Sample records for smoke diving simulators

  1. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    PubMed

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  2. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  3. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    PubMed

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  4. The use of drugs by UK recreational divers: illicit drugs.

    PubMed

    Dowse, Marguerite St Leger; Shaw, Steve; Cridge, Christine; Smerdon, Gary

    2011-03-01

    Anecdotal observations suggest the use of illicit drugs takes place amongst recreational divers but, to date, there has been little open debate within the diving community concerning possible prevalence. This study investigated the prevalence and type of illicit drugs used by recreational divers in the United Kingdom (UK). Anonymous questionnaires were circulated via UK dive clubs, dive schools, dive shows and conferences. Questions incorporated diver and diving demographics and general health, which included anxiety, depression and panic attacks, alcohol use, smoking and illicit drug use since learning to dive and closest time to a dive. Questions pertaining to over-the-counter and prescription drug use were also asked. 479 divers responded (66% males and 34% females) in the age range 16 to 59 years. Of the respondents, 22% had used one or more illicit drug since learning to dive, reporting benzodiazepines, amphetamines, cocaine, ecstasy, LSD, cannabis, heroin, and 'magic mushrooms'. Illicit drugs had been used by 3.5% of respondents in the last 12 months, and 3% in the last month. Cannabis, cocaine and ecstasy use was reported within 6 hours of a dive. Logistic regression confirmed a relationship between illicit drug use and depression (P = 0.014), and also between illicit drug use and anxiety (P = 0.024). These data support anecdotal reports that recreational divers use a range of illicit drugs. The significant relationship between illicit drug use and depression and anxiety supports the literature in non-diving populations.

  5. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study.

    PubMed

    Wang, Qiong; Mazur, Aleksandra; Guerrero, François; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marc; Theron, Michaël

    2015-12-15

    Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity. Copyright © 2015 the American Physiological Society.

  6. The influence of pressure changes on the retentive force and coronal microleakage of different types of posts in endodontically treated teeth during simulated dives.

    PubMed

    Mitov, Gergo; Draenert, Florian; Schumann, Paul; Stötzer, Marcus; von See, Constantin

    2016-12-01

    We assessed the influence of a simulated diving environment on the interfacial microleakage and retentive forces of different post types in root-canal-filled teeth. One-hundred-and-twenty extracted, single-rooted teeth were endodontically treated and were randomly divided into three groups according to the post and cement used: ER Post/Harvard cement (Titanium), CeraPost/DentinBuild Evo (Zirconia), DT Light Post/Calibra (FRC). Each group was randomly divided into two equal subgroups, a control group, and an experimental group, subjected to simulated dives to 456 kPa in a diving chamber. For 10 specimens of each subgroup the pull-out strength and the coronal microleakage were measured. Significant differences in the linear coronal penetration were observed between the Titanium and FRC groups (experimental group P ≤ 0.001; control group P = 0.02). Diving simulation had no significant impact on the microleakage for the three post types. The FRC groups showed significantly higher retentive strength values compared to the Titanium and Zirconia groups before and after simulated diving. The pull-out strength of the titanium experimental group was significantly less than the control group (P = 0.008). Following root canal treatment the combination of fibre-reinforced posts and resin cement should be preferred for patients requiring retention for tooth restorations using posts that are likely to be exposed to hyperbaric conditions.

  7. Improved pulmonary function in working divers breathing nitrox at shallow depths

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel T.; Conkin, Johnny

    2003-01-01

    INTRODUCTION: There is limited data about the long-term pulmonary effects of nitrox use in divers at shallow depths. This study examined changes in pulmonary function in a cohort of working divers breathing a 46% oxygen enriched mixture while diving at depths less than 12 m. METHODS: A total of 43 working divers from the Neutral Buoyancy Laboratory (NBL), NASA-Johnson Space Center completed a questionnaire providing information on diving history prior to NBL employment, diving history outside the NBL since employment, and smoking history. Cumulative dive hours were obtained from the NBL dive-time database. Medical records were reviewed to obtain the diver's height, weight, and pulmonary function measurements from initial pre-dive, first year and third year annual medical examinations. RESULTS: The initial forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were greater than predicted, 104% and 102%, respectively. After 3 yr of diving at the NBL, both the FVC and FEV1 showed a significant (p < 0.01) increase of 6.3% and 5.5%, respectively. There were no significant changes in peak expiratory flow (PEF), forced mid-expiratory flow rate (FEF(25-75%)), and forced expiratory flow rates at 25%, 50%, and 75% of FVC expired (FEF25%, FEF50%, FEF75%). Cumulative NBL dive hours was the only contributing variable found to be significantly associated with both FVC and FEV1 at 1 and 3 yr. CONCLUSIONS: NBL divers initially belong to a select group with larger than predicted lung volumes. Regular diving with nitrox at shallow depths over a 3-yr period did not impair pulmonary function. Improvements in FVC and FEV1 were primarily due to a training effect.

  8. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created with Macromedia Director using Apple Quicktime and Quicktime VR. The exhibit is based on the NeMO Explorer web site (http://www.pmel.noaa.gov/vents/nemo/explorer.html).

  9. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    Physiology and Stressors on Immune Cell Function in a Deep Diving Monodontid and Three Shallow Diving Phocid Species. PhD Dissertation, University...Research Permit No. 14245). Blood samples were initially processed in the field and shipped back to Mystic Aquarium in LN dry shippers for hormone...of damage from inflammatory processes . Values were returned to control levels suggesting the effects of a dive are not long lasting. That results for

  10. OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING CONTROL CENTER CAB. VIEW FACING WEST/NORTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  11. Individual Susceptibility to Hypobaric Environments: An Update

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Watkins, Sharmi

    2009-01-01

    Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from neutral buoyancy training dives. There is increasing recognition that DCS risk is different between diving and altitude exposures, with many individual parameters and environmental factors implicated as risk factors for development of DCS in divers but are not recognized as risk factors in altitude exposures. Much of the literature to date has focused on patent foramen ovale (PFO), which has long been considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude exposures remains unclear. Knowledge of those risk factors specific to hypobaric DCS may help identify susceptible individuals and aid in astronaut selection, crew assignment, and mission planning. This paper reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement activation, cigarette smoking, fluid balance, and ambient temperature. Further research to evaluate pertinent risk factors for DCS in altitude exposures is recommended.

  12. Aerobic exercise before diving reduces venous gas bubble formation in humans

    PubMed Central

    Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O

    2004-01-01

    We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001

  13. OVERVIEW OF DIVE TRAINER SIMULATOR FROM FIRST FLOOR LEVEL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DIVE TRAINER SIMULATOR FROM FIRST FLOOR LEVEL SHOWING HYDRAULIC EQUIPMENT, SUPPORTS AND FOUNDATION BLOCKS. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  14. Are recreational SCUBA divers with asthma at increased risk?

    PubMed

    Ustrup, Amalie S; Ulrik, Charlotte S

    2017-10-01

    Asthma has traditionally been regarded as a contraindication to self-contained underwater breathing apparatus (SCUBA) diving, although large numbers of patients with asthma dive. The aim of the review is to provide an update on current knowledge on potential disease-related hazards in SCUBA divers with asthma. Systematic literature review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Seven studies met the criteria for inclusion in the review (comprising a total of 560 subjects). Five studies reported an increased risk for developing diving-related injuries in divers with asthma, based on case reports (n = 1), case history combined with objective assessment (n = 1), and dives and/or simulated dives (n = 3). The remaining studies (n = 2) were based on self-reported diving habits in divers suffering from asthma, obtained from anonymous questionnaires in diving magazines, reported no diving-related injuries among respondents. Due to limited evidence it is difficult to draw valid conclusions, but there are indications that recreational divers with asthma may be at increased risk for diving-related injuries compared to non-asthmatic divers. However, it is of at most importance to obtain further evidence from large-scale, well-designed studies.

  15. Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar

    PubMed Central

    Stimpert, A. K.; DeRuiter, S. L.; Southall, B. L.; Moretti, D. J.; Falcone, E. A.; Goldbogen, J. A.; Friedlaender, A.; Schorr, G. S.; Calambokidis, J.

    2014-01-01

    Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Baird's beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5–4 kHz) was conducted 4 hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar. PMID:25391309

  16. Analysis of dynamics and fit of diving suits

    NASA Astrophysics Data System (ADS)

    Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.

    2017-10-01

    Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.

  17. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. This virtual exploration is part of the NeMO web site and will be at this URL http://www.pmel.noaa.gov/vents/dive.html

  18. Diving Simulation concerning Adélie Penguin

    NASA Astrophysics Data System (ADS)

    Ito, Shinichiro; Harada, Masanori

    Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.

  19. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2015-04-24

    differed the most from all other exposures. In contrast, human cells tended to display either smaller decreases, or increases, in phagocytic activity...phagocytosis similar to baseline samples; decreased phagocytic activity for the dive periods of pressure exposures, with increased activity following the

  20. Decompression management by 43 models of dive computer: single square-wave exposures to between 15 and 50 metres' depth.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2014-12-01

    Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.

  1. Relevance of postmortem radiology to the diagnosis of fatal cerebral gas embolism from compressed air diving.

    PubMed

    Cole, A J; Griffiths, D; Lavender, S; Summers, P; Rich, K

    2006-05-01

    To test the hypothesis that artefact caused by postmortem off-gassing is at least partly responsible for the presence of gas within the vascular system and tissues of the cadaver following death associated with compressed air diving. Controlled experiment sacrificing sheep after a period of simulated diving in a hyperbaric chamber and carrying out sequential postmortem computed tomography (CT) on the cadavers. All the subject sheep developed significant quantities of gas in the vascular system within 24 hours, as demonstrated by CT and necropsy, while the control animals did not. The presence of gas in the vascular system of human cadavers following diving associated fatalities is to be expected, and is not necessarily connected with gas embolism following pulmonary barotrauma, as has previously been claimed.

  2. 3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN NBS HIGHBAY DOORS. DIVE BELL IN FOREGROUND. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  3. Persistent (patent) foramen ovale (PFO): implications for safe diving.

    PubMed

    Germonpré, Peter

    2015-06-01

    Diving medicine is a peculiar specialty. There are physicians and scientists from a wide variety of disciplines with an interest in diving and who all practice 'diving medicine': the study of the complex whole-body physiological changes and interactions upon immersion and emersion. To understand these, the science of physics and molecular gas and fluid movements comes into play. The ultimate goal of practicing diving medicine is to preserve the diver's health, both during and after the dive. Good medicine starts with prevention. For most divers, underwater excursions are not a professional necessity but a hobby; avoidance of risk is generally a much better option than risk mitigation or cure. However, prevention of diving illnesses seems to be even more difficult than treating those illnesses. The papers contained in this issue of DHM are a nice mix of various aspects of PFO that divers are interested in, all of them written by specialist doctors who are avid divers themselves. However, diving medicine should also take advantage of research from the "non-diving" medicine community, and PFO is a prime example. Cardiology and neurology have studied PFO for as long, or even longer than divers have been the subjects of PFO research, and with much greater numbers and resources. Unexplained stroke has been associated with PFO, as has severe migraine with aura. As the association seems to be strong, investigating the effect of PFO closure was a logical step. Devices have been developed and perfected, allowing now for a relatively low-risk procedure to 'solve the PFO problem'. However, as with many things in science, the results have not been as spectacular as hoped for: patients still get recurrences of stroke, still have migraine attacks. The risk-benefit ratio of PFO closure for these non-diving diseases is still debated. For diving, we now face a similar problem. Let there be no doubt that PFO is a pathway through which venous gas emboli (VGE) can arterialize, given sufficiently favourable circumstances (such as: a large quantity of VGE, size of the PFO, straining or provocation manoeuvres inducing increased right atrial pressure, delayed tissue desaturation so that seeding arterial gas emboli (AGE) grow instead of shrink, and there may be other, as yet unknown factors). There is no doubt that closing a PFO, either surgically or using a catheter-delivered device, can reduce the number of VGE becoming AGE. There is also no doubt that the procedure itself carries some health risks which are, at 1% or higher risk of serious complications, an order of magnitude greater than the risk for decompression illness (DCI) in recreational diving. Scientists seek the 'truth', but the truth about how much of a risk PFO represents for divers is not likely to be discovered nor universally accepted. First of all, the exact prevalence of PFO in divers is not known. As it has been pointed out in the recent literature, a contrast echocardiography (be it transthoracic or transoesophageal) or Doppler examination is only reliable if performed according to a strict protocol, taking into account the very many pitfalls yielding false negative results. The optimal procedure for injection of contrast medium was described several years ago, but has not received enough attention. Indeed, it is our and others' experience that many divers presenting with PFO-related DCI symptoms initially are declared "PFO-negative" by eminent, experienced cardiologists! Failing a prospective study, the risks of diving with a right-to left vascular shunt can only be expressed as an 'odds ratio', which is a less accurate measure than is 'relative risk'. The DAN Europe Carotid Doppler Study, started in 2001, is nearing completion and will provide more insight into the actual risks of DCI for recreational divers. The degree of DCI risk reduction from closing a PFO is thus not only dependent on successful closure but also (mostly?) on how the diver manages his/her dive and decompression in order to reduce the incidence of VGE. It has been convincingly shown that conservative dive profiles reduce DCI incidence even in divers with large PFOs, just as PFO closure does not protect completely from DCI if the dive profiles are aggressive. Prospective studies should not only focus on the reduction of DCI incidence after closure, but should take into account the costs and side effects of the procedure, as has been done in the cardiology and neurology studies. Imagine lung transplants becoming a routine operation, costly but with a high success rate; imagine also a longterm smoker suffering from a mild form of obstructive lung disease and exercise-limiting dyspnoea. Which of two options would you recommend: having a lung transplant and continue smoking as before, or quit smoking and observe a progressive improvement of pulmonary and cardiac pathology? As opposed to patients with thrombotic disease and migraine, divers can choose to reduce DCI risk. In fact, all it takes is acceptance that some types of diving carry too high a health risk - whether it is because of a PFO or another 'natural' factor. It would be unethical to promote PFO closure in divers solely on the basis of its efficacy of shunt reduction. Unfortunately, at least one device manufacturer has already done so in the past, citing various publications to specifically target recreational divers. Some technical diving organizations even have recommended preventive PFO closure in order to undertaking high-risk dive training. As scientists, we must not allow ourselves to be drawn into intuitive diver fears and beliefs. Nor should we let ourselves be blinded by the ease and seemingly low risk of the procedure. With proper and objective information provided by their diving medicine specialist, divers could make an informed decision, rather than focus on the simplistic idea that they need 'to get it fixed' in order to continue diving. A significant relationship between PFO and cerebral damage, in the absence of high-risk diving or DCI, has yet to be confirmed. Studying PFO-related DCI provides us with unique opportunities to learn more about the effect of gas bubbles in various tissues, including the central vascular bed and neurological tissue. It may also serve to educate divers that safe diving is something that needs to be learned, not something that can be implanted.

