Educating next-generation civil engineers about smart structures technology
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng
2005-05-01
The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes
NASA Technical Reports Server (NTRS)
Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.
1996-01-01
Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-01-01
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927
Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-07-17
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.
Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan
2016-01-01
The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172
NASA Astrophysics Data System (ADS)
Brei, Diann
2011-09-01
The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
NASA Astrophysics Data System (ADS)
Yang, C. S. Walter; DesRoches, Reginald
2014-03-01
This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
Using instability to reconfigure smart structures in a spring-mass model
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; McInnes, Colin R.
2017-07-01
Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.
Bio-inspired device: a novel smart MR spring featuring tendril structure
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok
2016-01-01
Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.
Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite
NASA Astrophysics Data System (ADS)
Rockberger, D.; Abramovich, H.
2014-03-01
The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.
Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera
NASA Astrophysics Data System (ADS)
Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2015-07-01
Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.
NASA Astrophysics Data System (ADS)
Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy
2014-10-01
The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
System requirements specification for SMART structures mode
NASA Technical Reports Server (NTRS)
1992-01-01
Specified here are the functional and informational requirements for software modules which address the geometric and data modeling needs of the aerospace structural engineer. The modules are to be included as part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis Branch (VAB) at the NASA Langley Research Center (LaRC). The purpose is to precisely state what the SMART Structures modules will do, without consideration of how it will be done. Each requirement is numbered for reference in development and testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason; Dobrzynski, Daniel S.
A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less
Overview of demonstrator program of Japanese Smart Materials and Structure System project
NASA Astrophysics Data System (ADS)
Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo
2003-08-01
The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.
An Approach for Smart Antenna Testbed
NASA Astrophysics Data System (ADS)
Kawitkar, R. S.; Wakde, D. G.
2003-07-01
The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Workshop report: US-China workshop on smart structures and smart systems
NASA Astrophysics Data System (ADS)
Tomizuka, Masayoshi
2006-03-01
A Joint U.S.-China workshop on the topic of Integrated Sensing Systems, Mechatronics and Smart Structures Technologies was held in Jinan, China in October 2005 to evaluate the current status of research and education in the topic areas in the United States and China, to identify critical and strategic research and educational issues of mutual interest, and to identify joint research projects and potential research teams for collaborative research activities. The workshop included a series of presentations by leading researchers and educators from the United States and China and group discussions on the workshop objectives.
Decentralized adaptive control designs and microstrip antennas for smart structures
NASA Astrophysics Data System (ADS)
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Pilot symbol-assisted beamforming algorithms in the WCDMA reverse link
NASA Astrophysics Data System (ADS)
Kong, Dongkeon; Lee, Jong H.; Chun, Joohwan; Woo, Yeon Sik; Soh, Ju Won
2001-08-01
We present a pilot symbol-assisted beamforming algorithm and a simulation tool of smart antennas for Wideband Code Division Multiple Access (WCDMA) in reverse link. In the 3GPP WCDMA system smart antenna technology has more room to play with than in the second generation wireless mobile systems such as IS-95 because the pilot symbol in Dedicated Physical Control Channel (DPCCH) can be utilized. First we show a smart antenna structure and adaptation algorithms, and then we explain a low-level smart antenna implementation using Simulink and MATLAB. In the design of our smart antenna system we pay special attention for the easiness of the interface to the baseband modem; Our ultimate goal is to implement a baseband smart antenna chip sets that can easily be added to to-be-existed baseband WCDMA modem units.
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review
Ge, Chang; Wang, Z. Jane; Cretu, Edmond; Li, Xiaoou
2017-01-01
During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted. PMID:29149080
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
DOT National Transportation Integrated Search
2015-06-01
This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...
Smart wing wind tunnel model design
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.
1997-05-01
To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.
Hadoop Oriented Smart Cities Architecture.
Diaconita, Vlad; Bologa, Ana-Ramona; Bologa, Razvan
2018-04-12
A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.
Hadoop Oriented Smart Cities Architecture
Bologa, Ana-Ramona; Bologa, Razvan
2018-01-01
A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities. PMID:29649172
Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan
2015-01-01
Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands. PMID:26083230
Fuzzy Modal Control Applied to Smart Composite Structure
NASA Astrophysics Data System (ADS)
Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.
2015-07-01
This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.
Constitutive modeling and control of 1D smart composite structures
NASA Astrophysics Data System (ADS)
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
NASA Astrophysics Data System (ADS)
Lynch, Christopher
2009-10-01
The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.
Complete diagnostics of pyroactive structures for smart systems of optoelectronics
NASA Astrophysics Data System (ADS)
Bravina, Svetlana L.; Morozovsky, Nicholas V.
1998-04-01
The results of study of pyroelectric phenomena in ferroelectric materials for evidence of the possibility to embody the functions promising for creation of smart systems for optoelectronic applications are presented. Designing such systems requires the development of methods for non- destructive complete diagnostics preferably by developing the self-diagnostic ability inherent in materials with the features of smart/intelligent ones. The complex method of complete non-destructive qualification of pyroactive materials based on the method of dynamic photopyroelectric effect allows the determination of pyroelectric, piezoelectric, ferroelectric, dielectric and thermophysical characteristics. The measuring system which allows the study of these characteristics and also memory effects, switching effects, fatigue and degradation process, self-repair process and others is presented. Sample pyroactive system with increased intelligence, such as systems with built-in adaptive controllable domain structure promising for functional optics are developed and peculiarities of their characterization are discussed.
Combining engineered cell-sensors with multi-agent systems to realize smart environment
NASA Astrophysics Data System (ADS)
Chen, Mei
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
A new SMART sensing system for aerospace structures
NASA Astrophysics Data System (ADS)
Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo
2007-04-01
It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
ERIC Educational Resources Information Center
Twyman Hoff, Pamela
2016-01-01
In African American culture competing value systems shape the definition and value of smartness. This article will explore African American "sayins" as a tool to transmit the counter-hegemonic cultural value of smartness. "Sayins," a facet of the African American oral tradition, are drawn from the deep structures of African…
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
NASA Astrophysics Data System (ADS)
Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping
2016-04-01
As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.
Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.
Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong
2018-06-04
In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.
Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily
2017-09-06
Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
Development of lightweight structural health monitoring systems for aerospace applications
NASA Astrophysics Data System (ADS)
Pearson, Matthew
This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..
ERIC Educational Resources Information Center
Chaudhry, Hina
2013-01-01
This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…
Modeling Smart Structure of Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping
2012-06-01
With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.
1993-07-24
detection anit charact(erization in smart material structures 21 NI. BER;OUNIoUX, T. N’IANNIKK6) AN) D. TmIA: Optimnality conditions for non-qumalified...UISA DAMAGE DETECTION AND CHARACTERIZATION IN SMART MATERIAL STRUCTURES HI. TF. BANKS AND) Y, WAN(, C~enter for Rtsvarchliti Scientific Cumpiptatioii...111,u’, + +pt,’, ,x 123 22 (3.3) 0~’ ={( othi’i-wist’. Wie iitmt sought to dlemnonstrat~e tiht capabliity of1 pieoll"t~tItrit m~aterialds inl smart
NASA Astrophysics Data System (ADS)
Song, N. N.; Wu, F.
2016-04-01
An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.
Telematics and smart cards in integrated health information system.
Sicurello, F; Nicolosi, A
1997-01-01
Telematics and information technology are the base on which it will be possible to build an integrated health information system to support population and improve their quality of life. This system should be based on record linkage of all data based on the interactions of the patients with the health structures, such as general practitioners, specialists, health institutes and hospitals, pharmacies, etc. The record linkage can provide the connection and integration of various records, thanks to the use of telematic technology (either urban or geographical local networks, such as the Internet) and electronic data cards. Particular emphasis should be placed on the introduction of smart cards, such as portable health cards, which will contain a standardized data set and will be sufficient to access different databases found in various health services. The inter-operability of the social-health records (including multimedia types) and the smart cards (which are one of the most important prerequisites for the homogenization and wide diffusion of these cards at an European level) should be strongly taken into consideration. In this framework a project is going to be developed aiming towards the integration of various data bases distributed territorially, from the reading of the software and the updating of the smart cards to the complete management of the patients' evaluation records, to the quality of the services offered and to the health planning. The applications developed will support epidemiological investigation software and data analysis. The inter-connection of all the databases of the various structures involved will take place through a coordination center, the most important system of which we will call "record linkage" or "integrated database". Smart cards will be distributed to a sample group of possible users and the necessary smart card management tools will be installed in all the structures involved. All the final users (the patients) in the whole network of services involved will be monitored for the duration of the project. The system users will also include general practitioners, social workers, physicians, health operators, pharmacists, laboratory workers and administrative personnel of the municipality and of the health structures concerned.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.
1990-02-01
This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to calculate strain magnitude and actuator control signals for simple structures.
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.
Lynggaard, Per; Skouby, Knud Erik
2016-11-02
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
Solar Plus: A Holistic Approach to Distributed Solar PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Comparative advantage between traditional and smart navigation systems
NASA Astrophysics Data System (ADS)
Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan
2013-03-01
The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).
NASA Astrophysics Data System (ADS)
Harrison, Robert; Vera, Daniel; Ahmad, Bilal
2016-10-01
The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.
Fabrication and testing of SMA composite beam with shape control
NASA Astrophysics Data System (ADS)
Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj
2017-07-01
Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.
Combining Sense and Intelligence for Smart Structures
NASA Technical Reports Server (NTRS)
2002-01-01
IFOS developed the I*Sense technology with assistance from a NASA Langley Research Center SBIR contract. NASA and IFOS collaborated to create sensing network designs that have high sensitivity, low power consumption, and significant potential for mass production. The joint- research effort led to the development of a module that is rugged, compact and light-weight, and immune to electromagnetic interference. These features make the I*Sense multisensor arrays favorable for smart structure applications, including smart buildings, bridges, highways, dams, power plants, ships, and oil tankers, as well as space vehicles, space stations, and other space structures. For instance, the system can be used as an early warning and detection device, with alarms being set to monitor the maximum allowable strain and stress values at various points of a given structure.
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.
1996-05-01
The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.
Autonomous docking system for space structures and satellites
NASA Astrophysics Data System (ADS)
Prasad, Guru; Tajudeen, Eddie; Spenser, James
2005-05-01
Aximetric proposes Distributed Command and Control (C2) architecture for autonomous on-orbit assembly in space with our unique vision and sensor driven docking mechanism. Aximetric is currently working on ip based distributed control strategies, docking/mating plate, alignment and latching mechanism, umbilical structure/cord designs, and hardware/software in a closed loop architecture for smart autonomous demonstration utilizing proven developments in sensor and docking technology. These technologies can be effectively applied to many transferring/conveying and on-orbit servicing applications to include the capturing and coupling of space bound vehicles and components. The autonomous system will be a "smart" system that will incorporate a vision system used for identifying, tracking, locating and mating the transferring device to the receiving device. A robustly designed coupler for the transfer of the fuel will be integrated. Advanced sealing technology will be utilized for isolation and purging of resulting cavities from the mating process and/or from the incorporation of other electrical and data acquisition devices used as part of the overall smart system.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
Auxetics in smart systems and structures 2013
NASA Astrophysics Data System (ADS)
Scarpa, Fabrizio; Ruzzene, Massimo; Alderson, Andrew; Wojciechowski, Krzysztof W.
2013-08-01
Auxetics comes from the Greek (auxetikos), meaning 'that which tends to expand'. The term indicates specifically materials and structures with negative Poisson's ratio (NPR). Although the Poisson's ratio is a mechanical property, auxetic solids have shown evidence of multifunctional characteristics, ranging from increased stiffness and indentation resistance, to energy absorption under static and dynamic loading, soundproofing qualities and dielectric tangent loss. NPR solids and structures have also been used in the past as material platforms to build smart structural systems. Auxetics in general can be considered also a part of the 'negative materials' field, which includes solids and structures exhibiting negative thermal expansion, negative stiffness and compressibility. All these unusual deformation characteristics have the potential to provide a significant contribution to the area of smart materials systems and structures. In this focus issue, we are pleased to present some examples of novel multifunctional behaviors provided by auxetic, negative stiffness and negative compressibility in smart systems and structures. Particular emphasis has been placed upon the multidisciplinary and systems approach provided by auxetics and negative materials, also with examples applied to energy absorption, vibration damping, structural health monitoring and active deployment aspects. Three papers in this focus issue provide significant new clarifications on the role of auxeticity in the mechanical behavior of shear deformation in plates (Lim), stress wave characteristics (Lim again), and thermoelastic damping (Maruszewski et al ). Kochmann and Venturini describe the performance of auxetic composites in finite strain elasticity. New types of microstructures for auxetic systems are depicted for the first time in three works by Ge et al , Zhang et al , and Kim and co-workers. Tubular auxetic structures and their mechanical performance are also analyzed by Karnessis and Burriesci. Foams with negative Poisson's ratio constitute one of the main examples of auxetic materials available. The focus issue presents two papers on this topic, one on a novel microstructure numerical modeling technique (Pozniak et al ), the other on experimental and model identification results of linear and nonlinear vibration behavior (Bianchi and Scarpa). Nonlinearity (now in wave propagation for SHM applications) is also investigated by Klepka and co-workers, this time in auxetic chiral sandwich structures. Vibration damping and nonlinear behavior is also a key feature of the auxetic structural damper with metal rubber particles proposed by Ma et al . Papers on negative material properties are introduced by the negative stiffness and high-frequency damper concept proposed by Kalathur and Lakes. A cellular structure exhibiting a zero Poisson's ratio, together with zero and negative stiffness, is presented in the work of Virk and co-workers. Negative compressibility is examined by Grima et al in truss-type structures with constrained angle stretching. Finally, Grima and co-workers propose a concept of tunable auxetic metamaterial with magnetic inclusions for multifunctional applications. Acknowledgments We would like to thank all the authors for their high quality contributions. Special thanks go also to the Smart Materials and Structures Editorial Board and the IOP Publishing team, with particular mention to Natasha Leeper and Bethan Davies for their continued support in arranging this focus issue in Smart Materials and Structures .
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision
Lynggaard, Per; Skouby, Knud Erik
2016-01-01
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851
An innovative and multi-functional smart vibration platform
NASA Astrophysics Data System (ADS)
Olmi, C.; Song, G.; Mo, Y. L.
2007-08-01
Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.
Managing Distributed Systems with Smart Subscriptions
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Lee, Diana D.; Swanson, Keith (Technical Monitor)
2000-01-01
We describe an event-based, publish-and-subscribe mechanism based on using 'smart subscriptions' to recognize weakly-structured events. We present a hierarchy of subscription languages (propositional, predicate, temporal and agent) and algorithms for efficiently recognizing event matches. This mechanism has been applied to the management of distributed applications.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
NASA Astrophysics Data System (ADS)
Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.
2007-04-01
The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.
All-printed smart structures: a viable option?
NASA Astrophysics Data System (ADS)
O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory
2014-03-01
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
Natural frequency identification of smart washer by using adaptive observer
NASA Astrophysics Data System (ADS)
Ito, Hitoshi; Okugawa, Masayuki
2014-04-01
Bolted joints are used in many machines/structures and some of them have been loosened during long time use, and unluckily these bolt loosening may cause a great accident of machines/structures system. These bolted joint, especially in important places, are main object of maintenance inspection. Maintenance inspection with human- involvement is desired to be improved owing to time-consuming, labor-intensive and high-cost. By remote and full automation monitoring of the bolt loosening, constantly monitoring of bolted joint is achieved. In order to detect loosening of bolted joints without human-involvement, applying a structural health monitoring technique and smart structures/materials concept is the key objective. In this study, a new method of bolt loosening detection by adopting a smart washer has been proposed, and the basic detection principle was discussed with numerical analysis about frequency equation of the system, was confirmed experimentally. The smart washer used in this study is in cantilever type with piezoelectric material, which adds the washer the self-sensing and actuation function. The principle used to detect the loosening of the bolts is a method of a bolt loosening detection noted that the natural frequency of a smart washer system is decreasing by the change of the bolt tightening axial tension. The feature of this proposed method is achieving to identify the natural frequency at current condition on demand by adopting the self-sensing and actuation function and system identification algorithm for varying the natural frequency depending the bolt tightening axial tension. A novel bolt loosening detection method by adopting adaptive observer is proposed in this paper. The numerical simulations are performed to verify the possibility of the adaptive observer-based loosening detection. Improvement of the detection accuracy for a bolt loosening is confirmed by adopting initial parameter and variable adaptive gain by numerical simulation.
Fiber optics in composite materials: materials with nerves of glass
NASA Astrophysics Data System (ADS)
Measures, Raymond M.
1990-08-01
A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.
Smart Point Cloud: Definition and Remaining Challenges
NASA Astrophysics Data System (ADS)
Poux, F.; Hallot, P.; Neuville, R.; Billen, R.
2016-10-01
Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
Smart materials and structures: what are they?
NASA Astrophysics Data System (ADS)
Spillman, W. B., Jr.; Sirkis, J. S.; Gardiner, P. T.
1996-06-01
There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and start of the art in other fields. In order to ascertain whether a consensus is emerging on a number of questions, the technical community was surveyed in a variety of ways including via the internet and by direct contact. The purpose of this survey was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed. Finally, a formal definition of the field of smart materials and structures is proposed.
Australian defence requirements and initiatives in smart materials and structures
NASA Astrophysics Data System (ADS)
Wilson, Alan R.; Galea, Stephen C.; Scala, Christine; Wong, Albert
2002-11-01
The Australian Defence Force is increasingly facing escalating costs on through-life support for major platforms (ships, aircraft and land vehicles). The application of smart materials and structures technologies in platform management systems is seen as a very promising approach to reduce these costs and to potentially achieve significant enhancement of platform capability. A new DSTO Key Initiative, 'Smart Materials and Structures', has been recently developed and funded to address these technologies. The Initiative will build on and grow the current activities within DSTO and promote collaboration with external Australian institutes and industry. This paper will present an overview of the Initiative and the generic sensor and system issues inherent in the 'whole-of-platform' and 'whole-of-life' monitoring and management of major defence platforms. Examples for some particular elements of this will be drawn from current work in DSTO. Other presentations in the conference will cover the technical and scientific aspects of these in more detail.
