance on the issue of correct sensor deployment. In this article we present a software tool that has been developed to address the elusive issue of sensor distribution within smart homes. Details of the tool will be presented and it will be shown how it can be used to emulate any real world environment whereby virtual sensor distributions can be rapidly implemented and assessed without the requirement for physical deployment for evaluation. As such, this approach offers the potential of tailoring sensor distributions to the specific needs of a patient in a non-evasive manner. The heuristics based tool presented here has been developed as the first part of a three stage project.

  20. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  1. Automotive MEMS sensors based on additive technologies

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. A.; Sokolov, A. V.; Pisliakov, A. V.; Oblov, K. Yu; Samotaev, N. N.; Kim, V. P.; Tkachev, S. V.; Gubin, S. P.; Potapov, G. N.; Kokhtina, Yu V.; Nisan, A. V.

    2016-10-01

    The application of MEMS devices is one of the recent trends in sensor technology. However, traditional silicon MEMS have some intrinsic limitations, when applied to the monitoring of high temperature/high humidity processes. Thin ceramic films of alumina, zirconia or LTCC fixed on rigid frame made of the same ceramic material in combination with ink and aerosol jet printing of functional materials (heaters, temperature, pressure, gas sensitive elements) provides a cheap, flexible, and high-performance alternative for silicon MEMS devices used as gas sensors, gas flowmeters, lambda probes, bolometric matrices for automotive and general application.

  2. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  3. The Effect of the Smart Board Usage in Science and Technology Lessons

    ERIC Educational Resources Information Center

    Aktas, Sinan; Aydin, Abdullah

    2016-01-01

    Statement of Problem: In this study, in teaching the unit "electricity in our lives" in the 7th grade science and technology class, the effect of using smart boards to the students' retention of the information is examined and compared to the 2005 Science and Technology curriculum. Purpose of the study: The aim of the current study is to…

  4. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  5. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema

    Ted Bohn

    2016-07-12

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  6. Argonne National Laboratory Smart Grid Technology Interactive Model

    SciTech Connect

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  7. Active control of smart structures with optimal actuator and sensor locations

    NASA Astrophysics Data System (ADS)

    Liu, Pengxiang; Rao, Vittal S.; Derriso, Mark M.

    2002-07-01

    Sensors and actuators used in active control of smart structures have to be located appropriately in order to ensure maximum control and measurement effectiveness. Many placement techniques are based on the structure itself and overlook the effects of the applied control law. The optimal locations determined from open-loop system can not guarantee the best performance of the closed-loop system because the performance is closely related with the design requirements and applied controller. In this paper, we presented a method of obtaining the optimal locations of actuators/sensors by combining the open-loop and closed-loop optimal criterions. First, for open-loop system, location indices of the controlled modes are calculated on the basis of modal controllability and observability. The controlled modes are weighted based on the controller design requirements. To reduce the spill-over effect of uncontrolled modes, the location index values of uncontrolled modes are added as penalty terms. Locations with high index values are chosen as candidate locations of actuator/sensor for the next determining step on the closed-loop system. Three control techniques, optimal H2, H(infinity ) norms and optimal pole-placement, are utilized for two different control objectives, disturbance rejection and damping property enhancement. Linear matrix inequality (LMI) techniques are utilized to formulate the control problems and synthesize the controllers. For each candidate location of actuator/sensor, a controller is designed and the obtained performance is taken as location index. By solving the location problem in two steps, we reduced the computational burden and ensured good control performance of the closed-loop system. The proposed method is tested on a clamped plate with piezoelectric actuators and sensors.

  8. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    PubMed

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  9. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    PubMed Central

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-01-01

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409

  10. High-accuracy microassembly by intelligent vision systems and smart sensor integration

    NASA Astrophysics Data System (ADS)

    Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael

    2003-10-01

    Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.

  11. Design and Implementation of Ubiquitous Health System U-Health Using Smart-Watches Sensors

    NASA Astrophysics Data System (ADS)

    Razavi Termeh, V.; Sadeghi Niaraki, A.

    2015-12-01

    Today as diseases grow rapidly, the responsibilities of the health clinics in giving services to patients increase and patients have to be more monitored and controlled. Remote systems of monitoring patients result in reducing cost, ease of movement, and also persistent control of patients by their doctors, so that patient can be monitored without need to go to the clinic. Recent advances in the field of ubiquitous sciences as well as using smartphones have resulted in increasingly use of this devices in remote monitoring of patients. The aim of this paper is to design and implement a ubiquitous health system using smartphones and sensors of smart-watches. This is accomplished through the information sent to the smartphone from the sensors of the watch, e.g. heart beat measurement sensor and ultraviolet ray. Then, this information is analyzed in the smartphone and some information based on the position of the patient and the path of him/her using GIS analyses as well as the information about the health level of the patient is sent to the doctor via SMS or phone call. Unnatural heart beats can be resulted in diseases such as Heart Failure and Arterial Fibrillation. With the approach adopted in this study, the patient or the doctor could be aware of these diseases at any time. The proposed approach is a low cost, without need to complex and resilient equipment, system in ubiquitous health that does not limit the movement of the patient.

  12. Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Roembke, Benjamin T.; Paragi, Gabor; Laguerre, Aurélien; Sintim, Herman O.; Fonseca Guerra, Célia; Monchaud, David

    2016-09-01

    A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence (i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The first prototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop a novel application of twice-as-smart ligands, as efficient chemical sensors of bacterial signaling pathways via the fluorescent detection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP).

  13. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    PubMed

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  14. Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers

    PubMed Central

    Zhou, Jie; Roembke, Benjamin T.; Paragi, Gabor; Laguerre, Aurélien; Sintim, Herman O.; Fonseca Guerra, Célia; Monchaud, David

    2016-01-01

    A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence (i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The first prototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop a novel application of twice-as-smart ligands, as efficient chemical sensors of bacterial signaling pathways via the fluorescent detection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP). PMID:27667717

  15. Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers.

    PubMed

    Zhou, Jie; Roembke, Benjamin T; Paragi, Gabor; Laguerre, Aurélien; Sintim, Herman O; Fonseca Guerra, Célia; Monchaud, David

    2016-09-26

    A twice-as-smart ligand is a small molecule that experiences a structural switch upon interaction with its target (i.e., smart ligand) that concomitantly triggers its fluorescence (i.e., smart probe). Prototypes of twice-as-smart ligands were recently developed to track and label G-quadruplexes: these higher-order nucleic acid structures originate in the assembly of four guanine(G)-rich DNA or RNA strands, whose stability is imparted by the formation and the self-assembly of G-quartets. The first prototypes of twice-as-smart quadruplex ligands were designed to exploit the self-association of quartets, being themselves synthetic G-quartets. While their quadruplex recognition capability has been thoroughly documented, some doubts remain about the precise photophysical mechanism that underlies their peculiar spectroscopic properties. Here, we uncovered this mechanism via complete theoretical calculations. Collected information was then used to develop a novel application of twice-as-smart ligands, as efficient chemical sensors of bacterial signaling pathways via the fluorescent detection of naturally occurring extracellular quadruplexes formed by cyclic dimeric guanosine monophosphate (c-di-GMP).

  16. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid

    PubMed Central

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-01-01

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573

  17. Sensor Technologies for Particulate Detection and Characterization

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    2008-01-01

    Planned Lunar missions have resulted in renewed attention to problems attributable to fine particulates. While the difficulties experienced during the sequence of Apollo missions did not prove critical in all cases, the comparatively long duration of impending missions may present a different situation. This situation creates the need for a spectrum of particulate sensing technologies. From a fundamental perspective, an improved understanding of the properties of the dust fraction is required. Described here is laboratory-based reference instrumentation for the measurement of fundamental particle size distribution (PSD) functions from 2.5 nanometers to 20 micrometers. Concomitant efforts for separating samples into fractional size bins are also presented. A requirement also exists for developing mission compatible sensors. Examples include provisions for air quality monitoring in spacecraft and remote habitation modules. Required sensor attributes such as low mass, volume, and power consumption, autonomy of operation, and extended reliability cannot be accommodated by existing technologies.

  18. Smart pillow for heart-rate monitoring using a fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat; Yim, Huiqing

    2011-03-01

    In this paper, we propose and demonstrate a new method to monitor heart rate using fiber optic microbending based sensor for in-bed non-intrusive monitoring. The sensing system consists of transmitter, receiver, sensor mat, National Instrument (NI) data acquisition (DAQ) card and a computer for signal processing. The sensor mat is embedded inside a commercial pillow. The heart rate measurement system shows an accuracy of +/-2 beats, which has been successfully demonstrated in a field trial. The key technological advantage of our system is its ability to measure heart rate with no preparation and minimal compliance by the patient.

  19. A smart cap for olive oil rancidity detection using optochemical sensors

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.