  4. Smoke from Alaska and Canada Fires Dives into the Continental U.S.

    NASA Image and Video Library

    2015-07-01

    The InciWeb Incident Information System is following 18 fires in Alaska that are contributing, along with 49 uncontrolled fires under surveillance by the Canadian Wildland Fire Information System, to vast areas of visible smoke throughout Canadian provinces and stretching into northern U.S. states. This image from the Suomi NPP satellite's VIIRS instrument was taken from NOAA View on June 28, 2015. The smoke from these fires can also be seen in NOAA View as Aerosol Optical Thickness, a measure of how aerosols, such as smoke from wildfires, scatter and absorb sunlight. Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Prevalence of health promotion policies in sports clubs in Victoria, Australia.

    PubMed

    Dobbinson, Suzanne Jane; Hayman, Jane Amanda; Livingston, Patricia Mary

    2006-06-01

    In recent years, some health agencies offered sponsorship to sporting associations to promote healthy environments by encouraging clubs to develop health-related policies. However, the extent to which these sponsorship contracts reach their stated aims is of concern. This study aimed to quantify levels of policy development and practice in sports clubs for each of five key health areas, namely smoke-free facilities, sun protection, healthy catering, responsible serving of alcohol and sports injury prevention. Representatives from 932 Victorian sports clubs were contacted by telephone with 640 clubs (69%) participating in the survey. Results suggested that the establishment of written policies on the key health areas by sports clubs varied widely by affiliated sport and health area: 70% of all clubs with bar facilities had written policies on responsible serving of alcohol, ranging from 58% of tennis clubs to 100% of diving and surfing clubs. In contrast, approximately one-third of sports clubs had a smoke-free policy, with 36% of tennis, 28% of country football and 28% of men's cricket clubs having policy. Moreover, 34% of clubs overall had established sun protection policy, whereas clubs competing outside during summer months, [diving (86%) and life-saving (81%)] were most likely to have a written sun protection policy. Injury prevention policies were established in 30% of sports clubs, and were most common among football (56%), diving (43%) and life-saving (41%). This study suggests that policy development for health promotion can be achieved in sports clubs when it is well supported by health agencies and consideration is given to the appropriateness of the specific behaviours to be encouraged for a given sport. Communication between associations and clubs needs to be monitored by health agencies to ensure support and resources for policy development to reach the club level.

  6. Relevance of postmortem radiology to the diagnosis of fatal cerebral gas embolism from compressed air diving

    PubMed Central

    Cole, A J; Griffiths, D; Lavender, S; Summers, P; Rich, K

    2006-01-01

    Aims To test the hypothesis that artefact caused by postmortem off‐gassing is at least partly responsible for the presence of gas within the vascular system and tissues of the cadaver following death associated with compressed air diving. Methods Controlled experiment sacrificing sheep after a period of simulated diving in a hyperbaric chamber and carrying out sequential postmortem computed tomography (CT) on the cadavers. Results All the subject sheep developed significant quantities of gas in the vascular system within 24 hours, as demonstrated by CT and necropsy, while the control animals did not. Conclusions The presence of gas in the vascular system of human cadavers following diving associated fatalities is to be expected, and is not necessarily connected with gas embolism following pulmonary barotrauma, as has previously been claimed. PMID:16489175

  7. Underwater study of arterial blood pressure in breath-hold divers.

    PubMed

    Sieber, Arne; L'abbate, Antonio; Passera, Mirko; Garbella, Erika; Benassi, Antonio; Bedini, Remo

    2009-11-01

    Knowledge regarding arterial blood pressure (ABP) values during breath-hold diving is scanty. It derives from a few reports of measurements performed at the water's surface, showing slight or no increase in ABP, and from a single study of two simulated deep breath-hold dives in a hyperbaric chamber. Simulated dives showed an increase in ABP to values considered life threatening by standard clinical criteria. For the first time, using a novel noninvasive subaquatic sphygmomanometer, we successfully measured ABP in 10 healthy elite breath-hold divers at a depth of 10 m of freshwater (mfw). ABP was measured in dry conditions, at the surface (head-out immersion), and twice at a depth of 10 mfw. Underwater measurements of ABP were obtained in all subjects. Each measurement lasted 50-60 s and was accomplished without any complications or diver discomfort. In the 10 subjects as a whole, mean ABP values were 124/93 mmHg at the surface and 123/94 mmHg at a depth of 10 mfw. No significant statistical differences were found when blood pressure measurements at the water surface were compared with breath-hold diving conditions at a depth of 10 mfw. No systolic blood pressure values >140 mmHg or diastolic blood pressure values >115 mmHg were recorded. In conclusion, direct measurements of ABP during apnea diving showed no or only mild increases in ABP. However, our results cannot be extended over environmental conditions different from those of the present study.

  8. Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring

    DTIC Science & Technology

    2015-09-30

    to exploit adversary undersea assets (USW-AA-06). RELATED PROJECTS None REFERENCES Jarvis , S . M., Morrissey, R. P., Moretti, D. J...cavirostris) reveal record-breaking dives. PloS one, 9(3), e92633. 4 Shaffer, J. W., Moretti, D., Jarvis , S ., Tyack, P., & Johnson, M. (2013...I. L. (2011). Beaked whales respond to simulated and actual navy sonar. PLoS One, 6(3), e17009. Ward, J., Jarvis , S ., Moretti, D., Morrissey, R

  9. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar.

    PubMed

    Kvadsheim, P H; Miller, P J O; Tyack, P L; Sivle, L D; Lam, F P A; Fahlman, A

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N(2) gas bubbles. Increased tissue and blood N(2) levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N(2) tension [Formula: see text], but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N(2) tension [Formula: see text] from dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked, and Cuvier's beaked whales before and during exposure to Low- (1-2 kHz) and Mid- (2-7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N(2) levels, with deep diving generally resulting in higher end-dive [Formula: see text] as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N(2) levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N(2) tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS.

  10. Ketogenic diet for high partial pressure oxygen diving.

    PubMed

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  11. Impact of Fire Suit Ensembles on Firefighter PAH Exposures as Assessed by Skin Deposition and Urinary Biomarkers.

    PubMed

    Wingfors, Håkan; Nyholm, Jenny Rattfelt; Magnusson, Roger; Wijkmark, Cecilia Hammar

    2018-02-13

    Over the past 10 years, a number of safety measures for reducing firefighters' exposure to combustion particles have been introduced in Sweden. The most important measure was the reduction in the time firefighters wear suits and handle contaminated equipment after turn-outs involving smoke diving. This study was divided into two parts, those being to investigate the level of protection obtained by multiple garment layers and to assess exposure during a standardized smoke diving exercise. First, realistic work protection factors (WPFs) were calculated by comparing air concentrations of the full suite of gaseous and particle-bound polycyclic aromatic hydrocarbons (PAHs) inside and outside structural ensembles, including jacket and thick base layer, during a tough fire extinguishing exercise using wood as the fuel. Second, during a standardized smoke diving exercise, exposure was assessed by measuring PAH skin deposition and levels of eight urinary PAH metabolites in 20 volunteer student firefighters before and after the exercise. The average WPF for the sum of 22 PAHs was 146 ± 33 suggesting a relatively high protective capacity but also indicating a substantial enrichment of contaminants with a risk of prolonged dermal exposure. Accordingly, in the second exercise, the median levels of skin-deposited Σ14-PAHs and urinary 1-hydroxypyrene significantly increased 5-fold (21 to 99 ng/wipe) and 8-fold (0.14 to 1.1 µmol mol-1 creatinine), respectively, post exposure. Among the PAH metabolites investigated, 1-hydroxypyrene proved to be the most useful indicator of exposure, with significantly elevated urinary levels at both 6 h and 20 h after the exercise and with the strongest correlation to dermal exposure. Metabolites from two-ring and three-ring PAHs were eliminated faster while levels of 3-hydroxy-benzo[a]pyrene did not meet the detection criteria. The results from correlation studies indicated that dermal uptake was a major route of exposure in accordance with previous findings. To summarize, this study shows that some of the newly adopted protective measures were correctly implemented, and should continue to be followed and be more widely adopted. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Estimated Tissue and Blood N2 Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar

    PubMed Central

    Kvadsheim, P. H.; Miller, P. J. O.; Tyack, P. L.; Sivle, L. D.; Lam, F. P. A.; Fahlman, A.

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS. PMID:22590458

  13. A New Twisting Somersault: 513XD

    NASA Astrophysics Data System (ADS)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  14. Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae)

    PubMed Central

    Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots. PMID:23209398

  15. Kennedy Space Center ITC-1 Internship Overview

    NASA Technical Reports Server (NTRS)

    Ni, Marcus

    2011-01-01

    As an intern for Priscilla Elfrey in the ITC-1 department, I was involved in many activities that have helped me to develop many new skills. I supported four different projects during my internship, which included the Center for Life Cycle Design (CfLCD), SISO Space Interoperability Smackdown, RTI Teacher Mentor Program, and the Discrete Event Simulation Integrated Visualization Environment Team (DIVE). I provided the CfLCD with web based research on cyber security initiatives involving simulation, education for young children, cloud computing, Otronicon, and Science, Technology, Engineering, and Mathematics (STEM) education initiatives. I also attended STEM meetings regarding simulation courses, and educational course enhancements. To further improve the SISO Simulation event, I provided observation feedback to the technical advisory board. I also helped to set up a chat federation for HLA. The third project involved the RTI Teacher Mentor program, which I helped to organize. Last, but not least, I worked with the DIVE team to develop new software to help visualize discrete event simulations. All of these projects have provided experience on an interdisciplinary level ranging from speech and communication to solving complex problems using math and science.

  16. Dr. von Braun Tries Out the NBS

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown fitted with suit and diving equipment as he prepares for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.

  17. [Decompression problems in diving in mountain lakes].

    PubMed

    Bühlmann, A A

    1989-08-01

    The relationship between tolerated high-pressure tissue nitrogen and ambient pressure is practically linear. The tolerated nitrogen high pressure decreases at altitude, as the ambient pressure is lower. Additionally, tissues with short nitrogen half-times have a higher tolerance than tissues which retain nitrogen for longer duration. For the purpose of determining safe decompression routines, the human body can be regarded as consisting of 16 compartments with half-times from 4 to 635 minutes for nitrogen. The coefficients for calculation of the tolerated nitrogen-high pressure in the tissues can be deduced directly from the half-times for nitrogen. We show as application the results of 573 simulated air dives in the pressure-chamber and 544 real dives in mountain lakes in Switzerland (1400-2600 m above sea level) and in Lake Titicaca (3800 m above sea level). They are in accordance with the computed limits of tolerance.

  18. Bullous emphysema – Not always nicotine-related!

    PubMed Central

    Lüttecke-Hecht, Camilla; Hirche, Tim O.

    2014-01-01

    In a patient admitted for further investigation of haemoptysis and dyspnoea and known emphysema of the lung, a remarkable distribution of emphysematous bullae could be detected on CT-imaging. Further history, besides smoking, revealed apnoea diving-activity during younger adult age. The distinct appearance of partially septated pleura-based bullae lead to the suspicion of a positive-pressure barotrauma of the lungs in the past, now complicated by infection and bleeding. This case highlights the importance of thorough questioning of the patient and underlines the consideration of differential diagnoses of emphysema. PMID:26029539

  19. The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast

    NASA Astrophysics Data System (ADS)

    Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien

    2016-03-01

    The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.

  20. Effects of successive air and nitrox dives on human vascular function.

    PubMed

    Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko

    2012-06-01

    SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.

  1. Diving and foraging patterns of Marbled Murrelets (Brachyramphus marmoratus): Testing predictions from optimal-breathing models

    USGS Publications Warehouse

    Jodice, Patrick G.R.; Collopy, Michael W.

