Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.
Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun
2015-08-19
A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.
How to be smart and energy efficient: A general discussion on thermochromic windows
Long, Linshuang; Ye, Hong
2014-01-01
A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Next generation smart window display using transparent organic display and light blocking screen.
Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk
2018-04-02
Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.
Zhong, Ying; Chai, Zhisheng; Liang, Zhimin; Sun, Peng; Xie, Weiguang; Zhao, Chuanxi; Mai, Wenjie
2017-10-04
Because of the popularity of smart electronics, multifunctional energy storage devices, especially electrochromic supercapacitors (SCs), have attracted tremendous research interest. Herein, a solid-state electrochromic asymmetric SC (ASC) window is designed and fabricated by introducing WO 3 and polyaniline as the negative and positive electrodes, respectively. The two complementary materials contribute to the outstanding electrochemical and electrochromic performances of the fabricated device. With an operating voltage window of 1.4 V and an areal capacitance of 28.3 mF cm -2 , the electrochromic devices show a high energy density of 7.7 × 10 -3 mW h cm -2 . Meanwhile, they exhibit an obvious and reversible color transition between light green (uncharged state) and dark blue (charged state), with an optical transmittance change between 55 and 12% at a wavelength of 633 nm. Hence, the energy storage level of the ASC is directly related to its color and can be determined by the naked eye, which means it can be incorporated with other energy cells to visual display their energy status. Particularly, a self-powered and color-indicated system is achieved by combining the smart windows with commercial solar cell panels. We believe that the novel electrochromic ASC windows will have great potential application for both smart electronics and smart buildings.
Infrared characteristics of VO2 thin films for smart window and laser protection applications
NASA Astrophysics Data System (ADS)
Huang, Zhangli; Chen, Sihai; Lv, Chaohong; Huang, Ying; Lai, Jianjun
2012-11-01
Vanadium dioxide (VO2) films with a low semiconductor-to-metal transition temperature of 45 °C were fabricated through direct current magnetron sputtering followed by a post-annealing. Atomic force microscopy measurements show that the VO2 grain size is about one hundred of nanometers. Infrared (IR) characteristic is well investigated by applying a He-Ne laser power intensity measurement, and the result reveals that the VO2 film exhibits excellent IR switching property. Furthermore, solar smart window and laser protection experiments demonstrate that the obtained VO2 thin film is a promising material for the application in related fields.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window
NASA Astrophysics Data System (ADS)
Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up
2018-05-01
Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
Evaluation of 3D printed optofluidic smart glass prototypes.
Wolfe, Daniel; Goossen, K W
2018-01-22
Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.
VO2 microcrystals as an advanced smart window material at semiconductor to metal transition
NASA Astrophysics Data System (ADS)
Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip
2017-11-01
Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-01-01
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266
Smart glass based on electrochromic polymers
NASA Astrophysics Data System (ADS)
Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru
2006-03-01
Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-04-11
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.
Vanadium dioxide nanogrid films for high transparency smart architectural window applications.
Liu, Chang; Balin, Igal; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2015-02-09
This study presents a novel approach towards achieving high luminous transmittance (T(lum)) for vanadium dioxide (VO(2)) thermochromic nanogrid films whilst maintaining the solar modulation ability (ΔT(sol)). The perforated VO(2)-based films employ orderly-patterned nano-holes, which are able to favorably transmit visible light dramatically but retain large near-infrared modulation, thereby enhancing ΔT(sol). Numerical optimizations using parameter search algorithms have implemented through a series of Finite Difference Time Domain (FDTD) simulations by varying film thickness, cell periodicity, grid dimensions and variations of grid arrangement. The best performing results of T(lum) (76.5%) and ΔT(sol) (14.0%) are comparable, if not superior, to the results calculated from nanothermochromism, nanoporosity and biomimic nanostructuring. It opens up a new approach for thermochromic smart window applications.
Thermochromic halide perovskite solar cells.
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Thermochromic halide perovskite solar cells
NASA Astrophysics Data System (ADS)
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping
2017-08-09
In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.
NASA Astrophysics Data System (ADS)
Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.
2016-02-01
“Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.
Chen, Guang-Hong; Li, Yinsheng
2015-08-01
In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial-temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial-temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial-temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. In numerical simulations, the 240(∘) short scan angular span was divided into four consecutive 60(∘) angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200(∘), three 66(∘) angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60(∘) angular subsectors.
Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)
Milliron, Delia; Selkowitz, Stephen
2017-12-09
August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.
Simple Chemical Vapor Deposition Experiment
ERIC Educational Resources Information Center
Pedersen, Henrik
2014-01-01
Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…
Wang, Sai; Xu, Zuqiang; Wang, Tingting; Xiao, Tangxin; Hu, Xiao-Yu; Shen, Ying-Zhong; Wang, Leyong
2018-04-30
Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments.
Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance
Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo
2016-01-01
The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772
Chromogenic switchable glazing: Towards the development of the smart window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.
1995-06-01
The science and technology of chromogenic materials for switchable glazings in building applications is discussed. These glazings can be used for dynamic control of solar and visible energy. Currently many researchers and engineers are involved with the development of products in this field. A summary of activities in Japan, Europe, Australia, USA and Canada is made. The activities of the International Energy Agency are included. Both non-electrically activated and electrically activated glazings are discussed. Technologies covered in the first category are photochromics, and thermochromics and thermotropics. A discussion of electrically activated chromogenic glazings includes dispersed liquid crystals, dispersed particles andmore » electrochromics. A selection of device structures and performance characteristics are compared. A discussion of transparent conductors is presented. Technical issues concerning large-area development of smart windows are discussed.« less
Smart glass as the method of improving the energy efficiency of high-rise buildings
NASA Astrophysics Data System (ADS)
Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda
2018-03-01
The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.
Occupant-responsive optimal control of smart facade systems
NASA Astrophysics Data System (ADS)
Park, Cheol-Soo
Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng
Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less
Smart windows based on cholesteric liquid crystals (Conference Presentation)
NASA Astrophysics Data System (ADS)
Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.
2017-02-01
With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.
NASA Astrophysics Data System (ADS)
Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.
2014-11-01
In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.
Smart window using a thermally and optically switchable liquid crystal cell
NASA Astrophysics Data System (ADS)
Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon
2018-02-01
Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.
VO2 /TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications.
Hao, Qi; Li, Wan; Xu, Huiyan; Wang, Jiawei; Yin, Yin; Wang, Huaiyu; Ma, Libo; Ma, Fei; Jiang, Xuchuan; Schmidt, Oliver G; Chu, Paul K
2018-03-01
Vanadium dioxide/titanium nitride (VO 2 /TiN) smart coatings are prepared by hybridizing thermochromic VO 2 with plasmonic TiN nanoparticles. The VO 2 /TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO 2 /TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO 2 /TiN promising as smart energy-saving windows. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Li, Yinsheng
Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON), to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that severely violates the Tuy condition. Methods:more » In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes during data acquisition. Each image reconstructed from data acquired in a given temporal window represents one time frame and can be denoted as an image vector. Conventionally, each individual time frame is reconstructed independently. In this paper, all image frames are grouped into a spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired in some applications to reduce temporal-average artifacts. Both numerical simulations in two dimensional image slices with known ground truth and in vivo human subject data acquired in a contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and temporal fidelity of the reconstructed images were quantified using the relative root mean square error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of the SMART-RECON algorithm was compared with that of the prior image constrained compressed sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject exam. Results: In numerical simulations, the 240{sup ∘} short scan angular span was divided into four consecutive 60{sup ∘} angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and 0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and 0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam CT data acquired from a short scan angular span of 200{sup ∘}, three 66{sup ∘} angular subsectors were used in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors, PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in three reconstructed image volumes. Conclusions: In time-resolved CT, the proposed SMART-RECON method provides a new method to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which corresponds to approximately 60{sup ∘} angular subsectors.« less
NASA Astrophysics Data System (ADS)
Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin
2017-08-01
Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.
De Leo, Gianluca; Gonzales, Carol H; Battagiri, Padmaja; Leroy, Gondy
2011-08-01
Autism is a complex neurobiological disorder that is part of a group of disorders known as autism spectrum disorders (ASD). Today, one in 150 individuals is diagnosed with autism. Lack of social interaction and problems with communication are the main characteristics displayed by children with ASD. The Picture Exchange Communication System (PECS) is a communication system where children exchange visual symbols as a form of communication. The visual symbols are laminated pictures stored in a binder. We have designed, developed and are currently testing a software application, called PixTalk which works on any Windows Mobile Smart-phone. Teachers and caregivers can access a web site and select from an online library the images to be downloaded on to the Smart-phone. Children can browse and select images to express their intentions, desires, and emotions using PixTalk. Case study results indicate that PixTalk can be used as part of ongoing therapy.
New Materials for Structural Composites and Protective Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.
Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels.
La, Thanh-Giang; Li, Xinda; Kumar, Amit; Fu, Yiyang; Yang, Shu; Chung, Hyun-Joong
2017-09-27
In a cold night, a clear window that will become opaque while retaining the indoor heat is highly desirable for both privacy and energy efficiency. A thermally responsive material that controls both the transmittance of solar radiance (predominantly in the visible and near-infrared wavelengths) and blackbody radiation (mainly in the mid-infrared) can realize such windows with minimal energy consumption. Here, we report a smart coating made from polyampholyte hydrogel (PAH) that transforms from a transparency state to opacity to visible radiation and strengthens opacity to mid-infrared when lowering the temperature as a result of phase separation between the water-rich and polymer-rich phases. To match a typical temperature fluctuation during the day, we fine-tune the phase transition temperature between 25 and 55 °C by introducing a small amount of relatively hydrophobic monomers (0.1 to 0.5 wt % to PAH). To further demonstrate an actively controlled, highly flexible, and high-contrast smart window, we build in an array of electric heaters made of printed elastomeric composite. The multipixelated window offers rapid switching, ∼70 s per cycle, whereas the device can withstand high strain (up to 80%) during operations.
SMART WINDOWS FOR SMART BUILDINGS
Roughly one third of all energy consumed in the U.S. is used in the residential or commercial sector. Of that, over half of the energy is used to provide lighting and to control the temperature of those buildings. “Smart buildings” is a concept to apply principles ...
PLCs used in smart home control
NASA Astrophysics Data System (ADS)
Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.
2016-02-01
This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.
Transparent and flexible heaters based on Al:ZnO degenerate semiconductor
NASA Astrophysics Data System (ADS)
Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.
2017-10-01
We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.
Smart windows with functions of reflective display and indoor temperature-control
NASA Astrophysics Data System (ADS)
Lee, I.-Hui; Chao, Yu-Ching; Hsu, Chih-Cheng; Chang, Liang-Chao; Chiu, Tien-Lung; Lee, Jiunn-Yih; Kao, Fu-Jen; Lee, Chih-Kung; Lee, Jiun-Haw
2010-02-01
In this paper, a switchable window based on cholestreric liquid crystal (CLC) was demonstrated. Under different applied voltages, incoming light at visible and infrared wavelengths was modulated, respectively. A mixture of CLC with a nematic liquid crystal and a chiral dopant selectively reflected infrared light without bias, which effectively reduced the indoor temperature under sunlight illumination. At this time, transmission at visible range was kept at high and the windows looked transparent. With increasing the voltage to 15V, CLC changed to focal conic state and can be used as a reflective display, a privacy window, or a screen for projector. Under a high voltage (30V), homeotropic state was achieved. At this time, both infrared and visible light can transmit which acted as a normal window, which permitted infrared spectrum of winter sunlight to enter the room so as to reduce the heating requirement. Such a device can be used as a switchable window in smart buildings, green houses and windshields.
Review on Variable Emissivity Materials and Devices Based on Smart Chromism
NASA Astrophysics Data System (ADS)
Lang, FengPei; Wang, Hao; Zhang, ShengJun; Liu, JingBing; Yan, Hui
2018-01-01
Variable emissivity material (VEM) can dynamically vary its emissivity and infrared radiation under certain conditions, which may find potential applications in infrared stealth/camouflage, solar thermal collector, spacecraft thermal control, and smart energy-saving windows. In this paper, the variable emissivity materials and devices based on electrochromism and thermochromism are introduced. The basic principle and present status of the research in these fields are overviewed. Four kinds of representative VEMs are extensively summarized, which are tungsten trioxides (WO3), conducting polymers (CPs), perovskite oxides (A_{1-{x}}B_{{x}}MO3), and vanadium dioxide (VO2). Finally, specific issues confronted with electrochromic and thermochromic materials and devices are prospected.
Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar
2016-09-01
In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.
Electroactive Reactive Oligomers and Polymers as Device Components
2009-02-03
promise to impact the development of reflective and transmissive color-changing systems spanning ’smart’ polyclu’omic glassing technologies and e-papers...mediated cross-coupling reactions. While the first substitution is expected to have the largest impact on the energy gap of the donor-acceptor system, a...transmissive device applications, it is expected that processable black to transmissive analogues will impact the development of EC windows, e- papers and
BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.
Ma, Rong-Hua; Chen, Yu-Chia
2012-01-01
A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.
Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.
Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang
2016-06-28
Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Spatial Indexing for Data Searching in Mobile Sensing Environments.
Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S
2017-06-18
Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.
Spatial Indexing for Data Searching in Mobile Sensing Environments
Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S.
2017-01-01
Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database. PMID:28629156
Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai
2017-11-22
Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.
NASA Astrophysics Data System (ADS)
2014-11-01
The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof.DSc Kostadinka Gesheva, Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences (CL SENES-BAS) - Chairperson Assoc. Prof. Dr Anna Szekeres - Institute of Solid State Physics- BAS Assoc. Prof Dr. Tatyana Ivanova - CL SENES -BAS Assist. Prof. Radostina Kamburova - ISSP-BAS
BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices
Ma, Rong-Hua; Chen, Yu-Chia
2012-01-01
A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO3/Ta2O5/ITO and one stack comprising ITO/WO3/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO3/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO3/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750–1,500 Lux under typical summertime conditions in Taiwan. PMID:22368474
Lee, Heng Yeong; Cai, Yufeng; Bi, Shuguang; Liang, Yen Nan; Song, Yujie; Hu, Xiao Matthew
2017-02-22
In this work, a novel fully autonomous photothermotropic material made by hybridization of the poly(N-isopropylacrylamide) (PNIPAM) hydrogel and antimony-tin oxide (ATO) is presented. In this photothermotropic system, the near-infrared (NIR)-absorbing ATO acts as nanoheater to induce the optical switching of the hydrogel. Such a new passive smart window is characterized by excellent NIR shielding, a photothermally activated switching mechanism, enhanced response speed, and solar modulation ability. Systems with 0, 5, 10, and 15 atom % Sb-doped ATO in PNIPAM were investigated, and it was found that a PNIPAM/ATO nanocomposite is able to be photothermally activated. The 10 atom % Sb-doped PNIPAM/ATO exhibits the best response speed and solar modulation ability. Different film thicknesses and ATO contents will affect the response rate and solar modulation ability. Structural stability tests at 15 cycles under continuous exposure to solar irradiation at 1 sun intensity demonstrated the performance stability of such a photothermotropic system. We conclude that such a novel photothermotropic hybrid can be used as a new generation of autonomous passive smart windows for climate-adaptable solar modulation.
Smart nickel oxide materials for the applications of energy efficiency and storage
NASA Astrophysics Data System (ADS)
Lin, Feng
The present dissertation studies nickel oxide-based materials for the application of electrochromic windows and lithium-air batteries. The materials were fabricated via radio frequency magnetron sputtering and subsequently post-treated with thermal evaporation and ozone exposure. The strategies to improve electrochromic performance of nickel oxide materials were investigated including compositional control, morphology tuning, modification of electronic structure and interface engineering (i.e., Li2O 2, graphene). The electrochemical properties of the resulting materials were characterized in lithium ion electrolytes. Extremely high performing nickel oxide-based electrochromic materials were obtained in terms of optical modulation, switching kinetics, bleached-state transparency and durability, which promise the implementation of these materials for practical smart windows. With the aid of advanced synchrotron X-ray absorption spectroscopy, it is reported for the first time that the electrochromic effect in multicomponent nickel oxide-based materials arises from the reversible formation of hole states in the NiO6 cluster accompanying with the reversible formation of Li2O2. The reversible formation of Li2O 2 was successfully leveraged with the study of electro-catalysts and cathode materials for lithium-air batteries. The reversibility of Li 2O2 was thoroughly investigated using soft X-ray absorption spectroscopy and theoretical simulation, which substantiates the promise of using electrochromic films as electro-catalysts and/or cathode materials in lithium-air batteries.
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
Activity Recognition on Streaming Sensor Data.
Krishnan, Narayanan C; Cook, Diane J
2014-02-01
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
Next-Generation Multifunctional Electrochromic Devices.
Cai, Guofa; Wang, Jiangxin; Lee, Pooi See
2016-08-16
The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy during the daytime. Energy can also be stored in the smart windows during the daytime simultaneously and be discharged for use in the evening. These results reveal that the electrochromic devices have potential applications in a wide range of areas. We hope that this Account will promote further efforts toward fundamental research on electrochromic materials and the development of new multifunctional electrochromic devices to meet the growing demands for next-generation electronic systems.
Carbon Nanofiber Electrode Array for Neurochemical Monitoring
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2017-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro
2016-03-01
Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the fabrication of lightweight and inexpensive plastic EC devices.
Engineering Encounters: The Internet of Things for Kids
ERIC Educational Resources Information Center
Davis, Tiffany
2017-01-01
This column presents ideas and techniques to enhance science teaching. In the "Talking Window Garden" project, students create "smart" plant pots that use sensors to collect and analyze data on the health of their plants. The Talking Window Garden project was a collaborative effort between an elementary teacher who wanted to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
NREL Helps Habitat for Humanity of Metro Denver Build Earth-Smart House
Laboratory's (NREL) Exemplary Buildings team helped Habitat for Humanity of Metro Denver design a low energy April 26 from 10 a.m. to 3 p.m. Individuals interested in energy smart home design are encouraged to -tempered design, low-emissivity windows, engineered overhangs which shade the house during the summer but
Perspective and potential of smart optical materials
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk
2017-09-01
The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well.
Alternative Fuels Data Center: Texas Taxis Go Hybrid
information about this project, contact Alamo Area Clean Cities (San Antonio). Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping
Electrochromic NiO thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Özütok, F.; Demiri, S.; Özbek, E.
2017-02-01
Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.
EcoSmart Fire as structure ignition model in wildland urban interface: predictions and validations
Mark A. Dietenberger; Charles R. Boardman
2016-01-01
EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m...
Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R
2018-03-09
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2 C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu
2017-07-01
In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.
Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in
Coalition (Western North Carolina). Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car
Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers
Ocean State Clean Cities. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car
Alternative Fuels Data Center: Worcester Regional Transit Authority Drives
Clean Cities. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv ) Video Download Help Text version See more videos provided by Clean Cities TV and FuelEconomy.gov Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Image of
Alternative Fuels Data Center: Propane Powers Airport Shuttles in New
Clean Fuel Partnership. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Download Help Text version See more videos provided by Clean Cities TV and Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck
All-dielectric resonant cavity-enabled metals with broadband optical transparency
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang
2017-06-01
Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.
Multiple objects tracking with HOGs matching in circular windows
NASA Astrophysics Data System (ADS)
Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.
2014-09-01
In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.
Eco-efficiency evaluation of a smart window prototype.
Syrrakou, E; Papaefthimiou, S; Yianoulis, P
2006-04-15
An eco-efficiency analysis was conducted using indicators suitably defined to evaluate the performance of an electrochromic window acting as an energy saving component in buildings. Combining the indicators for various parameters (control scenario, expected lifetime, climatic type, purchase cost) significant conclusions are drawn for the development and the potential applications of the device compared to other commercial fenestration products. The reduction of the purchase cost (to 200 euros/m2) and the increase of the lifetime (above 15 years) are the two main targets for achieving both cost and environmental efficiency. An electrochromic device, implemented in cooling dominated areas and operated with an optimum control strategy for the maximum expected lifetime (25 years), can reduce the building energy requirements by 52%. Furthermore, the total energy savings provided will be 33 times more than the energy required for its production while the emission of 615 kg CO2 equivalent per electrochromic glazing unit can be avoided.