    2007-09-01

    The design and experimental setup of a smart cap are presented. It is capable of sniffing the vapors of extra virgin olive oil, thus alerting the consumer or the retailer of any rancid flavor. The cap is made of an array of metalloporphyrin-based optochemical sensors, the colors of which are modulated by the concentration of aldehydes, the main responsible for rancid off-flavors. A micro-optic device, implemented to simulate a cap prototype, is presented. The spectral response of the chromophore-array is processed by means of multivariate data analysis so as to achieve an artificial olfactory perception of oil aroma and, consequently, an indication of oil ageing and rancidity. In practice, the cap prototype proved to be a device for non-destructive testing of bottled oil quality.

  20. FPGA-based smart sensor for online displacement measurements using a heterodyne interferometer.

    PubMed

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application.

  1. Ultra wideband technology for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xiong, Weiming

    2011-08-01

    Wireless sensor networks (WSNs) have emerged as an important method for planetary surface exploration. To investigate the optimized wireless technology for WSNs, we summarized the key requirements of WSNs and justified ultra wideband (UWB) technology by comparing with other competitive wireless technologies. We also analyzed network topologies as well as physical and MAC layer designs of IEEE 802.15.4a standard, which adopted impulse radio UWB (IR-UWB) technology. Our analysis showed that IR-UWB-based 802.15.4a standard could enable robust communication, precise ranging, and heterogeneous networking for WSNs applications. The result of our present work implies that UWB-based WSNs can be applied to future planetary surface exploration.

  2. Sensor technology in the era of nanotechnology

    NASA Astrophysics Data System (ADS)

    Ren, Shu; Zhou, Yikai; Wu, Meng

    2001-09-01

    In this paper, nano technology, nano sensor, nano devices, bionics of nano technology are discussed. The significance of the topic includes its contribution to biology and medicine as well as to engineering and technology. Cell may be the best object to be researched. Cell membrane may be the key of such a study. By means of simulating the structure and function of a cell's membrane, a molecular network model of nanofactory are suggested. Methodologies for realizing such models are presented. Among them, nano fabrication biotechnology, chemical method and nano integration are illustrated. Nano fabrication in a broad sense will be preferable to others. At last, a diagram showing the perspectives of the new technologies including measuring and control of psychological state, establishing platform for monitoring a single cell, constructing nano robot and nanofactory etc. was depicted.

  3. Vehicular applications of smart material systems

    NASA Astrophysics Data System (ADS)

    Leo, Donald J.; Weddle, Craig; Naganathan, Ganapathy; Buckley, Stephen J.

    1998-06-01

    The results of an initial investigation in the use of smart material system for automobiles are presented. For this work, a smart material system is defined as a network of embedded electromechanical devices that are able to sense and affect their environment and autonomously adapt to changes in operating conditions. The development of smart material system for production vehicles has the potential for compact, lightweight subsystems that reduce vehicle weight and improve vehicle performance. This paper presents an overview of current technology and how it contrasts with the development of highly integrated smart material systems. Automotive design requirements are examined to highlight practical constraints associated with integrating smart material technology into automobiles. Representative examples of a embedded sensor-actuator system for camless engines and a smart automotive seat are presented to illustrate the design concepts.

  4. Information security threats and an easy-to-implement attack detection framework for wireless sensor network-based smart grid applications

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.

    2016-03-01

    Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.

  5. Smart textiles: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  6. A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.

    PubMed

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-07-08

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from -40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10(-5)/°C and 29.5 × 10(-5)/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10(-5)/°C and 2.1 × 10(-5)/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  7. Smart synthetic material arresting cable based on embedded distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Cornelia; Bentley, Douglas; Murdock, Chad; Piatkowski, David; White, Lonnie

    2007-07-01

    Redondo Optics Inc. in collaboration with the Cortland Cable Company and the US. Navy under a Navy sponsored SBIR program is in the process of developing an embedded distributed fiber optic sensor (EDIFOS TM) system for the real-time, structural health monitoring, damage assessment, and lifetime prediction of full scale synthetic material arresting gear cables. The EDIFOS TM system uses a distributed array of fiber Bragg grating sensors, sensitive to stress/strain, impact damage, kinking and bending, and temperature, embedded within the strands of a synthetic material arresting cable structure. Fiber Bragg grating sensors are a mature technology typically used for the in-situ structural health monitoring of advanced structures. The periodic grating produces an optical, wavelength-encoded signal whose properties are dependent on the structural, and mechanical environment of the sensor fiber. The FBG sensor interrogation system monitors the status of each of the individual FBG sensors distributed along the embedded sensor fibers and transforms this information in real-time in to a graphical display of the stress/strain and temperature state of the entire arresting gear cable. An alarm system triggers to pinpoint those locations of potential damage.

  8. Exploitation of Smart Materials and Sensors as Disruptive Technologies

    DTIC Science & Technology

    2010-03-01

    scanning and emerging issues analysis ;  Delphi-based group consensus;  Historical analysis ; and  Alternate futures. This paper will not attempt...piezoceramic monitoring system (not shown). The SMA washer expands on demand via resistance heating , in order to increase the tension in the...in semiconductors is well- established. This effect has been applied to the construction of uncooled silicon-based bolometers [65], and a thin heat

  9. Heterogeneous Sensor Data Exploration and Sustainable Declarative Monitoring Architecture: Application to Smart Building

    NASA Astrophysics Data System (ADS)

    Servigne, S.; Gripay, Y.; Pinarer, O.; Samuel, J.; Ozgovde, A.; Jay, J.

    2016-09-01

    Concerning energy consumption and monitoring architectures, our goal is to develop a sustainable declarative monitoring architecture for lower energy consumption taking into account the monitoring system itself. Our second is to develop theoretical and practical tools to model, explore and exploit heterogeneous data from various sources in order to understand a phenomenon like energy consumption of smart building vs inhabitants' social behaviours. We focus on a generic model for data acquisition campaigns based on the concept of generic sensor. The concept of generic sensor is centered on acquired data and on their inherent multi-dimensional structure, to support complex domain-specific or field-oriented analysis processes. We consider that a methodological breakthrough may pave the way to deep understanding of voluminous and heterogeneous scientific data sets. Our use case concerns energy efficiency of buildings to understand relationship between physical phenomena and user behaviors. The aim of this paper is to give a presentation of our methodology and results concerning architecture and user-centric tools.

  10. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    SciTech Connect

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  11. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    ERIC Educational Resources Information Center

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  12. The Impact of Information and Communication Technology (ICT) on the Management Practices of Malaysian Smart Schools

    ERIC Educational Resources Information Center

    Zain, Muhammad Z. M.; Atan, Hanafi; Idrus, Rozhan M.

    2004-01-01

    The impact of Information and Communication Technology (ICT) on the management practices in the Malaysian Smart Schools was investigated. The analysis revealed that the impact has resulted in changes that include the enrichment of the ICT culture among students and teachers, more efficient student and teacher administration, better accessibility…

  13. Project SMART: Using Technology To Provide Educational Continuity for Migrant Children.

    ERIC Educational Resources Information Center

    Meyertholen, Patricia; Castro, Sylvia; Salinas, Cinthia

    Overcoming the challenges of educational discontinuity that arise from the migratory lifestyle is the central focus of the Migrant Education Program. This chapter describes Project SMART (Summer Migrants Access Resources through Technology), a national distance learning program for migrant students that addresses such challenges by coordinating…

  14. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  15. Sensor technology for future atmospheric observation systems

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Keafer, L. S., Jr.

    1982-01-01

    The remote sensing instruments that will be needed for research in atmospheric environmental quality in the future are considered. The needs are determined on the basis of a model that incorporates scientific knowledge objectives, measurement needs, and potential space missions, spacecraft and instruments in order to discern the technology requirements. While emphasis is placed on global surveys that make full use of the synoptic observation capabilities of spaceborne sensors, the importance of airborne and ground-based sensors in this research is also recognized. Several of the instruments that are identified to fulfill the knowledge objectives are spectrometers and radiometers using such passive measurement techniques as interferometer correlation absorption radiometry, and heterodyne spectrometry. Lidar instruments are also seen as important future developments.

  16. SmartStretch™ technology VI. The impact of SmartStretch™ technology on the meat quality of hot-boned beef striploin (m. longissimus lumborum).

    PubMed

    Taylor, Johanne; Toohey, Edwina S; van de Ven, Remy; Hopkins, David L

    2013-03-01

    The impact of SmartStretch™ technology and ageing (0 or 14 days ageing) on the meat quality traits of m. longissimus lumborum hot-boned from adult cull cattle was assessed. Tenderness, as reflected in reduced shear force measurement, was significantly (P<0.05) improved in 0 day aged stretched samples over the non stretched samples. After 14 days ageing there was no longer any difference in the tenderness between stretched and non stretched samples and the aged meat was significantly tenderer than either the SmartStretch™ treated or non stretched meat aged for 0 days. Sarcomere length was unchanged by stretching. Presentation traits such as purge loss and fresh colour were unaffected by the stretch treatment, whilst cooking loss was significantly (P<0.05) increased by stretching and ageing for 14 days.