    1999-01-01

    The diving behavior of Marbled Murrelets (Brachyramphus marmoratus) was studied using telemetry along the Oregon coast during the 1995 and 1996 breeding seasons and examined in relation to predictions from optimal-breathing models. Duration of dives, pauses, dive bouts, time spent under water during dive bouts, and nondiving intervals between successive dive bouts were recorded. Most diving metrics differed between years but not with oceanographic conditions or shore type. There was no effect of water depth on mean dive time or percent time spent under water even though dive bouts occurred in depths from 3 to 36 m. There was a significant, positive relationship between mean dive time and mean pause time at the dive-bout scale each year. At the dive-cycle scale, there was a significant positive relationship between dive time and preceding pause time in each year and a significant positive relationship between dive time and ensuing pause time in 1996. Although it appears that aerobic diving was the norm, there appeared to be an increase in anaerobic diving in 1996. The diving performance of Marbled Murrelets in this study appeared to be affected by annual changes in environmental conditions and prey resources but did not consistently fit predictions from optimal-breathing models.

  2. Diving Medicine: Frequently Asked Questions

    MedlinePlus

    ... after diving In-Water Recompression Inter-Island Flights Massage & Diving Return to Diving After DCI Subcutaneous Emphysema ... Donating Blood Flu-like Symptoms Following a Dive Foot Pain After Diving Fin Foot Frontal Headaches Hand & ...

  3. A no-decompression air dive and ultrasound lung comets.

    PubMed

    Dujic, Zeljko; Marinovic, Jasna; Obad, Ante; Ivancev, Vladimir; Breskovic, Toni; Jovovic, Pavle; Ljubkovic, Marko

    2011-01-01

    Increased accumulation of extravascular lung water after repetitive deep trimix dives was recently reported. This effect was evident 40 min post-dive, but in subsequent studies most signs of this lung congestion were not evident 2-3 h post-dive, indicating no major negative effects on respiratory gas exchange following deep dives. Whether this response is unique for trimix dives or also occurs in more frequent air dives is presently unknown. A single no-decompression field dive to 33 m with 20 min bottom time was performed by 12 male divers. Multiple ultrasound lung comets (ULC), bubble grade (BG), and single-breath lung diffusing capacity (DLCO) measurements were made before and up to 120 min after the dive. Median BG was rather high with maximal values observed at 40 min post-dive [median 4 (4-4)]. Arterialization of bubbles from the venous side was observed only in one diver lasting up to 60 min post-dive. Despite high BG, no DCS symptoms were noted. DLCO and ULC were unchanged after the dive at any time point (DLCO(corr) was 33.6 +/- 1.9 ml x min(-1) mmHg(-1) pre-dive, 32.7 +/- 3.8 ml x min(-1) x mmHg(-1) at 60 min post-dive, and 33.2 +/- 5.3 ml x min(-1) x mmHg(-1) at 120 min post-dive; ULC count was 4.1 +/- 1.9 pre-dive, 4.9 +/- 3.3 at 20 min post-dive, and 3.3 +/- 1.9 at 60 min post-dive. These preliminary findings show no evidence of increased accumulation of extravascular lung water in male divers after a single no-decompression air dive at the limits of accepted Norwegian diving tables.

  4. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    PubMed

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  5. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions.

    PubMed

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y

    2015-08-01

    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

  6. The impact of consecutive freshwater trimix dives at altitude on human cardiovascular function.

    PubMed

    Lozo, Mislav; Madden, Dennis; Gunjaca, Grgo; Ljubkovic, Marko; Marinovic, Jasna; Dujic, Zeljko

    2015-03-01

    Self-contained underwater breathing apparatus (SCUBA) diving is regularly associated with numerous asymptomatic changes in cardiovascular function. Freshwater SCUBA diving presents unique challenges compared with open sea diving related to differences in water density and the potential for dive locations at altitude. The aim of this study was to evaluate the impact of freshwater trimix diving at altitude on human cardiovascular function. Ten divers performed two dives in consecutive days at 294 m altitude with the surface interval of 24 h. Both dives were at a depth of 45 m with total dive time 29 and 26 min for the first and second dive, respectively. Assessment of venous gas embolization, hydration status, cardiac function and arterial stiffness was performed. Production of venous gas emboli was low, and there were no significant differences between the dives. After the first dive, diastolic blood pressure was significantly reduced, which persisted up to 24 h. Left ventricular stroke volume decreased, and heart rate increased after both dives. Pulse wave velocity was unchanged following the dives. However, the central and peripheral augmentation index became more negative after both dives, indicating reduced wave reflection. Ejection duration and round trip travel time were prolonged 24 h after the first dive, suggesting longer-lasting suppression of cardiac and endothelial function. This study shows that freshwater trimix dives with conservative profiles and low venous gas bubble loads can result in multiple asymptomatic acute cardiovascular changes some of which were present up to 24 h after dive. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry

    NASA Astrophysics Data System (ADS)

    Roche, Ronan C.; Harvey, Chloe V.; Harvey, James J.; Kavanagh, Alan P.; McDonald, Meaghan; Stein-Rostaing, Vivienne R.; Turner, John R.

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  8. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry.

    PubMed

    Roche, Ronan C; Harvey, Chloe V; Harvey, James J; Kavanagh, Alan P; McDonald, Meaghan; Stein-Rostaing, Vivienne R; Turner, John R

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  9. Diving at altitude: from definition to practice.

    PubMed

    Egi, S Murat; Pieri, Massimo; Marroni, Alessandro

    2014-01-01

    Diving above sea level has different motivations for recreational, military, commercial and scientific activities. Despite the apparently wide practice of inland diving, there are three major discrepancies about diving at altitude: threshold elevation that requires changes in sea level procedures; upper altitude limit of the applicability of these modifications; and independent validation of altitude adaptation methods of decompression algorithms. The first problem is solved by converting the normal fluctuation in barometric pressure to an altitude equivalent. Based on the barometric variations recorded from a meteorological center, it is possible to suggest 600 meters as a threshold for classifying a dive as an "altitude" dive. The second problem is solved by proposing the threshold altitude of aviation (2,400 meters) to classify "high" altitude dives. The DAN (Divers Alert Network) Europe diving database (DB) is analyzed to solve the third problem. The database consists of 65,050 dives collected from different dive computers. A total of 1,467 dives were found to be classified as altitude dives. However, by checking the elevation according to the logged geographical coordinates, 1,284 dives were disqualified because the altitude setting had been used as a conservative setting by the dive computer despite the fact that the dive was made at sea level. Furthermore, according to the description put forward in this manuscript, 72 dives were disqualified because the surface level elevation is lower than 600 meters. The number of field data (111 dives) is still very low to use for the validation of any particular method of altitude adaptation concerning decompression algorithms.

  10. Dive patterns of tagged right whales in the Great South Channel

    NASA Astrophysics Data System (ADS)

    Winn, Howard E.; Goodyear, Jeffrey D.; Kenney, Robert D.; Petricig, Richard O.

    Right whales were tagged in 1988 and 1989 with radio and sonic telemetry tags as part of a multidisciplinary investigation of right whales and their habitat in the Great South Channel region east of Cape Cod. The tags yielded data on the durations of 6456 dives and 6482 surfacings, as well as 23,538 measurements of the depth of a diving whale. Log-survivorship analysis of the 1988 data showed a clear separation between the durations of dives between blows within a single surfacing sequence or bout (intea-bout dives) and longer dives between surfacing sequences (interbout dives) at 27 s, which was also applied to the 1989 data. Inter-bout dives averaged 127.3 s, and were significantly longer in 1988 than in 1989. Inter-bout dives were significantly longer during the day than night in 1988, and longer at night in 1989. The average intea-bout dive duration was 11.8 s, with 1989 dives longer than those in 1988. Surface durations averaged 6.2 s, and were also significantly longer in 1989. Dive depths were recorded only in 1989. Mean dive depth was 7.3 m, and only 12 dives went deeper than 30 m. The typical right whale dive pattern in 1988 included relatively short surfacings, long dives during the day, and shorter dives at night. This correlated with strong diel vertical migration by the dense zooplankton patches on which they were presumed to be feeding based on indirect evidence-from near the surface at night to near the bottom during the day. The 1989 pattern included longer dives during the night, as well as some exceptionally long surfacings. Zooplankton in 1989 did not migrate vertically, and remained near the surface day and night in right whale feeding areas. Right whale dive patterns in the Great South Channel are closely correlated with the horizontal and vertical distributions and movements of dense patches of their zooplankton prey.

  11. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    PubMed

    Meir, Jessica U; Robinson, Patrick W; Vilchis, L Ignacio; Kooyman, Gerald L; Costa, Daniel P; Ponganis, Paul J

    2013-01-01

    Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural" state.

  12. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197... HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas...

  13. The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive.

    PubMed

    Theunissen, Sigrid; Balestra, Costantino; Boutros, Antoine; De Bels, David; Guerrero, François; Germonpré, Peter

    2015-03-01

    The aim of the study was to observe the effects of dark chocolate on endothelial function after scuba diving. Forty-two male scuba divers were divided into two groups: a control (n=21) and a chocolate group (n=21). They performed a 33-metres deep scuba-air dive for 20 minutes in a diving pool (Nemo 33, Brussels). Water temperature was 33⁰C. The chocolate group ingested 30 g of dark chocolate (86% cocoa) 90 minutes before the dive. Flow-mediated dilatation (FMD), digital photoplethysmography and nitric oxide (NO) and peroxynitrites (ONOO-) levels were measured before and after the scuba dive in both groups. A significant decrease in FMD was observed in the control group after the dive (91±7% (mean±95% confidence interval) of pre-dive values; P<0.001) while it was increased in the chocolate group (105±5% of pre-dive values; P<0.001). No difference in digital photoplethysmography was observed between before and after the dives. No variation of circulating NO level was observed in the control group whereas an increase was shown in the chocolate group (154±73% of pre-dive values; P=0.04). A significant reduction in ONOO- was observed in the control group (84±12% of pre-dive values; P=0.003) whereas no variation was shown after the dive with chocolate intake (100±28% of pre-dive values; ns). Ingestion of 30 g of dark chocolate 90 minutes before scuba diving prevented post-dive endothelial dysfunction, as the antioxidants contained in dark chocolate probably scavenge free radicals.

  14. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    PubMed

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  15. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    PubMed Central

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  16. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  17. Hidden Markov models reveal complexity in the diving behaviour of short-finned pilot whales

    PubMed Central

    Quick, Nicola J.; Isojunno, Saana; Sadykova, Dina; Bowers, Matthew; Nowacek, Douglas P.; Read, Andrew J.

    2017-01-01

    Diving behaviour of short-finned pilot whales is often described by two states; deep foraging and shallow, non-foraging dives. However, this simple classification system ignores much of the variation that occurs during subsurface periods. We used multi-state hidden Markov models (HMM) to characterize states of diving behaviour and the transitions between states in short-finned pilot whales. We used three parameters (number of buzzes, maximum dive depth and duration) measured in 259 dives by digital acoustic recording tags (DTAGs) deployed on 20 individual whales off Cape Hatteras, North Carolina, USA. The HMM identified a four-state model as the best descriptor of diving behaviour. The state-dependent distributions for the diving parameters showed variation between states, indicative of different diving behaviours. Transition probabilities were considerably higher for state persistence than state switching, indicating that dive types occurred in bouts. Our results indicate that subsurface behaviour in short-finned pilot whales is more complex than a simple dichotomy of deep and shallow diving states, and labelling all subsurface behaviour as deep dives or shallow dives discounts a significant amount of important variation. We discuss potential drivers of these patterns, including variation in foraging success, prey availability and selection, bathymetry, physiological constraints and socially mediated behaviour. PMID:28361954

  18. The oxygen-conserving potential of the diving response: A kinetic-based analysis.

    PubMed

    Costalat, Guillaume; Coquart, Jeremy; Castres, Ingrid; Joulia, Fabrice; Sirost, Olivier; Clua, Eric; Lemaître, Frédéric

    2017-04-01

    We investigated the oxygen-conserving potential of the human diving response by comparing trained breath-hold divers (BHDs) to non-divers (NDs) during simulated dynamic breath-holding (BH). Changes in haemodynamics [heart rate (HR), stroke volume (SV), cardiac output (CO)] and peripheral muscle oxygenation [oxyhaemoglobin ([HbO 2 ]), deoxyhaemoglobin ([HHb]), total haemoglobin ([tHb]), tissue saturation index (TSI)] and peripheral oxygen saturation (SpO 2 ) were continuously recorded during simulated dynamic BH. BHDs showed a breaking point in HR kinetics at mid-BH immediately preceding a more pronounced drop in HR (-0.86 bpm.% -1 ) while HR kinetics in NDs steadily decreased throughout BH (-0.47 bpm.% -1 ). By contrast, SV remained unchanged during BH in both groups (all P > 0.05). Near-infrared spectroscopy (NIRS) results (mean ± SD) expressed as percentage changes from the initial values showed a lower [HHb] increase for BHDs than for NDs at the cessation of BH (+24.0 ± 10.1 vs. +39.2 ± 9.6%, respectively; P < 0.05). As a result, BHDs showed a [tHb] drop that NDs did not at the end of BH (-7.3 ± 3.2 vs. -3.0 ± 4.7%, respectively; P < 0.05). The most striking finding of the present study was that BHDs presented an increase in oxygen-conserving efficiency due to substantial shifts in both cardiac and peripheral haemodynamics during simulated BH. In addition, the kinetic-based approach we used provides further credence to the concept of an "oxygen-conserving breaking point" in the human diving response.