A Real Time Controller For Applications In Smart Structures
NASA Astrophysics Data System (ADS)
Ahrens, Christian P.; Claus, Richard O.
1990-02-01
Research in smart structures, especially the area of vibration suppression, has warranted the investigation of advanced computing environments. Real time PC computing power has limited development of high order control algorithms. This paper presents a simple Real Time Embedded Control System (RTECS) in an application of Intelligent Structure Monitoring by way of modal domain sensing for vibration control. It is compared to a PC AT based system for overall functionality and speed. The system employs a novel Reduced Instruction Set Computer (RISC) microcontroller capable of 15 million instructions per second (MIPS) continuous performance and burst rates of 40 MIPS. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuits are integrated on a single 100 mm by 160 mm printed circuit board requiring only 1 Watt of power. An operating system written in Forth provides high speed operation and short development cycles. The system allows for implementation of Input/Output (I/O) intensive algorithms and provides capability for advanced system development.
A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields
NASA Astrophysics Data System (ADS)
Hung, Chiao-Fang; Chen, Chin-Chung; Yeh, Po-Chen; Chen, Po-Wen; Chung, Tien-Kan
2017-12-01
In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24-1.54 and 1.25-1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17-6.2 and 3.97-4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2005-01-01
A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.
Smart Sensors Assess Structural Health
NASA Technical Reports Server (NTRS)
2010-01-01
NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.
NASA Astrophysics Data System (ADS)
Gaviña, J. R.; Uy, F. A.; Carreon, J. D.
2017-06-01
There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varughese, Byji; Dayananda, G. N.; Rao, M. Subba
2008-07-29
The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less
Field of smart structures as seen by those working in it: survey results
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Sirkis, James S.; Gardiner, Peter T.
1995-04-01
There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and state-of-the-art in other fields. In order to ascertain whether a consensus is emerging on a number of these questions, the technical community was surveyed in a number of ways including via the Internet and by direct contact. The purpose of this survey in the final analysis was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed.
MEMS- and NEMS-based smart devices and systems
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2001-11-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil structures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross- linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
The multi-queue model applied to random access protocol
NASA Astrophysics Data System (ADS)
Fan, Xinlong
2013-03-01
The connection of everything in a sensory and an intelligent way is a pursuit in smart environment. This paper introduces the engineered cell-sensors into the multi-agent systems to realize the smart environment. The seamless interface with the natural environment and strong information-processing ability of cell with the achievements of synthetic biology make the construction of engineered cell-sensors possible. However, the engineered cell-sensors are only simple-functional and unreliable computational entities. Therefore how to combine engineered cell-sensors with digital device is a key problem in order to realize the smart environment. We give the abstract structure and interaction modes of the engineered cell-sensors in order to introduce engineered cell-sensors into multi-agent systems. We believe that the introduction of engineered cell-sensors will push forward the development of the smart environment.
NASA Astrophysics Data System (ADS)
Seelecke, Stefan; Erturk, Alper; Ounaies, Zoubeida; Naguib, Hani; Huber, John; Turner, Travis; Anderson, Iain; Philen, Michael; Baba Sundaresan, Vishnu
2013-09-01
The fifth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in beautiful Stone Mountain near Atlanta, GA. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems. This was reflected in keynote speeches by Professor Eduard Arzt (Institute of New Materials and Saarland University, Saarbrücken, Germany) on 'Micro-patterned artificial 'Gecko' surfaces: a path to switchable adhesive function', by Professor Ray H Baughman (The Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas) on 'The diverse and growing family of carbon nanotube and related artificial muscles', and by Professor Richard James (University of Minnesota) on 'The direct conversion of heat to electricity using multiferroic materials with phase transformations'. SMASIS 2012 was divided into eight symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. • SYMP 1. Development and characterization of multifunctional materials. • SYMP 2. Mechanics and behavior of active materials. • SYMP 3. Modeling, simulation and control of adaptive systems. • SYMP 4. Integrated system design and implementation. • SYMP 5. Structural health monitoring/NDE. • SYMP 6. Bio-inspired materials and systems. • SYMP 7. Energy harvesting. • SYMP 8. Structural and materials logic. This year we were particularly excited to introduce a new symposium on energy harvesting, which has quickly matured from a special track in previous years to an independent symposium for the first time. The subject cuts across fields by studying different materials, ranging from piezoelectrics to electroactive polymers, as well as by emphasizing different energy sources from wind to waves and ambient vibrations. Modeling, experimental studies, and technology applications all belong to the symposium topics. In addition, the conference also featured a special symposium dedicated to DARPA's structural and materials/logic program. The program seeks to enable structural systems to adapt to varying loads and simultaneously exhibit both high stiffness and high damping. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures . This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We are very appreciative of their efforts to produce this collection of highly relevant articles on smart materials.
NASA Technical Reports Server (NTRS)
Trottier, C. Michael
1996-01-01
Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
2016-07-14
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Cyber-Physical System Security of a Power Grid: State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
NASA Astrophysics Data System (ADS)
Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar
2009-03-01
Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
A smart composite patch for the repair of aircraft structures
NASA Astrophysics Data System (ADS)
Wakha, Kelah; Samuel, Paul; Pines, Darryll J.
2005-05-01
Recent interest in bonded composite patch repair technology for aerospace systems is because this method can be carried out at a reduced cost and time and can easily be applied to complex geometric structures. This paper details the development of a dual stiffness/energy sensor for monitoring the integrity of a composite patch used to repair an aluminum structural component. The smart sensor has the ability to predict the elastic field of a given host structure based on the strain state of two sub-sensors integrated into the structure. The present study shows the possibility of using the sensor to deduce the local instantaneous host stiffness. Damaged structures are characterized by a reduction in their elastic stiffness that evolve from microstructural defects. A local smart sensor can be developed to sense the local average properties on a host. In this paper, sensors are attached to a structure and a modified Eshelby's equivalent inclusion method is used to derive the elastic properties of the host. An analytical derivation and a sensitivity analysis for the quasistatic application is given in a papers by Majed, Dasgupta, Kelah and Pines. A summary of the derivation of the dynamic Eshelby tensor is presented. This is of importance because damage detection in structures undergoing vibratory and other motions present a greater challenge than those in quasistatic motion. An in-situ health monitoring active sensor system for a real structure (an aluminum plate with an attached repair patch) under close-to real lifecycle loading conditions is developed. The detection of the onset of any damage to the structure as well as the repair patch and the subsequent monitoring of the growth of this damage constitute important goals of the system. Both experimental and finite element methods were applied. Experimental results are presented for tests of the aluminum plate with the repair patch under monotonic quasi-static and dynamic loading vibratory conditions. In summary, the study shows that smart bonded composite repair patches are very effective in the repair of thin aluminum structures since they are able to determine the integrity of the repair structure as well as the repair patch.
[Design and implementation on smart client for hospital information system].
Liu, Min; Chen, Wei
2009-07-01
The article analyzes the traditional advantages and disadvantages of HIS based on the C/S and B/S structure, and introduces the features of Smart Client technology. Applying the technology in HIS, not only provides excellent operating experience, but also has the benefits of management brought about by concentration of deployment and update, achieve a balanced use of resources. Finally, this paper focuses on the application of the technology in the HIS system architecture design.
Noncontact power/interrogation system for smart structures
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Durkee, S.
1994-05-01
The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
Nanotechnology: MEMS and NEMS and their applications to smart systems and devices
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-10-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: (1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; (2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; (3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; (4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sending and control of a variety functions in automobile, aerospace, marine and civil strutures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5 - 40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended coventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
System identification of smart structures using a wavelet neuro-fuzzy model
NASA Astrophysics Data System (ADS)
Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar
2012-11-01
This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
Novel dielectric elastomer structure of soft robot
NASA Astrophysics Data System (ADS)
Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng
2015-04-01
Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.
On location of piezoelectric element in a smart-structure: numerical investigation and experiment
NASA Astrophysics Data System (ADS)
Oshmarin, D.; Iurlov, M.
2017-06-01
In this paper, based on some example problems it was demonstrated that in examining the possibilities of smart structure applications, the matter of considerable researchers’ concern is the problem of location of piezoelectric elements in the structure to allow effective realization of its smart functions in the framework of the specified strategy of structure control and target purposes (vibration damping, defectoscopy, etc.) The numerical and experimental investigations have shown that for structures with the elements made of piezoelectric materials, it is more convenient to use as a parameter, specifying the best location of the piezoelectric element for damping the vibrations at the prescribed frequency, the coefficient of electromechanical coupling, which is evaluated by the values of eigenfrequencies of the structure in the short-circuit and open-circuit regimes. The values of eigenfrequencies of vibrations are evaluated by solving the problem of natural vibrations of electromechanical systems by the finite element method using the applied ANSYS package. The investigation were conducted for a thin-walled aluminum shell in the form of half-cylinder.
Damage suppression system using embedded SMA (shape memory alloy) foils in CFRP laminate structures
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Shimanuki, Masakazu; Kiyoshima, Satoshi; Takaki, Junji; Takeda, Nobuo
2003-08-01
This paper presents an overview of the demonstrator program with respect to the damage growth suppression effects using embedded SMA foils in CFRP laminates. The damage growth suppression effects were demonstrated for the technical verification in order to apply to aircraft structure. In our previous studies, the authors already confirmed the damage growth suppression effects of CFRP laminates with embedded pre-strained SMA foils through both coupon and structural element tests. It was founded that these effects were obtained by the suppression of the strain energy release rate based on the suppression of the crack opening displacement due to the recovery stress of SMA foils through the detail observation of the damage behavior. In this study, these results were verified using the demonstrator test article, which was 1/3-scaled model of commercial airliner fuselage structure. For the demonstration of damage growth suppression effects, the evaluation area was located in the lower panel, which was dominated in tension load during demonstration. The evaluation area is the integrated stiffened panel including both "smart area" (CFRP laminate with embedded pre-strained SMA foils) and "conventional area" (standard CFRP laminate) for the direct comparison. The demonstration was conducted at 80 degree Celsius in smart area and room temperature (RT) in conventional area during quasi-static load-unload test method. As the test results, the demonstrator test article presented that the damage onset strain in the smart area was improved by 30% for compared with the conventional area. Therefore, the successful technical verification of the damage onset/growth suppression effect using the demonstrator presented the feasibility of the application of smart material and structural system to aircraft structures.
Prototype of smart office system using based security system
NASA Astrophysics Data System (ADS)
Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.
2018-05-01
Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.
NASA Technical Reports Server (NTRS)
Won, C. C.
1993-01-01
This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.
NASA Astrophysics Data System (ADS)
Brei, Diann
2012-09-01
The fourth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in sunny Scottsdale, Arizona. Each year we strive to grow and offer new experiences. This year we held a special Guest Symposium on Sustainability along with two focused topic tracks on energy harvesting and active composites to encourage cross-fertilization between these important fields and our community. This cross-disciplinary emphasis was reflected in keynote talks by Dr Wayne Brown, President and founder of Dynalloy, Inc., 'Cross-Discipline Sharing'; Dr Brad Allenby, Arizona State University, 'You Want the Future? You can't Handle the Future!'; and Professor Aditi Chattopadhyay, Arizona State University, 'A Multidisciplinary Approach to Structural Health Monitoring and Prognosis'. SMASIS continues to grow our community through both social and technical interchange. The conference location, the exotic Firesky Resort and Spa, exemplified the theme of our Guest Symposium on Sustainability, being the only Green Seal certified resort in Arizona, and highlighting four elements thought to represent all that exist: fire, water, earth and air. Several special events were held around this theme including the night at the oasis reception sponsored by General Motors, sustainability bingo, smart trivia and student networking lunches, and an Arizona pow-wow with a spectacular Indian hoop dance. Our student and young professional development continues to grow strong with best paper and hardware competitions, scavenger student outing and games night. We are very proud that our students and young professionals are always seeking out ways to give back to the community, including organizing outreach to local high school talent. We thank all of our sponsors who made these special events possible. We hope that these social events provided participants with the opportunity to expand their own personal community and broaden their horizons. Our ultimate goal was to provide a friendly, casual southwestern forum for the exchange of the 'hottest' ideas and latest results. Our sincere appreciation goes to all the presenters for choosing to share their very best work at this conference. SMASIS is divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; SYMP 6 Bio-inspired Smart Materials and Structures; and SYMP 7 Guest Symposium on Sustainability. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials area (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this Special Issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We appreciate their efforts in producing this collection of highly relevant articles on smart materials.
Structural and robustness properties of smart-city transportation networks
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song
2015-09-01
The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).
NASA Astrophysics Data System (ADS)
Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede
2016-04-01
This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
Functional and Multifunctional Polymers: Materials for Smart Structures
NASA Technical Reports Server (NTRS)
Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.
1996-01-01
The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
Test results of smart aircraft fastener for KC-135 structural integrity
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg
1998-07-01
Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.
Smart fastener for KC-135 structural integrity monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg
1997-06-01
Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.
NASA Astrophysics Data System (ADS)
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
Types of architectural structures and the use of smart materials
NASA Astrophysics Data System (ADS)
Tavşan, Cengiz; Sipahi, Serkan
2017-07-01
The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.
A smart-hose for concrete displacing booms
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Bucca, Giuseppe; Fava, Victor; Resta, Ferruccio
2016-04-01
During the last years, continuum robots have been used in many applications. They are smart structures with continuous curving, similar to a worm or an elephant trunk, characterized by a very high number of sub-actuated degrees of freedom (dof). They need a robust control system, aiming at both positioning the robot and suppressing induced vibrations. The idea is to adopt such a robot on a construction machine for the concrete distribution, substituting the reinforced rubber hose with the robotic smart solution. Particular attention has been paid to a control strategy able to reduce vibrations induced by the pumping procedure.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing
2017-08-22
The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.
Smart Pavement Monitoring System
DOT National Transportation Integrated Search
2013-05-01
This report describes the efforts undertaken to develop a novel self-powered strain sensor for continuous structural health monitoring of pavement systems under the Federal Highway Administration. Efforts focused on designing and testing a sensing sy...
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
Biology doesn't waste energy: that's really smart
NASA Astrophysics Data System (ADS)
Vincent, Julian F. V.; Bogatyreva, Olga; Bogatyrev, Nikolaj
2006-03-01
Biology presents us with answers to design problems that we suspect would be very useful if only we could implement them successfully. We use the Russian theory of problem solving - TRIZ - in a novel way to provide a system for analysis and technology transfer. The analysis shows that whereas technology uses energy as the main means of solving technical problems, biology uses information and structure. Biology is also strongly hierarchical. The suggestion is that smart technology in hierarchical structures can help us to design much more efficient technology. TRIZ also suggests that biological design is autonomous and can be defined by the prefix "self-" with any function. This autonomy extends to the control system, so that the sensor is commonly also the actuator, resulting in simpler systems and greater reliability.
Changes in Structural Health Monitoring System Capability Due to Aircraft Environmental Factors
2009-09-01
and R. Ikegami . “Hot-Spot Fatigue Crack Monitoring of Inaccessible Structural Regions in Air- craft Subsystems Using Structural Health Monitoring...national Society for Optical Engineering, volume 4702 of Smart Structures and Materials 2002, 29–40. Newport Beach, CA: SPIE, 2002. 54. Ikegami , R
Dual use application of killer app FHE products for Mil/Aero
NASA Astrophysics Data System (ADS)
Hackler, R. Douglas
2016-05-01
The flexible electronics industry has adopted flexible hybrid electronic (FHE) systems as a go to market strategy. High volume products are emerging for body worn bio patches, conformal structural appliques and smart labels. These products were principally developed for volume consumer and industrial market solutions but are directly applicable to advanced defense systems. This article highlights the state of the art for bio patch, conformal and smart FHE products and identifies their dual use capability for defense systems. A discussion of the manufacturing base for FHE products is presented and current experimental prototype results and performance are shared.
Smart and functional polymer materials for smart and functional microfluidic instruments
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2014-04-01
As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.
Intelligent Sensors for Integrated Systems Health Management (ISHM)
NASA Technical Reports Server (NTRS)
Schmalzel, John L.
2008-01-01
IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.
ERIC Educational Resources Information Center
Guzei, Ilia A.; Hill, Nicholas J.; Zakai, Uzma I.
2010-01-01
Bruker SMART X2S is a portable benchtop diffractometer that requires only a 110 V outlet to operate. The instrument operation is intuitive and facile with an automation layer governing the workflow from behind the scenes. The user participation is minimal. At the end of an experiment, the instrument attempts to solve the structure automatically;…
Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I
2016-02-01
A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.
Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari
1996-05-01
While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.
Smart command recognizer (SCR) - For development, test, and implementation of speech commands
NASA Technical Reports Server (NTRS)
Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.
1988-01-01
The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
A forty-year history of fiber optic smart structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Scheel, Ingrid U.
2017-04-01
In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.
Autonomous self-powered structural health monitoring system
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.
2010-03-01
Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.
Smart Materials and Structures-Smart Wing. Volumes 1, 2, 3 and 4
1998-12-01
repeatable fashion when heat is applied. Therefore, once the pre-twist is successfully applied and the tube is installed in the model, heating the...modules were operated and calibrated online by the PSI 8400 Control System. Because the transducer modules are extremely sensitive to temperature, a...again substantiates that adaptive features tend to support each other, though not necessarily in a completely linear fashion , and essentially provide a
Smart Sensors: Why and when the origin was and why and where the future will be
NASA Astrophysics Data System (ADS)
Corsi, C.
2013-12-01
Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.