  17. Advanced computational sensors technology: testing and evaluation in visible, SWIR, and LWIR imaging

    NASA Astrophysics Data System (ADS)

    Rizk, Charbel G.; Wilson, John P.; Pouliquen, Philippe

    2015-05-01

    The Advanced Computational Sensors Team at the Johns Hopkins University Applied Physics Laboratory and the Johns Hopkins University Department of Electrical and Computer Engineering has been developing advanced readout integrated circuit (ROIC) technology for more than 10 years with a particular focus on the key challenges of dynamic range, sampling rate, system interface and bandwidth, and detector materials or band dependencies. Because the pixel array offers parallel sampling by default, the team successfully demonstrated that adding smarts in the pixel and the chip can increase performance significantly. Each pixel becomes a smart sensor and can operate independently in collecting, processing, and sharing data. In addition, building on the digital circuit revolution, the effective well size can be increased by orders of magnitude within the same pixel pitch over analog designs. This research has yielded an innovative class of a system-on-chip concept: the Flexible Readout and Integration Sensor (FRIS) architecture. All key parameters are programmable and/or can be adjusted dynamically, and this architecture can potentially be sensor and application agnostic. This paper reports on the testing and evaluation of one prototype that can support either detector polarity and includes sample results with visible, short-wavelength infrared (SWIR), and long-wavelength infrared (LWIR) imaging.

  18. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    PubMed Central

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  19. Smart monolithic integration of inkjet printed thermal flow sensors with fast prototyping polymer microfluidics

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Elizalde, Jorge; Pacios, Roberto

    2016-08-01

    There is an increasing demand for built-in flow sensors in order to effectively control microfluidic processes due to the high number of available microfluidic applications. The possible solutions should be inexpensive and easy to connect to both, the microscale features and the macro setup. In this paper, we present a novel approach to integrate a printed thermal flow sensor with polymeric microfluidic channels. This approach is focused on merging two high throughput production processes, namely inkjet printing and fast prototyping technologies, in order to produce trustworthy and low cost devices. These two technologies are brought together to obtain a sensor located outside the microfluidic device. This avoids the critical contact between the sensor material and the fluids through the microchannels that can seriously damage the conducting paths under continuous working regimes. In this way, we ensure reliable and stable operation modes. For this application, a silver nanoparticle based ink and cyclic olefin polymer were used. This flow sensor operates linearly in the range of 0-10 μl min-1 for water and 0-20 μl min-1 for ethanol in calorimetric mode. Switching to anemometric mode, the range can be expanded up to 40 μl min-1.

  20. E-SMART system for in-situ detection of environmental contaminants. Quarterly progress report

    SciTech Connect

    1996-01-01

    Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) is a comprehensive, fully-integrated approach to in-situ, real-time detection and monitoring of environmental contaminants. E-SMART will provide new class of smart, highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, large, commercially viable set of E-SMART-compatible sensors, samplers, and network management components, and user-friendly graphical user interface for data evaluation and visualization.

  1. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  2. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials.

    PubMed

    Ciocchetti, Marco; Massaroni, Carlo; Saccomandi, Paola; Caponero, Michele A; Polimadei, Andrea; Formica, Domenico; Schena, Emiliano

    2015-09-14

    Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR

  3. MEMS Aluminum Nitride Technology for Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Vigevani, Gabriele

    2011-12-01

    The design and fabrication of MEMS Inertial Sensors (both accelerometers and gyroscopes) made of Aluminum Nitride (AlN) is described in this dissertation. The goal of this work is to design and fabricate inertial sensors based on c-axis oriented AlN polycrystalline thin films. AlN is a post-CMOS compatible piezoelectric material widely used for acoustic resonators, such Bulk Acoustic Wave (BAW) and Lamb Wave Resonators (LWR). In this work we develop the design techniques necessary to obtain inertial sensors with AlN thin film technology. Being able to use AlN as structural material for both acoustic wave resonator and sensing elements is key to achieve the three level integration of RF-MEMS components, sensing elements and CMOS in the same chip. Using AlN as integration platform is particularly suitable for large consumer emerging markets where production costs are the major factor that determine a product success. In order to achieve a platform integration, the first part of this work focuses on the fabrication process: starting from the fabrication technology used for LWR devices, this work shows that by slightly modifying some of the fabrication steps it is possible to obtain MEMS accelerometers and gyroscopes with the same structural layers used for LWR. In the second part of this work, an extensive analysis, performed with analytical and Finite Element Models (FEM), is developed for beam and ring based structures. These models are of great importance as they provide tools to understand the physics of lateral piezoelectric beam actuation and the major limitations of this technology. Based on the models developed for beam based resonators, we propose two designs for Double Ended Tuning Fork (DETF) based accelerometers. In the last part of the dissertation, we show the experimental results and the measurements performed on actual devices. As this work shows analytically and experimentally, there are some fundamental constraints that limit the ultimate sensitivity

  4. Social Networking and Smart Technology: Viable Environmental Communication Tools…?

    NASA Astrophysics Data System (ADS)

    Montain, J.; Byrne, J. M.

    2010-12-01

    To what extent do popular social networking channels represent a viable means for disseminating information regarding environmental change to the general public? Are new forms of communication such as YouTube™, Facebook™, MySpace™ and Twitter™ and smart devices such as iPhone™ and BlackBerry™ useful and effective in terms motivating people into social action and behavioural modification; or do they simply pay ‘lip service’ to these pressing environmental issues? This project will explore the background connections between social networking and environmental communication and education; and outline why such tools might be an appropriate way to connect to a broad audience in an efficient and unconventional manner. Further, research will survey the current prevalence of reliable environmental change information on social networking Internet-based media; and finally, suggestions for improved strategies and new directions will be provided.

  5. Applying Digital Sensor Technology: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  6. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts

    PubMed Central

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304

  7. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    PubMed

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  8. In-Situ MVA of CO2 Sequestration Using Smart Field Technology

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-09-01

    Capability of underground carbon dioxide storage to confine and sustain injected CO2 for a long period of time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2 . This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS

  9. The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives.

    PubMed

    Stefanov, Dimitar H; Bien, Zeungnam; Bang, Won-Chul

    2004-06-01

    Smart houses are considered a good alternative for the independent life of older persons and persons with disabilities. Numerous intelligent devices, embedded into the home environment, can provide the resident with both movement assistance and 24-h health monitoring. Modern home-installed systems tend to be not only physically versatile in functionality but also emotionally human-friendly, i.e., they may be able to perform their functions without disturbing the user and without causing him/her any pain, inconvenience, or movement restriction, instead possibly providing him/her with comfort and pleasure. Through an extensive survey, this paper analyzes the building blocks of smart houses, with particular attention paid to the health monitoring subsystem as an important component, by addressing the basic requirements of various sensors implemented from both research and clinical perspectives. The paper will then discuss some important issues of the future development of an intelligent residential space with a human-friendly health monitoring functional system.

  10. Smart-World Technologies and the Value of Librarianship

    ERIC Educational Resources Information Center

    Burgess, J. T. F.

    2010-01-01

    This article proceeds from the position that obsession with technology is a distraction from librarians' true mission and explores how a constellation of emerging information technologies might empower librarians to reconsider their commitment to the technological treadmill and instead turn to a more humanistic orientation. This article presents…

  11. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels.

    PubMed

    Kim, Eunkyoung; Liu, Yi; Ben-Yoav, Hadar; Winkler, Thomas E; Yan, Kun; Shi, Xiaowen; Shen, Jana; Kelly, Deanna L; Ghodssi, Reza; Bentley, William E; Payne, Gregory F

    2016-10-01

    The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.

  12. SPADnet: Embedded coincidence in a smart sensor network for PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, C.; Charbon, E.; Veerappan, C.; Braga, L. H. C.; Massari, N.; Perenzoni, M.; Gasparini, L.; Stoppa, D.; Walker, R.; Erdogan, A.; Henderson, R. K.; East, S.; Grant, L.; Jatekos, B.; Ujhelyi, F.; Erdei, G.; Lörincz, E.; André, L.; Maingault, L.; Reboud, V.; Verger, L.; Gros d'Aillon, E.; Major, P.; Papp, Z.; Németh, G.

    2014-01-01

    In this paper we illustrate the core technologies at the basis of the European SPADnet project (www.spadnet.eu), and present the corresponding first results. SPADnet is aimed at a new generation of MRI-compatible, scalable large area image sensors, based on CMOS technology, that are networked to perform gamma-ray detection and coincidence to be used primarily in (Time-of-Flight) Positron Emission Tomography (PET). The project innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. In addition, SPADnet introduced the first computational model enabling study of the full chain from gamma photons to network coincidence detection through scintillation events, optical coupling, etc.

  13. Sensors, Volume 8, Micro- and Nanosensor Technology - Trends in Sensor Markets

    NASA Astrophysics Data System (ADS)

    Jones, Robert; Meixner, Hans

    1996-12-01

    Sensors is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This final volume of the series uncovers trends in sensor technology and gives a comprehensive overview of the sensor market. The use of sensors in microsystems and in vacuum microelectronic as well as in acoustic wave devices is discussed. Present and emerging applications of sensors in aerospace, environmental, automotive, and medical industries, among others, are described. This volume is an indispensable reference work for both specialists and newcomers, researchers and developers

  14. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials

    PubMed Central

    Ciocchetti, Marco; Massaroni, Carlo; Saccomandi, Paola; Caponero, Michele A.; Polimadei, Andrea; Formica, Domenico; Schena, Emiliano

    2015-01-01

    Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations. PMID:26389961

  15. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-08-08

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs.