Alternative Fuels Data Center: Kentucky Charges Forward with All-Electric
Partnership. Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv) Video Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Image of Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo
Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny
2016-03-11
The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.
Field-Sensitive Materials for Optical Applications
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Little, Mark
2002-01-01
The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.
Electric-field control of tri-state phase transformation with a selective dual-ion switch
NASA Astrophysics Data System (ADS)
Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu
2017-06-01
Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-05-27
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.
Study on the construction of Intelligent Courier Station Model
NASA Astrophysics Data System (ADS)
zhao, Ce; lu, Jia xin; li, Zhuang zhuang; shao, Zi rong; pi, Kun yi
2018-06-01
Campus Express is an important window to observe the city consumption logistics service "last kilometer".The research on Campus Express service is not only conducive to campus environment improvement and service quality promotion, but also provides all types of community, agglomeration areas such as urban terminal "last kilometer" logistics with reference.This article first proposed the main problems of campus express service,analyzed the mode of smart express station and finally built a smart express station.
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
A phototactic micromotor based on platinum nanoparticle decorated carbon nitride.
Ye, Zhenrong; Sun, Yunyu; Zhang, Hui; Song, Bo; Dong, Bin
2017-11-30
In this paper, we report a unique phototactic (both positive and negative) micromotor based on platinum nanoparticle decorated carbon nitride. The phototaxis relies on the self-diffusiophoretic mechanism and different surface modifications. The micromotor reported in the current study does not require the addition of any external fuels and shows versatile motion behaviour, i.e. start, stop, directional and programmable motion, which is controlled by light. In addition, since the actuation of the precipitated micromotors at the bottom of a solution using light results in the opacity changes from transparent to translucent, we anticipate that the current micromotor may have potential application in the field of smart windows.
X-ray characterization of a multichannel smart-pixel array detector.
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric
2016-01-01
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.
Photovoltaic cells and photodetectors made with semiconductor polymers: recent progress
NASA Astrophysics Data System (ADS)
Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.
2000-05-01
In this presentation, we discuss recent progress on polymer photovoltaic cells and polymer photodetectors. By improving the fill-factor of polymer photovoltaic cells, the energy conversion efficiency was improved significantly to over 4 percent. Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart-windows. Polymer photodetectors with similar device configuration show high photosensitivity, low dark current, large dynamic range, linear intensity dependence, low noise level and fast response time. These parameters are comparable to or even better than their inorganic counterparts. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make them promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.
Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping
2018-05-03
Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.
NASA Astrophysics Data System (ADS)
Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang
2016-05-01
Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.
Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-06-01
In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.
Intelligent windows using new thermotropic layers with long-term stability
NASA Astrophysics Data System (ADS)
Watanabe, Haruo
1995-08-01
This paper concerns the autonomous responsive type light adjustment window (intelligent windows) among smart windows which adjust the light upon receiving environmental energy. More specifically, this is a thermotropic window panel that laminates and seals a new type of highly viscous polymer aqueous solution gel. A conventional thermotropic window panel has never been put to practical use since the reversible change between the colorless, transparent state (water-clear) and translucent scattered state (paper-white) with uniformity was not possible. The change involved phase separation and generated non-uniformity. The author, after fundamental studies of hydrophobic bonding, successfully solved the problem by developing a polymer aqueous solution gel with amphiphatic molecule as the third component in addition to water and water-soluble polymer with hydrophobic radical, based on the molecular spacer concept. In addition, the author established peripheral technologies and succeeded in experimentally fabricating a panel type 'Affinity's Intelligent Window (AIW)' that has attained the level of practical use.
Nanomaterials for LightManagement in Electro-Optical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, Vo-Van; Singh, Jai; Tanemura, Sakae
2012-01-01
In the past decade, nanostructured materials and nanoparticles have emerged as the necessary ingredients for electrooptical applications and enhancement of device performance, in particular by making use of the light management aspects of the nanomaterials. The application areas that are being transformed profoundly include smart coating devices (e.g., electrochromic, photochromic, and thermochromic devices), solar energy, and sensing. Despite the large volume of work in the past on smart coating devices, and in particular on electrochromic devices and thermochromic fenestrations, for optical transmission or reflection control, applications remain limited because of slow response time and nonuniformity in the case of largemore » surfaces. Recent works in the field indicate that nanostructured electrochromic coatings would be an integral part of the solution to the above problem. One aspect that can thus be focused on would be the fabrication and characterization of the nanostructured smart coating materials and their compatibility with other layers in the overall smart coating device. In the area of solar photovoltaics, nanomaterials have been used in designing light-trapping schemes for inorganic as well as organic solar cells. One particular category of solar cells that has attracted much interest is the plasmonic solar cells in which metallic nanoparticles are incorporated, helping in enhancing their energy conversion efficiency. Nanostructured solar cells would eventually develop into a 'game changing' technology for making solar cells that are affordable and highly efficient, providing a sizeable alternative energy source for our ever-increasing energy needs. Sensors based on the optical properties of constituting nanostructures and nanoparticles also form a most interesting class of bio- and electrochemical sensing devices. The possibility of synthetizing nanoparticles and structures of specifically desired sizes and shapes has indeed opened a whole new range of sensing applications. In parallel to the experimental development of nanomaterials for light management in devices, theoretical modeling and analysis have also accomplished much progress, and different methods for simulating the optical properties of nanoparticles and structures have been proposed. This special issue of the Journal of Nanomaterials is thus dedicated to articles dealing with nanostructured materials that can be used for light management purpose in different applications. Silicon-rich oxide (SRO) is a dielectric material that contains Si nanoparticles and exhibits interesting physical characteristics for applications in optoelectronic devices. The work by Aceves-Mijares et al. examine, in detail the electro-, cathode- and photoluminescence properties of SRO and discuss the origin of light emission in this type of materials. SRO films, of high and medium silicon excess density, obtained by low-pressure chemical vapor deposition and annealed at 1,100 C have been studied. Results obtained by the authors have led to conclude that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals, and the emission mechanism is similar to that in the donor-acceptor decay in semiconductors with a specific wide emission spectrum. Two papers are devoted to nanostructured electrochromic thin films, a category of materials most suitable for controlling light transmission or absorption in electrooptical devices, including smart window coatings. Dinh et al. have shown that by mixing nanostructured Ti and W oxides films, one can obtain devices with considerable enhancement of electrochromic efficiency and electrochemical stability as compared to the conventional nonnanostructured films. As large-area mixed Ti and W oxides can be prepared by the simple doctor blade technique followed by an electrochemical process, this type of nanostructured electrochromic films can be considered a good candidate for smart window applications. Djaoued et al. have presented their studies on the synthesis, characterization, and electrochromic applications of porous WO{sub 3} thin films with different nanocrystalline phases. Asymmetric type electrochromic devices have been constructed using hexagonal, monoclinic, and orthorhombic porous WO{sub 3} thin porous films, and their enhanced electrochromic functionality has been well demonstrated. The paper on smart materials by Chen et al. presents the synthesis of thermochromic W-doped VO{sub 2} (monoclinic/rutile) nanopowders using a novel and simple solution-based process as opposed to other conventional techniques such as excimer laser-assisted metal organic deposition and magnetron sputtering. This simple process is based on the reaction of ammonium metavanadate (NH{sub 4}VO{sub 3}) and oxalic acid dihydrate (C{sub 2}H{sub 2}O{sub 4} {center_dot} 2H{sub 2}O) followed by addition of appropriate ammonium tungstate (N{sub 5}H{sub 37}W{sub 6}O{sub 24} {center_dot} H{sub 2}O).« less
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.
NASA Astrophysics Data System (ADS)
Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma
2009-07-01
Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission. The visualization and analysis of WSN data are presented in a Windows-based user interface.
NASA Astrophysics Data System (ADS)
Riapanitra, Anung; Asakura, Yusuke; Cao, Wenbin; Noda, Yasuto; Yin, Shu
2018-06-01
Fluorine-doped VO2(M) nanoparticles have been successfully synthesized using the hydrothermal method at a supercritical temperature of 490 °C. The pristine VO2(M) has the critical phase transformation temperature of 64 °C. The morphology and homogeneity of the monoclinic structure VO2(M) were adopted by the fluorine-doped system. The obtained particle size of the samples is smaller at the higher concentration of anion doping. The best reduction of critical temperature was achieved by fluorine doping of 0.13% up to 48 °C. The thin films of the fluorine-doped VO2(M) showed pronounced thermochromic property and therefore are suitable for smart window applications.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-01-01
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation. PMID:28555022
Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki
2017-01-25
Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.
Ohyanagi, Toshio; Sengoku, Yasuhito
2010-02-01
This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
Liu, Tongyao; Liu, Bin; Wang, Jing; Yang, Linfen; Ma, Xinlong; Li, Hao; Zhang, Yihong; Yin, Shu; Sato, Tsugio; Sekino, Tohru; Wang, Yuhua
2016-01-01
A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues. PMID:27265778
Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui
2017-11-01
Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties.
Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun
2013-09-25
VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550 °C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5 °C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films.
Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties
Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun
2013-01-01
VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550°C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5°C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films. PMID:24067743
Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties
NASA Astrophysics Data System (ADS)
Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.
2018-03-01
Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf
2010-01-01
The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374
Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.
Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng
2017-01-31
Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.
Nanophotonics-enabled smart windows, buildings and wearables
NASA Astrophysics Data System (ADS)
Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael
2016-06-01
Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.
Smart Cards and remote entrusting
NASA Astrophysics Data System (ADS)
Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad
Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.
The Theory and Application of Privacy-preserving Computation
2015-03-26
which rejected the deployment of smart meters due to privacy concerns of the fine-grained information reporting necessary for the smart grid . Yet...there are clear benefits of the smart grid that are lost when smart metering is not available. This is true of many applications which require sensitive...31 4.1 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 Motivation
Active Plasmonics: Principles, Structures, and Applications.
Jiang, Nina; Zhuo, Xiaolu; Wang, Jianfang
2018-03-28
Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
Li, Wenjing; Ji, Shidong; Qian, Kun; Jin, Ping
2015-10-15
Novel VO2(M)/SnO2 heterostructured nanorods are prepared by combining the conventional hydrothermal synthesis method and post annealing process. The results reveal that the nanosized SnO2 particles are not only successfully grown on the surface of the VO2 nanorods but also uniformly distribute on VO2 without aggregation. The existence of the SnO2 nanoparticles inhibits the aggregation during the annealing process and widens the band gap of the VO2 crystals from 0.75 to 1.7 eV. The two aspects can both improve the optical properties of the VO2(M)/SnO2 composite film. The visible transmittance is up to 35.7% and the IR modulation at 2500 nm is more than 56%, which were much higher than the pure VO2(M) film. In addition, the SnO2 layer could reduce the width of the hysteresis from 17.8 to 10.7°C caused by Sn-doping and enhance the sensitivity. We believe that the VO2(M)/SnO2 heterostructured coating is a good candidate for smart windows. Copyright © 2015 Elsevier Inc. All rights reserved.
A Framework to Develop Persuasive Smart Environments
NASA Astrophysics Data System (ADS)
Lobo, Pedro; Romão, Teresa; Dias, A. Eduardo; Danado, José Carlos
This paper presents a framework for the creation of context-sensitive persuasive applications. The framework allows the authoring of new persuasive smart environments producing the appropriate feedback to the users based on different sensors spread throughout the environment to capture contextual information. Using this framework, we created an application, Smart Bins, aimed at promoting users' behavioural changes regarding the recycling of waste materials. Furthermore, to evaluate the usability of our authoring tool, we performed user tests to analyze if developers could successfully create the Smart Bins application using the framework. A description of the Smart Bins application, as well as the results of the user tests, are also presented in this paper.
Applications of polymeric smart materials to environmental problems.
Gray, H N; Bergbreiter, D E
1997-01-01
New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277
Key Technologies of Phone Storage Forensics Based on ARM Architecture
NASA Astrophysics Data System (ADS)
Zhang, Jianghan; Che, Shengbing
2018-03-01
Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.
Berkeley Lab - Materials Sciences Division
demonstrated a way to make it work. New Discovery Could Improve Organic Solar Cell Performance MSD's Center for lead to gains in efficiency for organic solar cells Rob Ritchie featured in Nature Communications Discover Material Ideal for Smart Photovoltaic Windows â² New Discovery Could Improve Organic Solar Cell
The application and development of artificial intelligence in smart clothing
NASA Astrophysics Data System (ADS)
Wei, Xiong
2018-03-01
This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang
2015-05-15
In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark.more » The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.« less
Designing components using smartMOVE electroactive polymer technology
NASA Astrophysics Data System (ADS)
Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter
2008-03-01
Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.
SMART Application: One stop services bridging the gap between doctor and patients
NASA Astrophysics Data System (ADS)
Wiweko, Budi; Agung, P. G.; Narasati, Shabrina
2017-02-01
In this study, we describe the SMART IVF services that has been developed into android-based application as "SMART Application". In this application, we can find one stop services in IVF. This application is expected to help patients to plan effectively for IVF procedure, full access to their IVF information helps them ease off a lot of stress and anxiety in this very delicate and stressful phase in their lives and help the doctor to plan for the best intervention of patients who face infertility problems using Assisted Reproductive Technology (ART). SMART application will be compatible with all major mobile operating systems.
Boulos, Maged N Kamel; Wheeler, Steve; Tavares, Carlos; Jones, Ray
2011-04-05
The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers.
2011-01-01
The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers. PMID:21466669
Implementing a High-Assurance Smart-Card OS
NASA Astrophysics Data System (ADS)
Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.
Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.
Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie
2014-10-27
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOT National Transportation Integrated Search
2016-12-01
This research produced an arrival notification system for paratransit passengers with disabilities. Almost all existing curb-to-curb paratransit services have significantly large pick-up time window ranging from 20 to 40 minutes from the scheduled ti...
GIS Data Collection for Oil Palm (DaCOP) Mobile Application for Smart Phone
NASA Astrophysics Data System (ADS)
Abdullah, A. F.; Muhadi, N. A.
2015-10-01
Nowadays, smart phone has become a necessity as it offers more than just making a phone call. Smart phone combines the features of cell phone with other mobile devices such as personal digital assistant (PDA) and GPS navigation unit that propel the popularity of smart phones. In recent years, the interest in mobile communication has been increased. Previous research using mobile application has been successfully done in varies areas of study. Areas of study that have been done are health care, education, and traffic monitoring. Besides, mobile application has also been applied in agricultural sector for various purposes such as plant pest risk management. In this study, mobile application for data collection on Ganoderma disease of oil palm has been successfully developed. The application uses several devices in a smart phone such as GPS, Wifi/ GPRS connection and accelerometer devices. The application can be installed in the smart phone and users can use the application while working on-site. The data can be updated immediately through their smart phones to the service. Besides, the application provides offline map so the user can be productive even though their network connectivity is poor or nonexistent. The data can be synced when the users online again. This paper presents an application that allows users to download features from a sync-enabled ArcGIS Feature Service, view and edit the features even when the devices fail to connect with any network connectivity while collecting data on-site.
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Framework for End-User Programming of Cross-Smart Space Applications
Palviainen, Marko; Kuusijärvi, Jarkko; Ovaska, Eila
2012-01-01
Cross-smart space applications are specific types of software services that enable users to share information, monitor the physical and logical surroundings and control it in a way that is meaningful for the user's situation. For developing cross-smart space applications, this paper makes two main contributions: it introduces (i) a component design and scripting method for end-user programming of cross-smart space applications and (ii) a backend framework of components that interwork to support the brunt of the RDFScript translation, and the use and execution of ontology models. Before end-user programming activities, the software professionals must develop easy-to-apply Driver components for the APIs of existing software systems. Thereafter, end-users are able to create applications from the commands of the Driver components with the help of the provided toolset. The paper also introduces the reference implementation of the framework, tools for the Driver component development and end-user programming of cross-smart space applications and the first evaluation results on their application. PMID:23202169
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J
2018-05-22
Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
A universal data access and protocol integration mechanism for smart home
NASA Astrophysics Data System (ADS)
Shao, Pengfei; Yang, Qi; Zhang, Xuan
2013-03-01
With the lack of standardized or completely missing communication interfaces in home electronics, there is no perfect solution to address every aspect in smart homes based on existing protocols and technologies. In addition, the central control unit (CCU) of smart home system working point-to-point between the multiple application interfaces and the underlying hardware interfaces leads to its complicated architecture and unpleasant performance. A flexible data access and protocol integration mechanism is required. The current paper offers a universal, comprehensive data access and protocol integration mechanism for a smart home. The universal mechanism works as a middleware adapter with unified agreements of the communication interfaces and protocols, offers an abstraction of the application level from the hardware specific and decoupling the hardware interface modules from the application level. Further abstraction for the application interfaces and the underlying hardware interfaces are executed based on adaption layer to provide unified interfaces for more flexible user applications and hardware protocol integration. This new universal mechanism fundamentally changes the architecture of the smart home and in some way meets the practical requirement of smart homes more flexible and desirable.
High-performance polymer photovoltaic cells and photodetectors
NASA Astrophysics Data System (ADS)
Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.
2001-02-01
Polymer photovoltaic cells and photodetectors have passed their infancy and become mature technologies. The energy conversion efficiency of polymer photovoltaic cells have been improved to over 4.1% (500 nm, 10 mW/cm2). Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart- windows. The development of polymer photodetectors is even faster. The performance parameters have been improved to the level meeting all specifications for practical applications. The polymer photodetectors are of high photosensitivity (approximately 0.2 - 0.3 A/Watt in visible and UV), low dark current (0.1 - 1 nA/cm2), large dynamic range (> 8 orders of magnitude), linear intensity dependence, low noise level and fast response time (to nanosecond time domain). These devices show long shelf and operation lives. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make the polymer photodetectors promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.
Effect of liquid crystal birefringence on the opacity and off-axis haze of PDLC films
NASA Astrophysics Data System (ADS)
Pane, S.; Caporusso, M.
1998-02-01
PDLC systems are thin films consisting of a dispersion of liquid crystal micro-droplets in a continuous solid phase of polymer matrix. Application of an electric field on a thin layer of PDLC sandwiched between two transparent on-state. This effect make them useful for a wide variety of applications. Among them, smart windows for architectural is the most popular subject in literature. For this application, the key parameters of performance are the haze and the opacity. There are essentially two technologies used to prepare PDLC films, namely micro-encapsulation and phase separation.In the present work we will show the correlation between the opacity and the off-axis haze in PDLC films prepared with a phase separation technology. We will give the general rule in order to select the liquid crystal properties that allow the preparation of high opacity ad low haze PDLC films. Further study about the control of the parameters which influence the performances of PDLC films prepared with phase separation technology and the difference with the NCAP approach are in progress at our laboratory.
Design of the smart scenic spot service platform
NASA Astrophysics Data System (ADS)
Yin, Min; Wang, Shi-tai
2015-12-01
With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
Smart Fabrics Technology Development
NASA Technical Reports Server (NTRS)
Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint
2010-01-01
Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.
Transparent and Flexible Large-scale Graphene-based Heater
NASA Astrophysics Data System (ADS)
Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee
2011-03-01
We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.
The role of advanced sensing in smart cities.
Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P
2012-12-27
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.
The Role of Advanced Sensing in Smart Cities
Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.
2013-01-01
In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603
Towards smart mobility in urban spaces: Bus tracking and information application
NASA Astrophysics Data System (ADS)
Yue, Wong Seng; Chye, Koh Keng; Hoy, Cheong Wan
2017-10-01
Smart city can be defined as an urban space with complete and advanced infrastructure, intelligent networks and platforms, with millions of sensors among which people themselves and their mobile devices. Urban mobility is one of the global smart city project which offers traffic management in real-time, management of passenger transport means, tracking applications and logistics, car sharing services, car park management and more smart mobility services. Due to the frustrated waiting time for the arrival of buses and the difficulty of accessing shuttle bus-related information in a one-stop centre, bus tracking and information application (BTA) is one the proposed solutions to solve the traffic problems in urban spaces. This paper is aimed to design and develop a bus tracking and information application in a selected city in Selangor state, Malaysia. Next, this application also provides an alternative to design public transport tracking and information application for the urban places in Malaysia. Furthermore, the application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future.