Adoption of Smart Structures for Prevention of Health Hazards in Buildings
NASA Astrophysics Data System (ADS)
Oke, Ayodeji; Aigbavboa, Clinton; Ngema, Wiseman
2017-11-01
The importance of building quality to the health and well-being of occupants and surrounding neighbors cannot be overemphasized. Smart structures were construed to proffer solution to various issues of sustainable development including social factors that is concerned with health and safety of people. Based on existing literature materials on building quality, smart structures and general aspect of sustainable developments, this study examined the benefits of smart structures in the prevention of various health issues in infrastructural buildings, which has been a concern for stakeholders in the architecture, engineering and construction industry. The criterion for indoor environmental quality was adopted and various health and bodily issues related to building quality were explained. The adoption of smart structure concept will help to manage physical, chemical, biological and psychological factors of building with a view to enhancing better quality of life of occupants.
A state-of-the-art assessment of active structures
NASA Technical Reports Server (NTRS)
1992-01-01
A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed.
Probabilistic assessment of smart composite structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael C.
1994-01-01
A composite wing with spars and bulkheads is used to demonstrate the effectiveness of probabilistic assessment of smart composite structures to control uncertainties in distortions and stresses. Results show that a smart composite wing can be controlled to minimize distortions and to have specified stress levels in the presence of defects. Structural responses such as changes in angle of attack, vertical displacements, and stress in the control and controlled plies are probabilistically assessed to quantify their respective uncertainties. Sensitivity factors are evaluated to identify those parameters that have the greatest influence on a specific structural response. Results show that smart composite structures can be configured to control both distortions and ply stresses to satisfy specified design requirements.
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
NASA Astrophysics Data System (ADS)
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
Smart RTI: A Next-Generation Approach to Multilevel Prevention
FUCHS, DOUGLAS; FUCHS, LYNN S.; COMPTON, DONALD L.
2012-01-01
During the past decade, responsiveness to intervention (RTI) has become popular among many practitioners as a means of transforming schooling into a multilevel prevention system. Popularity aside, its successful implementation requires ambitious intent, a comprehensive structure, and coordinated service delivery. An effective RTI also depends on building-based personnel with specialized expertise at all levels of the prevention system. Most agree on both its potential for strengthening schooling and its heavy demand on practitioners. In this article, we describe Smart RTI, which we define as making efficient use of school resources while maximizing students' opportunities for success. In light of findings from recent research, we discuss three important features of Smart RTI: (a) multistage screening to identify risk, (b) multistage assessment to determine appropriate levels of instruction, and (c) a role for special education that supports prevention. PMID:22736805
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Schodack Smart Roadside Inspection System.
DOT National Transportation Integrated Search
2013-02-01
Under an earlier NYSERDA Agreement (17420) Intelligent Imaging Systems (IIS) supplied and installed Smart Roadside network software and integrated new connected vehicle roadside devices into the Schodack Smart Roadside system. The Smart Roadsid...
Innovative Materials for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.
1997-01-01
Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.
Novel bio-inspired smart control for hazard mitigation of civil structures
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Changwon; Langari, Reza
2010-11-01
In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.
Smart materials and structures
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Heyman, Joseph S.
1993-01-01
Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.
Development of smart textiles with embedded fiber optic chemical sensors
NASA Astrophysics Data System (ADS)
Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.
2004-03-01
Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.
Design and implementation of a smart card based healthcare information system.
Kardas, Geylani; Tunali, E Turhan
2006-01-01
Smart cards are used in information technologies as portable integrated devices with data storage and data processing capabilities. As in other fields, smart card use in health systems became popular due to their increased capacity and performance. Their efficient use with easy and fast data access facilities leads to implementation particularly widespread in security systems. In this paper, a smart card based healthcare information system is developed. The system uses smart card for personal identification and transfer of health data and provides data communication via a distributed protocol which is particularly developed for this study. Two smart card software modules are implemented that run on patient and healthcare professional smart cards, respectively. In addition to personal information, general health information about the patient is also loaded to patient smart card. Health care providers use their own smart cards to be authenticated on the system and to access data on patient cards. Encryption keys and digital signature keys stored on smart cards of the system are used for secure and authenticated data communication between clients and database servers over distributed object protocol. System is developed on Java platform by using object oriented architecture and design patterns.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui
2017-09-01
Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.
Development of a smart timber bridge - a five-year plan
Brent M. Phares; Terry J. Wipf; Ursula Deza; James P. Wacker
2011-01-01
This paper outlines a 5-year research plan for the development of a structural health monitoring system for timber bridges. A series of studies identify and evaluate various sensing technologies for measurement of structural adequacy and/or deterioration parameters. The overall goal is to develop a turn-key system to analyze, monitor, and report on the performance and...
Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India
NASA Astrophysics Data System (ADS)
Mohan, M.
2016-06-01
In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
a Novel Approach to Camera Calibration Method for Smart Phones Under Road Environment
NASA Astrophysics Data System (ADS)
Lee, Bijun; Zhou, Jian; Ye, Maosheng; Guo, Yuan
2016-06-01
Monocular vision-based lane departure warning system has been increasingly used in advanced driver assistance systems (ADAS). By the use of the lane mark detection and identification, we proposed an automatic and efficient camera calibration method for smart phones. At first, we can detect the lane marker feature in a perspective space and calculate edges of lane markers in image sequences. Second, because of the width of lane marker and road lane is fixed under the standard structural road environment, we can automatically build a transformation matrix between perspective space and 3D space and get a local map in vehicle coordinate system. In order to verify the validity of this method, we installed a smart phone in the `Tuzhi' self-driving car of Wuhan University and recorded more than 100km image data on the road in Wuhan. According to the result, we can calculate the positions of lane markers which are accurate enough for the self-driving car to run smoothly on the road.
3D shape measurement system developed on mobile platform
NASA Astrophysics Data System (ADS)
Wu, Zhoujie; Chang, Meng; Shi, Bowen; Zhang, Qican
2017-02-01
Three-dimensional (3-D) shape measurement technology based on structured light has become one hot research field inspired by the increasing requirements. Many methods have been implemented and applied in the industry applications, but most of their equipments are large and complex, cannot be portable. Meanwhile, the popularity of the smart mobile terminals, such as smart phones, provides a platform for the miniaturization and portability of this technology. The measurement system based on phase-shift algorithm and Gray-code pattern under the Android platform on a mobile phone is mainly studied and developed, and it has been encapsulated into a mobile phone application in order to reconstruct 3-D shape data in the employed smart phone easily and quickly. The experimental results of two measured object are given in this paper and demonstrate the application we developed in the mobile platform is effective.
Smart Inverter Control and Operation for Distributed Energy Resources
NASA Astrophysics Data System (ADS)
Tazay, Ahmad F.
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
Overview of the DARPA/AFRL/NASA Smart Wing Phase II program
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim
2001-06-01
The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.
Study of Smart Campus Development Using Internet of Things Technology
NASA Astrophysics Data System (ADS)
Widya Sari, Marti; Wahyu Ciptadi, Prahenusa; Hafid Hardyanto, R.
2017-04-01
This paper describes the development of smart campus using Internet of Things (IoT) technology. Through smart campus, it is possible that a campus is connected via online by the outside entity, so that the teaching approach based on technology can be conducted in real time. This research was conducted in smart education, smart parking and smart room. Observation and literature studies were applied as the research method with the related theme for the sake of system design of smart campus. The result of this research is the design of smart campus system that includes smart education development, smart parking and smart room with the sake of Universitas PGRI Yogyakarta as the case study.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
Payload Isolation System for Launch Vehicles
1997-03-01
Payload Isolation System for Launch Vehicles Paul S. Wilke, Conor D. Johnson CSA Engineering Palo Alto, CA Eugene R. Fosness Air Force Phillips ... Laboratory , PL/VTVD Kirkland AFB, NM Spie Smart Structures and Materials San Diego, CA March 1997 Copyright 1997 Society of Photo-Optical Instrumentation
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
Computational smart polymer design based on elastin protein mutability.
Tarakanova, Anna; Huang, Wenwen; Weiss, Anthony S; Kaplan, David L; Buehler, Markus J
2017-05-01
Soluble elastin-like peptides (ELPs) can be engineered into a range of physical forms, from hydrogels and scaffolds to fibers and artificial tissues, finding numerous applications in medicine and engineering as "smart polymers". Elastin-like peptides are attractive candidates as a platform for novel biomaterial design because they exhibit a highly tunable response spectrum, with reversible phase transition capabilities. Here, we report the design of the first virtual library of elastin-like protein models using methods for enhanced sampling to study the effect of peptide chemistry, chain length, and salt concentration on the structural transitions of ELPs, exposing associated molecular mechanisms. We describe the behavior of the local molecular structure under increasing temperatures and the effect of peptide interactions with nearest hydration shell water molecules on peptide mobility and propensity to exhibit structural transitions. Shifts in the magnitude of structural transitions at the single-molecule scale are explained from the perspective of peptide-ion-water interactions in a library of four unique elastin-like peptide systems. Predictions of structural transitions are subsequently validated in experiment. This library is a valuable resource for recombinant protein design and synthesis as it elucidates mechanisms at the single-molecule level, paving a feedback path between simulation and experiment for smart material designs, with applications in biomedicine and diagnostic devices. Copyright © 2017. Published by Elsevier Ltd.
Structural health monitoring using smart optical fiber sensors
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-04-01
This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
Course Modules on Structural Health Monitoring with Smart Materials
ERIC Educational Resources Information Center
Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica
2009-01-01
Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…
Design and implementation of smart sensor nodes for wireless disaster monitoring systems
NASA Astrophysics Data System (ADS)
Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung
2004-07-01
A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.
Application of smart BFRP bars with distributed fiber optic sensors into concrete structures
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei
2010-04-01
In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
Updates on smart polymeric carrier systems for protein delivery.
El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi
2017-10-01
Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.
SPIE Smart Structures Product Implementation Award: a review of the first ten years
NASA Astrophysics Data System (ADS)
Anderson, Eric H.; Sater, Janet M.
2007-04-01
The research field of smart materials and structures has been a distinct entity for two decades. Over the past ten years, the SPIE Industrial and Commercial Applications Conference has presented a Smart Structures Product Implementation Award at its annual symposium. This paper revisits the nine winning entries to date (1998-2007) and updates their status. The paper begins with a brief description of the original and current intent of the award and follows with a short overview of the evolution of smart structures, from research to products. The winning teams and their respective products are then described. The current status of the products is discussed based on publicly available information and input from the respective companies. Note however that it is not the purpose of the paper to rank the product winners in terms of success or sales. The paper concludes with an assessment of the larger trends in productization of smart structures technologies. The application "form" for the award as well as the evaluation criteria and suggestions for improving award application packages can be found in the appendix.
This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...
2018-01-11
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
Smart materials systems through mesoscale patterning
NASA Astrophysics Data System (ADS)
Aksay, Ilhan A.; Groves, John T.; Gruner, Sol M.; Lee, P. C. Y.; Prud'homme, Robert K.; Shih, Wei-Heng; Torquato, Salvatore; Whitesides, George M.
1996-02-01
We report work on the fabrication of smart materials with two unique strategies: (1) self- assembly and (2) laser stereolithography. Both methods are akin to the processes used by biological systems. The first one is ideal for pattern development and the fabrication of miniaturized units in the submicron range and the second one in the 10 micrometer to 1 mm size range. By using these miniaturized units as building blocks, one can also produce smart material systems that can be used at larger length scales such as smart structural components. We have chosen to focus on two novel piezoceramic systems: (1) high-displacement piezoelectric actuators, and (2) piezoceramic hydrophone composites possessing negative Poisson ratio matrices. High-displacement actuators are essential in such applications as linear motors, pumps, switches, loud speakers, variable-focus mirrors, and laser deflectors. Arrays of such units can potentially be used for active vibration control of helicopter rotors as well as the fabrication of adaptive rotors. In the case of piezoceramic hydrophone composites, we utilize matrices having a negative Poisson's ratio in order to produce highly sensitive, miniaturized sensors. We envision such devices having promising new application areas such as the implantation of hydrophones in small blood vessels to monitor blood pressure. Negative Poisson ratio materials have promise as robust shock absorbers, air filters, and fasteners, and hence, can be used in aircraft and land vehicles.
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
NASA Astrophysics Data System (ADS)
He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin
2017-03-01
When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.
Design, fabrication and control of origami robots
NASA Astrophysics Data System (ADS)
Rus, Daniela; Tolley, Michael T.
2018-06-01
Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.
Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992
NASA Technical Reports Server (NTRS)
Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)
1993-01-01
The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.
Smart material screening machines using smart materials and controls
NASA Astrophysics Data System (ADS)
Allaei, Daryoush; Corradi, Gary; Waigand, Al
2002-07-01
The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.
Elastic memory composites (EMC) for deployable industrial and commercial applications
NASA Astrophysics Data System (ADS)
Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken
2005-05-01
The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.
Lymberis, A; Paradiso, R
2008-01-01
Smart fabrics and interactive textiles (SFIT) are fibrous structures that are capable of sensing, actuating, generating/storing power and/or communicating. Research and development towards wearable textile-based personal systems allowing e.g. health monitoring, protection & safety, and healthy lifestyle gained strong interest during the last 10 years. Under the Information and Communication Programme of the European Commission, a cluster of R&D projects dealing with smart fabrics and interactive textile wearable systems regroup activities along two different and complementary approaches i.e. 'application pull' and 'technology push'. This includes projects aiming at personal health management through integration, validation, and use of smart clothing and other networked mobile devices as well as projects targeting the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable personal applications such as protection/safety, emergency and healthcare. The integration part of the technologies into a real SFIT product is at present stage on the threshold of prototyping and testing. Several issues, technical as well user-centred, societal and business, remain to be solved. The paper presents on going major R&D activities, identifies gaps and discuss key challenges for the future.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An J.; Ren, Fei; Chan, John
2016-04-01
Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125°C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina-based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.
Summary of Research 1998, Department of Aeronautics and Astronautics
1999-08-01
included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and...Using Smart Materials," Journal of Smart Materials and Structures, Vol. 7, pp. 95-104, 1998. Agrawal, B. and Treanor, K., "Shape Control of a Beam Using...Piezoelectric Actuators," Journal of Smart Materials and Structures, accepted. THESES DIRECTED: Johnson, S. and Vlattas, J., "Active Vibration
Dynamic Analysis of a Two Member Manipulator Arm
NASA Technical Reports Server (NTRS)
McGinley, Mark; Shen, Ji Y.
1997-01-01
Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance.
Verberne, Frank M F; Ham, Jaap; Midden, Cees J H
2012-10-01
We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.
The SMART MIL-STD-1553 bus adapter hardware manual
NASA Technical Reports Server (NTRS)
Ton, T. T.
1981-01-01
The SMART Multiplexer Interface Adapter, (SMIA) a complete system interface for message structure of the MIL-STD-1553, is described. It provides buffering and storage for transmitted and received data and handles all the necessary handshaking to interface between parallel 8-bit data bus and a MIL-STD serial bit stream. The bus adapter is configured as either a bus controller of a remote terminal interface. It is coupled directly to the multiplex bus, or stub coupled through an additional isolation transformer located at the connection point. Fault isolation resistors provide short circuit protection.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Recent developments on layerwise mechanics for the analysis of composite laminates and structures with piezoelectric actuators and sensors are reviewed. The mechanics implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite structures. The corresponding finite-element implementations for the static and dynamic analysis of smart piezoelectric composite structures are also summarized. Select application illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local dynamic response of thin and/or thick laminated piezoelectric plates.
A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers
NASA Astrophysics Data System (ADS)
Dzung Nguyen, Sy; Choi, Seung-Bok
2012-08-01
This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.
Space missions for automation and robotics technologies (SMART) program
NASA Technical Reports Server (NTRS)
Ciffone, D. L.; Lum, H., Jr.
1985-01-01
The motivations, features and expected benefits and applications of the NASA SMART program are summarized. SMART is intended to push the state of the art in automation and robotics, a goal that Public Law 98-371 mandated be an inherent part of the Space Station program. The effort would first require tests of sensors, manipulators, computers and other subsystems as seeds for the evolution of flight-qualified subsystems. Consideration is currently being given to robotics systems as add-ons to the RMS, MMU and OMV and a self-contained automation and robotics module which would be tended by astronaut visits. Probable experimentation and development paths that would be pursued with the equipment are discussed, along with the management structure and procedures for the program. The first hardware flight is projected for 1989.
Vibrating Systems with Singular Mass-Inertia Matrices
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1996-01-01
Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.
Ground Penetrating Radar for SMART CITIES
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Catapano, Ilaria; Gennarelli, Gianluca
2016-04-01
The use of monitoring and surveillance technologies is now recognized as a reliable option of the overall smart cities management cycle, for the advantages that they offer in terms of: economically sustainable planning of the ordinary and extraordinary maintenance interventions; situational awareness of possible risks factors in view of a reliable early warning; improvement of the security of the communities especially in public environments. In this frame, the abstract will deal with the recent advances in the development and deployment of radar systems for the urban surveillance, exploitation of the subsurface resources and civil engineering structures. In particular, we will present the recent scientific developments and several examples of use of these systems in operational conditions.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
Lee, Heng Yeong; Cai, Yufeng; Bi, Shuguang; Liang, Yen Nan; Song, Yujie; Hu, Xiao Matthew
2017-02-22
In this work, a novel fully autonomous photothermotropic material made by hybridization of the poly(N-isopropylacrylamide) (PNIPAM) hydrogel and antimony-tin oxide (ATO) is presented. In this photothermotropic system, the near-infrared (NIR)-absorbing ATO acts as nanoheater to induce the optical switching of the hydrogel. Such a new passive smart window is characterized by excellent NIR shielding, a photothermally activated switching mechanism, enhanced response speed, and solar modulation ability. Systems with 0, 5, 10, and 15 atom % Sb-doped ATO in PNIPAM were investigated, and it was found that a PNIPAM/ATO nanocomposite is able to be photothermally activated. The 10 atom % Sb-doped PNIPAM/ATO exhibits the best response speed and solar modulation ability. Different film thicknesses and ATO contents will affect the response rate and solar modulation ability. Structural stability tests at 15 cycles under continuous exposure to solar irradiation at 1 sun intensity demonstrated the performance stability of such a photothermotropic system. We conclude that such a novel photothermotropic hybrid can be used as a new generation of autonomous passive smart windows for climate-adaptable solar modulation.
Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit. PMID:28167999
Carney, Timothy Jay; Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system "smartness." Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit.
Billis, Antonis S.; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S.; Karagianni, Maria
2016-01-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes. PMID:27284457
Billis, Antonis S; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S; Karagianni, Maria; Bamidis, Panagiotis D
2016-03-01
Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes.
NASA Astrophysics Data System (ADS)
Khan, Asif; Ryoo, Chang-Kyung; Kim, Heung Soo
2017-04-01
This paper presents a comparative study of different classification algorithms for the classification of various types of inter-ply delaminations in smart composite laminates. Improved layerwise theory is used to model delamination at different interfaces along the thickness and longitudinal directions of the smart composite laminate. The input-output data obtained through surface bonded piezoelectric sensor and actuator is analyzed by the system identification algorithm to get the system parameters. The identified parameters for the healthy and delaminated structure are supplied as input data to the classification algorithms. The classification algorithms considered in this study are ZeroR, Classification via regression, Naïve Bayes, Multilayer Perceptron, Sequential Minimal Optimization, Multiclass-Classifier, and Decision tree (J48). The open source software of Waikato Environment for Knowledge Analysis (WEKA) is used to evaluate the classification performance of the classifiers mentioned above via 75-25 holdout and leave-one-sample-out cross-validation regarding classification accuracy, precision, recall, kappa statistic and ROC Area.
Stefanov, Dimitar H; Bien, Zeungnam; Bang, Won-Chul
2004-06-01
Smart houses are considered a good alternative for the independent life of older persons and persons with disabilities. Numerous intelligent devices, embedded into the home environment, can provide the resident with both movement assistance and 24-h health monitoring. Modern home-installed systems tend to be not only physically versatile in functionality but also emotionally human-friendly, i.e., they may be able to perform their functions without disturbing the user and without causing him/her any pain, inconvenience, or movement restriction, instead possibly providing him/her with comfort and pleasure. Through an extensive survey, this paper analyzes the building blocks of smart houses, with particular attention paid to the health monitoring subsystem as an important component, by addressing the basic requirements of various sensors implemented from both research and clinical perspectives. The paper will then discuss some important issues of the future development of an intelligent residential space with a human-friendly health monitoring functional system.
Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.
Designing and Securing an Event Processing System for Smart Spaces
ERIC Educational Resources Information Center
Li, Zang
2011-01-01
Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
The application of autostereoscopic display in smart home system based on mobile devices
NASA Astrophysics Data System (ADS)
Zhang, Yongjun; Ling, Zhi
2015-03-01
Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.
Smart Extraction and Analysis System for Clinical Research.
Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung
2017-05-01
With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.
Application of a Smart Parachute Release Algorithm to the CPAS Test Architecture
NASA Technical Reports Server (NTRS)
Bledsoe, Kristin
2013-01-01
One of the primary test vehicles for the Capsule Parachute Assembly System (CPAS) is the Parachute Test Vehicle (PTV), a capsule shaped structure similar to the Orion design but truncated to fit in the cargo area of a C-17 aircraft. The PTV has a full Orion-like parachute compartment and similar aerodynamics; however, because of the single point attachment of the CPAS parachutes and the lack of Orion-like Reaction Control System (RCS), the PTV has the potential to reach significant body rates. High body rates at the time of the Drogue release may cause the PTV to flip while the parachutes deploy, which may result in the severing of the Pilot or Main risers. In order to prevent high rates at the time of Drogue release, a "smart release" algorithm was implemented in the PTV avionics system. This algorithm, which was developed for the Orion Flight system, triggers the Drogue parachute release when the body rates are near a minimum. This paper discusses the development and testing of the smart release algorithm; its implementation in the PTV avionics and the pretest simulation; and the results of its use on two CPAS tests.
NASA Astrophysics Data System (ADS)
Yan, Shi; Zhang, Hai
2005-05-01
The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.
Smart drug release systems based on stimuli-responsive polymers.
Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei
2013-07-01
Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
The advanced magnetovision system for Smart application
NASA Astrophysics Data System (ADS)
Kaleta, Jerzy; Wiewiórski, Przemyslaw; Lewandowski, Daniel
2010-04-01
An original method, measurement devices and software tool for examination of magneto-mechanical phenomena in wide range of SMART applications is proposed. In many Hi-End market constructions it is necessary to carry out examinations of mechanical and magnetic properties simultaneously. Technological processes of fabrication of modern materials (for example cutting, premagnetisation and prestress) and advanced concept of using SMART structures involves the design of next generation system for optimization of electric and magnetic field distribution. The original fast and higher than million point static resolution scanner with mulitsensor probes has been constructed to measure full components of the magnetic field intensity vector H, and to visualize them into end user acceptable variant. The scanner has also the capability to acquire electric potentials on surface to work with magneto-piezo devices. Advanced electronic subsystems have been applied for processing of results in the Magscaner Vison System and the corresponding software - Maglab has been also evaluated. The Dipole Contour Method (DCM) is provided for modeling different states between magnetic and electric coupled materials and to visually explain the information of the experimental data. Dedicated software collaborating with industrial parametric systems CAD. Measurement technique consists of acquiring a cloud of points similarly as in tomography, 3D visualisation. The actually carried verification of abilities of 3D digitizer will enable inspection of SMART actuators with the cylindrical form, pellets with miniature sizes designed for oscillations dampers in various construction, for example in vehicle industry.
Image-guided smart laser system for precision implantation of cells in cartilage
NASA Astrophysics Data System (ADS)
Katta, Nitesh; Rector, John A.; Gardner, Michael R.; McElroy, Austin B.; Choy, Kevin C.; Crosby, Cody; Zoldan, Janet; Milner, Thomas E.
2017-03-01
State-of-the-art treatment for joint diseases like osteoarthritis focus on articular cartilage repair/regeneration by stem cell implantation therapy. However, the technique is limited by a lack of precision in the physician's imaging and cell deposition toolkit. We describe a novel combination of high-resolution, rapid scan-rate optical coherence tomography (OCT) alongside a short-pulsed nanosecond thulium (Tm) laser for precise cell seeding in cartilage. The superior beam quality of thulium lasers and wavelength of operation 1940 nm offers high volumetric tissue removal rates and minimizes the residual thermal footprint. OCT imaging enables targeted micro-well placement, precise cell deposition, and feature contrast. A bench-top system is constructed using a 15 W, 1940 nm, nanosecond-pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30kHz repetition rate) for removing tissue, and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging, forming a combined Tm/OCT system - a "smart laser knife". OCT assists the smart laser knife user in characterizing cartilage to inform micro-well placement. The Tm laser creates micro-wells (2.35 mm diameter length, 1.5 mm width, 300 μm deep) and micro-incisions (1 mm wide, 200 μm deep) while OCT image-guidance assists and demonstrates this precision cutting and cell deposition with real-time feedback. To test micro-well creation and cell deposition protocol, gelatin phantoms are constructed mimicking cartilage optical properties and physiological structure. Cell viability is then assessed to illustrate the efficacy of the hydrogel deposition. Automated OCT feedback is demonstrated for cutting procedures to avoid important surface/subsurface structures. This bench-top smart laser knife system described here offers a new image-guided approach to precise stem cell seeding that can enhance the efficacy of articular cartilage repair.
Accommodating electric propulsion on SMART-1
NASA Astrophysics Data System (ADS)
Kugelberg, Joakim; Bodin, Per; Persson, Staffan; Rathsman, Peter
2004-07-01
This paper focuses on the technical challenges that arise when electric propulsion is used on a small spacecraft such as SMART-1. The choice of electric propulsion influences not only the attitude control system and the power system, but also the thermal control as well as the spacecraft structure. A description is given on how the design of the attitude control system uses the possibility to control the alignment of the thrust vector in order to reduce the momentum build-up. An outline is made of the philosophy of power generation and distribution and shows how the thermal interfaces to highly dissipating units have been solved. Areas unique for electric propulsion are the added value of a thrust vector orientation mechanism and the special consideration given to the electromagnetic compatibility. SMART-1 is equipped with a thruster gimbal mechanism providing a 10° cone in which the thrust vector can be pointed. Concerning the electromagnetic compatibility, a discussion on how to evaluate the available test results is given keeping in mind that one of the main objectives of the SMART-1 mission is to assess the impact of electric propulsion on the scientific instruments and on other spacecraft systems. Finally, the assembly, integration and test of the spacecraft is described. Compared to traditional propulsion systems, electric propulsion puts different requirements on the integration sequence and limits the possibilities to verify the correct function of the thruster since it needs high quality vacuum in order to operate. Prime contractor for SMART-1 is the Swedish Space Corporation (SSC). The electric propulsion subsystem is procured directly by ESA from SNECMA, France and is delivered to SSC as a customer furnished item. The conclusion of this paper is that electric propulsion is possible on a small spacecraft, which opens up possibilities for a new range of missions for which a large velocity increment is needed. The paper will also present SMART-1 and show how the problems related to the accommodation of electric propulsion have been solved during design and planning of the project.
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
Assessment of the Seattle Smart Traveler evaluation
DOT National Transportation Integrated Search
1999-09-01
The system was designed using a World Wide Web or Internet interface. Two of the unique features of the design were accommodating the desired travel times and identifying origins and destinations. A search structure was developed using a series of pu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-08-01
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-11-14
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Graham, Lorraine; Bellert, Anne; Thomas, Jenny; Pegg, John
2007-01-01
QuickSmart is a basic academic skills intervention designed for persistently low-achieving students in the middle years of schooling that aims to improve the automaticity of basic skills to improve higher-order processes, such as problem solving and comprehension, as measured on standardized tests. The QuickSmart instructional program consists of three structured, teacher- or teacher aide-directed, 30-minute, small-group lessons each week for approximately 26 weeks. In this study, 42 middle school students experiencing learning difficulties (LD) completed the QuickSmart reading program, and a further 42 students with LD took part in the QuickSmart mathematics program. To investigate the effects of the intervention, comparisons were made between the reading and mathematics progress of the intervention group and a group of 10 high-achieving and 10 average-achieving peers. The results indicated that although the standardized reading comprehension and mathematics scores of QuickSmart students remained below those of comparison students, they improved significantly from pretest to posttest. In contrast, the standardized scores of comparison students were not significantly different from pretest to posttest. On measures of response speed and accuracy gathered using the Cognitive Aptitude Assessment System (CAAS), QuickSmart students were able to narrow the gap between their performance and that of their high- and average-achieving peers. Implications are drawn regarding the importance of interventions that emphasize the automaticity of basic academic skills for students with learning difficulties.
Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.
Kang, WenJie; Hu, Gang; Zhu, PeiDong; Liu, Qiang; Hang, Zhi; Liu, Xin
2018-05-24
Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( N I ) as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on N I of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of the smart grid. Finally, we use the IEEE 118-Bus System and the Italian High-Voltage Electrical Transmission Network to verify our model and obtain the same conclusions: (I) DCIS applied to the top-down coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or ACIS, (II) ACIS applied to a bottom-up coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or DCIS, and (III) the robustness of the smart grid can be improved by increasing the tolerance α . This paper provides some guidelines for slowing down the speed of the cascading failures in the design of architecture and optimization of interdependent networks, such as a top-down link with DCIS, a bottom-up link with ACIS, and an increased tolerance α .
SMART Rotor Development and Wind Tunnel Test
2009-09-01
amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing
Smart Drug Delivery Systems in Cancer Therapy.
Unsoy, Gozde; Gunduz, Ufuk
2018-02-08
Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2017-01-01
Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Etingov, Pavel V.; Ren, Huiying
This paper describes a probabilistic look-ahead contingency analysis application that incorporates smart sampling and high-performance computing (HPC) techniques. Smart sampling techniques are implemented to effectively represent the structure and statistical characteristics of uncertainty introduced by different sources in the power system. They can significantly reduce the data set size required for multiple look-ahead contingency analyses, and therefore reduce the time required to compute them. High-performance-computing (HPC) techniques are used to further reduce computational time. These two techniques enable a predictive capability that forecasts the impact of various uncertainties on potential transmission limit violations. The developed package has been tested withmore » real world data from the Bonneville Power Administration. Case study results are presented to demonstrate the performance of the applications developed.« less
SMART Structures User's Guide - Version 3.0
NASA Technical Reports Server (NTRS)
Spangler, Jan L.
1996-01-01
Version 3.0 of the Solid Modeling Aerospace Research Tool (SMART Structures) is used to generate structural models for conceptual and preliminary-level aerospace designs. Features include the generation of structural elements for wings and fuselages, the integration of wing and fuselage structural assemblies, and the integration of fuselage and tail structural assemblies. The highly interactive nature of this software allows the structural engineer to move quickly from a geometry that defines a vehicle's external shape to one that has both external components and internal components which may include ribs, spars, longerons, variable depth ringframes, a floor, a keel, and fuel tanks. The geometry that is output is consistent with FEA requirements and includes integrated wing and empennage carry-through and frame attachments. This report provides a comprehensive description of SMART Structures and how to use it.
"Chemical transformers" from nanoparticle ensembles operated with logic.
Motornov, Mikhail; Zhou, Jian; Pita, Marcos; Gopishetty, Venkateshwarlu; Tokarev, Ihor; Katz, Evgeny; Minko, Sergiy
2008-09-01
The pH-responsive nanoparticles were coupled with information-processing enzyme-based systems to yield "smart" signal-responsive hybrid systems with built-in Boolean logic. The enzyme systems performed AND/OR logic operations, transducing biochemical input signals into reversible structural changes (signal-directed self-assembly) of the nanoparticle assemblies, thus resulting in the processing and amplification of the biochemical signals. The hybrid system mimics biological systems in effective processing of complex biochemical information, resulting in reversible changes of the self-assembled structures of the nanoparticles. The bioinspired approach to the nanostructured morphing materials could be used in future self-assembled molecular robotic systems.
Laguerre, Aurélien; Stefan, Loic; Larrouy, Manuel; Genest, David; Novotna, Jana; Pirrotta, Marc; Monchaud, David
2014-09-03
Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.
NASA Astrophysics Data System (ADS)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs.
Ma, He; Zhang, Xinping; Cui, Ruixue; Liu, Feifei; Wang, Meng; Huang, Cuiying; Hou, Jiwei; Wang, Guang; Wei, Yang; Jiang, Kaili; Pan, Lujun; Liu, Kai
2018-06-06
Photo-driven actuators are highly desirable in various smart systems owing to the advantages of wireless control and possible actuation by solar energy. Miniaturization of photo-driven actuators is particularly essential in micro-robotics and micro-/nano-electro-mechanical systems. However, it remains a great challenge to build up nano-scale photo-driven actuators with competitive performance in amplitude, response speed, and lifetime. In this work, we developed photo-driven nanoactuators based on bimorph structures of vanadium dioxides (VO2) and carbon nanocoils (CNCs). Activated by the huge structural phase transition of VO2, the photo-driven VO2/CNC nanoactuators deliver a giant amplitude, a fast response up to 9400 Hz, and a long lifetime more than 10 000 000 actuation cycles. Both experimental and simulation results show that the helical structure of CNCs enables a low photo-driven threshold of VO2/CNC nanoactuators, which provides an effective method to construct photo-driven nanoactuators with low power consumption. Our photo-driven VO2/CNC nanoactuators would find potential applications in nano-scale electrical/optical switches and other smart devices.
Structural Probability Concepts Adapted to Electrical Engineering
NASA Technical Reports Server (NTRS)
Steinberg, Eric P.; Chamis, Christos C.
1994-01-01
Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve
Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less
Smart manufacturing of complex shaped pipe components
NASA Astrophysics Data System (ADS)
Salchak, Y. A.; Kotelnikov, A. A.; Sednev, D. A.; Borikov, V. N.
2018-03-01
Manufacturing industry is constantly improving. Nowadays the most relevant trend is widespread automation and optimization of the production process. This paper represents a novel approach for smart manufacturing of steel pipe valves. The system includes two main parts: mechanical treatment and quality assurance units. Mechanical treatment is performed by application of the milling machine with implementation of computerized numerical control, whilst the quality assurance unit contains three testing modules for different tasks, such as X-ray testing, optical scanning and ultrasound testing modules. The advances of each of them provide reliable results that contain information about any failures of the technological process, any deviations of geometrical parameters of the valves. The system also allows detecting defects on the surface or in the inner structure of the component.
Ubiquitous Robotic Technology for Smart Manufacturing System.
Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.
Ubiquitous Robotic Technology for Smart Manufacturing System
Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206
Piezoceramic devices and artificial intelligence time varying concepts in smart structures
NASA Technical Reports Server (NTRS)
Hanagud, S.; Calise, A. J.; Glass, B. J.
1990-01-01
The problem of development of smart structures and their vibration control by the use of piezoceramic sensors and actuators have been discussed. In particular, these structures are assumed to have time varying model form and parameters. The model form may change significantly and suddenly. Combined identification of the model from parameters of these structures and model adaptive control of these structures are discussed in this paper.
NASA Astrophysics Data System (ADS)
Kelly, Jamie S.; Bowman, Hiroshi C.; Rao, Vittal S.; Pottinger, Hardy J.
1997-06-01
Implementation issues represent an unfamiliar challenge to most control engineers, and many techniques for controller design ignore these issues outright. Consequently, the design of controllers for smart structural systems usually proceeds without regard for their eventual implementation, thus resulting either in serious performance degradation or in hardware requirements that squander power, complicate integration, and drive up cost. The level of integration assumed by the Smart Patch further exacerbates these difficulties, and any design inefficiency may render the realization of a single-package sensor-controller-actuator system infeasible. The goal of this research is to automate the controller implementation process and to relieve the design engineer of implementation concerns like quantization, computational efficiency, and device selection. We specifically target Field Programmable Gate Arrays (FPGAs) as our hardware platform because these devices are highly flexible, power efficient, and reprogrammable. The current study develops an automated implementation sequence that minimizes hardware requirements while maintaining controller performance. Beginning with a state space representation of the controller, the sequence automatically generates a configuration bitstream for a suitable FPGA implementation. MATLAB functions optimize and simulate the control algorithm before translating it into the VHSIC hardware description language. These functions improve power efficiency and simplify integration in the final implementation by performing a linear transformation that renders the controller computationally friendly. The transformation favors sparse matrices in order to reduce multiply operations and the hardware necessary to support them; simultaneously, the remaining matrix elements take on values that minimize limit cycles and parameter sensitivity. The proposed controller design methodology is implemented on a simple cantilever beam test structure using FPGA hardware. The experimental closed loop response is compared with that of an automated FPGA controller implementation. Finally, we explore the integration of FPGA based controllers into a multi-chip module, which we believe represents the next step towards the realization of the Smart Patch.