  16. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  17. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    PubMed Central

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  18. Space Missions for Automation and Robotics Technologies (SMART) program (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ciffone, Donald L.; Lum, Henry

    1985-12-01

    NASA is currently considering the establishment of a Space Missions for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of Shuttle-based flight experiments which will utilize telepresence technologies and real-time operational concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the Shuttle or the Space Station. To ensure incorporation of leading-edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89. This paper discusses the objectives and rationale for the proposed SMART Program, potential implementation scenarios, and the management approach. The main purpose of the paper is to make the reader aware of this upcoming program, and to encourage participation beginning with the concep-tual definition phase.

  19. SMART 1: The first small mission for advanced research in technology

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe D.

    1999-11-01

    SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 Science plan. The main mission objective of SMART-1 is to demonstrate innovative and key technologies for scientific deep-space missions. One of the key technologies is the solar electric propulsion used as primary propulsion. The launch is foreseen at the end of 2001 and the total life cost budget allocated to this mission is 50 million ECU (~ 65 million US dollars). Given this budget constraint, the obvious European launch system is as Piggyback passenger of an Ariane 5 in a standard GTO. This imposes stringent spacecraft mass constraints and by consequence limitations on the planetary bodies which can be reached in a given short (1.5-2 years) overall mission lifetime. Alternatively a direct injection into an escape trajectory has been considered with a small launcher, e.g. Eurockot. The planetary bodies identified are the Moon and Earth crossing asteroids or comets, generally classified as Near Earth Objects (NEO). Three mission options are currently envisaged. An Announcement of Opportunity for scientific payload, issued in March 1998, calls for scientific investigations to be performed and indication of the preferred mission options. A second Announcement of Opportunity will be issued in April 1998, concerning the technology payload. SMART-1 will also be a test case for a new approach in the implementation strategy and spacecraft procurement for the ESA Science Programme.

  20. Imprinting Technology in Electrochemical Biomimetic Sensors.

    PubMed

    Frasco, Manuela F; Truta, Liliana A A N A; Sales, M Goreti F; Moreira, Felismina T C

    2017-03-06

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.

  1. Imprinting Technology in Electrochemical Biomimetic Sensors

    PubMed Central

    Frasco, Manuela F.; Truta, Liliana A. A. N. A.; Sales, M. Goreti F.; Moreira, Felismina T. C.

    2017-01-01

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out. PMID:28272314

  2. LON Technology in Wireless Sensor Networking Applications

    PubMed Central

    Miskowicz, Marek; Golanski, Ryszard

    2006-01-01

    In the paper a discussion on how to optimize LonWorks/EIA-709 sensor networking technology for wireless applications, in presented. Main solutions offered by Local Operating Networks (LON, LonWorks) platform attractive for wireless communication, that is, the send-on-delta concept and the sleep mode, are displayed. The predictive p-persistent CSMA MAC protocol constituting the heart of the communication capability of LON networks is analysed in detail. Next, the message services are described, and the analytical evaluation of delivery reliability is derived. Performance evaluation based on simulation results for unicast traffic is presented first. In order to highlight the robustness of the predictive CSMA to overload situations, the saturation performance for a general case load scenario including multicast transactions is reported. The methods of effective management of energy consumption in LonWorks networks are discussed. Finally, the LON design tradeoffs are summarized.

  3. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

    PubMed

    Fleury, Anthony; Vacher, Michel; Noury, Norbert

    2010-03-01

    By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

  4. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  5. Smart structures in engineering and technology: an aerospace and automotive perspective

    NASA Astrophysics Data System (ADS)

    Boller, Christian

    2003-03-01

    This paper gives an overview on what was expected to be achieved in smart structures and materials for aerospace and automotive applications about a decade ago and what so far could be achieved. Although initial goals turned out to be somewhat over-ambitious, achievements so far are worth to be discussed and pursued. Major ongoing activities being on the verge to be transferred into application are therefore summarized and referenced. A major lack in smart structures technology transfer has been identified being procedures on how to identify which technologies have the most likely chance to be transferred into application. A procedure for this successfully applied in market research and product development is therefore described and proposed here.

  6. Impact of SMART Board technology: an investigation of sight word reading and observational learning.

    PubMed

    Mechling, Linda C; Gast, David L; Krupa, Kristin

    2007-11-01

    The effects of SMART Board technology, an interactive electronic whiteboard, and a 3s constant time delay (CTD) procedure was evaluated for teaching sight word reading to students with moderate intellectual disabilties within a small group arrangment. A multiple probe design across three word sets and replicated with three students was used to evaluate the effectiveness of SMART Board technology on: (a) reading target grocery words; (b) matching grocery item photos to target grocery words; (c) reading other students' target grocery words through observational learning; and (d) matching grocery item photos to observational grocery words. Results support use of this tool to teach multiple students at one time and its effects on observational learning of non-target information.

  7. Impact of smart infusion technology on administration of anticoagulants (unfractionated Heparin, Argatroban, Lepirudin, and Bivalirudin).

    PubMed

    Fanikos, John; Fiumara, Karen; Baroletti, Steve; Luppi, Carol; Saniuk, Catherine; Mehta, Amar; Silverman, Jon; Goldhaber, Samuel Z

    2007-04-01

    This study reviewed 863 alerts generated from the infusion of anticoagulants in 355 patients from October 2003 to January 2005. Alerts were generated by smart infusion technology pumps and recorded in the devices' memory. The most common alerts were underdose alerts (59.8%), followed by overdose alerts (31.3%) and duplicate drug therapy alerts (8.9%). In response to the alerts, users' most frequent action was to cancel (46.5%) or reprogram (43.1%) the infusions. The highest percentage of alerts occurred from 2 to 4 p.m. During the study, there were 4 infusion rate errors, compared with 15 in the immediately preceding 16-month period. In conclusion, smart infusion technology intercepted keypad entry errors, thereby reducing the likelihood of intravenous anticoagulant overdose or underdose. Dose or infusion rate programming during intravenous anticoagulation is an important targets for medication safety interventions.

  8. Cluster filtering/control of bending/torsional vibrations of a tape tether using smart-film sensors/actuators

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Kunugi, Kouta; Trivailo, Pavel M.

    2016-06-01

    Tape tethers show great promise for application in space debris removal because they possess a large collecting area, which is crucial for the collection of electrons from a plasma environment in space. Tape tethers are therefore preferred over string tethers in electrodynamic tethered systems (EDTS), which operate based on the Lorentz force derived from the interaction between the electric current on the tether and the Earth's magnetic field. Vibrations of the tether may disturb the attitude of the mother satellite and the subsatellite, and are difficult to damp in space because the damping would be minimal owing to the almost zero drag force in space. Due to their relatively large width, tape tethers experience torsional deformation and therefore cannot be treated as a string tether. If torsional deformation of tape tethers is not avoided, the advantage of tape tethers as the materials for EDT systems will be deteriorated. Point-type sensors and actuators are usually used to sense and control vibrations. However, it is difficult to apply such sensors and actuators to tape tethers because of the substantial length of the tether as well as the need for a deployment mechanism, such as a reel. In order to overcome the difficulties related to vibrations, the use of smart-film sensors and actuators for sensing and controlling vibrations of tape tethers is considered in this study. In a previous study, we presented an application of smart film for sensing vibrations of tape tethers, but the actuation of tape tethers using smart-film actuators has not yet been reported. In the present paper, we mathematically derive suitable configurations of smart-film attachment to a tape tether for cluster filtering and actuation of bending and torsional vibrations of the tape tether, and carried out cluster actuation experiments. The experimental results reveal that the bending and torsional vibrations of a tape tether can be reduced by cluster actuation control based on direct

  9. States Monitoring Assisted Reproductive Technology (SMART) Collaborative: data collection, linkage, dissemination, and use.

    PubMed

    Mneimneh, Allison S; Boulet, Sheree L; Sunderam, Saswati; Zhang, Yujia; Jamieson, Denise J; Crawford, Sara; McKane, Patricia; Copeland, Glenn; Mersol-Barg, Michael; Grigorescu, Violanda; Cohen, Bruce; Steele, JoAnn; Sappenfield, William; Diop, Hafsatou; Kirby, Russell S; Kissin, Dmitry M

    2013-07-01

    Assisted reproductive technology (ART) refers to fertility treatments in which both eggs and sperm are handled outside the body. The Centers for Disease Control and Prevention (CDC) oversees the National ART Surveillance System (NASS), which collects data on all ART procedures performed in the United States. The NASS, while a comprehensive source of data on ART patient demographics and clinical procedures, includes limited information on outcomes related to women's and children's health. To examine ART-related health outcomes, CDC and three states (Massachusetts, Florida, and Michigan) established the States Monitoring ART (SMART) Collaborative to evaluate maternal and perinatal outcomes of ART and improve state-based ART surveillance. To date, NASS data have been linked with states' vital records, disease registries, and hospital discharge data with a linkage rate of 90.2%. The probabilistic linkage methodology used in the SMART Collaborative has been validated and found to be both accurate and efficient. A wide breadth of applied research within the Collaborative is planned or ongoing, including examinations of the impact of insurance mandates on ART use as well as the relationships between ART and birth defects and cancer, among others. The SMART Collaborative is working to improve state-based ART surveillance by developing state surveillance plans, establishing partnerships, and conducting data analyses. The SMART Collaborative has been instrumental in creating linked datasets and strengthening epidemiologic and research capacity for improving maternal and infant health programs and evaluating the public health impact of ART.