  19. Effects of Long-term Diving Training on Cortical Gyrification.

    PubMed

    Zhang, Yuanchao; Zhao, Lu; Bi, Wenwei; Wang, Yue; Wei, Gaoxia; Evans, Alan; Jiang, Tianzi

    2016-06-20

    During human brain development, cortical gyrification, which is believed to facilitate compact wiring of neural circuits, has been shown to follow an inverted U-shaped curve, coinciding with the two-stage neurodevelopmental process of initial synaptic overproduction with subsequent pruning. This trajectory allows postnatal experiences to refine the wiring, which may manifest as endophenotypic changes in cortical gyrification. Diving experts, typical elite athletes who commence intensive motor training at a very young age in their early childhood, serve ideal models for examining the gyrification changes related to long-term intensive diving training. Using local gyrification index (LGI), we compared the cortical gyrification between 12 diving experts and 12 controls. Compared with controls, diving experts showed widespread LGI reductions in regions relevant to diving performance. Negative correlations between LGIs and years of diving training were also observed in diving experts. Further exploratory network efficiency analysis of structural cortical networks, inferred from interregional correlation of LGIs, revealed comparable global and local efficiency in diving experts relative to controls. These findings suggest that gyrification reductions in diving experts may be the result of long-term diving training which could refine the neural circuitry (via synaptic pruning) and might be the anatomical substrate underlying their extraordinary diving performance.

  20. Accident rates at a busy diving centre.

    PubMed

    Davis, Michael; Malcolm, Kate

    2008-06-01

    Dear Editor, The Poor Knights Islands in Northland, New Zealand, is a world-famous, temperate-water, diving tourism destination, popularised many years ago by Jacques Cousteau. By far the largest dive operator there is Dive! Tutukaka, with five vessels carrying up to 30 divers, operating on a regular basis throughout the year. Dive! Tutukaka is required to keep a detailed, daily vessel manifest. Thus, the number of divers is known accurately and all incidents are recorded by the Skipper or the Chief Divemaster on board. Although all dives are logged (time in, time out and maximum depth for every diver) and kept permanently, these data were not utilised for this brief report. Each customer does two dives on a trip and there are between one and four divemasters on board who may do one, two or more dives a day (van der Hulst G, unpublished observations). Thus the accident rate per diver is known, and it is assumed that the rate per dive is very close to half this figure. In addition, under health and safety regulations all non-diving injuries both on shore and on board are documented, but these will include some non-divers. For the three financial years between July 2005 and 14 June 2008, 32,302 customers dived with Dive! Tutukaka, approximately 63,000 dives (a small minority did only one dive). Over the same period, there were an estimated 7,600 dives conducted by the divemasters. The injuries documented during this time are shown in Table 1. There were seven cases of decompression illness (DCI), a rate of about 1 per 10,000 divers (0.5 per 10,000 dives). Two of the seven DCI cases involved serious neurological injury. There was one further possible case of DCI who did not seek medical advice. If this diver is included then the rate is 1.14 per 10,000 divers. More minor diving injuries and incidents occurred at a rate of approximately 2 per 10,000 divers. Non-diving injuries occurred rarely, the most common being various musculo-skeletal injuries to staff, requiring time off work. Many of these were secondary to lifting and carrying heavy diving equipment, particularly dive tanks. This indicates an area where improved practices by staff could be achieved. We believe these injury data are robust and provide an accurate picture of a single, mainstream, international tourism diving centre in temperate waters, and indicate a low rate of injury, comparable to the international literature.

  1. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period.

    PubMed

    Perović, Antonija; Sobočanec, Sandra; Dabelić, Sanja; Balog, Tihomir; Dumić, Jerka

    2018-02-01

    The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30 min. Blood samples were collected immediately before and after diving, 3 and 6 h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6 h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3 h after diving, while 6 h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3 h after diving. Interestingly, SIRT3 expression was significantly increased 6 h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.

  2. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    PubMed

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  3. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  4. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in park... open to the use of vessels, a diver must prominently display a dive flag during dive operations. A dive...

  5. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in park... open to the use of vessels, a diver must prominently display a dive flag during dive operations. A dive...

  6. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report

    PubMed Central

    LEE, Joo-Young; LEE, Hyo-Hyun; KIM, Siyeon; JANG, Young-Joon; BAEK, Yoon-Jeong; KANG, Kwon-Yong

    2015-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155–341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions. PMID:26632118

  7. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report.

    PubMed

    Lee, Joo-Young; Lee, Hyo-Hyun; Kim, Siyeon; Jang, Young-Joon; Baek, Yoon-Jeong; Kang, Kwon-Yong

    2016-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155-341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions.

  8. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  9. Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method

    PubMed Central

    Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars

    2015-01-01

    ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362

  10. User settings on dive computers: reliability in aiding conservative diving.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2016-06-01

    Divers can make adjustments to diving computers when they may need or want to dive more conservatively (e.g., diving with a persistent (patent) foramen ovale). Information describing the effects of these alterations or how they compare to other methods, such as using enriched air nitrox (EANx) with air dive planning tools, is lacking. Seven models of dive computer from four manufacturers (Mares, Suunto, Oceanic and UWATEC) were subjected to single square-wave compression profiles (maximum depth: 20 or 40 metres' sea water, msw), single multi-level profiles (maximum depth: 30 msw; stops at 15 and 6 msw), and multi-dive series (two dives to 30 msw followed by one to 20 msw). Adjustable settings were employed for each dive profile; some modified profiles were compared against stand-alone use of EANx. Dives were shorter or indicated longer decompression obligations when conservative settings were applied. However, some computers in default settings produced more conservative dives than others that had been modified. Some computer-generated penalties were greater than when using EANx alone, particularly at partial pressures of oxygen (PO₂) below 1.40 bar. Some computers 'locked out' during the multi-dive series; others would continue to support decompression with, in some cases, automatically-reduced levels of conservatism. Changing reduced gradient bubble model values on Suunto computers produced few differences. The range of possible adjustments and the non-standard computer response to them complicates the ability to provide accurate guidance to divers wanting to dive more conservatively. The use of EANx alone may not always generate satisfactory levels of conservatism.

  11. High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation.

    PubMed

    Madden, Dennis; Thom, Stephen R; Yang, Ming; Bhopale, Veena M; Ljubkovic, Marko; Dujic, Zeljko

    2014-09-01

    Venous gas emboli (VGE) have traditionally served as a marker for decompression stress after SCUBA diving and a reduction in bubble loads is a target for precondition procedures. However, VGE can be observed in large quantities with no negative clinical consequences. The effect of exercise before diving on VGE has been evaluated with mixed results. Microparticle (MP) counts and sub-type expression serve as indicators of vascular inflammation and DCS in mice. The goal of the present study is to evaluate the effect of anaerobic cycling (AC) on VGE and MP following SCUBA diving. Ten male divers performed two dives to 18 m for 41 min, one dive (AC) was preceded by a repeated-Wingate cycling protocol; a control dive (CON) was completed without exercise. VGE were analyzed at 15, 40, 80, and 120 min post-diving. Blood for MP analysis was collected before exercise (AC only), before diving, 15 and 120 min after surfacing. VGE were significantly lower 15 min post-diving in the AC group, with no difference in the remaining measurements. MPs were elevated by exercise and diving, however, post-diving elevations were attenuated in the AC dive. Some markers of neutrophil elevation (CD18, CD41) were increased in the CON compared to the AC dive. The repeated-Wingate protocol resulted in an attenuation of MP counts and sub-types that have been related to vascular injury and DCS-like symptoms in mice. Further studies are needed to determine if MPs represent a risk factor or marker for DCS in humans.

  12. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  13. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  14. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  15. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following requirements, unless otherwise specified. (b) Limits. Mixed-gas diving shall be conducted only when: (1) A...

  16. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  17. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  18. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  19. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  20. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Open diving bells. 197.334 Section 197.334 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open diving... the open bottom and his head in the bubble; (b) Have lifting equipment capable of returning the...

  1. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Mixed-gas diving. 1910.426 Section 1910.426 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.426 Mixed-gas diving. (a) General. Employers engaged in mixed-gas diving shall comply with the following...

  2. Diving accidents treated at a military hospital-based recompression chamber facility in Peninsular Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Halim, M Abd; Zin, B Mohd; Sulaiman, A

    2008-06-01

    This paper describes the pattern of diving accidents treated in a military hospital-based recompression chamber facility in Peninsular Malaysia. A retrospective study was carried out to utilize secondary data from the respective hospital medical records from 1st January 1996 to 31st December 2004. A total of 179 cases categorized as diving accidents received treatment with an average of 20 cases per year. Out of 179 cases, 96.3% (n = 173) received recompression treatment. Majority were males (93.3%), civilians (87.2%) and non-Malaysian citizens (59.2%). Commercial diving activities contributed the highest percentage of diving accidents (48.0%), followed by recreational (39.2%) and military (12.8%). Diving accidents due to commercial diving (n = 86) were mainly contributed by underwater logging activities (87.2%). The most common cases sustained were decompression illness (DCI) (96.1%). Underwater logging and recreational diving activities which contribute to a significant number of diving accidents must be closely monitored. Notification, centralised data registration, medical surveillance as well as legislations related to diving activities in Malaysia are essential to ensure adequate monitoring of diving accidents in the future.

  3. Risk of Neurological Insult in Competitive Deep Breath-Hold Diving.

    PubMed

    Tetzlaff, Kay; Schöppenthau, Holger; Schipke, Jochen D

    2017-02-01

    It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades. A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives. A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult. This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

  4. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  5. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  6. Flying after diving: in-flight echocardiography after a scuba diving week.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2014-10-01

    Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2) during the diving week; 3) before the return flight after a 24-h PFSI; and 4) during the return flight. All divers completed similar multiple repetitive dives during the diving week. All dives were equivalent as to inert gas load and gradient factor upon surfacing. No bubbles in the right heart were found in any diver during the outgoing flight or at the preflight control after a 24-h PFSI following the diving week. A significant increase in the number and grade of bubbles was observed during the return flight. However, bubbles were only observed in 6 of the 32 divers. These six divers were the same ones who developed bubbles after every dive. Having observed a 24-h preflight interval, the majority of divers did not develop bubbles during altitude exposure; however, it is intriguing to note that the same subjects who developed significant amounts of bubbles after every dive showed equally significant bubble grades during in-flight echocardiography notwithstanding a correct PFSI. This indicates a possible higher susceptibility to bubble formation in certain individuals, who may need longer PFSI before altitude exposure after scuba diving.

  7. Nutritional Assessment During a 14-d Saturation Dive: the NASA Extreme Environment Mission Operation V Project

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J. E.; Fesperman, J. V.; Smith, M. D.; Rice, B. L.; Zwart, S. R.

    2006-01-01

    Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.

  8. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    USGS Publications Warehouse

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  9. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  10. 29 CFR 1910.402 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a specific depth-time exposure or exposures. Dive-guiding operations means leading groups of sports...). Recreational diving instruction means training diving students in the use of recreational diving procedures and...

  11. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  12. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  13. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the Preserve. ...

  14. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  15. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the...

  16. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  17. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  18. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  19. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  20. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  1. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  2. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Surface-supplied air diving. 1910.425 Section 1910.425... Procedures § 1910.425 Surface-supplied air diving. (a) General. Employers engaged in surface-supplied air...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom...

  3. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Surface-supplied air diving. 197.432 Section 197.432...-supplied air diving. The diving supervisor shall insure that— (a) Surface-supplied air diving is conducted... space; and (f) The surface-supplied air diver has the equipment required by § 197.346 (b) or (d). ...

  4. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  5. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  6. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  7. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  8. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... human occupancy; (ii) A built-in-breathing-system with a minimum of one mask per occupant; (iii) A two-way voice communication system between occupants and a dive team member at the dive location; (iv) A... location. (6) A dive team member shall be available at the dive location during and for at least one hour...

  9. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  10. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  11. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  12. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  13. Provisional report on diving-related fatalities in Australian waters 2004.

    PubMed

    Walker, Douglas; Lippmann, John; Lawrence, Chris; Huston, John; Fock, Andrew

    2009-09-01

    An individual case review of diving-related deaths reported to have occurred in Australia in 2004 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, and also details from the post-mortem examination, where available. In total, there were 22 reported fatalities, all male. Nine deaths occurred while snorkelling and/or breath-hold diving, 10 while scuba diving, one just prior to scuba diving, one while using surface-supply breath apparatus and one while diving with a rebreather. In this series, cardiac-related issues were thought to have contributed to the deaths of five snorkel divers and three scuba divers, and in one person who was about to go diving. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, inexperience, time away from diving, inadequate supervision, and diving without appropriate training were features in several scuba deaths in this series.

  14. Sperm whale dive behavior characteristics derived from intermediate-duration archival tag data.

    PubMed

    Irvine, Ladd; Palacios, Daniel M; Urbán, Jorge; Mate, Bruce

    2017-10-01

    Here, we describe the diving behavior of sperm whales ( Physeter macrocephalus ) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1-Hz resolution and GPS-quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS-quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V-shaped, Mid-water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short- and Long-duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.