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
2015-01-01
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system. PMID:26958162
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system.
Wireless health monitoring of cracks in structures with MEMS-IDT sensors
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.
2002-07-01
The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh
2015-01-01
Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Spencer, Billie F., Jr.; Park, Jongwoong; Jung, Hyungjo
2012-04-01
Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventional monitoring systems based on wired sensors and centralized data acquisition and processing have been considered to be challenging and costly due to cabling and expensive equipment and maintenance costs. WSSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. Thus, several system identification methods have been implemented to process sensor data and extract essential information, including Natural Excitation Technique with Eigensystem Realization Algorithm, Frequency Domain Decomposition (FDD), and Random Decrement Technique (RDT); however, Stochastic Subspace Identification (SSI) has not been fully utilized in WSSNs, while SSI has the strong potential to enhance the system identification. This study presents a decentralized system identification using SSI in WSSNs. The approach is implemented on MEMSIC's Imote2 sensor platform and experimentally verified using a 5-story shear building model.
Control systems using modal domain optical fiber sensors for smart structure applications
NASA Technical Reports Server (NTRS)
Lindner, Douglas K.; Reichard, Karl M.
1991-01-01
Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Development and application of induced-strain actuators for building structures
NASA Astrophysics Data System (ADS)
Morita, Koichi; Fujita, Takafumi; Ise, Shiro; Kawaguchi, Ken-ichi; Kamada, Takayoshi; Fujitani, Hideo
2001-07-01
Induced strain actuator (ISA) can change their own shapes according to external electric/magnetic fields, and vice versa. Recently these materials have been widely used for the small/precision. The objectives in this study are to develop smart members for building and to realize the smart, comfortable and safe structures. The research items are 1) Semi-active isolation of structures using piezoelectric actuator, 2) Using ISA as sensor materials and 3) Improvement of Acoustic Environment. Semi-active base isolation system with controllable friction damper using piezoelectric actuators is proposed. Simulation study was carried out, and by semi-active isolation, it could be realized to reduce response displacement of the structure to 50% of values of the passive isolation. ISA materials can act as sensors because they cause change of electric or magnetic fields under deformation. PVDF sensors are suitable for membrane structures. We evaluate performance of PVDF sensors for membrane structures by experiment. Polymer based ISA films or distributed ISA devices can control vibration mode of plane members. Applications to music halls or dwelling partition walls are expected. Results of experimental studies of noise control are discussed.
Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures
NASA Technical Reports Server (NTRS)
Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David
2013-01-01
Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry
Design of Smart Home Systems Prototype Using MyRIO
NASA Astrophysics Data System (ADS)
Ratna Wati, Dwi Ann; Abadianto, Dika
2017-06-01
This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike
2008-10-01
A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.
Terry Wipf; Brent M. Phares; Micheal Ritter
2012-01-01
Recently efforts have been put toward the development of civil structures that have embedded sensors and on-board data processing capabilities, typically termed âsmart structures.â The fusion of these smart technologies into infrastructures is intended to give bridge owners/managers better and more timely information on how structures are behaving and when they need...
Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.
Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza
2017-05-10
pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes. © 2016.
Scanning micro-resonator direct-comb absolute spectroscopy
Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca
2016-01-01
Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution
statistical summary of the U.S. distribution systems World-class, high spatial/temporal resolution of solar Systems and Scenarios | Grid Modernization | NREL SMART-DS: Synthetic Models for Advanced , Realistic Testing: Distribution Systems and Scenarios SMART-DS: Synthetic Models for Advanced, Realistic
Smart Grid Development: Multinational Demo Project Analysis
NASA Astrophysics Data System (ADS)
Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.
2016-12-01
This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk
The core vision of the smart grid concept is the realization of reliable two-way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-grid GOOSE messages with IEC-61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less
Design of the smart scenic spot service platform
NASA Astrophysics Data System (ADS)
Yin, Min; Wang, Shi-tai
2015-12-01
With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
Application of smart materials for improved flight performance of military aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudva, J.; Appa, K.; Martin, C.
1995-12-31
This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
Multicoil resonance-based parallel array for smart wireless power delivery.
Mirbozorgi, S A; Sawan, M; Gosselin, B
2013-01-01
This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.
75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Complex analysis of movement in evaluation of flat bench press performance.
Król, Henryk; Golas, Artur; Sobota, Grzegorz
2010-01-01
The complex methodology of investigations was applied to study a movement structure on bench press. We have checked the usefulness of multimodular measuring system (SMART-E, BTS company, Italy) and a special device for tracking the position of barbell (pantograph). Software Smart Analyser was used to create a database allowing chosen parameters to be compared. The results from different measuring devices are very similar, therefore the replacement of many devices by one multimodular system is reasonable. In our study, the effect of increased barbell load on the values of muscles activity and bar kinematics during the flat bench press movement was clearly visible. The greater the weight of a barbell, the greater the myoactivity of shoulder muscles and vertical velocity of the bar. It was also confirmed the presence of the so-called sticking point (period) during the concentric phase of the bench press. In this study, the initial velocity of the barbell decreased (v(min)) not only under submaximal and maximal loads (90 and 100% of the one repetition maximum; 1-RM), but also under slightly lighter weights (70 and 80% of 1-RM).
Smart Stylet: The development and use of a bedside external ventricular drain image-guidance system
Patil, Vaibhav; Gupta, Rajiv; Estépar, Raúl San José; Lacson, Ronilda; Cheung, Arnold; Wong, Judith M.; Popp, A. John; Golby, Alexandra; Ogilvy, Christopher; Vosburgh, Kirby G.
2015-01-01
Background Placement accuracy of ventriculostomy catheters is reported in a wide and variable range. Development of an efficient image-guidance system may improve physician performance and patient safety. Objective We evaluate the prototype of Smart Stylet, a new electromagnetic image-guidance system for use during bedside ventriculostomy. Methods Accuracy of the Smart Stylet system was assessed. System operators were evaluated for their ability to successfully target the ipsilateral frontal horn in a phantom model. Results Target registration error across 15 intracranial targets ranged from 1.3 – 4.6 mm (mean 3.1 mm). Using Smart Stylet guidance, a test operator successfully passed a ventriculostomy catheter to a shifted ipsilateral frontal horn 20/20 (100%) times from the frontal approach in a skull phantom. Without Smart Stylet guidance, the operator was successful 4/10 (40 %) from the right frontal approach and 6/10 (60 %) from the left frontal approach. In a separate experiment, resident operators were successful 2/4 (50%) when targeting the shifted ipsilateral frontal horn with Smart Stylet guidance and 0/4 (0 %) without image-guidance using a skull phantom. Conclusions Smart Stylet may improve the ability to successfully target the ventricles during frontal ventriculostomy. PMID:25662506
Plastic-Based Structurally Programmable Microfluidic Biochips for Clinical Diagnostics
2005-05-01
BIOCOMPATIBILITY CRITERIA OF SELECTED UV ADHESIVE LOCTITE 3211™......... 63 1 I. Executive Summary The objective of this project is to develop a smart...added into biochip design for improving the biocompatibility of entire biochip. Detailed problems include: • Design and development of structure... biocompatible biosensor array. 6 • Design and development of the sensor-to-circuit interface. Electronic Control System and Analyzer Design of the
Kang, Sung-Won; Choi, Hyeob; Park, Hyung-Il; Choi, Byoung-Gun; Im, Hyobin; Shin, Dongjun; Jung, Young-Giu; Lee, Jun-Young; Park, Hong-Won; Park, Sukyung; Roh, Jung-Sim
2017-11-07
Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable "smart wear" for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study.
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-01-01
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-05-04
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
Consensus positive position feedback control for vibration attenuation of smart structures
NASA Astrophysics Data System (ADS)
Omidi, Ehsan; Nima Mahmoodi, S.
2015-04-01
This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.
Charron-Prochownik, Denise; Zgibor, Janice C; Peyrot, Mark; Peeples, Malinda; McWilliams, Janis; Koshinsky, Janice; Noullet, William; Siminerio, Linda M
2007-01-01
The purpose of this article is to present the results of the process evaluation and patient experience in completing the Diabetes Self-management Assessment Report Tool (D-SMART), an instrument within the AADE Outcome System to assist diabetes educators to assess, facilitate, and track behavior change in the provision of diabetes self-management education (DSME). The D-SMART was integrated into computer and telephonic systems at 5 sites within the Pittsburgh Regional Initiative for Diabetes Education (PRIDE) network. Data were obtained from 290 patients with diabetes using the system at these programs via paper-and-pencil questionnaires following baseline D-SMART assessments and electronic system measurement of system performance. Process evaluation included time of completion, understanding content, usability of technology, and satisfaction with the system. Patients were 58% female and 85% Caucasian and had a mean age of 58 years. Fifty-six percent of patients had no more than a high school education, and 78% had Internet access at home. Most patients reported completing the D-SMART at home (78%), in 1 attempt (86%) via the Internet (55%), and in less than 30 minutes. Seventy-six percent believed the questions were easy to understand, and 80% did not need assistance. Age was negatively associated with ease of use. Moreover, 76% of patients believed the D-SMART helped them think about their diabetes, with 67% indicating that it gave the diabetes educator good information about themselves and their diabetes. Most (94%) were satisfied with the D-SMART. Level of satisfaction was independent of the system being used. The D-SMART was easily completed at home in 1 attempt, content was understandable, and patients were generally satisfied with the wording of questions and selection of answers. The D-SMART is easy to use and enhanced communication between the patient and clinician; however, elderly patients may need more assistance. Computer-based and telephonic D-SMARTs appear to be feasible and useful assessment methods for diabetes educators.
Long-term real-time structural health monitoring using wireless smart sensor
NASA Astrophysics Data System (ADS)
Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil
2013-04-01
Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.
Integrated smart structures wingbox
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1993-09-01
One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.
GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...
The role of smart systems in rendezvous, close proximity operations and docking maneuvers
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.
Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.
Lombarts, Kiki M J M H; Ferguson, Andrew; Hollmann, Markus W; Malling, Bente; Arah, Onyebuchi A
2016-11-01
Given the increasing international recognition of clinical teaching as a competency and regulation of residency training, evaluation of anesthesiology faculty teaching is needed. The System for Evaluating Teaching Qualities (SETQ) Smart questionnaires were developed for assessing teaching performance of faculty in residency training programs in different countries. This study investigated (1) the structure, (2) the psychometric qualities of the new tools, and (3) the number of residents' evaluations needed per anesthesiology faculty to use the instruments reliably. Two SETQ Smart questionnaires-for faculty self-evaluation and for resident evaluation of faculty-were developed. A multicenter survey was conducted among 399 anesthesiology faculty and 430 residents in six countries. Statistical analyses included exploratory factor analysis, reliability analysis using Cronbach α, item-total scale correlations, interscale correlations, comparison of composite scales to global ratings, and generalizability analysis to assess residents' evaluations needed per faculty. In total, 240 residents completed 1,622 evaluations of 247 faculty. The SETQ Smart questionnaires revealed six teaching qualities consisting of 25 items. Cronbach α's were very high (greater than 0.95) for the overall SETQ Smart questionnaires and high (greater than 0.80) for the separate teaching qualities. Interscale correlations were all within the acceptable range of moderate correlation. Overall, questionnaire and scale scores correlated moderately to highly with the global ratings. For reliable feedback to individual faculty, three to five resident evaluations are needed. The first internationally piloted questionnaires for evaluating individual anesthesiology faculty teaching performance can be reliably, validly, and feasibly used for formative purposes in residency training.
Fiber optic perimeter system for security in smart city
NASA Astrophysics Data System (ADS)
Cubik, Jakub; Kepak, Stanislav; Nedoma, Jan; Fajkus, Marcel; Zboril, Ondrej; Novak, Martin; Jargus, Jan; Vasinek, Vladimir
2017-10-01
Protection of persons and assets is the key challenge of Smart City safeguards technologies. Conventional security technologies are often outdated and easy to breach. Therefore, new technologies that could complement existing systems or replace them are developed. The use of optical fibers and their subsequent application in sensing is a trend of recent years. This article discusses the use of fiber-optic sensors in perimeter protection. The sensor consists of optical fibers and couplers only and being constructed without wires and metal parts bring many advantages. These include an absence of interference with electromagnetic waves, system presence can be difficult to detect as well as affect its operation. Testing installation of perimeter system was carried out under reinforced concrete structure. Subjects walked over the bridge at different speeds and over the different routes. The task for the system was an absolute detection of all subjects. The proposed system should find application mainly in areas with the presence of volatile substances, strong electromagnetic fields, or in explosive areas.
Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; ...
2015-06-10
Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
NASA Astrophysics Data System (ADS)
Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok
2017-04-01
Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.
NASA Astrophysics Data System (ADS)
Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.
2018-05-01
The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.
A Coupled Layerwise Analysis of the Thermopiezoelectric Response of Smart Composite Beams Beams
NASA Technical Reports Server (NTRS)
Lee, H.-J.; Saravanos, D. A.
1995-01-01
Thermal effects are incorporated into previously developed discrete layer mechanics for piezoelectric composite beam structures. The updated mechanics explicitly account for the complete coupled thermoelectromechanical response of smart composite beams. This unified representation leads to an inherent capability to model both the sensory and actuator responses of piezoelectric composite beams in a thermal environment. Finite element equations are developed and numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of both sensory and active smart structures under thermal loadings.
Analysing Smart Metering Systems from a Consumer Perspective
NASA Astrophysics Data System (ADS)
Yesudas, Rani
Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.
Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin
2016-04-19
The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less
Exploration and design of smart home circuit based on ZigBee
NASA Astrophysics Data System (ADS)
Luo, Huirong
2018-05-01
To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.
Implementing a High-Assurance Smart-Card OS
NASA Astrophysics Data System (ADS)
Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.
Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.
Welcome to the 2014 volume of Smart Materials and Structures
NASA Astrophysics Data System (ADS)
Garcia, Ephrahim
2014-01-01
Welcome to Smart Materials and Structures (SMS). Smart materials and structures are comprised of structural matter that responds to a stimulus. These materials can be controlled or have properties that can be altered in a prescribed manner. Smart materials generate non-traditional forms of transduction. We are all familiar with common forms of transduction, electromechanical motors. Lorenz's forces utilize permanent and variable magnets, controlled by current, to generate magnetically generated forces that oppose each other. Utilizing this simple principal we have advanced the industrial revolution of the 19th Century by the creation of the servo-mechanism. Controlled velocity and position generation systems that have automated manufacturing, our machines and the very environs in which we dwell. Smart materials often rely on a variety of new and different methods of transduction. Piezoelectric, magnetostrictive, electrostrictive, and phase-change materials, such as shape memory alloys, are among the most common smart materials. Other approaches such as polymer actuators that rely on complex three-dimensional chemical-based composites are also emerging. The trinity of engineering research is analysis, simulation and experimentation. To perform analyses we must understand the physical phenomena at hand in order to develop a mathematical model for the problem. These models form the basis of simulation and complex computational modeling of a system. It is from these models that we begin to expand our understanding about what is possible, ultimately developing simulation-based tools that verify new designs and insights. Experimentation offers the opportunity to verify our analyses and simulations in addition to providing the 'proof of the pudding' so to speak. But it is our ability to simulate that guides us and our expectations, predicting the behavior of what we may see in the lab or in a prototype. Experimentation ultimately provides the feedback to our modeling efforts. We capture all elements of this trinity in the journal for both smart materials and structures, devices and mechanisms, which are being developed by our community. Innovations often arise as we find new ways to incorporate and control materials. We can utilize these unusual properties to design and fabricate material architectures for transduction unlike anything done in the past. The distributed nature of the material transduction lends itself to new ways of thinking, making the actuators integral to the structure, developing new formulations for controls and changing how we design power electronics for the system. Once again the 2013 volume of SMS surpassed all expectations and grew by 38% while maintaining a high reject rate of almost 60% and high impact factor of 2.024. We are delighted that more and more researchers are choosing SMS to showcase their work. It also means that this year there will be an increased emphasis on selecting only work of the highest interest and quality for publication. A few months ago SMS moved to ScholarOne, our new state-of-the-art editorial management system, in order to help us to cope with our ever-increasing copy flow and enable us to continue providing our authors and referees with a modern, fast and efficient process. From now on all manuscripts should be submitted to us at http://mc04.manuscriptcentral.com/sms-iop. Thanks to the new system, we are now able to run every submission through our plagiarism software, Crosscheck. Last year, SMS published two exciting focus issues called 'Bioinspired smart materials and systems' and 'Auxetics in smart systems and structures'. Focus issues in SMS are designed to provide a timely snap shot of a particular topic and are popular with both our readers and contributing authors. In 2013, SMS also published two special issues. (1) The annual SMASIS 2013 special issue covering the multifunctional materials, active materials, and bioinspired materials symposia and including, for the first time, the energy harvesting symposium. (2) A special issue called 'Electromechanically active polymer (EAP) transducers: research in Europe', a collection of articles from the European Scientific Network for Artificial Muscles—ESNAM group. This year, look out for focus issues put together by the editorial board on 'fluidic artificial muscles' and 'active materials and structures for origami engineering'. We will also continue to run a busy program of Topical Reviews, which are often among the most cited and most downloaded articles in the journal. Congratulations to Ganesh Raghunath and his team (University of Maryland) who won the Smart Materials and Structures prize for the best paper at SMASIS 2013, and to Kyle Mulligan and his team (University of Sherbrooke) who won our best student paper prize at Cansmart 2013. We were delighted with the news last year that ASME awarded two of its prestigious annual best paper awards to articles published in SMS: the 2013 ASME 'Adaptive Structures and Material Systems Best Paper Award in Adaptive Materials and Material Systems' went to Donghyeon Ryu and Kenneth J Loh for their article 'Strain sensing using photocurrent generated by photoactive P3HT-based nanocomposites'. The 2013 ASME 'Adaptive Structures and Material Systems Best Paper Award in Structural Dynamics and Control' went to Julianna Abel, Jonathan Luntz and Diann Brei for their article 'A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture'. Finally, may I take this opportunity to thank our fantastic Editorial board of Associate Editors who tirelessly oversee the review of each submitted article and give their invaluable advice, helping to develop and shape the journal. Welcome to Professor Alper Erturk who has recently joined us. We also acknowledge and thank Professor Andrea Del Grosso, Professor Sami Masri, Professor Seung Jo Kim and Professor Christian Boller who retired from the Board last year after many years in service as Associate Editors. Associate Editors in 2013: Professor G Akhras, Royal Military College of Canada, Ontario, Canada Professor C Boller, University of Saarland, Saarbrücken, Germany Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren, Dresden, Germany Professor J Cagnol, École Centrale Paris, France Professor G Carman, University of California-Los Angeles, USA Professor S-B Choi, Inha University, Incheon, Korea Professor S H Choi, NASA Langley Research Center, Hampton, VA, USA Professor A Del Grosso, Università degli Studi di Genova, Italy Professor A Erturk, Georgia Institute of Technology, GA, USA Professor U Gabbert, Universität Magdeburg, Germany Professor A Güemes, Universidad Politecnica de Madrid, Spain Professor S Gopalakrishnan, Indian Institute of Science, Bangalore, India Professor J Kim, Inha University, Incheon, Korea Professor K J Kim, University of Nevada, Reno, USA Professor S J Kim, Seoul National University, Korea Professor D Lagoudas, Texas A&M University, College Station, USA Professor R Lammering, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Hamburg, Germany Professor C K Lee, National Taiwan University, Taiwan Professor W Li, University of Wollongong, Australia Professor W H Liao, Chinese University of Hong Kong, China Professor Y Liu, Harbin Institute of Technology, China Professor C S Lynch, University of California-Los Angeles, USA Professor S Masri, University of Southern California, Los Angeles, USA Professor W M Ostachowicz, Polish Academy of Sciences, Gdansk, Poland Professor K Peters, North Carolina State University, Raleigh, USA Professor M Shahinpoor, University of Maine, Orono, USA Professor H Sodano, University of Florida, Gainsville, USA Professor G Song, University of Houston, TX, USA Professor W J Staszewski, AGH University of Science and Technology, Kraków, Poland Professor N Takeda, University of Tokyo, Japan Professor D-H Wang, Chongqing University, China Professor Q Wang, University of Manitoba, Canada Professor N M Wereley, University of Maryland, College Park, USA Professor W J Wu, National Taiwan University, Taiwan.