  10. #2) Sensor Technology-State of the Science

    EPA Science Inventory

    Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as othe...

  11. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu

    2017-07-01

    In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  12. Human-Computer Interaction in Smart Environments

    PubMed Central

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  13. Smart Buildings: An Introduction to the Library of the Future.

    PubMed

    Hoy, Matthew B

    2016-01-01

    Advances in building technologies are combining energy efficiency, networked sensors, and data recording in exciting ways. Modern facilities can adjust lighting, heating, and cooling outputs to maximize efficiency, provide better physical security, improve wayfinding for occupants, and provide detailed reports of building use. This column will briefly explore the idea of "smart buildings," describe some of the technologies that are being developed for these buildings, and explore their implications for libraries. A brief listing of selected smart building technologies is also provided.

  14. Air Force Astronautics Laboratory smart structures and skins program overview

    NASA Astrophysics Data System (ADS)

    Dehart, Douglas W.

    1990-02-01

    The smart structure/skins systems envisioned by the USAF Astronautics Laboratory for such future spacecraft as the Space Based Radar and Space Based Laser will employ embedded sensors, actuators, and microprocessors to sense, evaluate, and damp, all natural and spurious vibrations; the health-monitoring system also figured by the smart structure will sense any deterioration of structural soundness. Fiber-optics constitutes the sensor technology of choice, due to its lightness, immunity to EM interference, and easy incorporation into composite materials.

  15. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  16. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  17. Integration of geoinformatics and wireless sensors for smart agriculture in tea

    NASA Astrophysics Data System (ADS)

    Gupta, Niladri; Gupta, Prangya P.; Pramanik, Prabhat; Saikia, Angkur; Sengupta, Lahari; Bhagat, Rajib M.; Bhattacharya, Nabarun

    2014-08-01

    To develop an efficient system for tea production management, the first and foremost requirement is quick availability of accurate data. Manual decision making takes unusually long time even with the most sophisticated analytical techniques. Moreover, as geographical spread of tea gardens are huge and sometimes exceeds few hundred hectares, getting information about the entire garden through conventional methods would be time consuming. Quick decision making based on quality data at section (a garden unit varying in area) level in a tea garden can enhance tea production. Geoinformatics and spatial analysis algorithms provide a great opportunity to gather information of unknown locations in a tea plantation based on some known locations. The present work demonstrates the application of an integrated Wireless Sensors Network (WSN) system associated with GPS and GIS to achieve the goal of Smart Agriculture. In this study a portable WSN system has been developed for instant data generation on soil physico-chemical properties and provide decision support for tea plantation management. Soil pH, soil moisture and soil temperature were collected in selected locations in a tea garden and plotted on digital garden maps based on their GPS locations. Suitable interpolation algorithms were applied on the collected soil data to generate information about the soil properties in entire plantation. An empirical equation is being developed for each soil parameter to compensate the errors in their predicted values based on values in the sample locations. The present system is an attempt towards achieving the goal of implementation of precision agriculture in tea plantation management.

  18. Miniaturized Mid-Infrared Sensor Technologies

    SciTech Connect

    Kim, S; Young, C; Mizaikoff, B

    2007-08-16

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for

  19. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  20. Smart energy management and low-power design of sensor and actuator nodes on algorithmic level for self-powered sensorial materials and robotics

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan; Behrmann, Thomas

    2011-06-01

    We propose and demonstrate a design methodology for embedded systems satisfying low power requirements suitable for self-powered sensor and actuator nodes. This design methodology focuses on 1. smart energy management at runtime and 2. application-specific System-On- Chip (SoC) design at design time, contributing to low-power systems on both algorithmic and technology level. Smart energy management is performed spatially at runtime by a behaviour-based or state-action-driven selection from a set of different (implemented) algorithms classified by their demand of computation power, and temporally by varying data processing rates. It can be shown that power/energy consumption of an application-specific SoC design depends strongly on computation complexity. Signal and control processing is modelled on abstract level using signal flow diagrams. These signal flow graphs are mapped to Petri Nets to enable direct high-level synthesis of digital SoC circuits using a multi-process architecture with the Communicating-Sequential-Process model on execution level. Power analysis using simulation techniques on gatelevel provides input for the algorithmic selection during runtime of the system, leading to a closed-loop design flow. Additionally, the signal-flow approach enables power management by varying the signal flow and data processing rates depending on actual energy consumption, estimated energy deposit, and required Quality-of-Service.

  1. Design of a smart, survivable sensor system for enhancing the safe and secure transportation of hazardous or high-value cargo on railroads

    SciTech Connect

    Hogan, J.R.; Rey, D.; Faas, S.E.

    1994-01-01

    An application of smart sensor technology developed by Sandia National Laboratories for use in the safe and secure transportation of high value of hazardous materials is proposed for a railroad application. The Green Box would be capable of surviving most typical railroad accidents. In an accident, the system would send a distress signal notifying authorities of the location and condition of the cargo; permitting them to respond in the most effective manner. The concept proposes a strap-on sensor package, the Green Box, that could be attached to any railroad car or cargo container. Its primary purpose is to minimize the number, severity and consequences of accidents and to reduce losses due to theft. The system would also be capable of recognizing component failure conditions, notifying the operators and logging sensor data for use in directing preventative maintenance. The modular implementation, which facilitates system integration in a number of applications including the Advanced Train Control System (ACTS), is discussed. The methodology for determining the environmental specification for accident survivability is presented. A test plan for evaluating hardware performance in both normal operating and accident conditions is described.

  2. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  3. Older adult perceptions of smart home technologies: implications for research, policy & market innovations in healthcare.

    PubMed

    Coughlin, J; D'Ambrosio, L A; Reimer, B; Pratt, M R

    2007-01-01

    Advances in information communications technology and related computational power are providing a wide array of systems and related services that form the basis of smart home technologies to support the health, safety and independence of older adults. While these technologies offer significant benefits to older people and their families, they are also transforming older adults into lead adopters of a new 24/7 lifestyle of being monitored, managed, and, at times, motivated, to maintain their health and wellness. To better understand older adult perceptions of smart home technologies and to inform future research a workshop and focus group was conducted with 30 leaders in aging advocacy and aging services from 10 northeastern states. Participants expressed support of technological advance along with a variety of concerns that included usability, reliability, trust, privacy, stigma, accessibility and affordability. Participants also observed that there is a virtual absence of a comprehensive market and policy environment to support either the consumer or the diffusion of these technologies. Implications for research, policy and market innovation are discussed.

  4. Geothermal Technology: A Smart Way to Lower Energy Bills

    ERIC Educational Resources Information Center

    Calahan, Scott

    2007-01-01

    Heating costs for both natural gas and oil have risen dramatically in recent years--and will likely continue to do so. Consequently, it is important that students learn not only about traditional heating technology, but also about the alternative methods that will surely grow in use in the coming years. One such method is geothermal. In this…

  5. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  6. Patient safety, error reduction, and pediatric nurses' perceptions of smart pump technology.

    PubMed

    Mason, Janice Jackson; Roberts-Turner, Renée; Amendola, Virginia; Sill, Anne M; Hinds, Pamela S

    2014-01-01

    Patient safety and error reduction are essential to improve patient care, and new technology is expected to contribute to such improvements while reducing costs and increasing care efficiency in health care organizations. The purpose of this study was to assess the relationships among pediatric nurses' perceptions of smart infusion pump (SIP) technology, patient safety, and error reduction. Findings revealed that RNs' perceptions of SIP correlated with patient safety. No significant relationship was found between RNs' perceptions of SIP and error reduction, but data retrieved from the pumps revealed 93 manipulations of the pumps, of which error reduction was captured 65 times.

  7. Making a Smart Campus in Saudi Arabia

    ERIC Educational Resources Information Center

    Abuelyaman, Eltayab Salih

    2008-01-01

    Prince Sultan University (PSU) in Riyadh, Saudi Arabia, has conceptualized what it means to be a smart campus after surveying similar notions worldwide. A "smart" campus requires smart teachers, smart technology, and smart pedagogical centers. It deploys smart teachers and gives them smart tools and ongoing support to do their jobs…

  8. Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies

    SciTech Connect

    Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

    2011-05-10

    This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

  9. Thin-film Sensors for Space Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Englund, D. R.

    1985-01-01

    SSME components such as the turbine blades of the high pressure fuel turbopump are subjected to rapid and extreme thermal transients that contribute to blade cracking and subsequent failure. The objective was to develop thin film sensors for SSME components. The technology established for aircraft gas turbine engines was adopted to the materials and environment encountered in the SSME. Specific goals are to expand the existing thin film sensor technology, to continue developing improved sensor processing techniques, and to test the durability of aircraft gas turbine engine technology in the SSME environment. A thin film sensor laboratory is being installed in a refurbished clean room, and new sputtering and photoresist exposure equipment is being acquired. Existing thin film thermocouple technology in an SSME environment are being tested. Various coatings and their insulating films are being investigated for use in sensor development.