Smart roadside initiative : user manual.
DOT National Transportation Integrated Search
2015-09-01
This document provides the user instructions for the Smart Roadside Initiative (SRI) applications including mobile and web-based SRI applications. These applications include smartphone-enabled information exchange and notification, and software compo...
34 CFR 668.58 - Interim disbursements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., ACG, National SMART Grant, or campus-based program funds to the applicant; (ii) Employ the applicant..., ACG, National SMART Grant, or campus-based funds; or (ii)(A) May make one disbursement of any combination of Federal Pell Grant, ACG, National SMART Grant, Federal Perkins Loan, or FSEOG funds for the...
34 CFR 668.58 - Interim disbursements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., ACG, National SMART Grant, or campus-based program funds to the applicant; (ii) Employ the applicant..., ACG, National SMART Grant, or campus-based funds; or (ii)(A) May make one disbursement of any combination of Federal Pell Grant, ACG, National SMART Grant, Federal Perkins Loan, or FSEOG funds for the...
Reduction of peak energy demand based on smart appliances energy consumption adjustment
NASA Astrophysics Data System (ADS)
Powroźnik, P.; Szulim, R.
2017-08-01
In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.
Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J
2015-07-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.
Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.
2015-01-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.
2013-03-01
Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.
The Use of Smart phones in Ophthalmology.
Zvornicanin, Edita; Zvornicanin, Jasmin; Hadziefendic, Bahrudin
2014-06-01
Smart phones are being increasingly used among health professionals. Ophthalmological applications are widely available and can turn smart phones into sophisticated medical devices. Smart phones can be useful instruments for the practice of evidence-based medicine, professional education, mobile clinical communication, patient education, disease self-management, remote patient monitoring or as powerful administrative tools. Several applications are available for different ophthalmological examinations that can assess visual acuity, color vision, astigmatism, pupil size, Amsler grid test and more. Smart phones can be useful ophthalmic devices for taking images of anterior and posterior eye segment. Professional literature and educational material for patients are easily available with use of smart phones. Smart phones can store great amount of informations and are useful for long term monitoring with caution for patient confidentiality. The use of smart phones especially as diagnostic tools is not standardized and results should be carefully considered. Innovative role of smartphone technology and its use in research, education and information sharing makes smart phones a future of ophthalmology and medicine.
NASA Astrophysics Data System (ADS)
Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.
2014-09-01
A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).
Prevention of Information Leakage by Photo-Coupling in Smart Card
NASA Astrophysics Data System (ADS)
Shen, Sung-Shiou; Chiu, Jung-Hui
Advances in smart card technology encourages smart card use in more sensitive applications, such as storing important information and securing application. Smart cards are however vulnerable to side channel attacks. Power consumption and electromagnetic radiation of the smart card can leak information about the secret data protected by the smart card. Our paper describes two possible hardware countermeasures that protect against side channel information leakage. We show that power analysis can be prevented by adopting photo-coupling techniques. This method involves the use of LED with photovoltaic cells and photo-couplers on the power, reset, I/O and clock lines of the smart card. This method reduces the risk of internal data bus leakage on the external data lines. Moreover, we also discuss the effectiveness of reducing electromagnetic radiation by using embedded metal plates.
Smart textiles: a new drug delivery system for symptomatic treatment of a common cold.
Wienforth, F; Landrock, A; Schindler, C; Siegert, J; Kirch, W
2007-05-01
Smart textiles provide the possibility of being coated with cineole, menthol, and camphor. Due to over-the-counter availability, ethereal oils are frequently used to treat a common cold. The existing pharmaceutical forms entail the risk of oral ingestion by children, which can cause severe intoxications. This risk could be limited by a smart textile application. Prior to applicability tests in children, the principal traceability of smart textile-applied ethereal oils at their site of action in the alveoli has to be demonstrated. Therefore, a crossover trial (ointment vs smart textiles) with 6 healthy volunteers was carried out as a proof-of-concept study. As a result, the principle proof is given that smart textile-applied ethereal oils are available at their site of action. Because of the volatility of the active ingredients, a close-fitting textile form has to be developed for further clinical development of smart textiles to achieve higher concentrations in the alveoli. Slower liberation properties and a more convenient skin sensation in comparison to available pharmaceutical forms may provide advantages for the applicability in both children and adults.
75 FR 11841 - Repowering Assistance Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... application window. SUMMARY: RBS is announcing a new application window to submit applications for the...-time application window for remaining FY 2009 funds. Paperwork Reduction Act In accordance with the... allocate all of the FY 2009 authorized funds. Therefore, the Agency is opening a new application window to...
Open Smart Energy Gateway (OpenSEG)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Open Smart Energy Gateway (OpenSEG) aims to provide near-real time smart meter data to consumers without the delays or latencies associated with it being transported to the utility data center and then back to the consumer's application. To do this, the gateway queries the local Smart Meter to which it is bound to get energy consumption information at pre-defined intervals (minimum interval is 4 seconds). OpenSEG then stores the resulting data internally for retrieval by an external application.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Applications of smart materials in structural engineering.
DOT National Transportation Integrated Search
2003-10-01
With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...
Towards smart environments using smart objects.
Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli
2011-01-01
Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
Manabe, Kengo; Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Moriya, Takeo; Tsuge, Yosuke; Kyung, Kyu-Hong; Shiratori, Seimei
2016-09-29
Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.
NASA Astrophysics Data System (ADS)
Upton, Timothy D.; Ludman, Jacques E.; Watt, David W.
2004-09-01
The Smart, White-Light Dazzler (SWLD) is a nonlethal weapon designed to aim and deliver a dazzling and disabling light flash of maximum eye-safe energy to a selected target. The two key features of the SWLD technology are its self-aiming and power-adjusting capabilities; optical barriers, such as dark glasses, rifle scopes, binoculars, etc., and iris aperture, whether the eyes are light or dark adapted, are automatically taken into account by using a low-power infrared (IR) laser to probe and return a glint from the eye(s) of the target. Using the retro-reflected glint the dazzle pulse is adjusted and directed to arrive at the target with maximum allowable nonlethal energy at any range from 1 m to 100 m. The collateral risk of this technology is very small. If the weapon is misaimed dramatically, the returned glint may come from an unintended person who will then be dazzled. Although this person will be incapacitated for 2-3 minutes, he will suffer no long-term effects. We assume all persons in dangerous situations would rather be accidentally, temporarily dazzled than suffer more serious consequences. The SWLD adds an important tool to the spectrum of nonlethal responses available for use by military and law enforcement personnel. Applications include dispersing persons in crowd control and disabling terrorists in hijacking situations. The dazzle process may be repeated, choosing the next most susceptible target until a crowd is subdued. One important application in counter-terrorism is onboard planes where a pilot can fire a SWLD through a cockpit-door window and dazzle a hijacker with no damage to passengers.
An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua
2011-07-09
Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Gridmore » Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.« less
SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B
2016-01-01
Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829
Smart cards: a specific application in the hospital.
Güler, I; Zengin, R M; Sönmez, M
1998-12-01
Computers have the ability to process and access tremendous amounts of information in our daily lives. But, now, individuals have this ability by carrying a smart card in their own wallets. These cards provide us the versatility, power, and security of computers. This study begins with a short description of smart cards and their advantages. Then, an electronic circuit that is designed for healthcare application in hospitals is introduced. This circuit functions as a smart card holder identifier, access controller for hospital doors and also can be used as a smart card reader/writer. Design steps of this electronic circuit, operation principles, serial communication with P.C., and the software are examined. Finally a complete access control network for hospital doors that functions with smart cards is discussed.
Developing upconversion nanoparticle-based smart substrates for remote temperature sensing
NASA Astrophysics Data System (ADS)
Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.
2018-02-01
Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less
Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement
NASA Astrophysics Data System (ADS)
Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu
2016-11-01
Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.
Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres
NASA Astrophysics Data System (ADS)
Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong
2017-05-01
In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.
Size and composition-controlled fabrication of thermochromic metal oxide nanocrystals
NASA Astrophysics Data System (ADS)
Clavero, César; Slack, Jonathan L.; Anders, André
2013-09-01
Finding new methods for the fabrication of metal oxide nanocrystals with high control on their composition, size and crystallinity is paramount for making large-area and low-cost optical coatings. Here, we demonstrate the fabrication of thermochromic VO2 nanocrystals using a physical vapour deposition-based route, with high control over their composition, size and crystallinity. This technique presents great potential to be scaled up and integrated with in-line coaters, commonly used for large-area deposition. Optimum crystallization of the VO2 nanoparticles is achieved after post-growth annealing at 350 °C, a temperature drastically lower than that required by chemical or implantation fabrication methods. The obtained nanoparticle thin films exhibit superior modulation of the transmittance in the visible and near IR portion of the spectrum as compared to conventional VO2 thin films due to plasmonic effects, opening up a new horizon in applications such as smarts windows.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates.
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-04-21
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-01-01
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484
Smart Radiation Therapy Biomaterials.
Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen
2017-03-01
Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2007-01-01
Interactive whiteboards have made quite a splash in classrooms in recent years. When a computer image is projected on the whiteboard using an LCD projector, users can directly control the computer from the whiteboard. In some systems such as Smart and Mimio, the finger is used in place of a mouse to open and run programs or move windows around. In…
7 CFR 2201.17 - Submission of applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... completed application. (b) Application deadline. One or more application windows will be announced. The duration of each application window for submission of applications will be approximately 120 days. Notice of an application window will be published in the Federal Register. ...
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi
2016-05-01
Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.
Educating next-generation civil engineers about smart structures technology
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng
2005-05-01
The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.
A state-of-the-art assessment of active structures
NASA Technical Reports Server (NTRS)
1992-01-01
A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed.
Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily
2017-09-06
Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.
Bricker, Jonathan B; Copeland, Wade; Mull, Kristin E; Zeng, Emily Y; Watson, Noreen L; Akioka, Katrina J; Heffner, Jaimee L
2017-01-01
The first randomized trial of a smartphone application (app) for adult smoking cessation (SmartQuit 1.0) revealed key features that predict cessation. These findings guided the revision of this Acceptance & Commitment Therapy (ACT)-based application (SmartQuit 2.0), which was primarily tested to examine participant receptivity, short-term cessation and reduction, and the relationship between program completion, smoking cessation and reduction. Secondarily, outcomes were descriptively compared with the SmartQuit1.0 trial. Adult participants (78% female, 25% with high school or less education, 30% unemployed) were recruited into the single-arm pilot trial (N=99) of SmartQuit 2.0 with a two-month follow-up (85% retention). Regarding receptivity, 84% of participants were satisfied with SmartQuit 2.0 (vs. 59% for SmartQuit1.0), 73% would recommend it to a friend (vs. 48% for SmartQuit1.0), 81% found the ACT exercises useful for quitting (vs. 44% for SmartQuit1.0). At the 2-month follow-up, the quit rates were 21% for 7-day point prevalence (vs. 23% for SmartQuit1.0), 11% for 30-day point prevalence (vs. 13% for SmartQuit1.0), and 75% of participants reduced their smoking frequency (vs. 57% for SmartQuit1.0). Among program completers (24% of total sample), the quit rates were 33% for 7-day point prevalence, 28% for 30-day point prevalence, and 88% of participants reduced their smoking frequency. The revised app had high user receptivity, modest quit rates, and high smoking reduction rates. Program completion may be key to boosting the app's effectiveness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wafer-Level Vacuum Packaging of Smart Sensors
Hilton, Allan; Temple, Dorota S.
2016-01-01
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249
Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer
1997-01-01
A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
Development of a 750x750 pixels CMOS imager sensor for tracking applications
NASA Astrophysics Data System (ADS)
Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali
2017-11-01
Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.
SMART Platforms: Building the App Store for Biosurveillance
Mandl, Kenneth D.
2013-01-01
Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.
On a simulation study for reliable and secured smart grid communications
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2015-05-01
Demand response is one of key smart grid applications that aims to reduce power generation at peak hours and maintain a balance between supply and demand. With the support of communication networks, energy consumers can become active actors in the energy management process by adjusting or rescheduling their electricity usage during peak hours based on utilities pricing incentives. Nonetheless, the integration of communication networks expose the smart grid to cyber-attacks. In this paper, we developed a smart grid simulation test-bed and designed evaluation scenarios. By leveraging the capabilities of Matlab and ns-3 simulation tools, we conducted a simulation study to evaluate the impact of cyber-attacks on demand response application. Our data shows that cyber-attacks could seriously disrupt smart grid operations, thus confirming the need of secure and resilient communication networks for supporting smart grid operations.
Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)
1996-01-01
The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.
Measuring level of friendliness of smart city: a perceptual study
NASA Astrophysics Data System (ADS)
Sani Roychansyah, Muhammad; Felasari, Sushardjanti
2018-03-01
Currently the concept of smart city comes not only at the level of discussion, but some cities have stepped in the stage of implementation. Many of promised benefits will be met for the needs of urban residents if the city applies this concept. Conversely, many professionals and scholars are still in doubt about readiness of a city in the application of this concept. Dimension of friendliness of the real city certainly will have some limitations in a smart city that relies more on interactions with information and communication technology (ICT). This new paradigm becomes background of this paper in viewing the friendliness dimension of a smart city based on city residents’ perceptions. This paper uses case of 2 cities that have different level of readiness in the application of smart city. They are Yogyakarta City and Magelang City, both are located in Central Java. The method applied in this paper is quantitative method based on perceptual answer of respondents structured in a Likert Scale. Importance Performance Analysis (IPA) is then used to look at the attributes of smart city’s dimension which will show the relationship of the level of city friendliness and the level of city readiness in an application of smart city. The result briefly shows that the level of city sensitivity in the application of smart city is very influential in viewing the friendliness of the city. The city that is better equipped to meet the needs of its population according to the dimensions of the smart city based on its existing characteristics has higher friendliness. Time period of applying a smart city concept as the City of Yogyakarta has done longer before Magelang City, is not a guarantee that the city then has a better level of friendliness. The urban citizens have appropriate affective aspect to articulate between what they need and what the city has provided.
Hardie, Russell C; Barnard, Kenneth J; Ordonez, Raul
2011-12-19
Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function when diffraction effects are modeled. Based on this important result, we present a new fast adaptive Wiener filter (AWF) SR algorithm for non-translational motion and study its performance with affine motion. The fast AWF SR method employs a new smart observation window that allows us to precompute all the needed filter weights for any type of motion without sacrificing much of the full performance of the AWF. We evaluate the proposed algorithm using simulated data and real infrared airborne imagery that contains a thermal resolution target allowing for objective resolution analysis.
Ion conduction in crystalline superionic solids and its applications
NASA Astrophysics Data System (ADS)
Chandra, Angesh
2014-06-01
Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.
Smart material platforms for miniaturized devices: implications in disease models and diagnostics.
Verma, Ritika; Adhikary, Rishi Rajat; Banerjee, Rinti
2016-05-24
Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.
Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K
2015-06-01
We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, p<0.001, n=7). The smart device application also provided 5 megapixel photography capabilities, and acute burn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments
Viñuales, Ana; Rodriguez, Javier; Tena-Zaera, Ramón
2018-01-01
Electrochromic devices (ECDs) have aroused great interest because of their potential applicability in displays and smart systems, including windows, rearview mirrors, and helmet visors. In the last decades, different device structures and materials have been proposed to meet the requirements of commercial applications to boost market entry. To this end, employing simple device architectures and achieving a competitive electrolyte are crucial to accomplish easily implementable, high-performance ECDs. The present review outlines devices comprising gel electrolytes as a single electroactive layer (“all-in-one”) ECD architecture, highlighting some advantages and opportunities they offer over other electrochromic systems. In this context, gel electrolytes not only overcome the drawbacks of liquid and solid electrolytes, such as liquid’s low chemical stability and risk of leaking and soil’s slow switching and lack of transparency, but also exhibit further strengths. These include easier processability, suitability for flexible substrates, and improved stabilization of the chemical species involved in redox processes, leading to better cyclability and opening wide possibilities to extend the electrochromic color palette, as discussed herein. Finally, conclusions and outlook are provided. PMID:29534466
NASA Astrophysics Data System (ADS)
Zhou, Baoyu; Feng, Wei; Gao, Guohua; Wu, Guangming; Chen, Yue; Li, Wen
2017-11-01
Porous WO3 nanospheres film was successfully synthesized by employing a low-cost and facile template-assisted sol-gel method. The effects of template agent (Pluronic F127) on structure, morphology and specific surface area were systematically studied by Fourier transform infrared (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption. It was found that F127 played a significant role in governing the morphology of WO3 sol clusters, and the optimal post-processing for ‘naked’ WO3 nanospheres film is acetone extraction and subsequent annealing treatment at 350 °C. As anticipated, the relative fast coloring/bleaching rates of WO3 nanospheres film are believed to be the results of porous microstructure and nanocrystalline, where provides much surface active position (166 m2 g-1) and shortens the proton diffusion distance. We believe that this unique approach to synthesize nanospheres structure may has beneficial effects on applications which also are based on insertion/extraction and diffusion abilities, such as supercapacitor, batteries and gas sensors.
Optical properties of ITO nanocoatings for photovoltaic and energy building applications
NASA Astrophysics Data System (ADS)
Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.
2014-10-01
Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Meiran, Nachshon; Hsieh, Shulan; Chang, Chi-Chih
2011-09-01
A major challenge for task switching is maintaining a balance between high task readiness and effectively ignoring irrelevant task rules. This calls for finely tuned inhibition that targets only the source of interference without adversely influencing other task-related representations. The authors show that irrelevant task rules generating response conflict are inhibited, causing their inefficient execution on the next trial (indicating the presence of competitor rule suppression[CRS];Meiran, Hsieh, & Dimov, Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 992-1002, 2010). To determine whether CRS influences task rules, rather than target stimuli or responses, the authors focused on the processing of the task cue before the target stimulus was presented and before the response could be chosen. As was predicted, CRS was found in the event-related potentials in two time windows during task cue processing. It was also found in three time windows after target presentation. Source localization analyses suggest the involvement of the right dorsal prefrontal cortex in all five time windows.
Flexible thermochromic window based on hybridized VO2/graphene.
Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok
2013-07-23
Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.
Cultural Heritage in Smart City Environments
NASA Astrophysics Data System (ADS)
Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E.
2017-08-01
This paper investigates how the historical and cultural heritage of cities is and can be underpinned by means of smart city tools, solutions and applications. Smart cities stand for a conceptual technology-and-innovation driven urban development model. By becoming `smart', cities seek to achieve prosperity, effectiveness and competitiveness on multiple socio-economic levels. Although cultural heritage is one of the many issues addressed by existing smart city strategies, and despite the documented bilateral benefits, our research about the positioning of urban cultural heritage within three smart city strategies (Barcelona, Amsterdam, and London) reveals fragmented approaches. Our findings suggest that the objective of cultural heritage promotion is not substantially addressed in the investigated smart city strategies. Nevertheless, we observe that cultural heritage management can be incorporated in several different strategic areas of the smart city, reflecting different lines of thinking and serving an array of goals, depending on the case. We conclude that although potential applications and approaches abound, cultural heritage currently stands for a mostly unexploited asset, presenting multiple integration opportunities within smart city contexts. We prompt for further research into bridging the two disciplines and exploiting a variety of use cases with the purpose of enriching the current knowledge base at the intersection of cultural heritage and smart cities.
Smart Nacre-inspired Nanocomposites.
Peng, Jingsong; Cheng, Qunfeng
2018-03-15
Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... Fund Phase I Auction (Auction 902); Short-Form Application Filing Window Rescheduled To Open on... rescheduling of the filing window for short-form applications and release an updated list of eligible areas for... Application Filing Window Rescheduled To Open on September 30, 2013 1. The Bureaus announce that the filing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuruganti, Phani Teja
The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response managementmore » system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.« less
The application of autostereoscopic display in smart home system based on mobile devices
NASA Astrophysics Data System (ADS)
Zhang, Yongjun; Ling, Zhi
2015-03-01
Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.