Hybrid Piezoelectric/Fiber-Optic Sensor Sheets
NASA Technical Reports Server (NTRS)
Lin, Mark; Qing, Xinlin
2004-01-01
Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.
Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?
Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D
2012-02-01
The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.
Cybersecurity and Optimization in Smart “Autonomous” Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup
Significant resources have been invested in making buildings “smart” by digitizing, networking and automating key systems and operations. Smart autonomous buildings create new energy efficiency, economic and environmental opportunities. But as buildings become increasingly networked to the Internet, they can also become more vulnerable to various cyber threats. Automated and Internet-connected buildings systems, equipment, controls, and sensors can significantly increase cyber and physical vulnerabilities that threaten the confidentiality, integrity, and availability of critical systems in organizations. Securing smart autonomous buildings presents a national security and economic challenge to the nation. Ignoring this challenge threatens business continuity and the availability ofmore » critical infrastructures that are enabled by smart buildings. In this chapter, the authors address challenges and explore new opportunities in securing smart buildings that are enhanced by machine learning, cognitive sensing, artificial intelligence (AI) and smart-energy technologies. The chapter begins by identifying cyber-threats and challenges to smart autonomous buildings. Then it provides recommendations on how AI enabled solutions can help smart buildings and facilities better protect, detect and respond to cyber-physical threats and vulnerabilities. Next, the chapter will provide case studies that examine how combining AI with innovative smart-energy technologies can increase both cybersecurity and energy efficiency savings in buildings. The chapter will conclude by proposing recommendations for future cybersecurity and energy optimization research for examining AI enabled smart-energy technology.« less
AVQS: attack route-based vulnerability quantification scheme for smart grid.
Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.
EcoSmart Fire as structure ignition model in wildland urban interface: predictions and validations
Mark A. Dietenberger; Charles R. Boardman
2016-01-01
EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m...
2010-03-01
allows the programmer to use the English language in an expressive manor while still maintaining the logical structure of a programming language ( Pressman ...and Choudhury Tanzeem. 2000. Face Recognition for Smart Environments, IEEE Computer, pp. 50–55. Pressman , Roger. 2010. Software Engineering A
User interaction in smart ambient environment targeted for senior citizen.
Pulli, Petri; Hyry, Jaakko; Pouke, Matti; Yamamoto, Goshiro
2012-11-01
Many countries are facing a problem when the age-structure of the society is changing. The numbers of senior citizen are rising rapidly, and caretaking personnel numbers cannot match the problems and needs of these citizens. Using smart, ubiquitous technologies can offer ways in coping with the need of more nursing staff and the rising costs of taking care of senior citizens for the society. Helping senior citizens with a novel, easy to use interface that guides and helps, could improve their quality of living and make them participate more in daily activities. This paper presents a projection-based display system for elderly people with memory impairments and the proposed user interface for the system. The user's process recognition based on a sensor network is also described. Elderly people wearing the system can interact the projected user interface by tapping physical surfaces (such as walls, tables, or doors) using them as a natural, haptic feedback input surface.
Analysis of a dielectric EAP as smart component for a neonatal respiratory simulator.
Tognarelli, S; Deri, L; Cecchi, F; Scaramuzzo, R; Cuttano, A; Laschi, C; Menciassi, A; Dario, P
2013-01-01
Nowadays, respiratory syndrome represents the most common neonatal pathology. Nevertheless, being respiratory assistance in newborns a great challenge for neonatologists and nurses, use of simulation-based training is quickly becoming a valid meaning of clinical education for an optimal therapy outcome. Commercially available simulators, are, however, not able to represent complex breathing patterns and to evaluate specific alterations. The purpose of this work has been to develop a smart, lightweight, compliant system with variable rigidity able to replicate the anatomical behavior of the neonatal lung, with the final aim to integrate such system into an innovative mechatronic simulator device. A smart material based-system has been proposed and validated: Dielectric Electro Active Polymers (DEAP), coupled to a purposely shaped silicone camera, has been investigated as active element for a compliance change simulator able to replicate both physiological and pathological lung properties. Two different tests have been performed by using a bi-components camera (silicone shape coupled to PolyPower film) both as an isolated system and connected to an infant ventilator. By means of a pressure sensor held on the silicon structure, pressure values have been collected and compared for active and passive PolyPower working configuration. The obtained results confirm a slight pressure decrease in active configuration, that is in agreement with the film stiffness reduction under activation and demonstrates the real potentiality of DEAP for active volume changing of the proposed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devicesmore » become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
Design of smart home gateway based on Wi-Fi and ZigBee
NASA Astrophysics Data System (ADS)
Li, Yang
2018-04-01
With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.
The Smart Power Lab at the Energy Systems Integration Facility
Christensen, Dane; Sparn, Bethany; Hannegan, Brian
2018-05-11
Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
The Smart Power Lab at the Energy Systems Integration Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Dane; Sparn, Bethany; Hannegan, Brian
Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Numerical modeling and model updating for smart laminated structures with viscoelastic damping
NASA Astrophysics Data System (ADS)
Lu, Jun; Zhan, Zhenfei; Liu, Xu; Wang, Pan
2018-07-01
This paper presents a numerical modeling method combined with model updating techniques for the analysis of smart laminated structures with viscoelastic damping. Starting with finite element formulation, the dynamics model with piezoelectric actuators is derived based on the constitutive law of the multilayer plate structure. The frequency-dependent characteristics of the viscoelastic core are represented utilizing the anelastic displacement fields (ADF) parametric model in the time domain. The analytical model is validated experimentally and used to analyze the influencing factors of kinetic parameters under parametric variations. Emphasis is placed upon model updating for smart laminated structures to improve the accuracy of the numerical model. Key design variables are selected through the smoothing spline ANOVA statistical technique to mitigate the computational cost. This updating strategy not only corrects the natural frequencies but also improves the accuracy of damping prediction. The effectiveness of the approach is examined through an application problem of a smart laminated plate. It is shown that a good consistency can be achieved between updated results and measurements. The proposed method is computationally efficient.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-02-25
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.
Impact analysis of automotive structures with distributed smart material systems
NASA Astrophysics Data System (ADS)
Peelamedu, Saravanan M.; Naganathan, Ganapathy; Buckley, Stephen J.
1999-06-01
New class of automobiles has structural skins that are quite different from their current designs. Particularly, new families of composite skins are developed with new injection molding processes. These skins while support the concept of lighter vehicles of the future, are also susceptible to damage upon impact. It is important that their design should be based on a better understanding on the type of impact loads and the resulting strains and damage. It is possible that these skins can be integrally designed with active materials to counter damages. This paper presents a preliminary analysis of a new class of automotive skins, using piezoceramic as a smart material. The main objective is to consider the complex system with, the skin to be modeled as a layered plate structure involving a lightweight material with foam and active materials imbedded on them. To begin with a cantilever beam structure is subjected to a load through piezoceramic and the resulting strain at the active material site is predicted accounting for the material properties, piezoceramic thickness, adhesive thickness including the effect of adhesives. A finite element analysis is carried out to compare experimental work. Further work in this direction would provide an analytical tool that will provide the basis for algorithms to predict and counter impacts on the future class of automobiles.
The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Thibeault, S. A.
2006-01-01
This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590
NASA Astrophysics Data System (ADS)
Xiao, Xueliang; Hu, Jinlian
2016-05-01
Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.
Xiao, Xueliang; Hu, Jinlian
2016-01-01
Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823
78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...
A rule-based smart automated fertilization and irrigation systems
NASA Astrophysics Data System (ADS)
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge
2012-01-01
One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
ETHICS OF SMART HOUSE WELFARE TECHNOLOGY FOR OLDER ADULTS: A SYSTEMATIC LITERATURE REVIEW.
Sánchez, Veralia Gabriela; Taylor, Ingrid; Bing-Jonsson, Pia Cecilie
2017-01-01
The University College of Southeast Norway has an on-going project to develop a smart house welfare system to allow older adults and people with disabilities to remain in their homes for as long as they wish in safe, dignified, living conditions. This article reviews reported ethical challenges to implementing smart houses for older adults. A systematic literature review identified twenty-four articles in English, French, Spanish, and Norwegian, which were analyzed and synthesized using Hofmann's question list to investigate the reported ethical challenges. Smart houses offer a promising way to improve access to home care for older adults and people with disabilities. However, important ethical challenges arise when implementing smart houses, including cost-effectiveness, privacy, autonomy, informed consent, dignity, safety, and trust. The identified ethical challenges are important to consider when developing smart house systems. Due to the limitations of smart house technology, designers and users should be mindful that smart houses can achieve a safer and more dignified life-style but cannot solve all the challenges related to ageing, disabilities, and disease. At some point, smart houses can no longer help persons as they develop needs that smart houses cannot meet.
3D sensors and micro-fabricated detector systems
NASA Astrophysics Data System (ADS)
Da Vià, Cinzia
2014-11-01
Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development.
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.
Bergmann, Stephan; Wrede, Oliver; Huser, Thomas; Hellweg, Thomas
2018-02-14
We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
NASA Astrophysics Data System (ADS)
Liao, Wei-Hsin
2010-12-01
The 20th International Conference on Adaptive Structures and Technologies (ICAST) was held on 20-22 October 2009 in Hong Kong. This special section of Smart Materials and Structures is derived from the research papers presented at the conference. Of the 106 papers presented at the conference, 11 papers were reviewed and accepted for this special section, following the regular review procedures of the journal. This special section is focused on smart materials, multifunctional composites, and applications on morphing structures. Smart materials. Smart materials are the foundation of adaptive structures and intelligent systems. The development of new materials will lead to significant improvement in various applications. Three articles are focused on the fabrication of new materials and investigation of their behaviors: Barium strontium zirconate titanate ((Ba1-xSrx)(ZrxTi1-x)O3; BSZT, x = 0.25 and 0.75) ceramics with a highly crystalline structure were fabricated using the combustion technique. The microstructure of BSZT powders exhibited an almost-spherical morphology and had a porous agglomerated form. Polyaniline (PANI)/clay nanoparticles with unique core-shell structure were synthesized via Pickering emulsion polymerization. By dispersing PANI/clay nanoparticles in silicone oil, the ER fluid was made. Magnetic field effects were investigated on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering for superior hardness, excellent wear and oxidation resistance. The surface morphology of chromium nitride films was also examined by a scanning electron microscope (SEM). Multifunctional composites. Composites are made from two or more constituent materials so they can combine the best properties of different materials. Five papers deal with fabrication, testing, and modeling of various multifunctional composites: A new active structural fiber (ASF) was fabricated by coating a single carbon fiber with a concentric PZT (PbZr0.52Ti0.48O3) shell using electrolytic deposition. This new ASF is expected to have broader applications due to the higher piezoelectric coupling effect with the use of carbon fiber and PZT. The sol-gel technique was employed to deposit lead zirconium titanium (PZT) and silica composite film onto a copper (Cu)/polyimide (PI) flexible structure. The fabricated PZT-silica composite films were then used for flexible actuator and sensor applications. Interfacial properties and hydrophobicity of multifunctional Ni-nanopowder/epoxy composites were evaluated for self-sensing and actuation. The effects of water content on the actuation performance of ionic polymer-metal composites (IPMCs) were investigated experimentally. Multiscale modelling of a composite electroactive polymer structure was developed, in particular for tubular actuators. The models were validated with experimental data. Morphing structures. Three papers relate to morphing skins and structures. Several issues including stiffness and energy consumption were explored: Composite corrugated structures were used as morphing skin panels (MSPs) in the trailing edge region of a scaled morphing aerofoil section. Wind tunnel testing was carried out to demonstrate the MSP concept. Optimization of a variable-stiffness skin was performed for morphing high-lift devices. The objective is to design the structure to have high enough stiffness to withstand aerodynamic loading and yet low enough stiffness to enable morphing. The aerodynamic and actuation loads were taken into consideration during the optimization. Two adaptive and morphing structures were proposed for low-energy consumption or even energy-harvesting green buildings with the use of an optimization process. Searching for optimal solutions was done by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope was ensured by the virtual force density method. We would like to thank all of the authors for their significant contributions to this special section for Smart Materials and Structures. We are also grateful to all of the reviewers and associate editors who handled the reviews for their time and effort. I would like to express my sincere appreciation to Professor E Garcia, Editor-in-Chief, for his encouragement by providing the opportunity to make this special section. I am indebted to IOP Publishing for their strong support and the staff, in particular publisher Natasha Leeper, for their special attention and excellent service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.
Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
Development of a standardized, citywide process for managing smart-pump drug libraries.
Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James
2018-06-15
Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid
NASA Astrophysics Data System (ADS)
Yao, Tong
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.
Prototype Morphing Fan Nozzle Demonstrated
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Song, Gang-Bing
2004-01-01
Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.
NASA Astrophysics Data System (ADS)
Fonda, James; Rao, Vittal S.; Sana, Sridhar
2001-08-01
This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
DOT National Transportation Integrated Search
2018-01-01
For this report, researchers have examined smart parking, which is a parking management tool that uses various technologies to aid drivers in efficiently locating and paying for available parking. Smart parking systems allow drivers to know where the...
AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid
Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923
Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra
2015-06-01
Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.
Kang, Sung-Won; Park, Hyung-Il; Choi, Byoung-Gun; Shin, Dongjun; Jung, Young-Giu; Lee, Jun-Young; Park, Hong-Won; Park, Sukyung
2017-01-01
Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable “smart wear” for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study. PMID:29112125
Adaptive Multi-scale Prognostics and Health Management for Smart Manufacturing Systems
Choo, Benjamin Y.; Adams, Stephen C.; Weiss, Brian A.; Marvel, Jeremy A.; Beling, Peter A.
2017-01-01
The Adaptive Multi-scale Prognostics and Health Management (AM-PHM) is a methodology designed to enable PHM in smart manufacturing systems. In application, PHM information is not yet fully utilized in higher-level decision-making in manufacturing systems. AM-PHM leverages and integrates lower-level PHM information such as from a machine or component with hierarchical relationships across the component, machine, work cell, and assembly line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are then made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. To overcome the issue of exponential explosion of complexity associated with describing a large manufacturing system, the AM-PHM methodology takes a hierarchical Markov Decision Process (MDP) approach into describing the system and solving for an optimized policy. A description of the AM-PHM methodology is followed by a simulated industry-inspired example to demonstrate the effectiveness of AM-PHM. PMID:28736651
Survey on the use of smart and adaptive engineering systems in medicine.
Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G
2002-11-01
In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.
Smart glove: hand master using magnetorheological fluid actuators
NASA Astrophysics Data System (ADS)
Nam, Y. J.; Park, M. K.; Yamane, R.
2007-12-01
In this study, a hand master using five miniature magneto-rheological (MR) actuators, which is called 'the smart glove', is introduced. This hand master is intended to display haptic feedback to the fingertip of the human user interacting with any virtual objects in virtual environment. For the smart glove, two effective approaches are proposed: (i) by using the MR actuator which can be considered as a passive actuator, the smart glove is made simple in structure, high in power, low in inertia, safe in interface and stable in haptic feedback, and (ii) with a novel flexible link mechanism designed for the position-force transmission between the fingertips and the actuators, the number of the actuator and the weight of the smart glove can be reduced. These features lead to the improvement in the manipulability and portability of the smart glove. The feasibility of the constructed smart glove is verified through basic performance evaluation.