  10. SMART: Security Measurements and Assuring Reliability Through Metrics Technology

    DTIC Science & Technology

    2009-11-01

    protocol. • Drupal - Content Management System (CMS) Over 350,000 subscribed members • DrupalSites.net is a directory that list thousands of...websites powered by Drupal • Winner of Best Overall 2008 Open Source CMS Award for Second Year in a Row Listed as one of the Open Source PHP applications...information), and httpd (server). Web technology was also ^^ ^^^^^^ added by evaluating Drupal . Web applications’ functionality and user base has A^^^fl

  11. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  12. REVIEW ARTICLE: Sensor communication technology towards ambient intelligence

    NASA Astrophysics Data System (ADS)

    Delsing, J.; Lindgren, P.

    2005-04-01

    This paper is a review of the fascinating development of sensors and the communication of sensor data. A brief historical introduction is given, followed by a discussion on architectures for sensor networks. Further, realistic specifications on sensor devices suitable for ambient intelligence and ubiquitous computing are given. Based on these specifications, the status and current frontline development are discussed. In total, it is shown that future technology for ambient intelligence based on sensor and actuator devices using standardized Internet communication is within the range of possibilities within five years.

  13. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  14. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    NASA Astrophysics Data System (ADS)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission

  15. Get Smart About Energy: Office of Building Technology, State and Community Programs (OBT) EnergySmart Schools Program Brochure

    SciTech Connect

    Energy Smart Schools Team

    2001-10-11

    While improving their energy use in buildings and bus fleets, schools are likely to create better places for teaching and learning with better lighting, temperature control, acoustics, and air quality. Smart districts also realize benefits in student performance.

  16. Get Smart About Energy: Office of Building Technology, State and Community Programs (OBT) EnergySmart Schools Program Folder (Revision)

    SciTech Connect

    Not Available

    2002-02-01

    While improving their energy use in buildings and bus fleets, schools are likely to create better places for teaching and learning with better lighting, temperature control, acoustics, and air quality. Smart districts also realize benefits in student performance.

  17. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  18. Making smart investments in health information technology: core principles.

    PubMed

    Halamka, John D

    2009-01-01

    Over the past five years, thousands of public- and private-sector employees, many volunteering their time, have worked to advance the cause of interoperable, certified, secure electronic health records. As new federal funds become available, should we invest right away or wait for technology and policy perfection? Do we leverage the accomplishments of existing national organizations, or do we start from scratch? The time to invest is now, building on the organizations we already have. To ensure wise investment, I suggest guiding principles assembled from the input of hundreds of providers, patients, payers, vendors, government employees, and standards-development organizations.

  19. Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?

    PubMed Central

    Pezzulo, Giovanni; D'Ausilio, Alessandro; Gaggioli, Andrea

    2016-01-01

    The ability of “looking into the future”—namely, the capacity of anticipating future states of the environment or of the body—represents a fundamental function of human (and animal) brains. A goalkeeper who tries to guess the ball's direction; a chess player who attempts to anticipate the opponent's next move; or a man-in-love who tries to calculate what are the chances of her saying yes—in all these cases, people are simulating possible future states of the world, in order to maximize the success of their decisions or actions. Research in neuroscience is showing that our ability to predict the behavior of physical or social phenomena is largely dependent on the brain's ability to integrate current and past information to generate (probabilistic) simulations of the future. But could predictive processing be augmented using advanced technologies? In this contribution, we discuss how computational technologies may be used to support, facilitate or enhance the prediction of future events, by considering exemplificative scenarios across different domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also examine the key scientific and technical challenges that must be faced to turn this vision into reality. PMID:27199648

  20. Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications.

    PubMed

    Hunter, Gary W; Dweik, Raed A

    2008-09-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed.

  1. Hybrid SHM of cable-anchorage system in cable-stayed bridge using smart sensor and interface

    NASA Astrophysics Data System (ADS)

    Nguyen, Khac-Duy; Ho, Duc-Duy; Hong, Dong-Soo; Kim, Jeong-Tae

    2012-04-01

    Cable force is one of the most important parameters of cable-stayed bridge. Since cable system carries most of selfweight of the bridge, the loss of cable force could significantly reduce load carrying capacity of the bridge. This study presents a hybrid structural health monitoring (SHM) method for cable-anchorage system of cable-stayed bridge using smart sensor and interface. The following approaches are carried out to achieve the objective. Firstly, a hybrid SHM method is newly designed for tension force monitoring in cable-anchorage system. In the method, vibration response of cable is utilized for tension force monitoring of global cable, and impedance response of anchorage is utilized to detect tension force change of local tendon. A smart PZT-interface is also designed for sensitively monitoring of electromechanical impedance changes in tendon-anchorage subsystem. Secondly, wireless vibration and impedance sensor network working on Imote2 platform are outlined with regarding to hardware design and embedded software. Finally, an experiment on lab-scale cable-anchorage system is performed to evaluate the feasibility of the proposed SHM method.

  2. Implementation of smart pump technology in a paediatric intensive care unit.

    PubMed

    Manrique-Rodríguez, Silvia; Sánchez-Galindo, Amelia C; de Lorenzo-Pinto, Ana; González-Vives, Leticia; López-Herce, Jesús; Carrillo-Álvarez, Ángel; Sanjurjo-Sáez, María; Fernández-Llamazares, Cecilia M

    2015-09-01

    Patient safety is a matter of major concern that involves every health professional. Nowadays, emerging technologies such as smart pumps can diminish medication errors as well as standardise and improve clinical practice with the subsequent benefits for patients. The aim of this paper was to describe the smart pump implementation process in a paediatric intensive care unit (PICU) and to present the most relevant infusion-related programming errors that were prevented. This was a comparative study between CareFusion Alaris Guardrails(®) and Hospira MedNet(®) systems, as well as a prospective and intervention study with analytical components carried out in the PICU of Gregorio Marañón General and Teaching Hospital. All intravenous infusions programmed with a pump in the eleven beds of the unit were analyzed. A drug library was developed and subsequently loaded into CareFusion and Hospira pumps that were used during a three month period each. The most suitable system for implementation was selected according to their differences in features and users' acceptance. Data stored in the pumps were analyzed to assess user compliance with the technology, health care setting and type of errors intercepted. The implementation process was carried out with CareFusion systems. Compliance with the technology was 92% and user acceptance was high. Vacation substitution and drug administration periods were significantly associated with a greater number of infusion-related programming errors. High risk drugs were involved in 48% of intercepted errors. Based on these results we can conclude that implementation of smart pumps proved effective in intercepting infusion-related programming errors from reaching patients. User awareness of the importance of programming infusions with the drug library is the key to succeed in the implementation process.

  3. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  4. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

    PubMed Central

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-01-01

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring. PMID:26343653

  5. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    PubMed

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  6. A smart sensor using a mechanical memory for structural health monitoring of a damage-controlled building

    NASA Astrophysics Data System (ADS)

    Mita, Akira; Takhira, Shinpei

    2003-04-01

    A smart sensor using a mechanical memory that can monitor peak strain or displacement was developed. The mechanism of the mechanical memory relies on the pure plastic extension of the sensing section that is realized by elastic buckling of a thin wire. The change in length of the sensing section is detected via a change in resistance, inductance or capacitance. In addition, by introducing an LC-circuit into the sensor we can add a capability for wireless retrieval of the measured data. Basically, the sensor does not need any power supply for measurements. A small power supply is required only when the data retrieval becomes necessary. Theoretical and experimental studies show the feasibility of using the sensor developed for structural health monitoring of damage-controlled structures. Though the sensor is designed to memorize the peak strain or displacement only, it can be easily modified to measure other damage indices that are physical values well correlated with the critical damage in a structure. Typical damage indices include peak strain, peak displacement, peak acceleration, absorbed energy and accumulated plastic deformation. Simple and inexpensive passive sensors that can monitor such damage indices are particularly useful for quantifying the performance of a damage-controlled building, as most damaging energy due to a large earthquake is taken care of by structural control devices. The devices are usually covered by a wall or a fire-protection material, so a simple inspection by eye is not possible without removing cover materials. We believe the installation of the sensors developed will ensure the safety of such a building with minimal cost.

  7. Smart Textiles: An Overview

    NASA Astrophysics Data System (ADS)

    Van Langenhove, Lieva; Hertleer, Carla; Schwarz, Anne

    This chapter introduces smart textiles and explains how textile materials and structures can be used as sensors, actuators, communication devices, energy sources and storage tools, and even processors. Conductive materials serve as the base for smart textiles. There are several advantages of using textiles as a substrate for smart functions; this chapter explains their important role in thermoregulation and highlights a smart suit for rescue workers.