  15. Estimating the risk of a scuba diving fatality in Australia.

    PubMed

    Lippmann, John; Stevenson, Christopher; McD Taylor, David; Williams, Jo

    2016-12-01

    There are few data available on which to estimate the risk of death for Australian divers. This report estimates the risk of a scuba diving fatality for Australian residents, international tourists diving in Queensland, and clients of a large Victorian dive operator. Numerators for the estimates were obtained from the Divers Alert Network Asia-Pacific dive fatality database. Denominators were derived from three sources: Participation in Exercise, Recreation and Sport Surveys, 2001-2010 (Australian resident diving activity data); Tourism Research Australia surveys of international visitors to Queensland 2006-2014 and a dive operator in Victoria 2007-2014. Annual fatality rates (AFR) and 95% confidence intervals (95% CI) were calculated using an exact binomial test. Estimated AFRs were: 0.48 (0.37-0.59) deaths per 100,000 dives, or 8.73 (6.85-10.96) deaths per 100,000 divers for Australian residents; 0.12 (0.05-0.25) deaths per 100,000 dives, or 0.46 (0.20-0.91) deaths per 100,000 divers for international visitors to Queensland; and 1.64 (0.20-5.93) deaths per 100,000 dives for the dive operator in Victoria. On a per diver basis, Australian residents are estimated to be almost twenty times more likely to die whilst scuba diving than are international visitors to Queensland, or to lower than fourfold on a per dive basis. On a per dive basis, divers in Victoria are fourteen times more likely to die than are Queensland international tourists. Although some of the estimates are based on potentially unreliable denominator data extrapolated from surveys, the diving fatality rates in Australia appear to vary by State, being considerably lower in Queensland than in Victoria. These estimates are similar to or lower than comparable overseas estimates, although reliability of all such measurements varies with study size and accuracy of the data available.

  16. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  17. Blood Oxygen Conservation in Diving Sea Lions: How Low Does Oxygen Really Go?

    DTIC Science & Technology

    2014-09-30

    arterial saturations during dives as long as 10 min (Meir and Ponganis 2009). It is also notable that a severe bradycardia during descent occurs in deep...are not completely depleted in even the longest of sea lion dives. The severe bradycardia during deep dives contributes to the preservation of the...3332-3341. McDonald, B.I., and P.J. Ponganis. 2014. Deep-diving sea lions exhibit extreme bradycardia in long- duration dives. Journal of Experimental

  18. Decompression from He-N2-O2 (TRIMIX) Bounce Dives Is Not More Efficient Than From He-O2 (HELIOX) Bounce Dives

    DTIC Science & Technology

    2015-05-28

    Diver Characteristics Appendix E Diving Schedule Appendix F Medical Incidents Appendix G UBA Gas Compositions iv ACKNOWLEDGEMENTS The...experimental dives (median = 3). The schedule of each diver’s participation in experimental dives is given in Appendix E . Divers were required to avoid any...divers’ participation on each test schedule is given in Appendix E . The numbers of completed man-dives on the two schedules are not multiples of the

  19. Board Diving Regulations in Public Swimming Pools and Risk of Injury.

    PubMed

    Williams, David; Odin, Louise

    2016-06-01

    Public session access to diving boards is one of the stepping stones for those wishing to develop their skills in the sport of diving. The extent to which certain dive forms are considered risky (forward/backward/rotations) and therefore not permitted is a matter for local pool managers. In Study 1, 20 public pools with diving facilities responded to a U.K. survey concerning their diving regulation policy and related injury incidence in the previous year. More restrictive regulation of dive forms was not associated with a decrease in injuries (rs [42] = -0.20, p = 0.93). In Study 2, diving risk perception and attitudes towards regulation were compared between experienced club divers (N = 22) and nondivers (N = 22). Risk was perceived to be lower for those with experience, and these people favored less regulation. The findings are interpreted in terms of a risk thermostat model, where for complex physical performance activities such as diving, individuals may exercise caution in proportion to their ability and previous experience of success and failure related to the activity. Though intuitively appealing, restrictive regulation of public pool diving may be ineffective in practice because risk is not simplistically associated with dive forms, and divers are able to respond flexibly to risk by exercising caution where appropriate. © 2015 Society for Risk Analysis.

  20. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    PubMed Central

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks. PMID:29628904

  1. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes.

    PubMed

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks.

  2. Diving into Real World Challenges

    ERIC Educational Resources Information Center

    Saldana, Matt; Rodden, Leslie

    2012-01-01

    In this article, the authors discuss how educators can engage students in real world learning using their academic knowledge and technical skills. They describe how school districts have discovered that the world of robotics can help students use technical skills to solve simulated problems found in the real world, while understanding the…

  3. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    PubMed

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  4. Female professional divers. Similarities and differences between male and female professional divers.

    PubMed

    Irgens, Ågot; Troland, Kari; Grønning, Marit

    2017-01-01

    The aim of the present study was to explore the potential differences between female and male professional divers with regards to demographics, diving certificates, areas of diving, diving activity and health effects. The Norwegian Labour Inspection Authority's Diving certificate register contains data on all professional inshore divers who have held a certificate at any time since 1980. Forty nine per cent of these divers responded to the "Norwegian diver 2011" questionnaire. Of these divers 64 female and 1327 male divers completed the questionnaire about their professional diving career, certificate, year of onset and the year they stopped diving professionally if they were not still active in the diving industry. The level of general education was higher among female divers. More males than females were fully certified in diving. The mean age was lower among female than male fully certified divers. Fully certified female divers reported a lower total number of dives, shallower dives and diving for a shorter period of time than the male divers. They also had a lower percentage of work within the quay/construction sector and more often worked as teachers/instructors. A lower percentage of fully certified females than males had experienced decompression sickness (16.7% vs. 26.9%). Life-threatening events and psychologically challenging events were less common among females, as were adverse health effects. No such gender differences were seen for divers with a restricted certificate. The fully certified, female professional divers in our study had a very short diving career, reported fewer and shallower dives, and chose less physically demanding jobs than their male counterparts. They also had a higher level of education, reported less health problems and a better quality of life. The health effects seem to be related to the type of work rather than to gender.

  5. Flipper stroke rate and venous oxygen levels in free-ranging California sea lions.

    PubMed

    Tift, Michael S; Hückstädt, Luis A; McDonald, Birgitte I; Thorson, Philip H; Ponganis, Paul J

    2017-04-15

    The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions ( Zalophus californianus ) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation ( S O 2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between S O 2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate. © 2017. Published by The Company of Biologists Ltd.

  6. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    PubMed

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  7. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    PubMed

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p < 0.001) while it was increased in the chocolate group (104.1 ± 2.9 % of pre-dive values, p < 0.01). A decrease in the NO level was observed in the control group (86.76 ± 15.57 %, p < 0.05) whereas no difference was shown in the chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  8. The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function

    PubMed Central

    Obad, Ante; Palada, Ivan; Valic, Zoran; Ivančev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Željko

    2007-01-01

    Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (∼2–3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24–48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects. PMID:17110413

  9. Investigating Annual Diving Behaviour by Hooded Seals (Cystophora cristata) within the Northwest Atlantic Ocean

    PubMed Central

    Andersen, Julie M.; Skern-Mauritzen, Mette; Boehme, Lars; Wiersma, Yolanda F.; Rosing-Asvid, Aqqalu; Hammill, Mike O.; Stenson, Garry B.

    2013-01-01

    With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004−2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals’ diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August–October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods. PMID:24282541

  10. Argon used as dry suit insulation gas for cold-water diving.

    PubMed

    Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A

    2013-06-03

    Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.

  11. The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function.

    PubMed

    Obad, Ante; Palada, Ivan; Valic, Zoran; Ivancev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Zeljko

    2007-02-01

    Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (approximately 2-3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24-48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects.

  12. Field Management of Accidental Hypothermia during Diving

    DTIC Science & Technology

    1990-01-01

    diving operations. 4 3. Diving after tending for prolonged periods leading to hypothermia before diving. 4. Dry suit undergarments that are wet due to...dives, reducing insulation of the undergarment, and then remaining at rest for prolonged decompressiofi stops. 6. Inadequate thermal insulation: wet ...suit instead of dry suit, undergarment selection too thin, too compressible or of poor insulation when wet (63-64), inadequate thermal insulation of the

  13. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  14. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  15. 29 CFR Appendix C to Subpart T of... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  16. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  17. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (i.e., commercially pre-packed), disposable scrubber cartridge containing a CO2-sorbent material that... permit a diver to use a dive-decompression computer designed to regulate decompression when the dive...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU...

  18. Field validation of Tasmania's aquaculture industry bounce-diving schedules using Doppler analysis of decompression stress.

    PubMed

    Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David

    2014-09-01

    Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw, and two successive bounce dive series in a day's diving.

  19. Diving through the thermal window: implications for a warming world

    PubMed Central

    Campbell, Hamish A.; Dwyer, Ross G.; Gordos, Matthew; Franklin, Craig E.

    2010-01-01

    Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship. PMID:20610433

  20. Scanning sonar of rolling porpoises during prey capture dives.

    PubMed

    Akamatsu, T; Wang, D; Wang, K; Li, S; Dong, S

    2010-01-01

    Dolphins and porpoises have excellent biosonar ability, which they use for navigation, ranging and foraging. However, the role of biosonar in free-ranging small cetaceans has not been fully investigated. The biosonar behaviour and body movements of 15 free-ranging finless porpoises (Neophocaena phocaenoides) were observed using electronic tags attached to the animals. The porpoises often rotated their bodies more than 60 deg., on average, around the body axis in a dive bout. This behaviour occupied 31% of the dive duration during 186 h of effective observation time. Rolling dives were associated with extensive searching effort, and 23% of the rolling dive time was phonated, almost twice the phonation ratio of upright dives. Porpoises used short inter-click interval sonar 4.3 times more frequently during rolling dives than during upright dives. Sudden speed drops, which indicated that an individual turned around, occurred 4.5 times more frequently during rolling dives than during upright dives. Together, these data suggest that the porpoises searched extensively for targets and rolled their bodies to enlarge the search area by changing the narrow beam axis of the biosonar. Once a possible target was detected, porpoises frequently produced short-range sonar sounds. Continuous searching for prey and frequent capture trials appeared to occur during rolling dives of finless porpoises. In contrast, head movements ranging +/-2 cm, which can also change the beam axis, were regularly observed during both dives. Head movements might assist in instant assessment of the arbitrary direction by changing the beam axis rather than prey searching and pursuit.

  1. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    PubMed Central

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  2. Venous gas embolism after an open-water air dive and identical repetitive dive.

    PubMed

    Schellart, N A M; Sterk, W

    2012-01-01

    Decompression tables indicate that a repetitive dive to the same depth as a first dive should be shortened to obtain the same probability of occurrence of decompression sickness (pDCS). Repetition protocols are based on small numbers, a reason for re-examination. Since venous gas embolism (VGE) and pDCS are related, one would expect a higher bubble grade (BG) of VGE after the repetitive dive without reducing bottom time. BGs were determined in 28 divers after a first and an identical repetitive air dive of 40 minutes to 20 meters of sea water. Doppler BG scores were transformed to log number of bubbles/cm2 (logB) to allow numerical analysis. With a previously published model (Model2), pDCS was calculated for the first dive and for both dives together. From pDCS, theoretical logBs were estimated with a pDCS-to-logB model constructed from literature data. However, pDCS the second dive was provided using conditional probability. This was achieved in Model2 and indirectly via tissue saturations. The combination of both models shows a significant increase of logB after the second dive, whereas the measurements showed an unexpected lower logB. These differences between measurements and model expectations are significant (p-values < 0.01). A reason for this discrepancy is uncertain. The most likely speculation would be that the divers, who were relatively old, did not perform physical activity for some days before the first dive. Our data suggest that, wisely, the first dive after a period of no exercise should be performed conservatively, particularly for older divers.

  3. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  4. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  6. [Scuba diving in children: Physiology, risks and recommendations].

    PubMed

    Cilveti, R; Osona, B; Peña, J A; Moreno, L; Asensio, O

    2015-12-01

    The increase in recreational scuba diving in recent years, including children, involves risks and the possibility of accidents. While legislation, conditions and risks of scuba diving are well documented in adults, scientific evidence in scuba diving by children and adolescents is sparse and isolated. Furthermore, existing guidelines and recommendations for adults cannot be transferred directly to children. These circumstances have led to the Group on Techniques of the Spanish Society of Pediatric Pulmonology (SENP) to perform a literature search to review and update the knowledge about scuba diving in children. Physiological adaptations of the body are examined during the dive, as well as the anatomical and physiological characteristics of children that should be taken into account in scuba diving. The most common types of accidents and its causes, as well as the risks of scuba diving practice in children with previous diseases are discussed, along with details of the medical and psychological requirements for scuba diving to be considered in the assessment of child and adolescent. A list of recommendations for scuba diving with compressed air in children is presented by a group of experts. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  7. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

    PubMed

    Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B

    2004-07-01

    When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.

  8. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure.

    PubMed

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-11-22

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for 'surfacers' because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure

    PubMed Central

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-01-01

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  10. Cardiac responses of grey seals during diving at sea.

    PubMed

    Thompson, D; Fedak, M A

    1993-01-01

    Heart rate, swimming speed and diving depth data were collected from free-ranging grey seals, Halichoerus grypus, as they foraged and travelled in the sea around the Hebrides Islands off western Scotland. Information was collected on a tracking yacht using a combination of sonic and radio telemetry. Diving heart rate declined as a function of dive duration. In long dives, grey seals employed extreme bradycardia, with heart rates falling to 4 beats min-1 for extended periods, despite the animal being free to breath at will. This extreme dive response is part of the normal foraging behaviour. Seals spent 89% of the time submerged during bouts of long dives; swimming was restricted to ascent and descent. Dive durations exceeded estimated aerobic dive limit, even assuming resting metabolic rates. These results indicate that behavioural, and possibly cellular, energy-sparing mechanisms play an important role in diving behaviour of grey seals. This has implications not only for studies of mammalian energetics but also for our understanding of the foraging tactics and prey selection of marine mammals. If some seals are using energy-sparing mechanisms to reduce metabolic costs while at depth, they may be forced to wait for and ambush prey rather than to search for and chase it.