NASA Astrophysics Data System (ADS)
Samigulina, Galina A.; Shayakhmetova, Assem S.
2016-11-01
Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.
Use of Dynamic Distortion to Predict and Alleviate Loss of Control
NASA Technical Reports Server (NTRS)
Klyde, David; Liang, Chi-Ying; Alvarez, Daniel
2011-01-01
This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.
Enhancing Grammatical Structures in Web-Based Texts
ERIC Educational Resources Information Center
Zilio, Leonardo; Wilkens, Rodrigo; Fairon, Cédrick
2017-01-01
Presentation of raw text to language learners is not enough to ensure learning. Thus, we present the Smart and Immersive Language Learning Environment (SMILLE), a system that uses Natural Language Processing (NLP) for enhancing grammatical information in texts chosen by a given user. The enhancements, carried out by means of text highlighting, are…
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele
2008-03-01
This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.
Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics.
Hinchet, Ronan; Seung, Wanchul; Kim, Sang-Woo
2015-07-20
Recently, smart systems have met with large success. At the origin of the internet of things, they are a key driving force for the development of wireless, sustainable, and independent autonomous smart systems. In this context, autonomy is critical, and despite all the progress that has been made in low-power electronics and batteries, energy harvesters are becoming increasingly important. Thus, harvesting mechanical energy is essential, as it is widespread and abundant in our daily life environment. Among harvesters, flexible triboelectric nanogenerators (TENGs) exhibit good performance, and they are easy to integrate, which makes them perfect candidates for many applications and, therefore, crucial to develop. In this review paper, we first introduce the fundamentals of TENGs, including their four basic operation modes. Then, we discuss the different improvement parameters. We review some progress made in terms of performance and integration that have been possible through the understanding of each operation mode and the development of innovative structures. Finally, we present the latest trends, structures, and materials in view of future improvements and applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
An RFID Based Smart Feeder for Hummingbirds.
Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F; Tang, Wei
2015-12-16
We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9-11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future.
An RFID Based Smart Feeder for Hummingbirds
Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F.; Tang, Wei
2015-01-01
We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9–11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future. PMID:26694402
Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass
NASA Astrophysics Data System (ADS)
Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan
2013-05-01
Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.
Distributed ice accretion sensor for smart aircraft structures
NASA Technical Reports Server (NTRS)
Gerardi, J. J.; Hickman, G. A.
1989-01-01
A distributed ice accretion sensor is presented, based on the concept of smart structures. Ice accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to ice thickness. It is suggested that this method may be used to detect ice over large areas with minimal hardware. Results are presented from preliminary tests to measure simulated ice growth.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-01-01
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
EDITORIAL: Greetings from the new Editor-in-Chief
NASA Astrophysics Data System (ADS)
Garcia, Ephrahim
2008-02-01
I am Professor Ephrahim Garcia, an Associate Professor at Sibley School of Mechanical and Aerospace Engineering at Cornell University in Ithaca, New York. I have been at Cornell University since 2002, spent four years as a Program Manager at the Defense Advanced Research Project Agency from 1998-2002, and before that seven years at the Department of Mechanical Engineering at Vanderbilt University in Nashville, Tennessee. I have served on the Editorial Advisory Board of Smart Materials and Structures (SMS) for the last six years. It is a humbling thing to be asked to take up the post of Editor-in-Chief in a field with so many talented researchers. I would like to say a heartfelt thanks to the members of the Editorial Board and IOP Publishing for their confidence in me. Most importantly, I would like to thank Professor Vijay Varadan of the University of Arkansas and Professor Richard Claus of Virginia Polytechnic Institute and State University for their efforts in launching the journal 16 years ago. They have been stewards, promoters and, especially Vijay, key to the operation and function of SMS for all these years, and our research community is indebted to them. Professors Varadan and Claus have dedicated their careers to the area of smart materials and structures and we are very grateful for their leadership, mentoring and contribution. SMS is a thriving journal offering papers on all technical areas concerned with smart materials, systems and structures from the micro- and nanoscale to the macroscale. The journal is undergoing some major changes, including the recent transferal of papers to IOP Publishing's peer-review management system. With this new system authors can expect fast publication times of around 4 or 5 months from submission, and excellent author service. In this world of ever changing technology, the Editorial Board and I aim to reduce the time to publication for researchers in this exciting area of science and engineering. I am in the process of developing a team of Associate Editors to promote the journal in the number of critical sub-areas of smart materials and structures, and to play a key, integral role in the review process. Associate Editors will be chosen to serve in a number of sub-areas to ensure expertise and continuation of the rigorous review process. Under my leadership as the new Editor-in-Chief of SMS, I aim to ensure that SMS maintains and grows in quality to best serve our diverse community of researchers.
Wang, Jingang; Gao, Can; Yang, Jie
2014-07-17
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.
Zakerzadeh, Elham; Salehi, Roya; Mahkam, Mehrdad
2017-12-01
Due to multidrug resistance of cancer tissues and immune-suppression of cancerous patients during chemotherapy in one hand and the use of tetrazole derivatives in medicine because of its anticancer, antifungal, and antiviral properties, on the other, we were encouraged to design novel smart antibacterial nanocomposites-based polymer of tetrazole as dual anticancer drug delivery systems. The structures of nanocomposites characterized by FTIR, 1 H NMR, FESEM-EDX, and TGA analyzes and antibacterial activity of smart carriers were evaluated by determination of minimum inhibitory concentration (MIC) values against some bacteria and fungi. Then, the pH-responsive manner of both nanocomposites was proved by checking their release profiles at pH of the physiological environment (pH 7.4) and pH of tumor tissues (mildly acidic). Finally, the potential antitumoral activity of these nanocomposite systems against MCF7 cell lines was evaluated by MTT assay and cell cycle studies. The results demonstrated that the novel developed nanocomposites not only meet our expectations about simultaneous release of two anticancer drugs according to the predicted profile but also showed antibacterial and anticancer properties in vitro experimental. Moreover, it was proved that these carriers have tremendous potential in multifunctional drug delivery in cancer therapy.
Cyber and physical equipment digital control system in Industry 4.0 item designing company
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.
A double responsive smart upconversion fluorescence sensing material for glycoprotein.
Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo
2016-11-15
A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. Copyright © 2016 Elsevier B.V. All rights reserved.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Research on public participant urban infrastructure safety monitoring system using smartphone
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu
2017-04-01
Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
Li, Z; Fan, Y; Chen, G
1999-07-01
The coronary sinus blood flow can be figured out, which based on the principle of thermodilution, so long as gets the temperature of blood, indicator and mixture of blood and indicator respectively. This system is a smart slave module with single-chip-microcomputer. The structure and principles of hardware and the flow chart of software are described in detail.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Millimeter-wave MMIC technology for smart weapons
NASA Astrophysics Data System (ADS)
Seashore, Charles R.
1994-12-01
Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.
Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex
Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Reducing duplicate testing: a comparison of two clinical decision support tools.
Procop, Gary W; Keating, Catherine; Stagno, Paul; Kottke-Marchant, Kandice; Partin, Mary; Tuttle, Robert; Wyllie, Robert
2015-05-01
Unnecessary duplicate laboratory testing is common and costly. Systems-based means to avert unnecessary testing should be investigated and employed. We compared the effectiveness and cost savings associated with two clinical decision support tools to stop duplicate testing. The Hard Stop required telephone contact with the laboratory and justification to have the duplicate test performed, whereas the Smart Alert allowed the provider to bypass the alert at the point of order entry without justification. The Hard Stop alert was significantly more effective than the Smart Alert (92.3% vs 42.6%, respectively; P < .0001). The cost savings realized per alert activation was $16.08/alert for the Hard Stop alert vs $3.52/alert for the Smart Alert. Structural and process changes that require laboratory contact and justification for duplicate testing are more effective than interventions that allow providers to bypass alerts without justification at point of computerized physician order entry. Copyright© by the American Society for Clinical Pathology.
Analysis of Distance Learning in Smart Schools in Iran: A Case Study of Tehran's Smart Schools
ERIC Educational Resources Information Center
Motamedi, Vahid; Piri, Roghayeh
2014-01-01
In the paradigm of information society the structure and facts have become flexible and subjective. In the recent social-economic order, IT and communication have taken over the leading role. Distance learning in smart schools is one of the flexible realities in the education field that has crossed the format of the hard and inflexible traditional…
Data to knowledge: how to get meaning from your result.
Berman, Helen M; Gabanyi, Margaret J; Groom, Colin R; Johnson, John E; Murshudov, Garib N; Nicholls, Robert A; Reddy, Vijay; Schwede, Torsten; Zimmerman, Matthew D; Westbrook, John; Minor, Wladek
2015-01-01
Structural and functional studies require the development of sophisticated 'Big Data' technologies and software to increase the knowledge derived and ensure reproducibility of the data. This paper presents summaries of the Structural Biology Knowledge Base, the VIPERdb Virus Structure Database, evaluation of homology modeling by the Protein Model Portal, the ProSMART tool for conformation-independent structure comparison, the LabDB 'super' laboratory information management system and the Cambridge Structural Database. These techniques and technologies represent important tools for the transformation of crystallographic data into knowledge and information, in an effort to address the problem of non-reproducibility of experimental results.
Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system
R. González-Pinzón; R. Haggerty; D.D. Myrold
2012-01-01
The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship...
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all asp...
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decisions support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all a...
Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains guidance and analysis tools for all aspect...
Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices
NASA Astrophysics Data System (ADS)
Salem, Mohamed M. A.
Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.
NASA Astrophysics Data System (ADS)
Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu
2018-05-01
This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
..., and National SMART Reporting Under the Common Origination and Disbursement (COD) System SUMMARY: The... records. Title of Collection: Pell Grant, ACG, and National SMART Reporting under the Common Origination.... Abstract: The Federal Pell Grant, ACG, and National SMART Programs are student financial assistance...
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
Development of integrated control system for smart factory in the injection molding process
NASA Astrophysics Data System (ADS)
Chung, M. J.; Kim, C. Y.
2018-03-01
In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.
NASA Astrophysics Data System (ADS)
Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.
2016-06-01
Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.
Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-07-15
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology
Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-01-01
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884
Bellevue Smart Traveler And Cellular Telecommunication
DOT National Transportation Integrated Search
1993-05-01
SEATTLE (BELLEVUE) SMART TRAVELER OR SST : PHASE I OF THE BELLEVUE SMART TRAVELER PROJECT WAS FUNDED BY THE FEDERAL TRANSIT ADMINISTRATION UNDER THE ADVANCED PUBLIC TRANSPORTATION SYSTEMS (APTS) PROGRAM. THE GRANTEE, THE MUNICIPALITY OF METROPOLIT...
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza
2016-04-01
This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation in a variety of extreme environments and can be parachuted into the needed locations. The Smart Nanogrid Systems will have sensors that will sense the environmental conditions for the wind turbines and solar panels for maximum energy harvesting as well as identifying the appliances in use. These signal will be sent to a control system to send signal to the energy harvester actuators to maximize the power generation as well as regulating the power, i.e., either send the power to the appliances and consumer devices or send the power to the batteries and capacitors for energy storage, if the power is being generated but there are no consumer appliances in use, making it a "smart nanogrid deployable renewable energy harvesting system."
Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D
2001-10-01
The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment.
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-05-16
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system's process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system.
NASA Astrophysics Data System (ADS)
Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2015-02-01
A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching
2011-01-01
In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683
Smart thermal networks for smart cities - Introduction of concepts and measures
NASA Astrophysics Data System (ADS)
Schmidt, R. R.; Pol, O.; Basciotti, D.; Page, J.
2012-10-01
In order to contribute to high living standards, climate mitigation and energy supply security, future urban energy systems require a holistic approach. In particular an intelligent integration of thermal networks is necessary. This paper will briefly present the "smart city" concept and introduce an associated definition for smart thermal networks defined on three levels: 1. the interaction with urban planning processes and the interface to the overall urban energy system, 2. the adaptation of the temperature level and 3. supply and demand-side management strategies.
NASA Astrophysics Data System (ADS)
Pourmousavi Kani, Seyyed Ali
Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation environment to evaluate the effectiveness of the proposed methodologies. Simulation results revealed the effectiveness of the proposed methods in providing balancing reserves and microgrids' economic and stable operation. The proposed tools and approaches can significantly enhance the application of microgrids and demand response in the smart grid era. They will also help to increase the penetration level of variable distributed generation resources in the smart grid.
DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results
NASA Technical Reports Server (NTRS)
Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.
2001-01-01
To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.
Applications of smart materials in structural engineering.
DOT National Transportation Integrated Search
2003-10-01
With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng
2010-11-01
In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.
Experimental investigation of nonlinear characteristics of a smart fluid damper
NASA Astrophysics Data System (ADS)
Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju
2018-05-01
Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.
Zhang, Yubo; Rau, Pei-Luen Patrick
2016-06-01
This study developed a scale measuring excessive involvement in multitasking interaction with smart devices. An online questionnaire was designed and surveyed in a sample of 380 respondents. The sample was split into two groups for exploratory and confirmatory factor analysis, respectively. A four-factor structure was identified with an acceptable goodness of fit. The first two factors, "Obsession and neglect" and "Problematic control," described the obsessive feelings, neglect behaviors, and behavior control problems accompanied by excessive multitasking interaction with smart devices. The latter two factors, "Multitasking preference" and "Polychronic orientation," referred to multitaskers' preference of engaging in multiple media use or interaction tasks rather than a single task from the time orientation perspective. The four-factor structure indicates that excessive involvement in multitasking interaction with smart devices shares some similarities with other behavioral addiction types, but demonstrates uniqueness compared with excessive engagement in single media use.
Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.
Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong
2018-03-01
It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Organizational and technological correlates of nurses’ trust in a smart IV pump
Montague, Enid; Asan, Onur; Chiou, Erin
2013-01-01
The aim of this study was to understand technology and system characteristics that contribute to nurses’ ratings of trust in a smart IV pump. Nurse’s trust in new technologies can influence how technologies are used. Trust in technology is defined as a person’s belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, over trust, distrust, and mistrust. Trust in technology is also related to several use specific outcomes, including appropriate use and inappropriate use such as over reliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart IV pump. The survey assessed trust in the IV pump and other elements of the sociotechnical system, individual characteristics, technology characteristics and organizational characteristics. Results show perceptions of usefulness, safety, ease of use and usability are related to ratings of trust in smart IV pumps. Other work system factors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses’ trust in smart IV pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart IV pumps and health systems. Recommendations for appropriately trustworthy smart IV pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems. PMID:23321482
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-01-01
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system’s process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system. PMID:29772668
NASA Astrophysics Data System (ADS)
Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui
2017-12-01
This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.
Electronics for Piezoelectric Smart Structures
NASA Technical Reports Server (NTRS)
Warkentin, D. J.; Tani, J.
1997-01-01
This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.
Dynamic and structural control utilizing smart materials and structures
NASA Technical Reports Server (NTRS)
Rogers, C. A.; Robertshaw, H. H.
1989-01-01
An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.
Smart Phones Permitted: How Teachers Use Text Messaging to Collaborate
ERIC Educational Resources Information Center
Cosier, Meghan; Gomez, Audri; McKee, Aja; Maghzi, Kimiya Sohrab
2015-01-01
The use of smart phones by teachers in K-12 education has been contentious. Although teachers are often instructed to put their phones away during instruction, teachers and students can benefit in many ways from using smart phones in the classroom. The use of information systems such as a smart phone can support knowledge sharing and collaboration…
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
High power microwave hazard facing smart ammunitions
NASA Astrophysics Data System (ADS)
Bohl, J.
1995-03-01
The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.
Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong
2012-06-01
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
Mapping and navigational control for a smart wheelchair.
Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F
2012-01-01
A smart wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A smart wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of smart wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current smart wheelchair technology.
Rocha, Paula; Siddiqui, Afzal; Stadler, Michael
2014-12-09
In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less
'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
Fang, Zhi; Wan, Lin-Yan; Chu, Liang-Yin; Zhang, Yan-Qiong; Wu, Jiang-Feng
2015-01-01
In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John; Ren, Fei
Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125 C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted atmore » room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.« less
Near-infrared light-responsive dynamic wrinkle patterns.
Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong
2018-04-01
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.
On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies
Irschik, Hans; Krommer, Michael; Vetyukov, Yury
2010-01-01
In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates. PMID:22219679
On the use of piezoelectric sensors in structural mechanics: some novel strategies.
Irschik, Hans; Krommer, Michael; Vetyukov, Yury
2010-01-01
In the present paper, a review on piezoelectric sensing of mechanical deformations and vibrations of so-called smart or intelligent structures is given. After a short introduction into piezoelectric sensing and actuation of such controlled structures, we pay special emphasis on the description of some own work, which has been performed at the Institute of Technical Mechanics of the Johannes Kepler University of Linz (JKU) in the last years. Among other aspects, this work has been motivated by the fact that collocated control of smart structures requires a sensor output that is work-conjugated to the input by the actuator. This fact in turn brings into the play the more general question of how to measure mechanically meaningful structural quantities, such as displacements, slopes, or other quantities, which form the work-conjugated quantities of the actuation, by means piezoelectric sensors. At least in the range of small strains, there is confidence that distributed piezoelectric sensors or sensor patches in smart structures do measure weighted integrals over their domain. Therefore, there is a need of distributing or shaping the sensor activity in order to be able to re-interpret the sensor signals in the desired mechanical sense. We sketch a general strategy that is based on a special application of work principles, more generally on displacement virials. We also review our work in the past on bringing this concept to application in smart structures, such as beams, rods and plates.
The Futures Wheel: A method for exploring the implications of social-ecological change
D.N. Bengston
2015-01-01
Change in social-ecological systems often produces a cascade of unanticipated consequences. Natural resource professionals and other stakeholders need to understand the possible implications of cascading change to prepare for it. The Futures Wheel is a "smart group" method that uses a structured brainstorming process to uncover and evaluate multiple levels of...