Diagnostic Inaccuracy of Smart Phone Applications for Melanoma Detection
Wolf, Joel; Moreau, Jacqui; Akilov, Oleg; Patton, Timothy; English, Joseph C; Ho, Jon; Ferris, Laura Korb
2013-01-01
Objective To measure the performance of smart phone applications which evaluate photographs of skin lesions and provide the user feedback as to their likelihood of malignancy. Design Case-control diagnostic accuracy study Setting Academic dermatology department Participants Digital clinical images of pigmented cutaneous lesions (60 melanoma cases and 128 benign lesion controls), all with histologic diagnosis rendered by a board-certified dermatopathologist, obtained prior to biopsy in patients undergoing lesion removal as part of routine care. Main Outcome Measures Sensitivity, specificity, and positive and negative predictive values of four smart phone applications designed to aid non-clinician users in determining if their skin lesion is benign or malignant. Results Sensitivity of the four tested applications ranged from 6.8% to 98.1%. Specificity ranged from 30.4% to 93.7%. Positive predictive value ranged from 33.3% to 42.1%, and negative predictive value ranged from 65.4% to 97.0%. The highest sensitivity for melanoma diagnosis was observed for an application that sends the image directly to a board-certified dermatologist for analysis and the lowest sensitivity was observed for applications that use automated algorithms to analyze images. Conclusions The performance of smart phone applications in assessing melanoma risk is highly variable, and 3 out of 4 smart phone applications incorrectly classified 30% or more of melanomas as unconcerning. Reliance on these applications, which are not subject to regulatory oversight, in lieu of medical consultation, has the potential to delay the diagnosis of melanoma and to harm users. PMID:23325302
Carbon Nanofiber Nanoelectrodes for Biosensing Applications
NASA Technical Reports Server (NTRS)
Koehne, Jessica Erin
2014-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
Smart sensors II; Proceedings of the Seminar, San Diego, CA, July 31, August 1, 1980
NASA Astrophysics Data System (ADS)
Barbe, D. F.
1980-01-01
Topics discussed include technology for smart sensors, smart sensors for tracking and surveillance, and techniques and algorithms for smart sensors. Papers are presented on the application of very large scale integrated circuits to smart sensors, imaging charge-coupled devices for deep-space surveillance, ultra-precise star tracking using charge coupled devices, and automatic target identification of blurred images with super-resolution features. Attention is also given to smart sensors for terminal homing, algorithms for estimating image position, and the computational efficiency of multiple image registration algorithms.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiudi; Zhang, Hua; Chai, Guanqi
2014-03-01
Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4% at 2000 nm, which means that it is a potential candidate as smart windows.« less
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk
2004-01-01
After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.
A Review of Rock Bolt Monitoring Using Smart Sensors.
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-04-05
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.
A Review of Rock Bolt Monitoring Using Smart Sensors
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-01-01
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167
Location Based Application Availability
NASA Astrophysics Data System (ADS)
Naeem Akram, Raja; Markantonakis, Konstantinos; Mayes, Keith
Smart cards are being integrated into a diverse range of industries: ranging from banking, telecom, transport, home/office access control to health and E-passport. Traditionally, cardholders are required to carry a smart card for each application. However, recent developments in the Near Field Communication (NFC) have renewed the interest in multiple applications for different services on a single device. This paper builds onto the NFC initiative and avoids the smart card ownership issues that hinder the adoption of such devices. The proposal integrates the Global Positioning System with the NFC in mobile phones to provide a ubiquitously and flexible service access model.
NASA Astrophysics Data System (ADS)
Song, N. N.; Wu, F.
2016-04-01
An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gatingmore » time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.« less
a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones
NASA Astrophysics Data System (ADS)
Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali
2014-10-01
Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
75 FR 50986 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... remaining available Fiscal Year 2009 program funds. This Notice opens an application window for certain... opening a new application window from August 18, 2010 through September 17, 2010 to accept applications... opening a new application window to accept additional applications for the remaining available Fiscal Year...
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
Comprehensive model for predicting perceptual image quality of smart mobile devices.
Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng
2015-01-01
An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.
An Introduction to X Window Application Development
1992-03-23
Acquisition and Policy Evaluation program using Cognitive Feed- back ( ESKAPE /CF) from the SunView windowing system to X Window. The new application...the generic X Window System. This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation program using Cognitive Feedback ( ESKAPE ...15 IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE /CF ........................ 16 A. FUNCTIONAL COMPARISON TO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... Qualifications Window (``TQ Window''). During the TQ Window, any Tribe or Tribal entity that could qualify to add... filed Form 301 application to be considered at this stage, then during the TQ Window the original Tribal... acceptable application is filed during the TQ Window, whether by the original Tribal allotment proponent...
47 CFR 73.870 - Processing of LPFM broadcast station applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Notice a window filing period for applications for new LPFM stations and major modifications in the... authorized LPFM stations will be accepted only during the appropriate window. Applications submitted prior to the window opening date identified in the Public Notice will be returned as premature. Applications...
Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-01-01
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927
Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin
2017-07-17
Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
Gamification in the context of smart cities
NASA Astrophysics Data System (ADS)
Zica, M. R.; Ionica, A. C.; Leba, M.
2018-01-01
The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.
SPIE Smart Structures Product Implementation Award: a review of the first ten years
NASA Astrophysics Data System (ADS)
Anderson, Eric H.; Sater, Janet M.
2007-04-01
The research field of smart materials and structures has been a distinct entity for two decades. Over the past ten years, the SPIE Industrial and Commercial Applications Conference has presented a Smart Structures Product Implementation Award at its annual symposium. This paper revisits the nine winning entries to date (1998-2007) and updates their status. The paper begins with a brief description of the original and current intent of the award and follows with a short overview of the evolution of smart structures, from research to products. The winning teams and their respective products are then described. The current status of the products is discussed based on publicly available information and input from the respective companies. Note however that it is not the purpose of the paper to rank the product winners in terms of success or sales. The paper concludes with an assessment of the larger trends in productization of smart structures technologies. The application "form" for the award as well as the evaluation criteria and suggestions for improving award application packages can be found in the appendix.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
NASA Astrophysics Data System (ADS)
Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T.; Huang, Jewel; Yang, Wenrong
2013-08-01
Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes.
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Can we make a carpet smart enough to detect falls?
Muheidat, Fadi; Tyrer, Harry W
2016-08-01
In this paper, we have enhanced smart carpet, which is a floor based personnel detector system, to detect falls using a faster but low cost processor. Our hardware front end reads 128 sensors, with sensors output a voltage due to a person walking or falling on the carpet. The processor is Jetson TK1, which provides more computing power than before. We generated a dataset with volunteers who walked and fell to test our algorithms. Data obtained allowed examining data frames (a frame is a single scan of the carpet sensors) read from the data acquisition system. We used different algorithms and techniques, and varied the windows size of number of frames (WS ≥ 1) and threshold (TH) to build our data set, which later used machine learning to help decide a fall or no fall. We then used the dataset obtained from applying a set of fall detection algorithms and the video recorded for the fall pattern experiments to train a set of classifiers using multiple test options using the Weka framework. We measured the sensitivity and specificity of the system and other metrics for intelligent detection of falls. Results showed that Computational Intelligence techniques detect falls with 96.2% accuracy and 81% sensitivity and 97.8% specificity. In addition to fall detection, we developed a database system and web applications to retain these data for years. We can display this data in realtime and for all activities in the carpet for extensive data analysis any time in the future.
Creating New Mathematical Applications Utilizing SMART Table
ERIC Educational Resources Information Center
Seals, Cheryl D.; Swanier, Cheryl S.; Nyagwencha, Justus Nyamweya; Cagle, Ashley L.; Houser, Navorro
2011-01-01
SMART Technologies is leading the way for interactive learning, through their many different tools. The SMART Table is a multi-user, multi-touch interactive interface that not only teaches children different concepts in fun ways (Steurer P., 2003), but it also inspires cooperative competition. In Alabama, the state curriculum for kindergarten…
Smart Sensor Network for Aircraft Corrosion Monitoring
2010-02-01
Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM) Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
...). Pre-test 245 1 20/60 82 (Appendix A). Post-test 245 1 40/60 163 (Appendix B). Totals 308 Request for... of the study is to design a smart phone application, Solar Cell, which uses smart phone technology to...
Incorporating a Human-Computer Interaction Course into Software Development Curriculums
ERIC Educational Resources Information Center
Janicki, Thomas N.; Cummings, Jeffrey; Healy, R. Joseph
2015-01-01
Individuals have increasing options on retrieving information related to hardware and software. Specific hardware devices include desktops, tablets and smart devices. Also, the number of software applications has significantly increased the user's capability to access data. Software applications include the traditional web site, smart device…
Semantic Framework of Internet of Things for Smart Cities: Case Studies.
Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan
2016-09-14
In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications.
Semantic Framework of Internet of Things for Smart Cities: Case Studies
Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan
2016-01-01
In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications. PMID:27649185
Graphene-based smart materials
NASA Astrophysics Data System (ADS)
Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan
2017-09-01
The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.
Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid
2017-07-19
Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
Smart Sustainable Islands VS Smart Sustainable Cities
NASA Astrophysics Data System (ADS)
Pantazis, D. N.; Moussas, V. C.; Murgante, B.; Daverona, A. C.; Stratakis, P.; Vlissidis, N.; Kavadias, A.; Economou, D.; Santimpantakis, K.; Karathanasis, B.; Kyriakopoulou, V.; Gadolou, E.
2017-09-01
This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.
Application of smart materials for improved flight performance of military aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudva, J.; Appa, K.; Martin, C.
1995-12-31
This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less
Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas
2014-01-01
Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.
Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas
2015-01-01
Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753
An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2016-03-07
The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Smart Sensors: Why and when the origin was and why and where the future will be
NASA Astrophysics Data System (ADS)
Corsi, C.
2013-12-01
Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.
Development of smart textiles with embedded fiber optic chemical sensors
NASA Astrophysics Data System (ADS)
Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.
2004-03-01
Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.
Clinical and surgical applications of smart glasses.
Mitrasinovic, Stefan; Camacho, Elvis; Trivedi, Nirali; Logan, Julia; Campbell, Colson; Zilinyi, Robert; Lieber, Bryan; Bruce, Eliza; Taylor, Blake; Martineau, David; Dumont, Emmanuel L P; Appelboom, Geoff; Connolly, E Sander
2015-01-01
With the increased efforts to adopt health information technology in the healthcare field, many innovative devices have emerged to improve patient care, increase efficiency, and decrease healthcare costs. A recent addition is smart glasses: web-connected glasses that can present data onto the lenses and record images or videos through a front-facing camera. In this article, we review the most salient uses of smart glasses in healthcare, while also denoting their limitations including practical capabilities and patient confidentiality. Using keywords including, but not limited to, ``smart glasses'', ``healthcare'', ``evaluation'', ``privacy'', and ``development'', we conducted a search on Ovid-MEDLINE, PubMed, and Google Scholar. A total of 71 studies were included in this review. Smart glasses have been adopted into the healthcare setting with several useful applications including, hands-free photo and video documentation, telemedicine, Electronic Health Record retrieval and input, rapid diagnostic test analysis, education, and live broadcasting. In order for the device to gain acceptance by medical professionals, smart glasses will need to be tailored to fit the needs of medical and surgical sub-specialties. Future studies will need to qualitatively assess the benefits of smart glasses as an adjunct to the current health information technology infrastructure.
Demiris, G; Thompson, H J
2012-01-01
This paper highlights the potential of smart home applications to not only assess mobility determinants for older adults in the home environment but also provide the opportunity for tailored interventions. We present a theoretical framework for assessing mobility parameters and utilizing this information to enable behavior change based on the Health Belief Model. We discuss examples that showcase the potential of smart home systems to not only measure but also improve mobility for community dwelling older adults. Mobility is a complex construct that cannot be addressed with a single monitoring approach or a single intervention. Instead, tailored interventions that address specific needs and behaviors of individuals and take into consideration preferences of older adults and potentially their social network are needed to effectively enforce positive behavior change. Smart home systems have the ability to capture details of one's daily living that could otherwise not be easily obtained; however, such data repositories alone are not sufficient to improve clinical outcomes if appropriate mechanisms for data mining and analysis, as well as tailored response systems are not in place. Unleashing the potential of smart home applications to measure and improve mobility has the potential of transforming elder care and providing potentially cost-effective tools to support independence for older adults. A technologically driven smart home application can maximize its clinical relevance by pursuing interactive features that can lead to behavior change.
Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.
NASA Astrophysics Data System (ADS)
Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.
2016-03-01
Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.
Use of electrochromic materials in adaptive optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.
Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction ofmore » a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.« less
Controlling the volatility of the written optical state in electrochromic DNA liquid crystals
NASA Astrophysics Data System (ADS)
Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas
2016-05-01
Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-01-01
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq−1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved. PMID:27991517
Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.
Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili
2015-12-09
Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-01-01
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-12-19
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO 2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq -1 ), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved.
NASA Smart Surgical Probe Project
NASA Technical Reports Server (NTRS)
Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)
2002-01-01
Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors
Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian
2013-01-01
Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... impact of eliminating the correction window from the electronic grant application submission process on... process a temporary error correction window to ensure a smooth and successful transition for applicants. This window provides applicants a period of time beyond the grant application due date to correct any...
Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications
NASA Astrophysics Data System (ADS)
Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.
2017-10-01
In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.
New twist on artificial muscles.
Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H
2016-10-18
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.
NASA Astrophysics Data System (ADS)
Zhang, Wanshu; Zhang, Lanying; Liang, Xiao; Le Zhou; Xiao, Jiumei; Yu, Li; Li, Fasheng; Cao, Hui; Li, Kexuan; Yang, Zhou; Yang, Huai
2017-02-01
High-performance and cost-effective laser protection system is of crucial importance for the rapid advance of lasers in military and civilian fields leading to severe damages of human eyes and sensitive optical devices. However, it is crucially hindered by the angle-dependent protective effect and the complex preparation process. Here we demonstrate that angle-independence, good processibility, wavelength tunability, high optical density and good visibility can be effectuated simultaneously, by embedding dichroic anthraquinone dyes in a cholesteric liquid crystal matrix. More significantly, unconventional two-dimensional parabolic protection behavior is reported for the first time that in stark contrast to the existing protection systems, the overall parabolic protection behavior enables protective effect to increase with incident angles, hence providing omnibearing high-performance protection. The protective effect is controllable by dye concentration, LC cell thickness and CLC reflection efficiency, and the system can be made flexible enabling applications in flexible and even wearable protection devices. This research creates a promising avenue for the high-performance and cost-effective laser protection, and may foster the development of optical applications such as solar concentrators, car explosion-proof membrane, smart windows and polarizers.
Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application
NASA Astrophysics Data System (ADS)
Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul
2017-08-01
We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.
New twist on artificial muscles
Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.
2016-01-01
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2943-000] Smart One Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Smart One Energy, LLC's application for market-based rate authority, with an accompanying rate...
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
NASA Astrophysics Data System (ADS)
Amasawa, Eri
With the growing global energy demands, electrochromic window (ECW) technology has attracted great attention for its ability to reversibly change the transmittance of incoming light through applied moderate potential. While ECW has a great potential to conserve energy from lighting and air conditioning in buildings, ECW still consumes energy; ECW should be self-powered for further energy conservation. In this study, a new design of energy-harvesting electrochromic window (EH-ECW) based on fusion of two technologies, organic electrochromic window and dye-sensitized solar cell (DSSC) is presented. Unlike other self-powered smart windows such as photoelectrochromic device that only contains two states (i.e. closed circuit colored state and open circuit bleaching state), EH-ECW allows active tuning of transmittance through varying applied potential and function as a photovoltaic cell based on DSSC. The resulting device demonstrates fast switching rate of 1 second in both bleaching and coloring process through the use of electrochromic polymer as a counter electrode layer. In order to increase the transmittance of the device, cobalt redox couple and light colored yet efficient organic dye are employed. The organic dye utilized contains polymeric structure, which contributes to high cyclic stability. The device exhibits power conversion efficiency (PCE) of 4.5 % under AM 1.5 irradiation (100 mW/cm2), change in transmittance (Delta T = Tmax - Tmin) of 34 % upon applied potential, and shows only 3 % degradation in PCE after 5000 cycles.
VOLTTRON™: An Agent Platform for Integrating Electric Vehicles and Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.
2013-12-06
The VOLTTRON™ platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehiclemore » charging with home energy usage« less
Rethinking GIS Towards The Vision Of Smart Cities Through CityGML
NASA Astrophysics Data System (ADS)
Guney, C.
2016-10-01
Smart cities present a substantial growth opportunity in the coming years. The role of GIS in the smart city ecosystem is to integrate different data acquired by sensors in real time and provide better decisions, more efficiency and improved collaboration. Semantically enriched vision of GIS will help evolve smart cities into tomorrow's much smarter cities since geospatial/location data and applications may be recognized as a key ingredient of smart city vision. However, it is need for the Geospatial Information communities to debate on "Is 3D Web and mobile GIS technology ready for smart cities?" This research places an emphasis on the challenges of virtual 3D city models on the road to smarter cities.
Design of an Open Smart Energy Gateway for Smart Meter Data Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Janie; McParland, Chuck; Piette, Mary Ann
With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less
Demiris, George
2009-01-01
This study aims to explore the concepts of independence and shared decision making in the context of smart home technologies for older adults. We conducted a Delphi study with three rounds involving smart home designers, and researchers as well as community dwelling older adults. While there were differences in the way different stakeholders define these concepts, the study findings provide clear implications for the design, implementation and evaluation of smart home applications.
Smart homes for people with neurological disability: state of the art.
Gentry, Tony
2009-01-01
Smart home technology can include environmental adaptations that allow remote control of home appliances, electronic communication, safety monitoring and automated task cueing, any of which may prove useful for people with neurological disability. This article outlines currently available smart home technologies, examines the burgeoning research in this area, discusses clinical and consumer resources and reviews ethical, funding and professional training considerations for smart home applications. I conclude that more outcomes-based research and collaboration among stakeholders is essential in order to establish guidance for designing, selecting and implementing individualized smart home solutions for those with neurological disability.
NASA Astrophysics Data System (ADS)
Camirand, Hubert
Nanotechnology has modified the landscape of energy generation, energy storage and energy saving devices. Architectural fenestration can extensively benefit from green nanotechnologies. Amongst them, active fenestration or "smart" windows are able to modify their coloration state upon the application of a small electrical voltage, when based on electrochromic materials. In fact, the amount of visible and near-infrared light that can penetrate through the window can be altered. Therefore, their implementation can allow for a significant reduction in energy consumption in buildings. Furthermore, the capability of optimizing indoor comfort is user-controlled, thus an additional degree of freedom is given by electrochromic-based technology. It is worth mentioning that such devices can be largely advantageous in countries with variable seasons, such as here in Canada. As a matter of fact, the large temperature difference between the hot and cold season influences the requirement of impeding or enabling visible and thermal radiation to pass through. This master's thesis is entirely devoted to tungsten trioxide (WO 3), which is the most widely studied electrochromic material. In the present case, WO3 thin films are synthesized by radiofrequency magnetron sputtering. By varying the deposition pressure and power, the porosity content/packing density of the films is modified. This work's main topic is the characterization of electrochromic samples by in situ spectroscopic ellipsometry simultaneously with the application of an electrical voltage in an aqueous electrolytic medium made of sulfuric acid (H2SO 4). The methodology developed here allows for an in-depth study of electro-active materials. To corroborate this, optical properties of WO3 are obtained for a wide range of coloration levels, and these are subsequently used to model the resulting coloration of electrochromic multilayer systems. However, the interface between the dense and porous films affects the coloration/bleaching dynamics. In this regard, interesting research avenues related to electrochromic interference filters are finally proposed.
Research on water management system based on Android
NASA Astrophysics Data System (ADS)
Li, Dongjiang; Hu, Songlin
2018-04-01
With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S
2012-01-01
Objective The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. Materials and methods The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers—health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it—marshal data sources and present data simply, reliably, and consistently to apps. Results The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Conclusion Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges. PMID:22427539
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... Request: Solar Cell: A Mobile UV Manager for Smart Phones (NCI) SUMMARY: In compliance with the... Management and Budget (OMB) for review and approval. Proposed Collection: Title: Solar Cell: A Mobile UV... Collection: The overall goal of the study is to design a smart phone application, Solar Cell, which uses...
An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices
Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo
2016-01-01
The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment. PMID:26959035
Survey on the use of smart and adaptive engineering systems in medicine.
Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G
2002-11-01
In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Carrico, James D.; Tyler, Tom; Leang, Kam K.
2017-10-01
Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.
Sensor Fusion and Smart Sensor in Sports and Biomedical Applications.
Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz
2016-09-23
The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare
NASA Astrophysics Data System (ADS)
de Silva, Liyanage C.; Petra, M. Iskandar; Punchihewa, G. Amal
In this paper we present our research results related to smart monitoring, control and communication with the main objective of energy efficiency and eldercare in mind. One of the main objectives of this research work is to use multitude of different sensors to monitor activities in a smart home and use the results to control the home environment to meet the objectives of energy efficiency and eldercare. Here we present the application of the smart monitoring to a prototype system.
Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.
Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo
2018-09-01
Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.
Cost benefit analysis for smart grid projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; He, Gang; Mauzey, J
The U.S. is unusual in that a definition of the term “smart grid” was written into legislation, appearing in the Energy Independence and Security Act (2007). When the recession called for stimulus spending and the American Recovery and Reinvestment Act (ARRA, 2009) was passed, a framework already existed for identification of smart grid projects. About $4.5B of the U.S. Department of Energy’s (U.S. DOE’s) $37B allocation from ARRA was directed to smart grid projects of two types, investment grants and demonstrations. Matching funds from other sources more than doubled the total value of ARRA-funded smart grid projects. The Smart Gridmore » Investment Grant Program (SGIG) consumed all but $620M of the ARRA funds, which was available for the 32 projects in the Smart Grid Demonstration Program (SGDP, or demonstrations). Given the economic potential of these projects and the substantial investments required, there was keen interest in estimating the benefits of the projects (i.e., quantifying and monetizing the performance of smart grid technologies). Common method development and application, data collection, and analysis to calculate and publicize the benefits were central objectives of the program. For this purpose standard methods and a software tool, the Smart Grid Computational Tool (SGCT), were developed by U.S. DOE and a spreadsheet model was made freely available to grantees and other analysts. The methodology was intended to define smart grid technologies or assets, the mechanisms by which they generate functions, their impacts and, ultimately, their benefits. The SGCT and its application to the Demonstration Projects are described, and actual projects in Southern California and in China are selected to test and illustrate the tool. The usefulness of the methodology and tool for international analyses is then assessed.« less
Comparative A/B testing a mobile data acquisition app for hydrogeochemistry
NASA Astrophysics Data System (ADS)
Klump, Jens; Golodoniuc, Pavel; Reid, Nathan; Gray, David; Ross, Shawn
2015-04-01
In the context of a larger study on the Capricorn Orogen of Western Australia, the CSIRO Mineral Discovery Program is conducting a regional study of the hydrogeochemistry on water from agricultural and other bores. Over time, the sampling process was standardised and a form for capturing metadata and data from initial measurements was developed. In 2014 an extensive technology review was conducted with an aim to automate field data acquisition process. A prototype hydrogeochemistry data capture form was implemented as a mobile application for Windows Mobile devices. This version of the software was a standalone application with an interface to export data as CSV files. A second candidate version of the hydrogeochemistry data capture form was implemented as an Android mobile application in the FAIMS framework. FAIMS is a framework for mobile field data capture, originally developed by at the University of New South Wales for archaeological field data collection. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. FAIMS also allows networked collaboration within a field team, using the mobile applications as asynchronous rich clients. The network infrastructure can be installed in the field ("FAIMS in a Box") to supply data synchronisation, backup and transfer. This aspect will be tested in the next field season. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. Having two data capture applications available allowed us to conduct an A/B test, comparing two different implementations for the same task. Both applications were trialled in the field by different field crews and user feedback will be used to improve the usability of the app for the next field season. A key learning was that the ergonomics of the app is at paramount importance to gain the user acceptance. This extends from general fit with the standard procedures used in the field during data acquisition to self-descriptive and intuitive user interface features well aligned with the workflows and sequence of actions performed by a user that ultimately contributes to the implementation of a Collect-As-You-Go approach. In the Australian outback, issues such as absence of network connectivity, heat and sun glare may challenge the utility of tablet based applications in the field. Due to limitations of tablet use in the field we also consider the use of smart pens for data capture. A smart pen application based on Anoto forms and software by Formidable will be tested in the next field season.
'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
Fang, Zhi; Wan, Lin-Yan; Chu, Liang-Yin; Zhang, Yan-Qiong; Wu, Jiang-Feng
2015-01-01
In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Detection of Buried Objects by Means of a SAP Technique: Comparing MUSIC- and SVR-Based Approaches
NASA Astrophysics Data System (ADS)
Meschino, S.; Pajewski, L.; Pastorino, M.; Randazzo, A.; Schettini, G.
2012-04-01
This work is focused on the application of a Sub-Array Processing (SAP) technique to the detection of metallic cylindrical objects embedded in a dielectric half-space. The identification of buried cables, pipes, conduits, and other cylindrical utilities, is an important problem that has been extensively studied in the last years. Most commonly used approaches are based on the use of electromagnetic sensing: a set of antennas illuminates the ground and the collected echo is analyzed in order to extract information about the scenario and to localize the sought objects [1]. In a SAP approach, algorithms for the estimation of Directions of Arrival (DOAs) are employed [2]: they assume that the sources (in this paper, currents induced on buried targets) are in the far-field region of the receiving array, so that the received wavefront can be considered as planar, and the main angular direction of the field can be estimated. However, in electromagnetic sensing of buried objects, the scatterers are usually quite near to the antennas. Nevertheless, by dividing the whole receiving array in a suitable number of sub-arrays, and by finding a dominant DOA for each one, it is possible to localize objects that are in the far-field of the sub-array, although being in the near-field of the array. The DOAs found by the sub-arrays can be triangulated, obtaining a set of crossings with intersections condensed around object locations. In this work, the performances of two different DOA algorithms are compared. In particular, a MUltiple SIgnal Classification (MUSIC)-type method [3] and Support Vector Regression (SVR) based approach [4] are employed. The results of a Cylindrical-Wave Approach forward solver are used as input data of the detection procedure [5]. To process the crossing pattern, the region of interest is divided in small windows, and a Poisson model is adopted for the statistical distribution of intersections in the windows. Hypothesis testing procedures are used (imposing a suitable threshold from a desired false-alarm rate), to ascribe each window to the ground or to the sought objects. Numerical results are presented, for a test scenario with a circular-section cylinder in a dielectric half-space. Different values of the ground permittivity, target size, and its position with respect to the receiving array, are considered. Preliminary results on the application of MUSIC and SVR to multiple-object localization are reported. [1] H. Jol, Ground Penetrating Radar: Theory and Applications, Elsevier, Amsterdam, NL, 2009. [2] Gross F.B., Smart Antennas for Wireless Communications, McGraw-Hill, New York 2005. [3] S. Meschino, L. Pajewski, G. Schettini, "Use of a Sub-Array Statistical Approach for the Detection of a Buried Object", Near Surface Geophysics, vol. 8(5), pp. 365-375, 2010. [4] M. Pastorino, A. Randazzo, "A Smart Antenna System for Direction of Arrival Estimation based on a Support Vector Regression," IEEE Trans. Antennas Propagat., vol. 53(7), pp. 2161-2168, 2005. [5] M. Di Vico, F. Frezza, L. Pajewski, G. Schettini, "Scattering by a Finite Set of Perfectly Conducting Cylinders Buried in a Dielectric Half-Space: a Spectral-Domain Solution," IEEE Trans. Antennas Propagat., vol. 53(2), pp. 719-727, 2005.
Open data models for smart health interconnected applications: the example of openEHR.
Demski, Hans; Garde, Sebastian; Hildebrand, Claudia
2016-10-22
Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.
Special Designed Activities for Learning English Language through the Application of WhatsApp!
ERIC Educational Resources Information Center
Zayed, Niveen Mohammad
2016-01-01
Students nowadays have strong passion towards the smart mobile phones with all their smart applications. The researcher believes that English language teachers can use the mobile phones, from each now and then, to increase the students' motivation. In this paper, the researcher designed a number of special activities that can be delivered to the…
2017 SmartWay Logistics Tool Demonstration
This EPA presentation provides information on the SmartWay Logistics Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.
2017 SmartWay Shipper Tool Demonstration
This EPA presentation provides information on the SmartWay Logistics Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.
From Secure Memories to Smart Card Security
NASA Astrophysics Data System (ADS)
Handschuh, Helena; Trichina, Elena
Non-volatile memory is essential in most embedded security applications. It will store the key and other sensitive materials for cryptographic and security applications. In this chapter, first an overview is given of current flash memory architectures. Next the standard security features which form the basis of so-called secure memories are described in more detail. Smart cards are a typical embedded application that is very vulnerable to attacks and that at the same time has a high need for secure non-volatile memory. In the next part of this chapter, the secure memories of so-called flash-based high-density smart cards are described. It is followed by a detailed analysis of what the new security challenges for such objects are.
Smart Roadside System for Driver Assistance and Safety Warnings: Framework and Applications
Jang, Jeong Ah; Kim, Hyun Suk; Cho, Han Byeog
2011-01-01
The use of newly emerging sensor technologies in traditional roadway systems can provide real-time traffic services to drivers through Telematics and Intelligent Transport Systems (ITSs). This paper introduces a smart roadside system that utilizes various sensors for driver assistance and traffic safety warnings. This paper shows two road application models for a smart roadside system and sensors: a red-light violation warning system for signalized intersections, and a speed advisory system for highways. Evaluation results for the two services are then shown using a micro-simulation method. In the given real-time applications for drivers, the framework and certain algorithms produce a very efficient solution with respect to the roadway type features and sensor type use. PMID:22164025
Scale up of large ALON® and spinel windows
NASA Astrophysics Data System (ADS)
Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri
2017-05-01
Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.
2003-08-18
Language Study 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Professor Mads Dam, Pablo Giambiagi 5e...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 SPC 01-4025 Mobile Language Study Final...smart card applications. Smart cards can be programmed using general-purpose languages ; but because of their limited resources, smart card programs
New Technologies for Smart Grid Operation
NASA Astrophysics Data System (ADS)
Mak, Sioe T.
2015-02-01
This book is a handbook for advanced applications design and integration of new and future technologies into Smart Grids for researchers and engineers in academia and industry, looking to pull together disparate technologies and apply them for greater gains. The book covers Smart Grids as the midpoint in the generation, storage, transmission and distribution process through to database management, communication technologies, intelligent devices and synchronisation.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
The role of smart systems in rendezvous, close proximity operations and docking maneuvers
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.
Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Lessons learned from the development of health applications in a tertiary hospital.
Park, Joong-Yeol; Lee, Guna; Shin, Soo-Yong; Kim, Jeong Hun; Han, Hye-Won; Kwon, Tae-Wan; Kim, Woo Sung; Lee, Jae Ho
2014-03-01
Adoption of smart devices for hospital use has been increasing with the development of health applications (apps) for patient point-of-care and hospital management. To promote the use of health apps, we describe the lessons learned from developing 12 health apps in the largest tertiary hospital in Korea. We reviewed and analyzed 12 routinely used apps in three categories-Smart Clinic, Smart Patient, and Smart Hospital-based on target users and functions. The log data for each app were collected from the date of release up until December 2012. Medical personnel accessed a mobile electronic medical record app classified as Smart Clinic an average of 452 times per day. Smart Hospital apps are actively used to communicate with each other. Patients logged on to a mobile personal health record app categorized as Smart Patient an average of 222 times per day. As the mobile trend, the choice of supporting operating system (OS) is more difficult. By developing these apps, a monitoring system is needed for evaluation. We described the lessons learned regarding OS support, device choice, and developmental strategy. The OS can be chosen according to market share or hospital strategic plan. Smartphones were favored compared with tablets. Alliance with an information technology company can be the best way to develop apps. Health apps designed for smart devices can be used to improve healthcare. However, to develop health apps, hospitals must define their future goals and carefully consider all the aspects.
Smart Mirrors for Photorefractive Control of Light with Tim Bunning, RX - Agile Filters Application
2016-11-08
AFRL-AFOSR-UK-TR-2017-0008 Smart Mirrors for photorefractive control of light with Tim Bunning, RX-- Agile filters application Luciano De Sio...photorefractive control of light with Tim Bunning, RX-- Agile filters application 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0050 5c. PROGRAM...photorefractive, switchable optical filters , liquide crystalline composite materials, Switchable reflective holographic gratings, polymer-dispersed liquid
Spatiotemporal Data Organization and Application Research
NASA Astrophysics Data System (ADS)
Tan, C.; Yan, S.
2017-09-01
Organization and management of spatiotemporal data is a key support technology for intelligence in all fields of the smart city. The construction of a smart city cannot be realized without spatiotemporal data. Oriented to support intelligent applications this paper proposes an organizational model for spatiotemporal data, and details the construction of a spatiotemporal big data calculation, analysis, and service framework for highly efficient management and intelligent application of spatiotemporal data for the entire data life cycle.
2017 SmartWay Multimodal Carrier Tool Demonstration
This EPA presentation provides information on the SmartWay Multimodal Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.
NASA Astrophysics Data System (ADS)
Magdy, Nancy; Ayad, Miriam F.
2015-02-01
Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.
Gesture recognition for smart home applications using portable radar sensors.
Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip
2014-01-01
In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.
Blockchain: A Path to Grid Modernization and Cyber Resiliency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylrea, Michael E.; Gourisetti, Sri Nikhil G.
Blockchain may help solve several complex problems related to integrity and trustworthiness of rapid, distributed, complex energy transactions and data exchanges. In a move towards resilience, blockchain commoditizes trust and enables automated smart contracts to support auditable multiparty transactions based on predefined rules between distributed energy providers and customers. Blockchain based smart contracts also help remove the need to interact with third-parties, facilitating the adoption and monetization of distributed energy transactions and exchanges, both energy flows as well as financial transactions. This may help reduce transactive energy costs and increase the security and sustainability of distributed energy resource (DER) integration,more » helping to remove barriers to a more decentralized and resilient power grid. This paper explores the application of blockchain and smart contracts to improve smart grid cyber resiliency and secure transactive energy applications.« less
Bricker, Jonathan B.; Mull, Kristin; Kientz, Julie A.; Vilardaga, Roger M.; Mercer, Laina D.; Akioka, Katrina; Heffner, Jaimee L.
2014-01-01
Background There is a dual need for (1) innovative theory-based smartphone applications for smoking cessation and (2) controlled trials to evaluate their efficacy. Accordingly, this study tested the feasibility, acceptability, preliminary efficacy, and mechanism of behavioral change of an innovative smartphone-delivered Acceptance and Commitment Therapy (ACT) application for smoking cessation versus an application following US Clinical Practice Guidelines. Method Adult participants were recruited nationally into the double-blind randomized controlled pilot trial (N = 196) that compared smartphone-delivered ACT for smoking cessation application (SmartQuit) with the National Cancer Institute's application for smoking cessation (QuitGuide). Results We recruited 196 participants in two months. SmartQuit participants opened their application an average of 37.2 times, as compared to 15.2 times for QuitGuide participants (p <.0001). The overall quit rates were 13% in SmartQuit vs. 8% in QuitGuide (OR=2.7; 95% CI=0.8-10.3). Consistent with ACT's theory of change, among those scoring low (below the median) on acceptance of cravings at baseline (n = 88), the quit rates were 15% in SmartQuit vs. 8% in QuitGuide (OR=2.9; 95% CI=0.6-20.7). Conclusions ACT is feasible to deliver by smartphone application and shows higher engagement and promising quit rates compared to an application that follows US Clinical Practice Guidelines. As results were limited by the pilot design (e.g., small sample), a full-scale efficacy trial is now needed. PMID:25085225
Smart storage technologies applied to fresh foods: A review.
Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu
2017-06-30
Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.
Addressing Data Veracity in Big Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor
Big data applications such as in smart electric grids, transportation, and remote environment monitoring involve geographically dispersed sensors that periodically send back information to central nodes. In many cases, data from sensors is not available at central nodes at a frequency that is required for real-time modeling and decision-making. This may be due to physical limitations of the transmission networks, or due to consumers limiting frequent transmission of data from sensors located at their premises for security and privacy concerns. Such scenarios lead to partial data problem and raise the issue of data veracity in big data applications. We describemore » a novel solution to the problem of making short term predictions (up to a few hours ahead) in absence of real-time data from sensors in Smart Grid. A key implication of our work is that by using real-time data from only a small subset of influential sensors, we are able to make predictions for all sensors. We thus reduce the communication complexity involved in transmitting sensory data in Smart Grids. We use real-world electricity consumption data from smart meters to empirically demonstrate the usefulness of our method. Our dataset consists of data collected at 15-min intervals from 170 smart meters in the USC Microgrid for 7 years, totaling 41,697,600 data points.« less
Dahmen, Jessamyn; Cook, Diane J; Wang, Xiaobo; Honglei, Wang
2017-08-01
Smart home design has undergone a metamorphosis in recent years. The field has evolved from designing theoretical smart home frameworks and performing scripted tasks in laboratories. Instead, we now find robust smart home technologies that are commonly used by large segments of the population in a variety of settings. Recent smart home applications are focused on activity recognition, health monitoring, and automation. In this paper, we take a look at another important role for smart homes: security. We first explore the numerous ways smart homes can and do provide protection for their residents. Next, we provide a comparative analysis of the alternative tools and research that has been developed for this purpose. We investigate not only existing commercial products that have been introduced but also discuss the numerous research that has been focused on detecting and identifying potential threats. Finally, we close with open challenges and ideas for future research that will keep individuals secure and healthy while in their own homes.
Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Agarwal, Vaibhav; Aman, Saim
2012-05-16
Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic, distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart Power Meters, that is being deployed across the transmission and distribution network of electric grids. These sensors provide utilities with improved situation awareness on near-realtime electricity usage by individual consumers, and the power quality and stability of the transmission network.
Usability evaluation of the SMART application for youth with mTBI.
Dexheimer, Judith W; Kurowski, Brad G; Anders, Shilo H; McClanahan, Nicole; Wade, Shari L; Babcock, Lynn
2017-01-01
There is a dearth of evidence-based treatments available to address the significant morbidity associated with mild traumatic brain injury (mTBI). To address this gap, we designed a novel user-friendly, web-based application. We describe the preliminary evaluation of feasibility and usability of the application to promote recovery following mTBI in youth, the Self-Monitoring Activity-Restriction and Relaxation Treatment (SMART). SMART incorporates real-time recommendations for individualized symptom management and activity restriction along with training in cognitive-behavioral coping strategies. We conducted a usability evaluation to assess and modify the SMART system prior to further study and deployment. Children ages 11-18 years presenting to the emergency department were recruited after symptoms resolved. Usability was assessed using a 60-min think-aloud protocol of teens and parents describing their interaction with the application. Upon completion of the tasks, each participant also completed the system usability scale (SUS). We performed tests with 4 parent/child dyads. The average age of the children was 13 years (standard deviation=1.8). The parents were an average of 41.5 years old (standard deviation=6.2). Research revealed that the participants were enthusiastic about the interactive portions of the tool particularly the video based sessions. Parents were concerned about the speed at which their child might move through the program and the children thought that the system required large amounts of reading. Based on user feedback, researchers modified SMART to include an audio file in every module and improved the system's aesthetic properties. The mean SUS score was 85, with high SUS scores (>68) indicating satisfactory usability. High initial usability and favorable user feedback provide a foundation for further iterative development and testing of the SMART application as a tool for managing recovery from concussion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
75 FR 10455 - Broadband Initiatives Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... Application Window for Notice of Funds Availability (NOFA) and solicitation of applications. SUMMARY: On...). In response to requests by a wide variety of stakeholders, RUS is extending the application window...
Smart Inverter Control and Operation for Distributed Energy Resources
NASA Astrophysics Data System (ADS)
Tazay, Ahmad F.