  11. Decompression sickness in breath-hold divers: a review.

    PubMed

    Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka

    2009-12-01

    Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.

  12. A case-control study evaluating relative risk factors for decompression sickness: a research report.

    PubMed

    Suzuki, Naoko; Yagishita, Kazuyosi; Togawa, Seiichiro; Okazaki, Fumihiro; Shibayama, Masaharu; Yamamoto, Kazuo; Mano, Yoshihiro

    2014-01-01

    Factors contributing to the pathogenesis of decompression sickness (DCS) in divers have been described in many studies. However, relative importance of these factors has not been reported. In this case-control study, we compared the diving profiles of divers experiencing DCS with those of a control group. The DCS group comprised 35 recreational scuba divers who were diagnosed by physicians as having DCS. The control group consisted of 324 apparently healthy recreational divers. All divers conducted their dives from 2009 to 2011. The questionnaire consisted of 33 items about an individual's diving profile, physical condition and activities before, during and just after the dive. To simplify dive parameters, the dive site was limited to Izu Osezaki. Odds ratios and multiple logistic regression were used for the analysis. Odds ratios revealed several items as dive and health factors associated with DCS. The major items were as follows: shortness of breath after heavy exercise during the dive (OR = 12.12), dehydration (OR = 10.63), and maximum dive depth > 30 msw (OR = 7.18). Results of logistic regression were similar to those by odds ratio analysis. We assessed the relative weights of the surveyed dive and health factors associated with DCS. Because results of several factors conflict with previous studies, future studies are needed.

  13. A Parallel Hypothesis Method of Autonomous Underwater Vehicle Navigation

    DTIC Science & Technology

    2009-06-01

    that is a hybrid of instantaneous and filtered localization methods. As discussed in Smith’s text on mathematical modeling and digital simulation ...rich in acoustic multipaths. The method was extended, in simulation , to other shallow water environments which could also be expected to be rich in...and the observed water depth profile is shown in Figure 6-17. The ABE164 survey dive ended early because ABE became entangled in a piece of 1/4

  14. Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction.

    PubMed

    Lambrechts, Kate; Balestra, Costantino; Theron, Michaël; Henckes, Anne; Galinat, Hubert; Mignant, Fanny; Belhomme, Marc; Pontier, Jean-Michel; Guerrero, François

    2017-02-01

    Previous studies have shown vascular dysfunction of main conductance arteries and microvessels after diving. We aim to evaluate the impact of bubble formation on vascular function and haemostasis. To achieve this, we used a vibration preconditioning to influence bubble levels without changing any other parameters linked to the dive. Twentty-six divers were randomly assigned to one of three groups: (1) the "vibrations-dive" group (VD; n = 9) was exposed to a whole-body vibration session 30 min prior the dive; (2) the "diving" group (D; n = 9) served as a control for the effect of the diving protocol; (3) The "vibration" protocol (V; n = 8) allowed us to assess the effect of vibrations without diving. Macro- and microvascular function was assessed for each subject before and after the dive, subsequently. Bubble grades were monitored with Doppler according to the Spencer grading system. Blood was taken before and after the protocol to assess any change of platelets or endothelial function. Bubble formation was lower in the VD than the diving group. The other measured parameters remained unchanged after the "vibration" protocol alone. Diving alone induced macrovascular dysfunction, and increased PMP and thrombin generation. Those parameters were no longer changed in the VD group. Conversely, a microvascular dysfunction persists despite a significant decrease of circulating bubbles. Finally, the results of this study suggest that macro- but not microvascular impairment results at least partly from bubbles, possibly related to platelet activation and generation of pro-coagulant microparticles.

  15. The effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina)

    PubMed Central

    Weingartner, Gundula M.; Thornton, Sheila J.; Andrews, Russel D.; Enstipp, Manfred R.; Barts, Agnieszka D.; Hochachka, Peter W.

    2012-01-01

    Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to below the resting level (hypometabolism). Thyroid hormones are crucial in regulation of energy metabolism in vertebrates and therefore their control might be an important part of achieving a hypometabolic state during diving. To investigate the effect of thyroid hormones on diving physiology of phocid seals, we measured oxygen consumption, heart rate, and post-dive lactate concentrations in five harbor seals (Phoca vitulina) conducting 5 min dives on command, in both euthyroid and experimentally induced hyperthyroid states. Oxygen consumption during diving was significantly reduced (by 25%) in both euthyroid and hyperthyroid states, confirming that metabolic rate during diving falls below resting levels. Hyperthyroidism increased oxygen consumption (by 7–8%) when resting in water and during diving, compared with the euthyroid state, illustrating the marked effect of thyroid hormones on metabolic rate. Consequently, post-dive lactate concentrations were significantly increased in the hyperthyroid state, suggesting that the greater oxygen consumption rates forced seals to make increased use of anaerobic metabolic pathways. During diving, hyperthyroid seals also exhibited a more profound decline in heart rate than seals in the euthyroid state, indicating that these seals were pushed toward their aerobic limit and required a more pronounced cardiovascular response. Our results demonstrate the powerful role of thyroid hormones in metabolic regulation and support the hypothesis that thyroid hormones play a role in modulating the at-sea metabolism of phocid seals. PMID:23060807

  16. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    PubMed

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effect of recreational diving on Patagonian rocky reefs.

    PubMed

    Bravo, Gonzalo; Márquez, Federico; Marzinelli, Ezequiel M; Mendez, María M; Bigatti, Gregorio

    2015-03-01

    Tourism has grown considerably in the last decades, promoting activities such as recreational SCUBA diving that may affect marine benthic communities. In Puerto Madryn, Patagonia Argentina, sub-aquatic tourism areas (STA) receive about 7,000 divers per year. Diving is concentrated on a few small rocky reefs and 50% of the dives occur in summer. In this work, we evaluated the effect of recreational diving activities on benthic communities and determined whether diving causes a press (long-term) or a pulse (short-term) response. We quantified the percentage cover of benthic organisms and compared benthic assemblage structure and composition between two sites with contrasting usage by divers, 'highly disturbed' and 'moderately disturbed' sites, and two 'control' sites with similar physical characteristics but no diving activity, twice before and after the diving peak in summer. We found differences in benthic assemblage structure (identity and relative abundance of taxa) and composition (identity only) among diving sites and controls. These differences were consistent before and after the peak of diving in summer, suggesting that recreational diving may produce a press impact on overall benthic assemblage structure and composition in these STA. At the moderately disturbed site, however, covers of specific taxa, such as some key habitat-forming or highly abundant species, usually differed from those in controls only immediately after summer, after which they begun to resemble controls, suggesting a pulse impact. Thus, STA in Golfo Nuevo seem to respond differently to disturbances of diving depending on the usage of the sites. This information is necessary to develop sound management strategies in order to preserve local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Effect Of Instantaneous Field Of View Size On The Acquisition Of Low Level Flight And 30?° Manual Dive Bombing Tasks

    NASA Astrophysics Data System (ADS)

    Dixon, Kevin W.; Krueger, Gretchen M.; Rojas, Victoria A.; Hubbard, David C.

    1989-09-01

    Helmet mounted displays provide required field of regard, out of the cockpit visual imagery for tactical training while maintaining acceptable luminance and resolution levels. An important consideration for visual system designers is the horizontal and vertical dimensions of the instantaneous field of view. This study investigated the effect of various instantaneous field of view sizes on the performance of low level flight and 30 degree manual dive bomb tasks. An in-simulator transfer of training design allowed pilots to be trained in an instantaneous field of view condition and transferred to a wide FOV condition for testing. The selected instantaneous field of view sizes cover the range of current and proposed helmet mounted displays. The field of view sizes used were 127° H x 67° V, 140° H x 80° V, 160° H x 80° V, and 180° H x 80° V. The 300° H x 150° V size provided a full field of view control condition. An A-10 dodecahedron simulator configured with a color light valve display, computer generated imagery, and a Polhemus magnetic head tracker provided the cockpit and display apparatus. The Polhemus magnetic head tracker allowed the electronically masked field of view sizes to be moved on the seven window display of the dodecahedron. The dependent measures were: 1) Number of trials to reach criterion for low level flight tasks and dive bombs, 2) Performance measures of the low level flight route, 3) Performance measures of the dive bombing task, and 4) Subjective questionnaire data. Thirty male instructor pilots from Williams AFB, Arizona served as subjects for the study. The results revealed significant field of view effects for the number of trials required to reach criterion in the two smallest FOV conditions for right 180° turns and dive bomb training. The data also revealed pilots performed closer to the desired pitch angle for all but the two smallest conditions. The questionnaire data revealed that pilots felt their performance was degraded and they relied more on information from their instruments in the smaller field of view conditions. The conclusions of this study are that for tasks requiring close course adherence to a desired flight profile a minimum of 160° H X 80° V instantaneous field of view should be used for training. Future investigations into the instantaneous field of view size will be conducted to validate the results on other tactical tasks.

  19. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas

    PubMed Central

    Durban, John W.; Claridge, Diane E.; Dunn, Charlotte A.; Fearnbach, Holly; Parsons, Kim M.; Andrews, Russel D.; Ballance, Lisa T.

    2017-01-01

    Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville’s beaked whale Mesoplodon densirostris and the Cuvier’s beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution patterns, and relative vulnerabilities to anthropogenic impacts. PMID:29020021

  20. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas.

    PubMed

    Joyce, Trevor W; Durban, John W; Claridge, Diane E; Dunn, Charlotte A; Fearnbach, Holly; Parsons, Kim M; Andrews, Russel D; Ballance, Lisa T

    2017-01-01

    Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville's beaked whale Mesoplodon densirostris and the Cuvier's beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution patterns, and relative vulnerabilities to anthropogenic impacts.

  1. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    PubMed

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  2. Characteristics of diving in radio-marked Xantus's Murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, John Y.

    2005-01-01

    We monitored diving activity of radio-marked Xantus's Murrelets Synthliboramphus hypoleucus near Anacapa Island, California, during the breeding season. Thirteen radio-marked murrelets were remotely monitored from Anacapa Island with a handheld antenna and radio receiver for 29 hours in three sample periods in April and May 2003. Mean dive durations in the sample periods were 18 s ?? 2 s, 28 s ?? 2 s, and 24 s ?? 4 s, suggesting that dives were less than 21 m from the surface. Dive duration and subsequent time on the surface differed between the sample periods. Dive duration and subsequent time on the surface were not correlated in observations stratified by individual bird or by sample period. Further, dive duration and subsequent time on the surface were not correlated within foraging bouts. Dive characteristics measured near Anacapa Island suggested that Xantus's Murrelets have the ability to capture prey found at varying depths, but will feed on prey that is most available near the surface of the water.

  3. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals.

    PubMed

    Williams, Terrie M; Fuiman, Lee A; Kendall, Traci; Berry, Patrick; Richter, Beau; Noren, Shawn R; Thometz, Nicole; Shattock, Michael J; Farrell, Edward; Stamper, Andy M; Davis, Randall W

    2015-01-16

    Unlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse. Unexpectedly, cardiac arrhythmias occurred in >73% of deep, aerobic dives, which we attribute to the interplay between sympathetic and parasympathetic drivers for exercise and diving, respectively. Such marked cardiac variability alters the common view of a stereotypic 'dive reflex' in diving mammals. It also suggests the persistence of ancestral terrestrial traits in cardiac function that may help explain the unique sensitivity of some deep-diving marine mammals to anthropogenic disturbances.

  4. Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana.

    PubMed

    Fossette, Sabrina; Gaspar, Philippe; Handrich, Yves; Le Maho, Yvon; Georges, Jean-Yves

    2008-03-01

    1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep-water Caribbean Sea and in the French Guianan shallow continental shelf, and may be related to different local prey accessibility among sites. Our results may help to explain recently reported site-specific individual body size and population dynamics.

  5. Otorhinolaryngologic disorders and diving accidents: an analysis of 306 divers.

    PubMed

    Klingmann, Christoph; Praetorius, Mark; Baumann, Ingo; Plinkert, Peter K

    2007-10-01

    Diving is a very popular leisure activity with an increasing number of participants. As more than 80% of the diving related problems involve the head and neck region, every otorhinolaryngologist should be familiar with diving medical standards. We here present an analysis of more than 300 patients we have treated in the past four years. Between January 2002 and October 2005, 306 patients presented in our department with otorhinological disorders after diving, or after diving accidents. We collected the following data: name, sex, age, date of treatment, date of accident, diagnosis, special aspects of the diagnosis, number of dives, diving certification, whether and which surgery had been performed, history of acute diving accidents or follow up treatment, assessment of fitness to dive and special remarks. The study setting was a retrospective cohort study. The distribution of the disorders was as follows: 24 divers (8%) with external ear disorders, 140 divers (46%) with middle ear disorders, 56 divers (18%) with inner ear disorders, 53 divers (17%) with disorders of the nose and sinuses, 24 divers (8%) with decompression illness (DCI) and 9 divers (3%) who complained of various symptoms. Only 18% of the divers presented with acute disorders. The most common disorder (24%) was Eustachian tube dysfunction. Female divers were significantly more often affected. Chronic sinusitis was found to be associated with a significantly higher number of performed dives. Conservative treatment failed in 30% of the patients but sinus surgery relieved symptoms in all patients of this group. The middle ear is the main problem area for divers. Middle ear ventilation problems due to Eustachian tube dysfunction can be treated conservatively with excellent results whereas pathology of the tympanic membrane and ossicular chain often require surgery. More than four out of five patients visited our department to re-establish their fitness to dive. Although the treatment of acute diving-related disorders is an important field for the treatment of divers, the main need of divers seems to be assessment and recovery of their fitness to dive.