Dunford, Benjamin B; Perrigino, Matthew; Tucker, Sharon J; Gaston, Cynthia L; Young, Jim; Vermace, Beverly J; Walroth, Todd A; Buening, Natalie R; Skillman, Katherine L; Berndt, Dawn
2017-09-01
We investigated nurse perceptions of smart infusion medication pumps to provide evidence-based insights on how to help reduce work around and improve compliance with patient safety policies. Specifically, we investigated the following 3 research questions: (1) What are nurses' current attitudes about smart infusion pumps? (2) What do nurses think are the causes of smart infusion pump work arounds? and (3) To whom do nurses turn for smart infusion pump training and troubleshooting? We surveyed a large number of nurses (N = 818) in 3 U.S.-based health care systems to address the research questions above. We assessed nurses' opinions about smart infusion pumps, organizational perceptions, and the reasons for work arounds using a voluntary and anonymous Web-based survey. Using qualitative research methods, we coded open-ended responses to questions about the reasons for work arounds to organize responses into useful categories. The nurses reported widespread satisfaction with smart infusion pumps. However, they reported numerous organizational, cultural, and psychological causes of smart pump work arounds. Of 1029 open-ended responses to the question "why do smart pump work arounds occur?" approximately 44% of the causes were technology related, 47% were organization related, and 9% were related to individual factors. Finally, an overwhelming majority of nurses reported seeking solutions to smart pump problems from coworkers and being trained primarily on the job. Hospitals may significantly improve adherence to smart pump safety features by addressing the nontechnical causes of work arounds and by providing more leadership and formalized training for resolving smart pump-related problems.
Smart health monitoring systems: an overview of design and modeling.
Baig, Mirza Mansoor; Gholamhosseini, Hamid
2013-04-01
Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.
Smart Metamaterial Based on the Simplex Tensegrity Pattern.
Al Sabouni-Zawadzka, Anna; Gilewski, Wojciech
2018-04-26
In the present paper, a novel cellular metamaterial that was based on a tensegrity pattern is presented. The material is constructed from supercells, each of which consists of eight 4-strut simplex modules. The proposed metamaterial exhibits some unusual properties, which are typical for smart structures. It is possible to control its mechanical characteristics by adjusting the level of self-stress or by changing the properties of structural members. A continuum model is used to identify the qualitative properties of the considered metamaterial, and to estimate how the applied self-stress and the characteristics of cables and struts affect the whole structure. The performed analyses proved that the proposed structure can be regarded as a smart metamaterial with orthotropic properties. One of its most important features are unique values of Poisson’s ratio, which can be either positive or negative, depending on the applied control parameters. Moreover, all of the mechanical characteristics of the proposed metamaterial are prone to structural control.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
NASA Astrophysics Data System (ADS)
Leclercq, Loïc
2018-05-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization. These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry”.
Leclercq, Loïc
2018-01-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization (Graphical Abstract). These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart, and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry.”
An experimental approach to free vibration analysis of smart composite beam
NASA Astrophysics Data System (ADS)
Yashavantha Kumar, G. A.; Sathish Kumar, K. M.
2018-02-01
Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.
Smart Columbus : Systems Engineering Management Plan (SEMP) for Smart Columbus Demonstration Program
DOT National Transportation Integrated Search
2018-01-16
The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
NASA Astrophysics Data System (ADS)
Vortanz, Karsten; Zayer, Peter
Das Gesetz zur Digitalisierung der Energiewende ist verabschiedet. Ab 2017 sind moderne Messeinrichtungen (mME) und intelligente Messsysteme (iMSys) zu verbauen und zu betreiben. Der "deutsche Weg" für die Einführung von Smart Metern sieht einen stufenweisen Rollout sowie ein Höchstmaß an Informations- und Datensicherheit vor. Dabei spielen iMSys und mME eine wichtige Rolle bei der Neugestaltung der intelligenten Netze (Smart Grids) und des neuen Marktmodells (Smart Market). Dieser Beitrag beschäftigt sich mit den neuen Gesetzen, den Marktrollen und ihren Aufgaben, Datenschutz und Datensicherheit, dem iMSys als sichere Lösung, dem sicheren Betrieb von Smart Meter Gateways, Smart Grid - Smart Market, dem Zusammenspiel zwischen reguliertem Bereich und Markt, den Einsatzbereichen der iMSys sowie den Auswirkungen auf Prozesse und Systeme und gibt Handlungsempfehlungen.
Practical and Secure Recovery of Disk Encryption Key Using Smart Cards
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Kato, Kazuhiko
In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.
Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang
2016-12-01
It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.
Smart Payload Development for High Data Rate Instrument Systems
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Norton, Charles D.
2007-01-01
This slide presentation reviews the development of smart payloads instruments systems with high data rates. On-board computation has become a bottleneck for advanced science instrument and engineering capabilities. In order to improve the computation capability on board, smart payloads have been proposed. A smart payload is a Localized instrument, that can offload the flight processor of extensive computing cycles, simplify the interfaces, and minimize the dependency of the instrument on the flight system. This has been proposed for the Mars mission, Mars Atmospheric Trace Molecule Spectroscopy (MATMOS). The design of this system is discussed; the features of the Virtex-4, are discussed, and the technical approach is reviewed. The proposed Hybrid Field Programmable Gate Array (FPGA) technology has been shown to deliver breakthrough performance by tightly coupling hardware and software. Smart Payload designs for instruments such as MATMOS can meet science data return requirements with more competitive use of available on-board resources and can provide algorithm acceleration in hardware leading to implementation of better (more advanced) algorithms in on-board systems for improved science data return
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
How to engage end-users in smart energy behaviour?
NASA Astrophysics Data System (ADS)
Valkering, Pieter; Laes, Erik; Kessels, Kris; Uyterlinde, Matthijs; Straver, Koen
2014-12-01
End users will play a crucial role in up-coming smart grids that aim to link end-users and energy providers in a better balanced and more efficient electricity system. Within this context, this paper aims to deliver a coherent view on current good practice in end-user engagement in smart grid projects. It draws from a recent review of theoretical insights from sustainable consumption behaviour, social marketing and innovation systems and empirical insights from recent smart grid projects to create an inventory of common motivators, enablers and barriers of behavioural change, and the end-user engagement principles that can be derived from that. We conclude with identifying current research challenges as input for a research agenda on end-user engagement in smart grids.
Systems Maintenance Automated Repair Tasks (SMART)
NASA Technical Reports Server (NTRS)
2008-01-01
SMART is an interactive decision analysis and refinement software system that uses evaluation criteria for discrepant conditions to automatically provide and populate a document/procedure with predefined steps necessary to repair a discrepancy safely, effectively, and efficiently. SMART can store the tacit (corporate) knowledge merging the hardware specification requirements with the actual "how to" repair methods, sequences, and required equipment, all within a user-friendly interface. Besides helping organizations retain repair knowledge in streamlined procedures and sequences, SMART can also help them in saving processing time and expense, increasing productivity, improving quality, and adhering more closely to safety and other guidelines. Though SMART was developed for Space Shuttle applications, its interface is easily adaptable to any hardware that can be broken down by component, subcomponent, discrepancy, and repair.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
NASA Astrophysics Data System (ADS)
Forcier, Bob
2003-09-01
This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.
Smart Coatings for Launch Site Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz M.
2014-01-01
Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
NASA Astrophysics Data System (ADS)
Shevchenko, Konstantin G.; Cherkasov, Vladimir R.; Nikitina, Irina L.; Babenyshev, Andrey V.; Nikitin, Maxim P.
2018-02-01
The great diversity of nanomaterials provides ample opportunities for constructing effective agents for biomedical applications ranging from biosensing to drug delivery. Multifunctional nanoagents that combine several features in a single particle are of special interest due to capabilities that substantially exceed those of molecular drugs. An ideal theranostic agent should simultaneously be an advanced biosensor to identify a disease and report the diagnosis and a biomedical actuator to treat the disease. While many approaches were developed to load a nanoparticle with various drugs for actuation of the diseased cells (e.g., to kill them), the nanoparticle-based approaches for the localized biosensing with real-time reporting of the marker concentration severely lag behind. Here, we show a smart in situ nanoparticle-based biosensor/actuator system that dynamically and reversibly changes its structural and optical properties in response to a small molecule marker to allow real-time monitoring of the marker concentration and adjustment of the system ability to bind its biomedical target. Using the synergistic combination of signal readout based on the localized surface plasmon resonance and an original method of fabrication of smart ON/OFF-switchable nanoagents, we demonstrate reversible responsiveness of the system to a model small molecule marker (antibiotic chloramphenicol) in a wide concentration range. The proposed approach can be used for the development of advanced multifunctional nanoagents for theranostic applications.
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran
2016-01-01
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran
2016-06-27
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.
Wafer-Level Vacuum Packaging of Smart Sensors
Hilton, Allan; Temple, Dorota S.
2016-01-01
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249
SMARTE: HELPING COMMUNITIES OVERCOME OBSTACLES TO REVITALIZATION (04/23/07)
Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...
SmartWay Truck Tool-Advanced Class: Getting the Most out of Your SmartWay Participation
This EPA presentation provides information on the Advanced SmartWay Truck Tool; it's background, development, participation, data collection, usage, fleet categories, emission metrics, ranking system, performance data, reports, and schedule for 2017.
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
Ridership impacts of South Florida's EASY smart card.
DOT National Transportation Integrated Search
2013-07-01
Smart card-based Automated Fare Collection Systems (AFCS) are being increasingly deployed in transit systems across the US. Miami-Dade Transit (MDT) has recently deployed such a system branded as the EASY Card. The South Florida Regional Transportati...
Smart infrared inspection system field operational test.
DOT National Transportation Integrated Search
2014-04-01
The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles : passing through the system are in need of further inspection by measuring the thermal data from the wheel : components. As a vehicle ...
Gamification in the context of smart cities
NASA Astrophysics Data System (ADS)
Zica, M. R.; Ionica, A. C.; Leba, M.
2018-01-01
The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.
The research of the malfunction diagnosis and predictions system in the smart electric grid
NASA Astrophysics Data System (ADS)
Wang, Yaqing; Zhang, Guoxing; Xu, Hongbing
2017-03-01
The Chinese smart electric grid constriction has been increasing with the technology development. However, the monitoring equipment and background system which should play important roles did not work as intended and restrict to the efficacy of the smart grid. In this essay, it has researched an intelligentized malfunction diagnosis and predictions system which could work with the existed monitoring equipment to function as whole energy monitoring, common malfunction diagnosis, faulted proactive judgment and automatically elimination.
SMART Platforms: Building the App Store for Biosurveillance
Mandl, Kenneth D.
2013-01-01
Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.
DOT National Transportation Integrated Search
2009-01-01
Can a self-calibrating signal control system lead to wider adoption of adaptive traffic control systems? The focus of Next Generation of Smart Traffic Signals, an Exploratory Advanced Research (EAR) Program project, is a system that-with lit...
An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy.
Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis
2017-03-21
The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system's ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year.
Cyber security challenges in Smart Cities: Safety, security and privacy.
Elmaghraby, Adel S; Losavio, Michael M
2014-07-01
The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the "Internet of Things." Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect.
Organizational and technological correlates of nurses' trust in a smart intravenous pump.
Montague, Enid; Asan, Onur; Chiou, Erin
2013-03-01
The aim of this study was to understand technology and system characteristics that contribute to nurses' ratings of trust in a smart intravenous pump. Nurses' trust in new technologies can influence how technologies are used. Trust in technology is defined as a person's belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, overtrust, distrust, and mistrust. Trust in technology is also related to several use-specific outcomes, including appropriate use and inappropriate use such as overreliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart intravenous pump. The survey assessed trust in the intravenous pump and other elements of the sociotechnical system, individual characteristics, technology characteristics, and organizational characteristics. Results show that perceptions of usefulness, safety, ease of use, and usability are related to ratings of trust in smart intravenous pumps. Other work systemfactors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses' trust in smart intravenous pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart intravenous pumps and health systems. Recommendations for appropriately trustworthy smart intravenous pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
Smart roadside initiative : system requirements specifications.
DOT National Transportation Integrated Search
2015-09-01
This document describes the system requirements specifications (SyRS) for the Smart Roadside Initiative (SRI) Prototype for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal ...
Data to knowledge: how to get meaning from your result
Berman, Helen M.; Gabanyi, Margaret J.; Groom, Colin R.; Johnson, John E.; Murshudov, Garib N.; Nicholls, Robert A.; Reddy, Vijay; Schwede, Torsten; Zimmerman, Matthew D.; Westbrook, John; Minor, Wladek
2015-01-01
Structural and functional studies require the development of sophisticated ‘Big Data’ technologies and software to increase the knowledge derived and ensure reproducibility of the data. This paper presents summaries of the Structural Biology Knowledge Base, the VIPERdb Virus Structure Database, evaluation of homology modeling by the Protein Model Portal, the ProSMART tool for conformation-independent structure comparison, the LabDB ‘super’ laboratory information management system and the Cambridge Structural Database. These techniques and technologies represent important tools for the transformation of crystallographic data into knowledge and information, in an effort to address the problem of non-reproducibility of experimental results. PMID:25610627
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Ohyanagi, Toshio; Sengoku, Yasuhito
2010-02-01
This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
Embedded systems engineering for products and services design.
Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M
2012-01-01
Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
A Petri Net model for distributed energy system
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.
Optical smart card using semipassive communication.
Glaser, I; Green, Shlomo; Dimkov, Ilan
2006-03-15
An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.
Optical smart card using semipassive communication
NASA Astrophysics Data System (ADS)
Glaser, I.; Green, Shlomo; Dimkov, Ilan
2006-03-01
An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Baldridge, Tim
2005-01-01
The goals of the project are: Achieve high business value through a common badging and access control system that integrates with smart cards. Provide physical (versus logical) deployment of smart cards initially. Provides a common consistent and reliable environment into which to release the smart card. Gives opportunity to develop agency-wide consistent processes, practices and policies. Enables enterprise data capture and management. Promotes data validation prior to SC issuance.
From Smart Metering to Smart Grid
NASA Astrophysics Data System (ADS)
Kukuča, Peter; Chrapčiak, Igor
2016-06-01
The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.
NASA Technical Reports Server (NTRS)
Packard, D.; Schmitt, D.
1984-01-01
Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.
Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid
2017-06-01
Metering Infrastructure on DOD installations. An examination of five case studies highlights the costs and benefits of the Virtual Smart Grid (VSG...studies highlights the costs and benefits of the Virtual Smart Grid (VSG) developed by Space and Naval Warfare Systems Command for use at Marine Corps...41 A. SMART GRID BENEFITS .....................................................................41 B. SUMMARY OF VSG ESTIMATED COSTS AND BENEFITS
PLCs used in smart home control
NASA Astrophysics Data System (ADS)
Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.
2016-02-01
This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.
Kong, X; Clausen, C; Wang, S
2012-06-01
Clinical experience for configuration, commission and implementation of SmartArc with MOSAIQ R&V system. SmartArc is Pinnacle's solution for VMAT. On July 2011 we updated to Pinnacle 9.0 and purchased SmartArc. A standalone Eclipse workstation has been used 3 years for VMAT planning. Our clinical setting: Mosaiq 2.2; Varian Trilogy driven by 4DiTC and Varian 21ex driven by sequencer. Some key physics parameters have been studied: machine dose rate; MLC leaf speed; Leaf motion per gantry rotation. Tabletop was created by user to improve the dose accuracy for planning. In-house sandwich phantom was used with MapCheck for planner dose verification. A PTW 0.6cc ion chamber was included for absolute dose comparison. A copy of current machine data with default highest dose rate is recommended. It is due to after 10th iteration of optimization, the default dose rate will kick in. 2.5cm/s is the constraint for Varian Millennium 120 MLC; a buffer zone of 10% is suggested to reduce the MLC error on treatment. 2.25cm/s is used in our configuration. This results in MLC interlock if not configured correct. Maximum leaf motion per gantry rotation of 0.46cm/degree has to be checked for planning with Mosaiq R&V. Otherwise, undeliverable plan will show up sometimes on 4DiTC.Tabletop was exported as a DICOM structure from Eclipse to Pinnacle; we created a ROI template based on the matched tabletop.QA using in-house phantom for different sites were tested. Results for both planner dose and absolute chamber measurement are satisfactory. Special attentions need to be paid for dose rate, MLC leaf speed, leaf motion per gantry rotation when configuring SmartArc. Varian 21ex is supported but is slow for clinical delivery. Users need to create your own tabletop to improve planning accuracy. Conventional commission procedures for RapidArc also apply for SmartArc. © 2012 American Association of Physicists in Medicine.
Research and design of smart grid monitoring control via terminal based on iOS system
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
Wang, Jingang; Gao, Can; Yang, Jie
2014-01-01
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333
Sun, Chenglu; Li, Wei; Chen, Wei
2017-01-01
For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188
Cañete, Eduardo; Chen, Jaime; Rubio, Bartolomé
2018-01-01
The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in “Bodegas San Acacio,” a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper. PMID:29518928
Cañete, Eduardo; Chen, Jaime; Martín, Cristian; Rubio, Bartolomé
2018-03-07
The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in "Bodegas San Acacio," a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper.
Evaluation -- Northern Virginia Smart Traffic Center (NVSTC) integration program
DOT National Transportation Integrated Search
2002-02-01
The Northern Virginia Smart Traffic Center (NVSTC) Integration Program was an ambitious undertaking to enhance the effectiveness of intelligent transportation systems (ITS) in the Washington metropolitan area by interconnecting regional systems. The ...
Global renewable energy-based electricity generation and smart grid system for energy security.
Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security
Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201
Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device
NASA Astrophysics Data System (ADS)
Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng
2011-11-01
A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.
Fiber optic system for deflection and damage detection in morphing wing structures
NASA Astrophysics Data System (ADS)
Scheerer, M.; Djinovic, Z.; Schüller, M.
2013-04-01
Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.