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge
2012-01-01
One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
2009-12-01
overwhelming ( Gottfredson , 1996). In addition to job performance, higher intelligence improves the odds of success in school, ultimate job level attained...necessary, but not sufficient, to build a smart organization. High organizational intelligence can be realized only when the right people are brought...15. NUMBER OF PAGES 89 14. SUBJECT TERMS Organizational intelligence ; Collective intelligence ; Smart organizations; Culture of
Future War: An Assessment of Aerospace Campaigns in 2010,
1996-01-01
theoretician: "The impending sixth generation of warfare, with its centerpiece of superior data-processing to support precision smart weaponry, will radically...tions concept of " smart push, warrior pull." If JFACC were colocated with the worldwide intelligence manager, unit taskings and the applicable...intelligence information could be distributed concurrently (" smart push"). Intelligence officers sitting alongside the operational tasking officers would
Tool Demo Webinar: 2017 SmartWay Air Carrier Tool Demonstration
This EPA presentation provides information on the SmartWay Air Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.
Smart FRP Composite Sandwich Bridge Decks in Cold Regions
DOT National Transportation Integrated Search
2011-07-01
In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...
Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621
Ubiquitous green computing techniques for high demand applications in Smart environments.
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
A web based tool for storing and visualising data generated within a smart home.
McDonald, H A; Nugent, C D; Moore, G; Finlay, D D; Hallberg, J
2011-01-01
There is a growing need to re-assess the current approaches available to researchers for storing and managing heterogeneous data generated within a smart home environment. In our current work we have developed the homeML Application; a web based tool to support researchers engaged in the area of smart home research as they perform experiments. Within this paper the homeML Application is presented which includes the fundamental components of the homeML Repository and the homeML Toolkit. Results from a usability study conducted by 10 computer science researchers are presented; the initial results of which have been positive.
Seam tracking with adaptive image capture for fine-tuning of a high power laser welding process
NASA Astrophysics Data System (ADS)
Lahdenoja, Olli; Säntti, Tero; Laiho, Mika; Paasio, Ari; Poikonen, Jonne K.
2015-02-01
This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser beam's location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.
Activity Level Assessment Using a Smart Cushion for People with a Sedentary Lifestyle.
Ma, Congcong; Li, Wenfeng; Gravina, Raffaele; Cao, Jingjing; Li, Qimeng; Fortino, Giancarlo
2017-10-03
As a sedentary lifestyle leads to numerous health problems, it is important to keep constant motivation for a more active lifestyle. A large majority of the worldwide population, such as office workers, long journey vehicle drivers and wheelchair users, spends several hours every day in sedentary activities. The postures that sedentary lifestyle users assume during daily activities hide valuable information that can reveal their wellness and general health condition. Aiming at mining such underlying information, we developed a cushion-based system to assess their activity levels and recognize the activity from the information hidden in sitting postures. By placing the smart cushion on the chair, we can monitor users' postures and body swings, using the sensors deployed in the cushion. Specifically, we construct a body posture analysis model to recognize sitting behaviors. In addition, we provided a smart cushion that effectively combine pressure and inertial sensors. Finally, we propose a method to assess the activity levels based on the evaluation of the activity assessment index (AAI) in time sliding windows. Activity level assessment can be used to provide statistical results in a defined period and deliver recommendation exercise to the users. For practical implications and actual significance of results, we selected wheelchair users among the participants to our experiments. Features in terms of standard deviation and approximate entropy were compared to recognize the activities and activity levels. The results showed that, using the novel designed smart cushion and the standard deviation features, we are able to achieve an accuracy of (>89%) for activity recognition and (>98%) for activity level recognition.
Activity Level Assessment Using a Smart Cushion for People with a Sedentary Lifestyle
Li, Wenfeng; Gravina, Raffaele; Cao, Jingjing; Li, Qimeng
2017-01-01
As a sedentary lifestyle leads to numerous health problems, it is important to keep constant motivation for a more active lifestyle. A large majority of the worldwide population, such as office workers, long journey vehicle drivers and wheelchair users, spends several hours every day in sedentary activities. The postures that sedentary lifestyle users assume during daily activities hide valuable information that can reveal their wellness and general health condition. Aiming at mining such underlying information, we developed a cushion-based system to assess their activity levels and recognize the activity from the information hidden in sitting postures. By placing the smart cushion on the chair, we can monitor users’ postures and body swings, using the sensors deployed in the cushion. Specifically, we construct a body posture analysis model to recognize sitting behaviors. In addition, we provided a smart cushion that effectively combine pressure and inertial sensors. Finally, we propose a method to assess the activity levels based on the evaluation of the activity assessment index (AAI) in time sliding windows. Activity level assessment can be used to provide statistical results in a defined period and deliver recommendation exercise to the users. For practical implications and actual significance of results, we selected wheelchair users among the participants to our experiments. Features in terms of standard deviation and approximate entropy were compared to recognize the activities and activity levels. The results showed that, using the novel designed smart cushion and the standard deviation features, we are able to achieve an accuracy of (>89%) for activity recognition and (>98%) for activity level recognition. PMID:28972556
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
2015-01-01
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system. PMID:26958162
Bang, Magnus; Solnevik, Katarina; Eriksson, Henrik
Computerized wearable devices such as smart watches will become valuable nursing tools. This paper describes a smart-watch system developed in close collaboration with a team of nurses working in a Swedish ICU. The smart-watch system provides real-time vital-sign monitoring, threshold alarms, and to-do reminders. Additionally, a Kanban board, visualized on a multitouch screen provides an overview of completed and upcoming tasks. We describe an approach to implement automated checklist systems with smart watches and discuss aspects of importance when implementing such memory and attention support. The paper is finalized with an in-development formative evaluation of the system.
Sensor Fusion and Smart Sensor in Sports and Biomedical Applications
Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz
2016-01-01
The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
Chung, Jane; Demiris, George; Thompson, Hilaire J
2016-01-01
With the wide adoption and use of smart home applications, there is a need for examining ethical issues regarding smart home use at the intersection of aging, technology, and home environment. The purpose of this review is to provide an overview of ethical considerations and the evidence on these ethical issues based on an integrative literature review with regard to the utilization of smart home technologies by older adults and their family members. REVIEW DESIGN AND METHODS: We conducted an integrative literature review of the scientific literature from indexed databases (e. g., MEDLINE, CINAHL, and PsycINFO). The framework guiding this review is derived from previous work on ethical considerations related to telehealth use for older adults and smart homes for palliative care. Key ethical issues of the framework include privacy, informed consent, autonomy, obtrusiveness, equal access, reduction in human touch, and usability. Six hundred and thirty-five candidate articles were identified between the years 1990 and 2014. Sixteen articles were included in the review. Privacy and obtrusiveness issues appear to be the most important factors that can affect smart home technology adoption. In addition, this article recommends that stigmatization and reliability and maintenance of the system are additional factors to consider. When smart home technology is used appropriately, it has the potential to improve quality of life and maintain safety among older adults, ultimately supporting the desire of older adults for aging in place. The ability to respond to potential ethical concerns will be critical to the future development and application of smart home technologies that aim to enhance safety and independence.
Smart FRP Composite Sandwich Bridge Decks in Cold Regions
DOT National Transportation Integrated Search
2011-07-01
In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) sandwich materials for various transportation construction applications, with particular emphasis on highway bridge decks in cold regions, were developed and tested. T...
Street deployment of pedestrian control smart traffic signals.
DOT National Transportation Integrated Search
2009-04-01
Smart Signals is a term used to describe the application of network based distributed control technology to the control of traffic signals at signalized intersections. Presently, signalized intersections use a centralized control approach where all o...
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home.
Liao, Chun-Feng; Chen, Peng-Yu
2017-09-21
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of "end user programmable smart environments".
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng
2010-11-01
In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.
Experimental investigation of nonlinear characteristics of a smart fluid damper
NASA Astrophysics Data System (ADS)
Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju
2018-05-01
Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.
Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives
Weng, Lin; Xie, Jingwei
2017-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25732665
Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives.
Weng, Lin; Xie, Jingwei
2015-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field.
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
47 CFR 73.871 - Amendment of LPFM broadcast station applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... limitation during the pertinent filing window. (b) Amendments that would improve the comparative position of new and major change applications will not be accepted after the close of the pertinent filing window... the pertinent filing window. Subject to the provisions of this section, such amendments may be filed...
2007-03-01
nano-energetics and new types of catalysts), reduced cost of maintenance (for example through wear reduction, self - healing and self -repair), enhanced...materials • Self - healing ( self -repair) material • Smart skin materials • Adaptive camouflage • Adaptive structures Defence Applications 6 - 2 RTO-EN...type of atom or a single molecule to a site at which it might be required. Smart drug delivery and self - healing follows on from such a capability
77 FR 26241 - Announcement of Grant Application Deadlines and Funding Levels
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... window for Fiscal Year (FY) 2012. In addition, RUS announces the minimum and maximum amounts for... supplement existing projects are welcomed (grant applications must be submitted during the application window...
2012-06-01
in an effort to be more reliable and efficient. However, with the benefits of this new technology comes added risk . This research utilizes a con ...AN APPLICATION OF CON -RESISTANT TRUST TO IMPROVE THE RELIABILITY OF SPECIAL PROTECTION SYSTEMS WITHIN THE SMART GRID THESIS Crystal M. Shipman...Government and is not subject to copyright protection in the United States AFIT/GCO/ENG/12-22 AN APPLICATION OF CON -RESISTANT TRUST TO IMPROVE THE
Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming
2014-04-01
technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence... wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for
NASA Astrophysics Data System (ADS)
Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.
2007-04-01
The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.
Bricker, Jonathan B; Mull, Kristin E; Kientz, Julie A; Vilardaga, Roger; Mercer, Laina D; Akioka, Katrina J; Heffner, Jaimee L
2014-10-01
There is a dual need for (1) innovative theory-based smartphone applications for smoking cessation and (2) controlled trials to evaluate their efficacy. Accordingly, this study tested the feasibility, acceptability, preliminary efficacy, and mechanism of behavioral change of an innovative smartphone-delivered acceptance and commitment therapy (ACT) application for smoking cessation vs. an application following US Clinical Practice Guidelines. Adult participants were recruited nationally into the double-blind randomized controlled pilot trial (n=196) that compared smartphone-delivered ACT for smoking cessation application (SmartQuit) with the National Cancer Institute's application for smoking cessation (QuitGuide). We recruited 196 participants in two months. SmartQuit participants opened their application an average of 37.2 times, as compared to 15.2 times for QuitGuide participants (p<0001). The overall quit rates were 13% in SmartQuit vs. 8% in QuitGuide (OR=2.7; 95% CI=0.8-10.3). Consistent with ACT's theory of change, among those scoring low (below the median) on acceptance of cravings at baseline (n=88), the quit rates were 15% in SmartQuit vs. 8% in QuitGuide (OR=2.9; 95% CI=0.6-20.7). ACT is feasible to deliver by smartphone application and shows higher engagement and promising quit rates compared to an application that follows US Clinical Practice Guidelines. As results were limited by the pilot design (e.g., small sample), a full-scale efficacy trial is now needed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Vincenzo, Jennifer L; Glenn, Jordan M; Gray, Stephanie M; Gray, Michelle
2016-08-01
Clinical functional assessments of balance often lack specificity and sensitivity in discriminating and predicting falls among community-dwelling older adults. We determined the feasibility of using a smart-device application measuring balance to discriminate fall status among older adults. We also evaluated differences between smart-device balance measurements when secured with or without a harness. A cross-sectional study design to determine the ability of the Sway Balance smart-device application (SWAY) to discriminate older adults based on fall history. The Berg Balance Scale (BBS) and Activities-Specific Balance Confidence Scale (ABC) were used as comparative, clinically based assessments. Community-dwelling older adults with (n = 25) and without (n = 32) a history of fall(s) participated. Multivariate analysis of variance was used to determine differences among assessments based on fall history. Logistic regression models determined the ability of each assessment to discriminate fall history. Older adults with and without a history of falls were not significantly different on SWAY (P = 0.92) but were different on BBS (P = 0.01), and ABC (P < 0.001). Similarly, SWAY did not discriminate fall history (P = 0.92), while BBS and ABC both discriminated fall history (P < 0.01). Paired t tests between SWAY scores with and without a harness indicated no differences (P ≥ 0.05). Among the older adults studied, the BBS and ABC measures discriminated groups defined by fall history, while the SWAY smart-device balance application did not. Modifications to the application may improve the discriminating ability of the measure in the recognition of fall status in older adults.
A forty-year history of fiber optic smart structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Scheel, Ingrid U.
2017-04-01
In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.
A Full-Visible-Spectrum Invisibility Cloak for Mesoscopic Metal Wires.
Kim, Sang-Woo; An, Byeong Wan; Cho, Eunjin; Hyun, Byung Gwan; Moon, Yoon-Jong; Kim, Sun-Kyung; Park, Jang-Ung
2018-06-13
Structured metals can sustain a very large scattering cross-section that is induced by localized surface plasmons, which often has an adverse effect on their use as transparent electrodes in displays, touch screens, and smart windows due to an issue of low clarity. Here, we report a broadband optical cloaking strategy for the network of mesoscopic metal wires with submicrometer to micrometer diameters, which is exploited for manufacturing and application of high-clarity metal-wires-based transparent electrodes. We prepare electrospun Ag wires with 300-1800 nm in diameter and perform a facile surface oxidation process to form Ag/Ag 2 O core/shell heterogeneous structures. The absorptive Ag 2 O shell, together with the coating of a dielectric cover, leads to the cancellation of electric multipole moments in Ag wires, thereby drastically suppressing plasmon-mediated scattering over the full visible spectrum and rendering Ag wires to be invisible. Simultaneously with the effect of invisibility, the transmittance of Ag/Ag 2 O wires is significantly improved compared to bare Ag wires, despite the formation of an absorptive Ag 2 O shell. As an application example, we demonstrate that these invisible Ag wires serve as a high-clarity, high-transmittance, and high-speed defroster for automotive windshields.
Tahrir, Farzaneh G; Ganji, Fariba; Ahooyi, Taha M
2015-01-01
Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.
NASA Astrophysics Data System (ADS)
Relaix, Sabrina; Mitov, Michel
2008-08-01
Polymer-stabilized cholesteric liquid crystals (PSCLCs) with a double-handed circularly polarized reflection band are fabricated. The geometric and electric constraints appear to be relevant parameters in obtaining a single-layer CLC structure with a clear-cut double-handed circularly polarized reflection band since light scattering phenomena can alter the reflection properties when the PSCLC is cooled from the elaboration temperature to the operating one. A compromise needs to be found between the LC molecule populations, which are bound to the polymer network due to strong surface effects or not. Besides, a monodomain texture is preserved if the PSCLC is subjected to an electric field at the same time as the thermal process intrinsic to the elaboration process. As a consequence, the light scattering is reduced and both kinds of circularly polarized reflected light beams are put in evidence. Related potential applications are smart reflective windows for the solar light management or reflective polarizer-free displays with higher brightness.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-07-09
This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.
NASA Astrophysics Data System (ADS)
Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.
2018-05-01
Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.
Lee, Chihak; Oh, Youngsu; Yoon, In Seon; Kim, Sun Hong; Ju, Byeong-Kwon; Hong, Jae-Min
2018-02-09
Electrochromic devices (ECDs) are emerging as a novel technology for various applications like commercialized smart window glasses, and auto-dimming rear-view mirrors. Recently, the development of low-power, lightweight, flexible, and stretchable devices has been accelerated to meet the growing demand in the new wearable devices market. Silver nanowires (AgNWs) can become new primary transparent conducting electrode (TCE) materials to replace indium tin oxide (ITO) for ECDs. However, issues such as substrate adhesion, delamination, and higher resistance still exist with AgNWs. Herein, we report a high-performance stretchable flash-induced AgNW-network-based TCE on surface-treated polydimethylsiloxane (PDMS) substrates. A Xe flash light method was used to create nanowelded networks of AgNWs. Surface silane treatments increased the adhesion and durability of the films as well. Finally, ECDs were fabricated under the optimal conditions and examined under strained conditions to demonstrate the resistance and mechanical behaviours of the devices. Results showed a flexible and durable film maintaining a high level of conductivity and reversible resistance behaviour, beyond those currently achievable with standard ITO/PET flexible TCEs.
Hsu, Chih-Yu; Zhang, Jian; Sato, Takashi; Moriyama, Satoshi; Higuchi, Masayoshi
2015-08-26
Black-to-transmissive electrochromism has been obtained with a Co(II)-based metallo-supramolecular polymer (polyCo). Thin films of polyCo, based on bisterpyridine ligand assembled with Co(II) metal ion, were constructed by spray casting the polymer onto ITO glass. With such simple fabricating means to form good-quality films, polyCo films show stable switching at the central metal ion of the Co(II)/Co(I) redox reaction when immersed in aqueous solution. With an increase in the pH of the aqueous electrolyte solution from neutral, the film exhibits a color response due to the interaction between the d-orbital electron and hydroxide ions affecting the d-d* transition. As a result, a nearly transparent-to-black electrochromic performance can be achieved with a transmittance difference at 550 nm of 74.3% (81.9-7.6%) in pH 13 solution. The light absorption of the film can be tuned over light regions from visible to near-infrared with a large attenuation.
A lithium superionic conductor.
Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio
2011-07-31
Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).
Windows Program For Driving The TDU-850 Printer
NASA Technical Reports Server (NTRS)
Parrish, Brett T.
1995-01-01
Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.
Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N
2013-07-02
Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.
Systems Maintenance Automated Repair Tasks (SMART)
NASA Technical Reports Server (NTRS)
2008-01-01
SMART is an interactive decision analysis and refinement software system that uses evaluation criteria for discrepant conditions to automatically provide and populate a document/procedure with predefined steps necessary to repair a discrepancy safely, effectively, and efficiently. SMART can store the tacit (corporate) knowledge merging the hardware specification requirements with the actual "how to" repair methods, sequences, and required equipment, all within a user-friendly interface. Besides helping organizations retain repair knowledge in streamlined procedures and sequences, SMART can also help them in saving processing time and expense, increasing productivity, improving quality, and adhering more closely to safety and other guidelines. Though SMART was developed for Space Shuttle applications, its interface is easily adaptable to any hardware that can be broken down by component, subcomponent, discrepancy, and repair.
SMART Power Systems for ANTS Missions
NASA Astrophysics Data System (ADS)
Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.
2005-02-01
Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.
NASA Astrophysics Data System (ADS)
Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan
2016-07-01
The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.
Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications
NASA Technical Reports Server (NTRS)
2008-01-01
Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.
On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment.
Cicirelli, Franco; Fortino, Giancarlo; Giordano, Andrea; Guerrieri, Antonio; Spezzano, Giandomenico; Vinci, Andrea
2016-09-01
A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.
Bejarano, Adriana C; Levine, Edwin; Mearns, Alan J
2013-12-01
The Special Monitoring of Applied Response Technologies (SMART) program was used during the Deepwater Horizon oil spill as a strategy to monitor the effectiveness of sea surface dispersant use. Although SMART was implemented during aerial and vessel dispersant applications, this analysis centers on the effort of a special dispersant missions onboard the M/V International Peace, which evaluated the effectiveness of surface dispersant applications by vessel only. Water samples (n = 120) were collected from background sites, and under naturally and chemically dispersed oil slicks, and were analyzed for polycyclic aromatic hydrocarbons (TPAHs), total petroleum hydrocarbons (TPH), and a chemical marker of Corexit (dipropylene glycol n-butyl ether, DPnB). Water chemistry results were analyzed relative to SMART field assessments of dispersant effectiveness ("not effective," "effective," and "very effective"), based on in situ fluorometry. Chemistry data were also used to indirectly determine if the use of dispersants increased the risk of acute effects to water column biota, by comparison to toxicity benchmarks. TPAH and TPH concentrations in background, and naturally and chemically dispersed samples were extremely variable, and differences were not statistically detected across sample types. Ratios of TPAH and TPH between chemically and naturally dispersed samples provided a quantitative measure of dispersant effectiveness over natural oil dispersion alone, and were in reasonable agreement with SMART field assessments of dispersant effectiveness. Samples from "effective" and "very effective" dispersant applications had ratios of TPAH and TPH up to 35 and 64, respectively. In two samples from an "effective" dispersant application, TPHs and TPAHs exceeded acute benchmarks (0.81 mg/L and 8 μg/L, respectively), while none exceeded DPnB's chronic value (1,000 μg/L). Although the primary goal of the SMART program is to provide near real-time effectiveness data to the response, and not to address concerns regarding acute biological effects, the analyses presented here demonstrate that SMART can generate information of value to a larger scientific audience. A series of recommendations for future SMART planning are also provided.