  6. How seabirds plunge-dive without injuries

    NASA Astrophysics Data System (ADS)

    Chang, Brian; Croson, Matthew; Straker, Lorian; Gart, Sean; Dove, Carla; Gerwin, John; Jung, Sunghwan

    In nature, several seabirds (e.g., gannets and boobies) dive into water at up to 24 m/s as a hunting mechanism; furthermore, gannets and boobies have a slender neck, which is potentially the weakest part of the body under compression during high-speed impact. In this work, we investigate the stability of the bird's neck during plunge-diving by understanding the interaction between the fluid forces acting on the head and the flexibility of the neck. First, we use a salvaged bird to identify plunge-diving phases. Anatomical features of the skull and neck were acquired to quantify the effect of beak geometry and neck musculature on the stability during a plunge-dive. Second, physical experiments using an elastic beam as a model for the neck attached to a skull-like cone revealed the limits for the stability of the neck during the bird's dive as a function of impact velocity and geometric factors. We find that the neck length, neck muscles, and diving speed of the bird predominantly reduce the likelihood of injury during the plunge-dive. Finally, we use our results to discuss maximum diving speeds for humans to avoid injury.

  7. Beaked whales respond to simulated and actual navy sonar.

    PubMed

    Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L

    2011-03-14

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.

  8. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance. PMID:21423729

  9. Teaching smoking-cessation counseling to medical students using simulated patients.

    PubMed

    Eyler, A E; Dicken, L L; Fitzgerald, J T; Oh, M S; Wolf, F M; Zweifler, A J

    1997-01-01

    Our objective was to evaluate the effectiveness of using simulated patient instructors and the Ockene method to instruct third-year medical students in smoking-cessation counseling techniques. We used a clinical exercise with self-study preparation and simulated patient instructors. One hundred fifty-nine students participated in a smoking-cessation counseling session in which cognitive and behavioral endpoints were assessed by simulated patient instructors and the students themselves. Student performance in the cognitive and behavioral components of model smoking-cessation counseling was acceptable. Specific areas of weakness, such as the tendency of students to underemphasize the personal and social benefits of smoking cessation, and to overestimate their competence on a number of skill items, were identified. Student evaluation of the exercise was positive. Smoking-cessation counseling can be taught effectively to third-year medical students by simulated patient instructors during a clinical clerkship.

  10. Diving behavior and fishing performance: the case of lobster artisanal fishermen of the Yucatan coast, Mexico.

    PubMed

    Huchim-Lara, Oswaldo; Salas, Silvia; Chin, Walter; Montero, Jorge; Fraga, Julia

    2015-01-01

    An average of 209 cases of decompression sickness (DCS) have been reported every year among artisanal fishermen. divers of the Yucatan Peninsula, Mexico. DCS is a major problem among fishermen divers worldwide. This paper explores how diving behavior and fishing techniques among fishermen relate to the probability of experiencing DCS (Pdcs). Fieldwork was conducted in two communities during the 2012-2013 fishing season. Fishermen were classified into three groups (two per group) according to their fishing performance and followed during their journeys. Dive profiles were recorded using Sensus Ultra dive recorders (Reefet Inc.). Surveys were used to record fishing yields from cooperative and individual fishermen along with fishing techniques and dive behavior. 120 dives were recorded. Fishermen averaged three dives/day, with an average depth of 47 ± 2 feet of sea water (fsw) and an average total bottom time (TBT) of 95 ± 11 minutes. 24% of dives exceeded the 2008 U.S. Navy no-decompression limit. The average ascent rate was 20 fsw/minute, and 5% of those exceeded 40 fsw/minute. Inadequate decompression was observed in all fishermen. Fishermen are diving outside the safety limits of both military and recreational standards. Fishing techniques and dive behavior were important factors in Pdcs. Fishermen were reluctant to seek treatment, and symptoms were relieved with analgesics.

  11. Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving.

    PubMed

    Obad, Ante; Valic, Zoran; Palada, Ivan; Brubakk, Alf O; Modun, Darko; Dujić, Zeljko

    2007-12-01

    We have recently shown that a single air dive leads to acute arterial vasodilation and impairment of endothelium-dependent vasodilatation in humans. Additionally we have found that predive antioxidants at the upper recommended daily allowance partially prevented some of the negative effects of the dive. In this study we prospectively evaluated the effect of long-term antioxidants at a lower RDA dose on arterial endothelial function. Eight professional male divers performed an open sea air dive to 30 msw. Brachial artery flow-mediated dilation (FMD) was assessed before and after diving. The first dive, without antioxidants, caused significant brachial arterial diameter increase from 3.85 +/- 0.55 to 4.04 +/- 0.5 mm and a significant reduction of FMD from 7.6 +/- 2.7 to 2.8 +/- 2.1%. The second dive, with antioxidants, showed unchanged arterial diameter and significant reduction of FMD from 8.11 +/- 2.4 to 6.8 +/- 1.4%. The FMD reduction was significantly less with antioxidants. Vascular smooth muscle function, assessed by nitroglycerine (endothelium-independent dilation), was unaffected by diving. This study shows that long-term antioxidant treatment at a lower RDA dose ending 3-4 h before a dive reduces the endothelial dysfunction in divers. Since the scuba dive was of a similar depth and duration to those practiced by numerous recreational divers, this study raises the possibility of routine predive supplementation with antioxidants.

  12. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  13. Diving behavior and movements of juvenile hawksbill turtles Eretmochelys imbricata on a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Blumenthal, J. M.; Austin, T. J.; Bothwell, J. B.; Broderick, A. C.; Ebanks-Petrie, G.; Olynik, J. R.; Orr, M. F.; Solomon, J. L.; Witt, M. J.; Godley, B. J.

    2009-03-01

    As historically abundant spongivores, hawksbill turtles Eretmochelys imbricata likely played a key ecological role on coral reefs. However, coral reefs are now experiencing global declines and many hawksbill populations are critically reduced. For endangered species, tracking movement has been recognized as fundamental to management. Since movements in marine vertebrates encompass three dimensions, evaluation of diving behavior and range is required to characterize marine turtle habitat. In this study, habitat use of hawksbill turtles on a Caribbean coral reef was elucidated by quantifying diel depth utilization and movements in relation to the boundaries of marine protected areas. Time depth recorders (TDRs) and ultrasonic tags were deployed on 21 Cayman Islands hawksbills, ranging in size from 26.4 to 58.4 cm straight carapace length. Study animals displayed pronounced diel patterns of diurnal activity and nocturnal resting, where diurnal dives were significantly shorter, deeper, and more active. Mean diurnal dive depth (±SD) was 8 ± 5 m, range 2-20 m, mean nocturnal dive depth was 5 ± 5 m, range 1-14 m, and maximum diurnal dive depth was 43 ± 27 m, range 7-91 m. Larger individuals performed significantly longer dives. Body mass was significantly correlated with mean dive depth for nocturnal but not diurnal dives. However, maximum diurnal dive depth was significantly correlated with body mass, suggesting partitioning of vertical habitat by size. Thus, variable dive capacity may reduce intraspecific competition and provide resistance to degradation in shallow habitats. Larger hawksbills may also represent important predators on deep reefs, creating a broad ecological footprint over a range of depths.

  14. Residual oxygen time model for oxygen partial pressure near 130 kPa (1.3 atm).

    PubMed

    Shykoff, Barbara E

    2015-01-01

    A two-part residual oxygen time model predicts the probability of detectible pulmonary oxygen toxicity P(P[O2tox]) after dives with oxygen partial pressure (PO2) approximately 130 kPa, and provides a tool to plan dive series with selected risk of P[O2tox]. Data suggest that pulmonary oxygen injury at this PO2 is additive between dives. Recovery begins after a delay and continues during any following dive. A logistic relation expresses P(P[O2tox]) as a function of dive duration (T(dur)) [hours]: P(P[O2tox]) = 100/[1+exp (3.586-0.49 x T(dur))] This expression maps T(dur) to P(P[O2tox]) or, in the linear mid-portion of the curve, P(P[O2tox]) usefully to T(dur). For multiple dives or during recovery, it maps to an equivalent dive duration, T(eq). T(eq) was found after second dives of duration T(dur 2). Residual time from the first dive t(r) = T(eq) - T(dur2). With known t(r), t and T(dur) a recovery model was fitted. t(r) = T(dur) x exp [-k x((t-5)/T(dur)2], where t = t - 5 hours, k = 0.149 for resting, and 0.047 for exercising divers, and t represents time after surfacing. The fits were assessed for 1,352 man-dives. Standard deviations of the residuals were 8.5% and 18.3% probability for resting or exercise dives, respectively.

  15. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  16. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  17. 46 CFR 197.314 - First aid and treatment equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... treatment equipment. (a) Each dive location must have— (1) A medical kit approved by a physician that... communications system to obtain emergency assistance except when the vessel or facility ship-to-shore, two-way communications system is readily available. (c) Each dive location supporting mixed-gas dives, dives deeper than...

  18. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location decompression chamber for at least one hour after the completion of a dive, decompression, or... corrective action taken, if necessary, to reduce the probability of recurrence. (b) The diving supervisor shall ensure that the working interval of a dive is terminated when he so directs or when— (1) A diver...

  19. Using JPSS VIIRS Fire Radiative Power Data to Forecast Biomass Burning Emissions and Smoke Transport by the High Resolution Rapid Refresh Model

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.

    2017-12-01

    We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https://rapidrefresh.noaa.gov/HRRRsmoke/. Model evaluations for a case study are presented, where simulated smoke concentrations are compared with hourly PM2.5 measurements from EPA's Air Quality System network. These comparisons demonstrate the model's ability in simulating high aerosol loadings during major wildfire events in the western US.

  20. Diving-related visual loss in the setting of angioid streaks: report of two cases.

    PubMed

    Angulo Bocco, Maria I; Spielberg, Leigh; Coppens, Greet; Catherine, Janet; Verougstraete, Claire; Leys, Anita M

    2012-01-01

    The purpose of this study was to report diving-related visual loss in the setting of angioid streaks. Observational case reports of two patients with angioid streaks suffering sudden visual loss immediately after diving. Two young adult male patients presented with visual loss after diving headfirst. Funduscopy revealed angioid streaks, peau d'orange, subretinal hemorrhages, and ruptures of Bruch membrane. Choroidal neovascularization developed during follow-up. Both patients had an otherwise uneventful personal and familial medical history. In patients with angioid streaks, diving headfirst can lead to subretinal hemorrhages and traumatic ruptures in Bruch membrane and increase the risk of maculopathy. Ophthalmologists should caution patients with angioid streaks against diving headfirst.

  1. Seals map bathymetry of the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.

    2010-11-01

    We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.

  2. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  3. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  4. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  5. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197....434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas... supply meeting the requirements of § 197.340; and (k) The surface-supplied mixed-gas diver has the...

  6. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... existing Standard on Commercial Diving Operations (29 CFR part 1910, Subpart [[Page 67481

  7. Characteristics of white LED transmission through a smoke screen

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Yang, Aiying; Feng, Lihui; Guo, Peng

    2018-01-01

    The characteristics of white LED transmission through a smoke screen is critical for visible light communication through a smoke screen. Based on the Mie scattering theory, the Monte Carlo transmission model is established. Based on the probability density function, the white LED sampling model is established according to the measured spectrum of a white LED and the distribution angle of the lambert model. The sampling model of smoke screen particle diameter is also established according to its distribution. We simulate numerically the influence the smoke thickness, the smoke concentration and the angle of irradiance of white LED on transmittance of the white LED. We construct a white LED smoke transmission experiment system. The measured result on the light transmittance and the smoke concentration agreed with the simulated result, and demonstrated the validity of simulation model for visible light transmission channel through a smoke screen.

  8. Behavioral responses of big brown bats to dives by praying mantises.

    PubMed

    Ghose, Kaushik; Triblehorn, Jeffrey D; Bohn, Kari; Yager, David D; Moss, Cynthia F

    2009-03-01

    Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight.