  8. Microfabricated hydrogen sensor technology for aerospace and commercial applications

    NASA Astrophysics Data System (ADS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-08-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  9. Microfabricated hydrogen sensor technology for aerospace and commercial applications

    NASA Astrophysics Data System (ADS)

    Hunter, Gary W.; Bickford, Randall L.; Jansa, E. D.; Makel, Darby B.; Liu, Chung-Chiun; Wu, Q. H.; Powers, William T.

    1994-10-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  10. Optical Sensor Technology Development and Deployment

    SciTech Connect

    B. G. Parker

    2005-01-24

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  11. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  12. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control.

    PubMed

    Zhang, Qi; Zhu, Yupeng; Luo, Xiangyu; Liu, Guigen; Han, Ming

    2017-02-01

    We demonstrate a fiber-optic acoustic emission (AE) sensor system that is capable of performing AE detection, even when the sensor is experiencing large quasi-static strains. The sensor is a Fabry-Perot interferometer formed by cascaded chirped fiber-Bragg gratings (CFBGs). The reflection spectrum of the sensor features a number of narrow spectral notches equally spaced within the reflection bandwidth of the CFBG. A semiconductor laser whose wavelength can be fast tuned through current injection is used to lock the laser line to the center of a slope of a spectral notch. When the notch is knocked out of the tuning range of the laser, a neighboring notch moves into the range. Through a smart feedback control scheme, the laser is unlocked from the current spectral lock and relocked to the desired point of the new notch. The fast speed of the unlocking/relocking process (<1  ms) ensures that the AE signal is monitored without significant disruption.

  13. Smart Communication of Energy Use and Prediction in a Smart Grid Software Architecture

    SciTech Connect

    Aman, Saima; Simmhan, Yogesh; Prasanna, Viktor K.

    2010-09-19

    The increasing deployment of smart meters and other sensor technologies in the Smart Grid environment enables us to monitor, transmit and give feedback on consumer energy usage in realtime. Energy data is also being sensed and collected in disaggregated form, continuously and at high frequency, from individual devices and appliances. This information-rich Smart Grid environment has opened up research opportunities for understanding and drawing conclusions on energy consumption behavior, predicting future usage trend, designing demand-­response policies, and improving efficient use of energy.

  14. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  15. SmartStretch™ technology: V. the impact of SmartStretch™ technology on beef topsides (m. semimembranosus) meat quality traits under commercial processing conditions.

    PubMed

    Toohey, E S; van de Ven, R; Thompson, J M; Geesink, G H; Hopkins, D L

    2012-09-01

    This study evaluated the effect of SmartStretch™ technology and ageing on meat quality traits of hot-boned beef m. semimembranosus from cull cows. The technology uses a flexible rubber sleeve surrounded by inflatable bladders that are housed within an airtight chamber. The sleeve is expanded allowing the meat to be inserted. Air is then pumped into the inflatable bladders causing the meat to be compressed by force and ejected into packaging. No significant treatment effect (P>0.05) on shear force was found although ageing did significantly reduce shear force (P<0.001). There was a significantly greater (P<0.05) cook loss at 14 days, but less (P<0.05) thaw loss and purge with 0 day cook loss unaffected (P>0.05). Sarcomere length examined by both laser diffraction and a filar micrometre method was significantly increased (P<0.05) following the treatment although a proportion of individual myofibrils appeared to have short and long sarcomeres.

  16. Dynamic gesture recognition based on multiple sensors fusion technology.

    PubMed

    Wenhui, Wang; Xiang, Chen; Kongqiao, Wang; Xu, Zhang; Jihai, Yang

    2009-01-01

    This paper investigates the roles of a three-axis accelerometer, surface electromyography sensors and a webcam for dynamic gesture recognition. A decision-level multiple sensor fusion method based on action elements is proposed to distinguish a set of 20 kinds of dynamic hand gestures. Experiments are designed and conducted to collect three kinds of sensor data stream simultaneously during gesture implementation and compare the performance of different subsets in gesture recognition. Experimental results from three subjects show that the combination of three kinds of sensor achieves recognition accuracies at 87.5%-91.8%, which are higher largely than that of the single sensor conditions. This study is valuable to realize continuous and dynamic gesture recognition based on multiple sensor fusion technology for multi-model interaction.

  17. Attack Classification Schema for Smart City WSNs.

    PubMed

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2017-04-05

    Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many different types of attacks. Therefore, this raises concerns about the reliability of this technology in a smart city context. Traditionally, security measures in WSNs have been proposed to protect specific protocols in an environment with total control of a single network. This approach is not valid for smart cities, as multiple external providers deploy a plethora of WSNs with different security requirements. Hence, a new security perspective needs to be adopted to protect WSNs in smart cities. Considering security issues related to the deployment of WSNs as a main data source in smart cities, in this article, we propose an intrusion detection framework and an attack classification schema to assist smart city administrators to delimit the most plausible attacks and to point out the components and providers affected by incidents. We demonstrate the use of the classification schema providing a proof of concept based on a simulated selective forwarding attack affecting a parking and a sound WSN.

  18. Spaceborne sensors (1983-2000 AD): A forecast of technology

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Clark, B. P.

    1984-01-01

    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.

  19. E-Smart System for In-Situ Detection of Environmental Contaminants

    SciTech Connect

    S. Leffler

    2000-03-01

    A team of industrial, academic, and government organizations participated in the development of the Environmental Systems Management, Analysis and Reporting Network (E-SMART). E-SMART integrates diverse monitoring and control technologies by means of a modular, ''building block'' design approach to allow for flexible system configuration. The E-SMART network treats each smart device-whether a sensor, sampler, or actuator- as a black box that obeys the standard communication protocols and electrical interfaces for the network. This approach allows multiple vendors to produce different sensors which meet the same functional specification and which can be interchanged on the network without affecting operation. The project further developed and advanced the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces. Specifically, the E-SMART team developed the following three system elements: (1) Base technology for a new class of smart , highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, (2) A set of additional E-SMART-compatible sensors adapted from commercial off-the-shelf technologies, and (3) A Data Management and Analysis System (DMAS), including network management components and the user-friendly graphical user interface (GUI) for data evaluation and visualization.

  20. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    PubMed

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  1. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    PubMed Central

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-01-01

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy. PMID:25808763

  2. Simulation of Smart Home Activity Datasets

    PubMed Central

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371

  3. Simulation of Smart Home Activity Datasets.

    PubMed

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-06-16

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.

  4. Application of Point and Distributed Optical Fiber Sensors to Health Monitoring of Smart Structures

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hoon; Lee, Jung Ju; Seo, Dae Cheol; Lim, Jeong Ok

    Point optical fiber sensors are useful in the monitoring of localized structural damage, but a large number of the sensors must be multiplexed for large structure monitoring. On the other hand, distributed optical fiber sensors can obtain a continuous distribution of strain or temperature with one sensing fiber, and they are suitable for the large structure monitoring due to their measurement range reaching tens of kilometers. However, the distributed sensors have the spatial resolution of tens of centimeters to several meters, and they measure averaged strain or temperature. In this paper, the application results of transmission-type extrinsic Fabry-Perot interferometric (TEFPI) optical fiber sensors and Brillouin distributed optical fiber sensors to structural monitoring are presented. The TEFPI optical fiber sensors and Brillouin distributed sensors were applied to the fatigue damage monitoring of an aluminum plate patched with CFRP composite and the deflection monitoring of an alumimum-bending beam, respectively.

  5. Fiber optic electric field sensor technology

    NASA Technical Reports Server (NTRS)

    Jarzynski, J.; De Paula, R. P.

    1987-01-01

    The properties of piezoactive plastics are reviewed as well as the fiber-optic electric field sensors studied so far. A particular configuration consisting of a concentric piezoactive jacket on the glass fiber is discussed in detail and the frequency response of this sensor is projected over a wide range of frequencies. The present design has the practical advantages of leading to a compact lightweight sensor; longer fiber lengths may be used to increase sensitivity. It is predicted that, at low frequencies, a fiber-optic antenna using a 1-km length of fiber would be capable of detecting a minimum electric field of 43 microV/m assuming a minimum phase sensitivity of 10 to the -6th radians for the optical Mach-Zehnder interferometer.

  6. Sensor Acquisition for Water Utilities: A Survey and Technology List

    SciTech Connect

    Alai, M; Glascoe, L; Love, A; Johnson, M; Einfeld, W

    2005-03-07

    The early detection of the deliberate biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The primary deliverables from this Operational Technology Demonstration (OTD) are the following: (1) establishment of an advisory board for review and approval of testing protocols, technology acquisition processes and recommendations for technology test and evaluation in laboratory and field settings; (2) development of a technology acquisition process; (3) creation of laboratory and field testing and evaluation capability; and (4) testing of candidate technologies for insertion into a water early warning system. The initial phase of this study involves the development of two separate but complementary strategies to be reviewed by the advisory board: (1) a technology acquisition strategy, and (2) a technology evaluation strategy. Lawrence Livermore National Laboratory and Sandia National Laboratories are tasked with the first strategy, while Los Alamos, Pacific Northwest, and Oak Ridge National Laboratories are tasked with the second strategy. The first goal of the acquisition strategy is the development of a technology survey process that includes a review of previous sensor surveys and current test programs and then the development of a method to solicit and select existing and emerging sensor technologies for evaluation and testing. In this paper we discuss a survey of previous efforts by governmental

  7. Portable sensor technology for rotational ground motions

    NASA Astrophysics Data System (ADS)

    Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner

    2016-04-01

    In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10-8 rads-1Hz-1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10-8 rads-1Hz-1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.