Bio-inspired device: a novel smart MR spring featuring tendril structure
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok
2016-01-01
Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.
All-printed smart structures: a viable option?
NASA Astrophysics Data System (ADS)
O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory
2014-03-01
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
Assessing Smart Phones for Generating Life-space Indicators.
Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge
2013-04-01
Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.
Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.
Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen
2017-01-01
Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life. © 2017 S. Karger AG, Basel.
Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice.
Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim
2016-06-15
Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities.
Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe
2013-01-24
The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.
Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe
2013-01-01
The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed. PMID:23348037
Human-Computer Interaction in Smart Environments
Paravati, Gianluca; Gatteschi, Valentina
2015-01-01
Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.
NASA Astrophysics Data System (ADS)
Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2015-02-01
A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.
Healthcare Applications of Smart Watches
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung
2016-01-01
Summary Objective The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. Materials and Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. Results 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson’s disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Discussion Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Conclusion Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed. PMID:27623763
Healthcare Applications of Smart Watches. A Systematic Review.
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung; Turner, Anne M
2016-09-14
The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson's disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed.
Using smart materials to solve new challenges in the automotive industry
NASA Astrophysics Data System (ADS)
Gath, Kerrie K.; Maranville, Clay; Tardiff, Janice
2018-03-01
Ford has an extensive history of developing and utilizing smart and innovative materials in its vehicles. In this paper, we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart material have had technical challenges that limit their use. We also look at how smart materials such as gecko inspired adhesion is providing opportunities during the vehicle assembly process by improving manufacturing quality, environmental sustainability, and worker safety. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations are migrating toward a seamless and adaptive experience leading to new expectations for an enhanced journey. Another area where smart materials are influencing change is interior and exterior design including smart textiles, photochromatic dyes, and thermochromatic materials. The key to advancing smart materials in automotive industry is to capitalize on the smaller niche applications where there will be an advantage over traditional methods. Ford has an extensive history of developing and utilizing smart and innovative materials. Magnetorheological fluids, thermoelectric materials, piezoelectric actuators, and shape memory alloys are all in production. In this paper we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart materials have had technical challenges that limit their use. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations may require a seamless and adaptive experience for users having various expectations.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
McCoy, Chad A.; Knudson, Marcus D.
2017-08-24
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Chad A.; Knudson, Marcus D.
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
Lobster eye as a collector for water window microscopy
NASA Astrophysics Data System (ADS)
Pina, L.; Maršíková, V.; Inneman, A.; Nawaz, M. F.; Jančárek, A.; Havlíková, R.
2017-08-01
Imaging in EUV, SXR and XR spectral bands of radiation is of increasing interest. Material science, biology and hot plasma are examples of relevant fast developing areas. Applications include spectroscopy, astrophysics, Soft X-ray Ray metrology, Water Window microscopy, radiography and tomography. Especially Water Window imaging has still not fully recognized potential in biology and medicine microscopy applications. Theoretical study and design of Lobster Eye (LE) optics as a collector for water window (WW) microscopy and comparison with a similar size ellipsoidal mirror condensor are presented.
Electrode with transparent series resistance for uniform switching of optical modulation devices
Tench, D Morgan [Camarillo, CA; Cunningham, Michael A [Thousand Oaks, CA; Kobrin, Paul H [Newbury Park, CA
2008-01-08
Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.
Design and Implementation of KSP on the Next Generation Cryptography API
NASA Astrophysics Data System (ADS)
Lina, Zhang
With good seamless connectivity and higher safety, KSP (Key Storage Providers) is the inexorable trend of security requirements and development to take the place of CSP (Cryptographic Service Provider). But the study on KSP has just started in our country, and almost no reports of its implementation can be found. Based on the analysis of function modules and the architecture of Cryptography API (Next Generation (CNG)), this paper discusses the design and implementation of KSP (key storage providers) based on smart card in detail, and an example is also presented to illustrate how to use KSP in Windows Vista.
NASA Astrophysics Data System (ADS)
Brei, Diann
2011-09-01
The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.
GIS -- Is it a money pit or a profit generator?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, R.H.
1997-02-01
Today, new technologies including smart pigs and GPS technology can be used to expedite data collection and improve the accuracy of the GIS applications. Eventually, such applications as pipe information for a taxing district, corrosion testing history, and many other applications can be accommodated in a GIS system. The accompanying figure shows the potential relationship of various technologies in today`s world along with other automated data input sources such as very smart pigs and the Global Positioning System (GPS). The paper discusses implementation barriers, assuring success, and recommendations.
An Overview of the Development of High Temperature Wireless Smart Sensor Technology
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2014-01-01
The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.
SMART-on-FHIR implemented over i2b2
Mandel, Joshua C; Klann, Jeffery G; Wattanasin, Nich; Mendis, Michael; Chute, Christopher G; Mandl, Kenneth D; Murphy, Shawn N
2017-01-01
We have developed an interface to serve patient data from Informatics for Integrating Biology and the Bedside (i2b2) repositories in the Fast Healthcare Interoperability Resources (FHIR) format, referred to as a SMART-on-FHIR cell. The cell serves FHIR resources on a per-patient basis, and supports the “substitutable” modular third-party applications (SMART) OAuth2 specification for authorization of client applications. It is implemented as an i2b2 server plug-in, consisting of 6 modules: authentication, REST, i2b2-to-FHIR converter, resource enrichment, query engine, and cache. The source code is freely available as open source. We tested the cell by accessing resources from a test i2b2 installation, demonstrating that a SMART app can be launched from the cell that accesses patient data stored in i2b2. We successfully retrieved demographics, medications, labs, and diagnoses for test patients. The SMART-on-FHIR cell will enable i2b2 sites to provide simplified but secure data access in FHIR format, and will spur innovation and interoperability. Further, it transforms i2b2 into an apps platform. PMID:27274012
NASA Astrophysics Data System (ADS)
Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah
2017-10-01
Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.
Lewkowitz, Adam K; O'Donnell, Betsy E; Nakagawa, Sanae; Vargas, Juan E; Zlatnik, Marya G
2016-03-01
Text4baby is the only free text-message program for pregnancy available. Our objective was to determine whether content differed between Text4baby and popular pregnancy smart phone applications (apps). Researchers enrolled in Text4baby in 2012 and downloaded the four most-popular free pregnancy smart phone apps in July 2013; content was re-extracted in February 2014. Messages were assigned thematic codes. Two researchers coded messages independently before reviewing all the codes jointly to ensure consistency. Logistic regression modeling determined statistical differences between Text4baby and smart phone apps. About 1399 messages were delivered. Of these, 333 messages had content related to more than one theme and were coded as such, resulting in 1820 codes analyzed. Compared to smart phone apps, Text4baby was significantly more likely to have content regarding Postpartum Planning, Seeking Care, Recruitment and Prevention and significantly less likely to mention Normal Pregnancy Symptoms. No messaging program included content regarding postpartum contraception. To improve content without increasing text message number, Text4baby could replace messages on recruitment with messages regarding normal pregnancy symptoms, fetal development and postpartum contraception.
Foo, Lee Kien; McGree, James; Duffull, Stephen
2012-01-01
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.
How to improve healthcare? Identify, nurture and embed individuals and teams with "deep smarts".
Eljiz, Kathy; Greenfield, David; Molineux, John; Sloan, Terry
2018-03-19
Purpose Unlocking and transferring skills and capabilities in individuals to the teams they work within, and across, is the key to positive organisational development and improved patient care. Using the "deep smarts" model, the purpose of this paper is to examine these issues. Design/methodology/approach The "deep smarts" model is described, reviewed and proposed as a way of transferring knowledge and capabilities within healthcare organisations. Findings Effective healthcare delivery is achieved through, and continues to require, integrative care involving numerous, dispersed service providers. In the space of overlapping organisational boundaries, there is a need for "deep smarts" people who act as "boundary spanners". These are critical integrative, networking roles employing clinical, organisational and people skills across multiple settings. Research limitations/implications Studies evaluating the barriers and enablers to the application of the deep smarts model and 13 knowledge development strategies proposed are required. Such future research will empirically and contemporary ground our understanding of organisational development in modern complex healthcare settings. Practical implications An organisation with "deep smarts" people - in managerial, auxiliary and clinical positions - has a greater capacity for integration and achieving improved patient-centred care. Originality/value In total, 13 developmental strategies, to transfer individual capabilities into organisational capability, are proposed. These strategies are applicable to different contexts and challenges faced by individuals and teams in complex healthcare organisations.
3D shape measurement system developed on mobile platform
NASA Astrophysics Data System (ADS)
Wu, Zhoujie; Chang, Meng; Shi, Bowen; Zhang, Qican
2017-02-01
Three-dimensional (3-D) shape measurement technology based on structured light has become one hot research field inspired by the increasing requirements. Many methods have been implemented and applied in the industry applications, but most of their equipments are large and complex, cannot be portable. Meanwhile, the popularity of the smart mobile terminals, such as smart phones, provides a platform for the miniaturization and portability of this technology. The measurement system based on phase-shift algorithm and Gray-code pattern under the Android platform on a mobile phone is mainly studied and developed, and it has been encapsulated into a mobile phone application in order to reconstruct 3-D shape data in the employed smart phone easily and quickly. The experimental results of two measured object are given in this paper and demonstrate the application we developed in the mobile platform is effective.
Designing User Interfaces for Smart-Applications for Operating Rooms and Intensive Care Units
NASA Astrophysics Data System (ADS)
Kindsmüller, Martin Christof; Haar, Maral; Schulz, Hannes; Herczeg, Michael
Today’s physicians and nurses working in operating rooms and intensive care units have to deal with an ever increasing amount of data. More and more medical devices are delivering information, which has to be perceived and interpreted in regard to patient status and the necessity to adjust therapy. The combination of high information load and insufficient usability creates a severe challenge for the health personnel with respect to proper monitoring of these devices respective to acknowledging alarms and timely reaction to critical incidents. Smart Applications are a new kind of decision support systems that incorporate medical expertise in order to help health personnel in regard to diagnosis and therapy. By means of a User Centered Design process of two Smart Applications (anaesthesia monitor display, diagnosis display), we illustrate which approach should be followed and which processes and methods have been successfully applied in fostering the design of usable medical devices.
Smart phone monitoring of second heart sound split.
Thiyagaraja, Shanti R; Vempati, Jagannadh; Dantu, Ram; Sarma, Tom; Dantu, Siva
2014-01-01
Heart Auscultation (listening to heart sounds) is the basic element of cardiac diagnosis. The interpretation of these sounds is a difficult skill to acquire. In this work we have developed an application to detect, monitor, and analyze the split in second heart sound (S2) using a smart phone. The application records the heartbeat using a stethoscope connected to the smart phone. The audio signal is converted into the frequency domain using Fast Fourier Transform to detect the first and second heart sounds (S1 and S2). S2 is extracted and fed into the Discrete Wavelet Transform (DWT) and then to Continuous Wavelet Transform (CWT) to detect the Aortic (A2) and the Pulmonic (P2) components, which are used to calculate the split in S2. With our application, users can continuously monitor their second heart sound irrespective of ages and check for a split in their hearts with a low-cost, easily available equipment.
Applications of FRP-OFBG sensors on bridge cables
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping
2005-05-01
It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.
Cognitive radio based optimal channel sensing and resources allocation
NASA Astrophysics Data System (ADS)
Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Nayeem, M. N.; Kamarudin, L. M.; Jakaria, A.
2017-03-01
Cognitive radio (CR) is the latest type of wireless technoloy that is proposed to mitigate spectrum saturation problem. İn cognitve radio, secondary user will use primary user's spectrum during primary user's absence without interupting primary user's transmission. This paper focuses on practical cognitive radio network development process using Android based smart phone for the data transmission. Energy detector based sensing method was proposed and used here because it doesnot require primary user's information. Bluetooth and Wi-fi are the two available types of spectrum that was sensed for CR detection. Simulation showed cognitive radio network can be developed using Android based smart phones. So, a complete application was developed using Java based Android Eclipse program. Finally, the application was uploaded and run on Android based smart phone to form and verify CR network for channel sensing and resource allocation. The observed efficiency of the application was around 81%.
Fan, Bo; Salazar, Rómulo; Gillies, Elizabeth R
2018-06-01
The temperature-dependent depolymerization of self-immolative poly(ethyl glyoxylate) (PEtG) capped with triphenylmethyl (trityl) groups is studied and its potential application for smart packaging is explored. PEtGs with four different trityl end-caps are prepared and found to undergo depolymerization to volatile products from the solid state at different rates depending on temperature and the electron-donating substituents on the trityl aromatic rings. Through the incorporation of hydrophobic dyes including Nile red and IR-780, the depolymerization is visualized as a color change of the dye as it changes from a dispersed to aggregated state. The ability of this platform to provide information on thermal history through an easily readable signal makes it promising in smart packaging applications for sensitive products such a food and other cargo that is susceptible to degradation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home
Chen, Peng-Yu
2017-01-01
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of “end user programmable smart environments”. PMID:28934159
Smart Polymeric Gels: Redefining the Limits of Biomedical Devices.
Chaterji, Somali; Kwon, Il Keun; Park, Kinam
2007-08-01
This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli-responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom-up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies.
A preliminary survey analysis of school shuttle bus system towards smart mobility solutions
NASA Astrophysics Data System (ADS)
Yue, Wong Seng; Hoy, Cheong Wan; Chye, Koh Keng
2017-10-01
Mobility and accessibility are crucial indicators of urban development. Public transport in the urban areas came into existence to fulfil transportation needs as well as mobility and accessibility demands. Ridership can be affected by the quality and quantity of transit service. However, technical improvements are needed for such as real-time bus information, controlling run time and headway delay. Thus, this paper is aimed to carry out a preliminary survey to determine the problems of school shuttle bus that faced by the students in a selected educational institution, their perceptions of using shuttle bus tracking and information mobile application and impacts of real-time information of public transits on bus ridership and towards smart mobility solutions. Efficient public transportation system needs further investigation about the role of mobile application for the bus tracking system in supporting smart mobility actions and real-time information. The proposed application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future. Eventually, this study opens an opportunity to improve Malaysian quality of life on the public value that created for the city as a whole.
Smart Polymeric Gels: Redefining the Limits of Biomedical Devices
Chaterji, Somali; Kwon, Il Keun; Park, Kinam
2007-01-01
This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584
Lymberis, A; Paradiso, R
2008-01-01
Smart fabrics and interactive textiles (SFIT) are fibrous structures that are capable of sensing, actuating, generating/storing power and/or communicating. Research and development towards wearable textile-based personal systems allowing e.g. health monitoring, protection & safety, and healthy lifestyle gained strong interest during the last 10 years. Under the Information and Communication Programme of the European Commission, a cluster of R&D projects dealing with smart fabrics and interactive textile wearable systems regroup activities along two different and complementary approaches i.e. 'application pull' and 'technology push'. This includes projects aiming at personal health management through integration, validation, and use of smart clothing and other networked mobile devices as well as projects targeting the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable personal applications such as protection/safety, emergency and healthcare. The integration part of the technologies into a real SFIT product is at present stage on the threshold of prototyping and testing. Several issues, technical as well user-centred, societal and business, remain to be solved. The paper presents on going major R&D activities, identifies gaps and discuss key challenges for the future.
Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments
NASA Astrophysics Data System (ADS)
Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin
The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.
Exploration and design of smart home circuit based on ZigBee
NASA Astrophysics Data System (ADS)
Luo, Huirong
2018-05-01
To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.
Smart dental practice: capitalising on smart mobile technology.
Plangger, K; Bredican, J; Mills, A J; Armstrong, J
2015-08-14
To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.
Smarten up garments through knitting
NASA Astrophysics Data System (ADS)
Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M. O.; Ehrmann, A.
2016-07-01
Smart textiles are a growing and fascinating field with enormous potential in the field of wearable electronics: shirts with integrated electrodes, socks stimulating the blood circulation or heating clothing are just a few examples of wearable, smart textile products. Most often, the technology of choice for on-the-body-worn smart textiles is knitting as it results in stretchable and, hence comfortable garments. This presentation explores the knitting technology in respect to smart textiles giving an overview of current research activities as well as commercially available products on the market. It further intends to foster the transfer of research approaches into business applications as well as to develop new challenging research ideas.
Context Aware Systems, Methods and Trends in Smart Home Technology
NASA Astrophysics Data System (ADS)
Robles, Rosslin John; Kim, Tai-Hoon
Context aware applications respond and adapt to changes in the computing environment. It is the concept of leveraging information about the end user to improve the quality of the interaction. New technologies in context-enriched services will use location, presence, social attributes, and other environmental information to anticipate an end user's immediate needs, offering more-sophisticated, situation-aware and usable functions. Smart homes connect all the devices and appliances in your home so they can communicate with each other and with you. Context-awareness can be applied to Smart Home technology. In this paper, we discuss the context-aware tools for development of Smart Home Systems.
Windows Instant Messaging App Forensics: Facebook and Skype as Case Studies
Yang, Teing Yee; Dehghantanha, Ali; Choo, Kim-Kwang Raymond; Muda, Zaiton
2016-01-01
Instant messaging (IM) has changed the way people communicate with each other. However, the interactive and instant nature of these applications (apps) made them an attractive choice for malicious cyber activities such as phishing. The forensic examination of IM apps for modern Windows 8.1 (or later) has been largely unexplored, as the platform is relatively new. In this paper, we seek to determine the data remnants from the use of two popular Windows Store application software for instant messaging, namely Facebook and Skype on a Windows 8.1 client machine. This research contributes to an in-depth understanding of the types of terrestrial artefacts that are likely to remain after the use of instant messaging services and application software on a contemporary Windows operating system. Potential artefacts detected during the research include data relating to the installation or uninstallation of the instant messaging application software, log-in and log-off information, contact lists, conversations, and transferred files. PMID:26982207
Windows Instant Messaging App Forensics: Facebook and Skype as Case Studies.
Yang, Teing Yee; Dehghantanha, Ali; Choo, Kim-Kwang Raymond; Muda, Zaiton
2016-01-01
Instant messaging (IM) has changed the way people communicate with each other. However, the interactive and instant nature of these applications (apps) made them an attractive choice for malicious cyber activities such as phishing. The forensic examination of IM apps for modern Windows 8.1 (or later) has been largely unexplored, as the platform is relatively new. In this paper, we seek to determine the data remnants from the use of two popular Windows Store application software for instant messaging, namely Facebook and Skype on a Windows 8.1 client machine. This research contributes to an in-depth understanding of the types of terrestrial artefacts that are likely to remain after the use of instant messaging services and application software on a contemporary Windows operating system. Potential artefacts detected during the research include data relating to the installation or uninstallation of the instant messaging application software, log-in and log-off information, contact lists, conversations, and transferred files.
Calibration of asynchronous smart phone cameras from moving objects
NASA Astrophysics Data System (ADS)
Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel
2015-04-01
Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.
NASA Astrophysics Data System (ADS)
2012-05-01
WE RECOMMEND Scientific American—The Amateur Scientist 3.0 Article collection spans the decades DynaKar DynaKar drives dynamics experiments The Fundamentals of Imaging Author covers whole imaging spectrum Teaching Secondary Physics Effective teaching is all in the approach Novel Materials and Smart Applications/Novel materials sample pack Resources kit samples smart materials WORTH A LOOK Cryptic disk Metal disk spins life into discussions about energy, surfaces and kinetics HANDLE WITH CARE The New Resourceful Physics Teacher Book brings creativity to physics WEB WATCH Apps for tablets and smartphones can aid physics teaching
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1997-01-01
The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.
A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Etingov, Pavel V.; Ren, Huiying
2016-07-18
This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.
Smart Materials Based on DNA Aptamers: Taking Aptasensing to the Next Level
Mastronardi, Emily; Foster, Amanda; Zhang, Xueru; DeRosa, Maria C.
2014-01-01
“Smart” materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications. PMID:24553083
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
A refined technique to calculate finite helical axes from rigid body trackers.
McLachlin, Stewart D; Ferreira, Louis M; Dunning, Cynthia E
2014-12-01
Finite helical axes (FHAs) are a potentially effective tool for joint kinematic analysis. Unfortunately, no straightforward guidelines exist for calculating accurate FHAs using prepackaged six degree-of-freedom (6 DOF) rigid body trackers. Thus, this study aimed to: (1) describe a protocol for calculating FHA parameters from 6 DOF rigid body trackers using the screw matrix and (2) to maximize the number of accurate FHAs generated from a given data set using a moving window analysis. Four Optotrak® Smart Markers were used as the rigid body trackers, two moving and two fixed, at different distances from the hinge joint of a custom-machined jig. 6D OF pose information was generated from 51 static positions of the jig rotated and fixed in 0.5 deg increments up to 25 deg. Output metrics included the FHA direction cosines, the rotation about the FHA, the translation along the axis, and the intercept of the FHA with the plane normal to the jig's hinge joint. FHA metrics were calculated using the relative tracker rotation from the starting position, and using a moving window analysis to define a minimum acceptable rotational displacement between the moving tracker data points. Data analysis found all FHA rotations calculated from the starting position were within 0.15 deg of the prescribed jig rotation. FHA intercepts were most stable when determined using trackers closest to the hinge axis. Increasing the moving window size improved the FHA direction cosines and center of rotation accuracy. Window sizes larger than 2 deg had an intercept deviation of less than 1 mm. Furthermore, compared to the 0 deg window size, the 2 deg window had a 90% improvement in FHA intercept precision while generating almost an equivalent number of FHA axes. This work identified a solution to improve FHA calculations for biomechanical researchers looking to describe changes in 3D joint motion.
High-temperature, high-pressure optical port for rocket engine applications
NASA Technical Reports Server (NTRS)
Delcher, Ray; Nemeth, ED; Powers, W. T.
1993-01-01
This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.
Adapting smart phone applications about physics education to blind students
NASA Astrophysics Data System (ADS)
Bülbül, M. Ş.; Yiğit, N.; Garip, B.
2016-04-01
Today, most of necessary equipment in a physics laboratory are available for smartphone users via applications. Physics teachers may measure from acceleration to sound volume with its internal sensors. These sensors collect data and smartphone applications make the raw data visible. Teachers who do not have well-equipped laboratories at their schools may have an opportunity to conduct experiments with the help of smart phones. In this study, we analyzed possible open source physics education applications in terms of blind users in inclusive learning environments. All apps are categorized as partially, full or non-supported. The roles of blind learner’s friend during the application are categorized as reader, describer or user. Mentioned apps in the study are compared with additional opportunities like size and downloading rates. Out of using apps we may also get information about whether via internet and some other extra information for different experiments in physics lab. Q-codes reading or augmented reality are two other opportunity provided by smart phones for users in physics labs. We also summarized blind learner’s smartphone experiences from literature and listed some suggestions for application designers about concepts in physics.
Managing Distributed Systems with Smart Subscriptions
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Lee, Diana D.; Swanson, Keith (Technical Monitor)
2000-01-01
We describe an event-based, publish-and-subscribe mechanism based on using 'smart subscriptions' to recognize weakly-structured events. We present a hierarchy of subscription languages (propositional, predicate, temporal and agent) and algorithms for efficiently recognizing event matches. This mechanism has been applied to the management of distributed applications.
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.; ...
2016-06-01
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob
2002-01-01
Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
NASA Technical Reports Server (NTRS)
Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.
1990-01-01
NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.
NASA Astrophysics Data System (ADS)
Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra
The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.
Promising applications of graphene and graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-06-01
The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of molecules, vapors and gases through nanopores in graphene membranes, experimental works investigating selective transport of different molecules through nanopores in single-layer graphene and graphene-based membranes toward the water desalination, chemical mixture separation and gas control. Various applications of graphene in bio-medicine are the contents of the fourth scientific subject of the review. They include the DNA translocations through nanopores in graphene membranes toward the fabrication of devices for genomic screening, in particular DNA sequencing; subnanometre trans-electrode membranes with potential applications to the fabrication of very high resolution, high throughput nanopore-based single-molecule detectors; antibacterial activity of graphene, graphite oxide, graphene oxide and reduced graphene oxide; nanopore sensors for nucleic acid analysis; utilization of graphene multilayers as the gates for sequential release of proteins from surface; utilization of graphene-based electroresponsive scaffolds as implants for on-demand drug delivery etc. The fifth scientific subject of the review is the research on the utilization of graphene in energy storage devices: ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage; self-assembled graphene/carbon nanotube hybrid films for supercapacitors; carbon-based supercapacitors fabricated by activation of graphene; functionalized graphene sheet-sulfure nanocomposite for using as cathode material in rechargeable lithium batteries; tunable three-dimensional pillared carbon nanotube-graphene networks for high-performance capacitance; fabrications of electrochemical micro-capacitors using thin films of carbon nanotubes and chemically reduced graphenes; laser scribing of high-performance and flexible graphene-based electrochemical capacitors; emergence of next-generation safe batteries featuring graphene-supported Li metal anode with exceptionally high energy or power densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.
Security in Intelligent Transport Systems for Smart Cities: From Theory to Practice
Javed, Muhammad Awais; Ben Hamida, Elyes; Znaidi, Wassim
2016-01-01
Connecting vehicles securely and reliably is pivotal to the implementation of next generation ITS applications of smart cities. With continuously growing security threats, vehicles could be exposed to a number of service attacks that could put their safety at stake. To address this concern, both US and European ITS standards have selected Elliptic Curve Cryptography (ECC) algorithms to secure vehicular communications. However, there is still a lack of benchmarking studies on existing security standards in real-world settings. In this paper, we first analyze the security architecture of the ETSI ITS standard. We then implement the ECC based digital signature and encryption procedures using an experimental test-bed and conduct an extensive benchmark study to assess their performance which depends on factors such as payload size, processor speed and security levels. Using network simulation models, we further evaluate the impact of standard compliant security procedures in dense and realistic smart cities scenarios. Obtained results suggest that existing security solutions directly impact the achieved quality of service (QoS) and safety awareness of vehicular applications, in terms of increased packet inter-arrival delays, packet and cryptographic losses, and reduced safety awareness in safety applications. Finally, we summarize the insights gained from the simulation results and discuss open research challenges for efficient working of security in ITS applications of smart cities. PMID:27314358
Klann, Jeffrey G; McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N
2013-05-30
The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of laboratory results. This summarization app can be run in any EHR environment that either supports SMART or runs SMART-enabled i2b2. This i2b2 "clinical bridge" demonstrates a pathway for reusable app development that does not require EHR vendors to immediately adopt the SMART API. Apps can be developed in SMART and run by clinicians in the i2b2 repository, reusing clinical data extracted from EHRs. This may encourage the adoption of SMART by supporting SMART app development until EHRs adopt the platform. It also allows a new variety of clinical SMART apps, fueled by the broad aggregation of data types available in research repositories. The app (including its knowledge base) and SMART-i2b2 are open-source and freely available for download.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
...) announce the rescheduling of Auction 902 and revise the dates and deadlines for the filing window for short...-auction deadlines for Auction 902. 2. The Auction 902 short-form application filing window opened at 12... short-form application (FCC Form 180) filing window will reopen on November 18, 2013, at 12:00 noon ET...
Imaging standards for smart cards
NASA Astrophysics Data System (ADS)
Ellson, Richard N.; Ray, Lawrence A.
1996-02-01
"Smart cards" are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper will review imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper will conclude with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.
Imaging standards for smart cards
NASA Astrophysics Data System (ADS)
Ellson, Richard N.; Ray, Lawrence A.
1996-01-01
'Smart cards' are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper reviews imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper concludes with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.
Thundercloud: Domain specific information security training for the smart grid
NASA Astrophysics Data System (ADS)
Stites, Joseph
In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
An efficient reversible privacy-preserving data mining technology over data streams.
Lin, Chen-Yi; Kao, Yuan-Hung; Lee, Wei-Bin; Chen, Rong-Chang
2016-01-01
With the popularity of smart handheld devices and the emergence of cloud computing, users and companies can save various data, which may contain private data, to the cloud. Topics relating to data security have therefore received much attention. This study focuses on data stream environments and uses the concept of a sliding window to design a reversible privacy-preserving technology to process continuous data in real time, known as a continuous reversible privacy-preserving (CRP) algorithm. Data with CRP algorithm protection can be accurately recovered through a data recovery process. In addition, by using an embedded watermark, the integrity of the data can be verified. The results from the experiments show that, compared to existing algorithms, CRP is better at preserving knowledge and is more effective in terms of reducing information loss and privacy disclosure risk. In addition, it takes far less time for CRP to process continuous data than existing algorithms. As a result, CRP is confirmed as suitable for data stream environments and fulfills the requirements of being lightweight and energy-efficient for smart handheld devices.
Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.
Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong
2018-06-04
In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.
Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike
2013-01-01
tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.
Course Modules on Structural Health Monitoring with Smart Materials
ERIC Educational Resources Information Center
Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica
2009-01-01
Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…
Application of Digital Cybersecurity Approaches to University Management--VFU SMART STUDENT
ERIC Educational Resources Information Center
Nedyalkova, Anna; Bakardjieva, Teodora; Nedyalkov, Krasimir
2016-01-01
This paper suggests digital approaches in university management. Digital transformation requires leadership that can maintain and balance competing interests from faculty, administrators, students and others. The team of Varna Free University designed a flexible proper solution VFU SMART STUDENT aiming at lower operating costs and better…
Development of smart spray systems to enhance delivery of pesticides in field nursery production
USDA-ARS?s Scientific Manuscript database
Two smart sprayer prototypes have been developed and are being evaluated with a goal of increasing pesticide application efficiency and minimizing environmental impact in field nursery production sites. The first prototype, a modified hydraulic vertical boom system, utilizes ultrasonic sensors to d...
Implementation of spatial smart waste management system in malaysia
NASA Astrophysics Data System (ADS)
Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.
2016-06-01
One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.
Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992
NASA Technical Reports Server (NTRS)
Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)
1993-01-01
The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.
Reconfiguration of a smart surface using heteroclinic connections
McInnes, Colin R.; Xu, Ming
2017-01-01
A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191
Smart and hybrid materials: perspectives for their use in textile structures for better health care.
Carosio, Stefano; Monero, Alessandra
2004-01-01
High tech materials such as Shape Memory Alloys can be effectively integrated in textiles, thus providing multifunctional garments with potential application to the health care industry or for simply improving the quality of life. The objective of the present paper is to describe the development of a novel hybrid fabric with embedded shape memory (Nitinol) wires, and the related clothing application with the capability of recovering any shape depending upon the environment and becoming superelastic. The use of these smart garments for biomedical applications will be illustrated, thus opening new perspectives for enhanced health care provision.
Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing
2017-08-09
A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.
High power microwave hazard facing smart ammunitions
NASA Astrophysics Data System (ADS)
Bohl, J.
1995-03-01
The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.
Technologies for an aging society: a systematic review of "smart home" applications.
Demiris, G; Hensel, B K
2008-01-01
A "smart home" is a residence wired with technology features that monitor the well-being and activities of their residents to improve overall quality of life, increase independence and prevent emergencies. This type of informatics applications targeting older adults, people with disabilities or the general population is increasingly becoming the focus of research worldwide. The aim of this study was to provide a comprehensive review of health related smart home projects and discuss human factors and other challenges. To cover not only the medical but also the social sciences and electronics literature, we conducted extensive searches across disciplines (e.g., Medline, Embase, CINAHL, PsycINFO, Electronics and Communications Abstracts, Web of Science etc.). In order to be inclusive of all new initiatives and efforts in this area given the innovativeness of the concept, we manually searched for relevant references in the retrieved articles as well as published books on smart homes and gerontechnology. A total of 114 publications (including papers, abstracts and web pages) were identified and reviewed to identify the overarching projects. Twenty one smart home projects were identified (71% of the projects include technologies for functional monitoring, 67% for safety monitoring, 47% for physiological monitoring, 43% for cognitive support or sensory aids, 19% for monitoring security and 19% to increase social interaction). Evidence for their impact on clinical outcomes is lacking. The field of smart homes is a growing informatics domain. Several challenges including not only technical but also ethical ones need to be addressed.
Constructing complex graphics applications with CLIPS and the X window system
NASA Technical Reports Server (NTRS)
Faul, Ben M.
1990-01-01
This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve problems encountered in the design and implementation of graphics applications within the UNIX-X Window System environment. The design of an extended version of CLIPS, called XCLIPS, is presented to show how the X Windows System graphics can be incorporated without losing DOS compatibility. Using XCLIPS, a sample scientific application is built that applies solving capabilities of both two and three dimensional graphics presentations in conjunction with the standard CLIPS features.
Smart image sensors: an emerging key technology for advanced optical measurement and microsystems
NASA Astrophysics Data System (ADS)
Seitz, Peter
1996-08-01
Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.
Ye, Hui; Zhu, Lin; Wang, Lin; Liu, Huiying; Zhang, Jun; Wu, Mengqiu; Wang, Guangji; Hao, Haiping
2016-02-11
Multiple reaction monitoring (MRM) is a universal approach for quantitative analysis because of its high specificity and sensitivity. Nevertheless, optimization of MRM parameters remains as a time and labor-intensive task particularly in multiplexed quantitative analysis of small molecules in complex mixtures. In this study, we have developed an approach named Stepped MS(All) Relied Transition (SMART) to predict the optimal MRM parameters of small molecules. SMART requires firstly a rapid and high-throughput analysis of samples using a Stepped MS(All) technique (sMS(All)) on a Q-TOF, which consists of serial MS(All) events acquired from low CE to gradually stepped-up CE values in a cycle. The optimal CE values can then be determined by comparing the extracted ion chromatograms for the ion pairs of interest among serial scans. The SMART-predicted parameters were found to agree well with the parameters optimized on a triple quadrupole from the same vendor using a mixture of standards. The parameters optimized on a triple quadrupole from a different vendor was also employed for comparison, and found to be linearly correlated with the SMART-predicted parameters, suggesting the potential applications of the SMART approach among different instrumental platforms. This approach was further validated by applying to simultaneous quantification of 31 herbal components in the plasma of rats treated with a herbal prescription. Because the sMS(All) acquisition can be accomplished in a single run for multiple components independent of standards, the SMART approach are expected to find its wide application in the multiplexed quantitative analysis of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel Wiring Technologies for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gibson, Tracy L.; Parrish, Lewis M.
2014-01-01
Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.
Utilization and Perceived Impact of Smart Phone Apps Among Persons Pursuing Mental Health Services
2015-12-01
impact of smart phone apps among persons pursuing mental health services Robin E. Becker, MA*, Daniel G. Cassidy, PhD, and William C. Isler, PhD...applications (apps) designed for use on phones and other ‘smart’ devices. The purpose of this study is to address 1) whether and by what means individuals...while only 13 recording ownership, with 79 denying this. 19% of respondents reported being made aware of mental health applications by a provider
SmartG: Spontaneous Malaysian Augmented Reality Tourist Guide
NASA Astrophysics Data System (ADS)
Kasinathan, Vinothini; Mustapha, Aida; Subramaniam, Tanabalan
2016-11-01
In effort to attract higher tourist expenditure along with higher tourist arrivals, this paper proposes a travel application called the SmartG, acronym for Spontaneous Malaysian Augmented Reality Tourist Guide, which operates by making recommendations to user based on the travel objective and individual budget constraints. The applications relies on augmented reality technology, whereby a three dimensional model is presented to the user based on input from real world environment. User testing returned a favorable feedback on the concept of using augmented reality in promoting Malaysian tourism.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... under the HUD building product standard and certification program for fenestration products (windows and... fenestration products (windows and doors). (a) Applicable standards. (1) All windows and doors shall be... Windows and Glass Doors. (2) This standard has been approved by the Director of the Federal Register for...
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
NASA Astrophysics Data System (ADS)
Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel
2006-12-01
It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.
The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Shi, Shuhui; Wang, Bainian
2015-10-01
Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.
Fischer, Shannon
2015-01-01
In a blog post in January 2014, Google unveiled one of its latest forays into the health market?a smart contact lens for diabetics. It was sleek and appealingly futuristic, with a minute microchip equipped with tiny glucose sensors, embedded in a soft, biocompatible lens material. Already, the company said, the prototype could measure tear glucose as often as once per second, and it may someday include tiny LED lights to signal warnings to the wearers when their blood sugar rises or falls to dangerous levels.
Use of EPANET solver to manage water distribution in Smart City
NASA Astrophysics Data System (ADS)
Antonowicz, A.; Brodziak, R.; Bylka, J.; Mazurkiewicz, J.; Wojtecki, S.; Zakrzewski, P.
2018-02-01
Paper presents a method of using EPANET solver to support manage water distribution system in Smart City. The main task is to develop the application that allows remote access to the simulation model of the water distribution network developed in the EPANET environment. Application allows to perform both single and cyclic simulations with the specified step of changing the values of the selected process variables. In the paper the architecture of application was shown. The application supports the selection of the best device control algorithm using optimization methods. Optimization procedures are possible with following methods: brute force, SLSQP (Sequential Least SQuares Programming), Modified Powell Method. Article was supplemented by example of using developed computer tool.
SmartHome: a domotic framework based on smart sensing and actuator network to reduce energy wastes
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; De Rango, Floriano; Falbo, Domenico; Barletta, Domenico
2014-05-01
Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.
Kidwell, Kelley M; Hyde, Luke W
2016-09-01
Heterogeneity between and within people necessitates the need for sequential personalized interventions to optimize individual outcomes. Personalized or adaptive interventions (AIs) are relevant for diseases and maladaptive behavioral trajectories when one intervention is not curative and success of a subsequent intervention may depend on individual characteristics or response. AIs may be applied to medical settings and to investigate best prevention, education, and community-based practices. AIs can begin with low-cost or low-burden interventions and followed with intensified or alternative interventions for those who need it most. AIs that guide practice over the course of a disease, program, or school year can be investigated through sequential multiple assignment randomized trials (SMARTs). To promote the use of SMARTs, we provide a hypothetical SMART in a Head Start program to address child behavior problems. We describe the advantages and limitations of SMARTs, particularly as they may be applied to the field of evaluation.
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2015-05-01
Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.
A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-01-01
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide ‘best’ car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm. PMID:25429416
A cloud-based car parking middleware for IoT-based smart cities: design and implementation.
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-11-25
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide 'best' car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm.
Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedges, Edward T.
This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.
Green and Smart: Hydrogels to Facilitate Independent Practical Learning
ERIC Educational Resources Information Center
Hurst, Glenn A.
2017-01-01
A laboratory experiment was developed to enable students to investigate the use of smart hydrogels for potential application in targeted drug delivery. This is challenging for students to explore practically because of the extremely high risks of handling cross-linking agents such as glutaraldehyde. Genipin is a safe and green alternative that has…
An overview of smart grid routing algorithms
NASA Astrophysics Data System (ADS)
Wang, Junsheng; OU, Qinghai; Shen, Haijuan
2017-08-01
This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.
75 FR 62377 - Combined Notice of Filings #3
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
.... Eastern Time on Monday, October 18, 2010. Docket Numbers: ER10-2943-000. Applicants: Smart One Energy, LLC. Description: Smart One Energy, LLC submits Petition for Acceptance of Initial Tariff, Waivers, and Blanket...)(2)(iii): FERC Rate Schedule No. 51, City of Tipp City to be effective 9/29/2010. Filed Date: 09/29...
The Smart Approach to Student Loans and Consumer Debt.
ERIC Educational Resources Information Center
Missouri State Dept. of Higher Education, Jefferson City.
This brochure contains information about student loans for college applicants and students in Missouri. It is a resource to assist borrowers in making smart repayment decisions and in understanding the options to avoid delinquency and default. Things to consider before one borrows, how to increase one's resources, and how to decrease one's…
The Interactive Classroom: An Overview of Smart Notebook Software
ERIC Educational Resources Information Center
Nichols, Bryan E.
2015-01-01
Interactive whiteboards are increasingly used in school classrooms. SMART Boards have been adopted in many schools, including music classes taught by specialists. This article provides specific tips for using the most popular whiteboard application. The main features of the software as well as specific strategies for maximizing their use in the…