  8. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  9. Advanced sensor-computer technology for urban runoff monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Byunggu; Behera, Pradeep K.; Ramirez Rochac, Juan F.

    2011-04-01

    The paper presents the project team's advanced sensor-computer sphere technology for real-time and continuous monitoring of wastewater runoff at the sewer discharge outfalls along the receiving water. This research significantly enhances and extends the previously proposed novel sensor-computer technology. This advanced technology offers new computation models for an innovative use of the sensor-computer sphere comprising accelerometer, programmable in-situ computer, solar power, and wireless communication for real-time and online monitoring of runoff quantity. This innovation can enable more effective planning and decision-making in civil infrastructure, natural environment protection, and water pollution related emergencies. The paper presents the following: (i) the sensor-computer sphere technology; (ii) a significant enhancement to the previously proposed discrete runoff quantity model of this technology; (iii) a new continuous runoff quantity model. Our comparative study on the two distinct models is presented. Based on this study, the paper further investigates the following: (1) energy-, memory-, and communication-efficient use of the technology for runoff monitoring; (2) possible sensor extensions for runoff quality monitoring.

  10. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    PubMed Central

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  11. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review.

    PubMed

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-04-30

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  12. Renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan

    2016-07-01

    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  13. Applications of the Sensor Fish Technology

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.

    2007-08-28

    The Sensor Fish is an autonomous device developed at Pacific Northwest National Laboratory for U.S. Department of Energy (DOE) and Army Corps of Engineers (COE) to better understand the physical conditions fish experience during passage through hydro-turbines and other dam bypass alternatives. Since its initial development in 1997, the Sensor Fish has undergone several design changes to improve its function and extend the range of its use. The most recent Sensor Fish design, the six-degree-of-freedom (6DOF) device, has been deployed successfully to characterize the environment fish experience when they pass through several hydroelectric projects along main stem Columbia and Snake Rivers in the Pacific Northwest. Just as information gathered from crash test dummies can affect automobile design with the installation of protective designs to lessen or prevent human injury, having sensor fish data to quantify accelerations, rotations, and pressure changes, helps identify fish injury mechanisms such as strike, turbulent shear, pressure, and inertial effects, including non-lethal ones such as stunning or signs of vestibular disruption that expose fish to a higher risk of predation by birds and piscivorous fish downstream following passage.

  14. Assessment of Wearable Sensor Technologies for Biosurveillance

    DTIC Science & Technology

    2014-11-01

    sensors that monitor arrhythmia and control heart rhythms, to “smart” contact lenses that measure ocular pressure or glucose levels in tears, today’s...help physicians better diagnose and treat cardiac arrhythmias . The device provides continuous monitoring and recording of both symptomatic and

  15. Molecular dynamics study on splitting of hydrogen-implanted silicon in Smart-Cut® technology

    NASA Astrophysics Data System (ADS)

    Bing, Wang; Bin, Gu; Rongying, Pan; Sijia, Zhang; Jianhua, Shen

    2015-03-01

    Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut® technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most defects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed. Project supported by the National Natural Science Foundation of China (No. 11372261), the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province (No. 2013JQ0030), the Supporting Project of Department of Education of Sichuan Province (No. 2014zd3132), the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, Southwest University of Science and Technology-Ministry of Education (No. 12zxzk02), the Fund of Doctoral Research of Southwest University of Science and Technology (No. 12zx7106), and the Postgraduate Innovation Fund Project of Southwest University of Science and Technology (No. 14ycxjj0121).

  16. Experimental applications of smart composites

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Yang, Qiang; MacDonald, Douglas O.; Westhaver, Paul A. D.

    1997-03-01

    The issues of fabrication, evaluation and experimental testing of smart composites are discussed. The technology for the fabrication of fiber reinforced polymer composites with embedded fiber optic sensors is developed. Smart composites are produced by a custom built pultruder. It is shown that the mechanical properties of pultruded carbon reinforced composites with and without optical fiber are superior to that of pultruded glass analogue. The embedded optical fibers do not have significant effect on the tensile properties of pultruded FRP, but they deteriorate the shear strength of composites. Polyimide coating on optical fiber results in a good interface between optical fiber and host material; whereas acrylate coating cannot withstand the high production temperature and causes sever debonding of optical fiber and resin. The specific application in view is the use of smart reinforcements for innovative concrete structures.

  17. Using Multiple Barometers to Detect the Floor Location of Smart Phones with Built-in Barometric Sensors for Indoor Positioning

    PubMed Central

    Xia, Hao; Wang, Xiaogang; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2015-01-01

    Following the popularity of smart phones and the development of mobile Internet, the demands for accurate indoor positioning have grown rapidly in recent years. Previous indoor positioning methods focused on plane locations on a floor and did not provide accurate floor positioning. In this paper, we propose a method that uses multiple barometers as references for the floor positioning of smart phones with built-in barometric sensors. Some related studies used barometric formula to investigate the altitude of mobile devices and compared the altitude with the height of the floors in a building to obtain the floor number. These studies assume that the accurate height of each floor is known, which is not always the case. They also did not consider the difference in the barometric-pressure pattern at different floors, which may lead to errors in the altitude computation. Our method does not require knowledge of the accurate heights of buildings and stories. It is robust and less sensitive to factors such as temperature and humidity and considers the difference in the barometric-pressure change trends at different floors. We performed a series of experiments to validate the effectiveness of this method. The results are encouraging. PMID:25835189

  18. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning.

    PubMed

    Xia, Hao; Wang, Xiaogang; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2015-03-31

    Following the popularity of smart phones and the development of mobile Internet, the demands for accurate indoor positioning have grown rapidly in recent years. Previous indoor positioning methods focused on plane locations on a floor and did not provide accurate floor positioning. In this paper, we propose a method that uses multiple barometers as references for the floor positioning of smart phones with built-in barometric sensors. Some related studies used barometric formula to investigate the altitude of mobile devices and compared the altitude with the height of the floors in a building to obtain the floor number. These studies assume that the accurate height of each floor is known, which is not always the case. They also did not consider the difference in the barometric-pressure pattern at different floors, which may lead to errors in the altitude computation. Our method does not require knowledge of the accurate heights of buildings and stories. It is robust and less sensitive to factors such as temperature and humidity and considers the difference in the barometric-pressure change trends at different floors. We performed a series of experiments to validate the effectiveness of this method. The results are encouraging.

  19. Numerical analysis of a smart composite material mechanical component using an embedded long period grating fiber sensor

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Miclos, Sorin; Savastru, Roxana; Lancranjan, Ion I.

    2015-05-01

    Results obtained by FEM analysis of a smart mechanical part manufactured of reinforced composite materials with embedded long period grating fiber sensors (LPGFS) used for operation monitoring are presented. Fiber smart reinforced composite materials because of their fundamental importance across a broad range of industrial applications, as aerospace industry. The main purpose of the performed numerical analysis consists in final improved design of composite mechanical components providing a feedback useful for further automation of the whole system. The performed numerical analysis is pointing to a correlation of composite material internal mechanical loads applied to LPGFS with the NIR absorption bands peak wavelength shifts. One main idea of the performed numerical analysis relies on the observed fact that a LPGFS embedded inside a composite material undergoes mechanical loads created by the micro scale roughness of the composite fiber network. The effect of this mechanical load consists in bending of the LPGFS. The shifting towards IR and broadening of absorption bands appeared in the LPGFS transmission spectra is modeled according to this observation using the coupled mode approach.

  20. Smart programmable wireless microaccelerometers

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Subramanian, Hareesh; Varadan, Vasundara V.

    1998-07-01

    The integration of MEMS, SAW devices and required microelectronics and conformal antenna to realize a programmable wireless accelerometer is presented in this paper. This unique combination of technologies results in a novel accelerometer that can be remotely sensed by a microwave system with the advantage of no power requirements at the sensor site. The microaccelerometer presented is simple in construction and easy to manufacture with existing silicon micromachining techniques. Programmable accelerometers can be achieved with splitfinger interdigital transducers (IDTs) as reflecting structures. If IDTs are short circuited or capacitively loaded, the wave propagates without any reflection whereas in an open circuit configuration, the IDTs reflect the incoming SAW signal. The programmable accelerometers can thus be achieved by using an external circuitry on a semiconductor chip using hybrid technology. The relatively small size of the sensor makes it an ideal conformal sensor. The accelerometer finds application as air bag deployment sensors, vibration sensors for noise control, deflection and strain sensors, inertial and dimensional positioning systems, ABS/traction control, smart suspension, active roll stabilization and four wheel steering. The wireless accelerometer is very attractive to study the response of a `dummy' in automobile crash test.