  9. Evidence for behavioural thermoregulation by the world's largest fish

    PubMed Central

    Thums, Michele; Meekan, Mark; Stevens, John; Wilson, Steven; Polovina, Jeff

    2013-01-01

    Many fishes make frequent ascents to surface waters and often show prolonged surface swimming following descents to deep water. This affinity for the surface is thought to be related to the recovery of body heat lost at depth. We tested this hypothesis using data from time–depth recorders deployed on four whale sharks (Rhincodon typus). We summarized vertical movements into bouts of dives and classified these into three main types, using cluster analysis. In addition to day and night ‘bounce’ dives where sharks rapidly descended and ascended, we found a third type: single deep (mean: 340 m), long (mean: 169 min) dives, occurring in daytime with extremely long post-dive surface durations (mean: 146 min). Only sharks that were not constrained by shallow bathymetry performed these dives. We found a negative relationship between the mean surface duration of dives in the bout and the mean minimum temperature of dives in the bout that is consistent with the hypothesis that thermoregulation was a major factor driving use of the surface. The relationship broke down when sharks were diving in mean minimum temperatures around 25°C, suggesting that warmer waters did not incur a large metabolic cost for diving and that other factors may also influence surface use. PMID:23075547

  10. Functional properties of myoglobins from five whale species with different diving capacities.

    PubMed

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  11. The rat: a laboratory model for studies of the diving response

    PubMed Central

    Gan, Qi; Juric, Rajko

    2010-01-01

    Underwater submersion in mammals induces apnea, parasympathetically mediated bradycardia, and sympathetically mediated peripheral vasoconstriction. These effects are collectively termed the diving response, potentially the most powerful autonomic reflex known. Although these physiological responses are directed by neurons in the brain, study of neural control of the diving response has been hampered since 1) it is difficult to study the brains of animals while they are underwater, 2) feral marine mammals are usually large and have brains of variable size, and 3) there are but few references on the brains of naturally diving species. Similar responses are elicited in anesthetized rodents after stimulation of their nasal mucosa, but this nasopharyngeal reflex has not been compared directly with natural diving behavior in the rat. In the present study, we compared hemodynamic responses elicited in awake rats during volitional underwater submersion with those of rats swimming on the water's surface, rats involuntarily submerged, and rats either anesthetized or decerebrate and stimulated nasally with ammonia vapors. We show that the hemodynamic changes to voluntary diving in the rat are similar to those of naturally diving marine mammals. We also show that the responses of voluntary diving rats are 1) significantly different from those seen during swimming, 2) generally similar to those elicited in trained rats involuntarily “dunked” underwater, and 3) generally different from those seen from dunking naive rats underwater. Nasal stimulation of anesthetized rats differed most from the hemodynamic variables of rats trained to dive voluntarily. We propose that the rat trained to dive underwater is an excellent laboratory model to study neural control of the mammalian diving response, and also suggest that some investigations may be done with nasal stimulation of decerebrate preparations to decipher such control. PMID:20093670

  12. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus)

    PubMed Central

    Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738

  13. Astronaut Bean - Acrobatics - Orbital Workshop (OWS)

    NASA Image and Video Library

    1973-08-20

    S73-32632 (19 Aug. 1973) --- Astronaut Alan L. Bean, Skylab 3 commander, performs acrobatics and simulated gymnastics in the dome area of the Orbital Workshop in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. Bean appears to be floating in a diving position. Photo credit: NASA

  14. Yet More Visualized JAMSTEC Cruise and Dive Information

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Hase, H.; Fukuda, K.; Saito, H.; Kayo, M.; Matsuda, S.; Azuma, S.

    2014-12-01

    Every year, JAMSTEC performs about a hundred of research cruises and numerous dive surveys using its research vessels and submersibles. JAMSTEC provides data and samples obtained during these cruises and dives to international users through a series of data sites on the Internet. The "DARWIN (http://www.godac.jamstec.go.jp/darwin/e)" data site disseminates cruise and dive information. On DARWIN, users can search interested cruises and dives with a combination search form or an interactive tree menu, and find lists of observation data as well as links to surrounding databases. Document catalog, physical sample databases, and visual archive of dive surveys (e. g. in http://www.godac.jamstec.go.jp/jmedia/portal/e) are directly accessible from the lists. In 2014, DARWIN experienced an update, which was arranged mainly for enabling on-demand data visualization. Using login users' functions, users can put listed data items into the virtual basket and then trim, plot and download the data. The visualization tools help users to quickly grasp the quality and characteristics of observation data. Meanwhile, JAMSTEC launched a new data site named "JDIVES (http://www.godac.jamstec.go.jp/jdives/e)" to visualize data and sample information obtained by dive surveys. JDIVES shows tracks of dive surveys on the "Google Earth Plugin" and diagrams of deep-sea environmental data such as temperature, salinity, and depth. Submersible camera images and links to associated databases are placed along the dive tracks. The JDVIES interface enables users to perform so-called virtual dive surveys, which can help users to understand local geometries of dive spots and geological settings of associated data and samples. It is not easy for individual researchers to organize a huge amount of information recovered from each cruise and dive. The improved visibility and accessibility of JAMSTEC databases are advantageous not only for second-hand users, but also for on-board researchers themselves.

  15. Seasonal, Oceanographic and Atmospheric Drivers of Diving Behaviour in a Temperate Seal Species Living in the High Arctic

    PubMed Central

    Blanchet, Marie-Anne; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.

    2015-01-01

    The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the species’ range. This small population experiences environmental extremes in sea and air temperatures, sea ice cover and also in light regime for this normally temperate species. This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maximum dive depth range of 24 – 403 m. Dives lasted on average 204 sec ± 120 with maximum durations ranging between 240 – 2,220 sec. Average daily depth and duration of dives, number of dives, time spent diving and dive time/surface time were influenced by date, while sex, age, sea-ice concentration and their interactions were not particularly influential. Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more pelagic during the winter/early spring compared to the fall and animals spent proportionally less time at the bottom of their dives during the winter. Influxes of warm saline water, corresponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m during both winters in this study. The seasonal changes in diving behaviour were linked to average weekly wind stresses from the north or north-east, which induced upwelling events onto the shelf through offshore Ekman transport. During these events the shelf became flooded with AW from the West Spitsbergen Current, which presumably brought Atlantic fish species close to shore and within the seals’ foraging depth-range. Predicted increased in the influx of AW in this region are likely going to favour the growth and geographic expansion of this harbour seal population in the future. PMID:26196289

  16. Dive Risk Factors, Gas Bubble Formation, and Decompression Illness in Recreational SCUBA Diving: Analysis of DAN Europe DSL Data Base.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2017-01-01

    Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the "mathematical ability" to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended "safe" one (9-10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as "undeserved." Conclusion: The DAN DB analysis shows that most dives were made in a "safe zone," even if data show an evident "gray area" in the "mathematical" ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.

  17. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

    PubMed

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-12-01

    In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators. Copyright © 2010 John Wiley & Sons, Ltd.

  18. GPU-based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgical Simulators

    PubMed Central

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-01-01

    Background In actual surgery, smoke and bleeding due to cautery processes, provide important visual cues to the surgeon which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated effects of bleeding and smoke generation, they are not realistic due to the requirement of real time performance. To be interactive, visual update must be performed at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques since other computationally intensive processes compete for the available CPU resources. Methods In this work, we develop a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. Results The smoke and bleeding simulation were implemented as part of a Laparoscopic Adjustable Gastric Banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur in noticeable overhead. However, for smoke generation, an I/O (Input/Output) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Conclusions Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited in VR-based surgical simulators. PMID:20878651

  19. [The research progress of diving medicine in China].

    PubMed

    Fang, Yi-Qun; Bao, Xiao-Chen; Li, Ci; Meng, Miao; Yuan, Heng-Rong; Ma, Jun; Wang, Yan

    2012-11-01

    Diving medicine is one of the branches of military medicine, and plays an important role in naval development. This review introduces the progress of researches on undersea and hyperbaric physiology and medicine in the past few years in China. The article describes our research achievement in conventional diving and its medical support, researches on saturation diving and its medical support, submarine escape and its medical support, effects of hyperbaric environments and fast buoyancy ascent on immunological and cardiological functions. Diving disorders (including decompression sickness and oxygen toxicity) are also introduced.

  20. Flying after diving: should recommendations be reviewed? In-flight echocardiographic study in bubble-prone and bubble-resistant divers.

    PubMed

    Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro

    2015-03-01

    Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). We performed transthoracic echocardiography (TTE) on a group of 56 healthy scuba divers (39 male, 17 female) as follows: first echo--during the outgoing flight, no recent dives; second echo--before boarding the return flight, after a multiday diving week in the tropics and a 24-hour PFSI; third echo--during the return flight at 30, 60 and 90 minutes after take-off. TTE was also done after every dive during the week's diving. Divers were divided into three groups according to their 'bubble-proneness': non-bubblers, occasional bubblers and consistent bubblers. During the diving, 23 subjects never developed bubbles, 17 only occasionally and 16 subjects produced bubbles every day and after every dive. Bubbles on the return flight were observed in eight of the 56 divers (all from the 'bubblers' group). Two subjects who had the highest bubble scores during the diving were advised not to make the last dive (increasing their PFSI to approximately 36 hours), and did not demonstrate bubbles on the return flight. Even though a 24-hour PFSI is recommended on the basis of clinical trials showing a low risk of decompression sickness (DCS), the presence of venous gas bubbles in-flight in eight of 56 divers leads us to suspect that in real-life situations DCS risk after such a PFSI is not zero.

  1. Thermal plasticity of diving behavior, aquatic respiration, and locomotor performance in the Mary River turtle Elusor macrurus.

    PubMed

    Clark, Natalie J; Gordos, Matthew A; Franklin, Craig E

    2008-01-01

    Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.

  2. Diving bradycardia: a mechanism of defence against hypoxic damage.

    PubMed

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  3. Behavioral responses of big brown bats to dives by praying mantises

    PubMed Central

    Ghose, Kaushik; Triblehorn, Jeffrey D.; Bohn, Kari; Yager, David D.; Moss, Cynthia F.

    2009-01-01

    Summary Insectivorous echolocating bats face a formidable array of defenses employed by their airborne prey. One such insect defense is the ultrasound-triggered dive, which is a sudden, rapid drop in altitude, sometimes all the way to the ground. Although many previous studies have investigated the dynamics of such dives and their effect on insect survival rate, there has been little work on how bats may adapt to such an insect defense employed in the middle of pursuit. In this study we investigated how big brown bats (Eptesicus fuscus) adjust their pursuit strategy when flying praying mantises (Parasphendale agrionina) execute evasive, ultrasound-triggered dives. Although the mantis dive occasionally forced the bat to completely abort its chase (25% trials), in a number of cases (75% trials) the bat followed the mantis into the dive. In such cases the bat kept its sonar beam locked onto the target and maneuvered to maintain the same time efficient strategy it adopted during level flight pursuit, though it was ultimately defeated by the dive. This study suggests that although the mantis dive can be effective in evading the bat, it does not always deter the bat from continuing pursuit and, given enough altitude, the bat can potentially capture diving prey using the same flight strategy it employs to intercept prey in level flight. PMID:19218521

  4. Investigation of Dive Brakes and a Dive-Recovery Flap on a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Mattson, Axel T.

    1946-01-01

    The results of tests made to determine the aerodynamic characteristics of a solid brake, a slotted brake, and a dive-recovery flap mounted on a high aspect ratio wing at high Mach numbers are presented. The data were obtained in the Langley 8-foot high-speed tunnel for corrected Mach numbers up to 0.940. The results have been analyzed with regard to the suitability of dive-control devices for a proposed high-speed airplane in limiting the airplane terminal Mach number by the use of dive brakes and in achieving favorable dive-recovery characteristics by the use of a dive-recovery flap. The analysis of the results indicated that the slotted brake would limit the proposed airplane terminal Mach number to values below 0.880 for altitudes up to 35,000 feet and a wing loading of 80 pounds per square foot and the dive-recovery flap would produce trim changes required for controlled pull-outs at 25,000 feet for a Mach number range from 0.800 to 0.900. Basic changes in spanwise loading are presented to aid in the evaluation of the wing strength requirements.

  5. The diving behaviour of green turtles undertaking oceanic migration to and from Ascension Island: dive durations, dive profiles and depth distribution.

    PubMed

    Hays, G C; Akesson, S; Broderick, A C; Glen, F; Godley, B J; Luschi, P; Martin, C; Metcalfe, J D; Papi, F

    2001-12-01

    Satellite telemetry was used to record the submergence duration of green turtles (Chelonia mydas) as they migrated from Ascension Island to Brazil (N=12 individuals) while time/depth recorders (TDRs) were used to examine the depth distribution and dive profiles of individuals returning to Ascension Island to nest after experimental displacement (N=5 individuals). Satellite telemetry revealed that most submergences were short (<5 min) but that some submergences were longer (>20 min), particularly at night. TDRs revealed that much of the time was spent conducting short (2-4 min), shallow (approximately 0.9-1.5 m) dives, consistent with predictions for optimisation of near-surface travelling, while long (typically 20-30 min), deep (typically 10-20 m) dives had a distinctive profile found in other marine reptiles. These results suggest that green turtles crossing the Atlantic do not behave invariantly, but instead alternate between periods of travelling just beneath the surface and diving deeper. These deep dives may have evolved to reduce silhouetting against the surface, which would make turtles more susceptible to visual predators such as large sharks.

  6. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  7. Potentially conflicting metabolic demands of diving and exercise in seals.

    PubMed

    Castellini, M A; Murphy, B J; Fedak, M; Ronald, K; Gofton, N; Hochachka, P W

    1985-02-01

    Metabolic replacement rates (Ra) for glucose and free fatty acids (FFA) were determined during rest, exercise, and diving conditions in the gray seal using bolus injections of radiotracers. In the exercise experiments the seal swam at a metabolic rate elevated twofold over resting Ra for glucose and FFA while resting were similar to values found in terrestrial mammals and other marine mammal species. During exercise periods glucose turnover increased slightly while FFA turnover changes were variable. However, the energetic demands of exercise could not be met by the increase in the replacement rates of glucose or FFA even if both were completely oxidized. Under diving conditions the tracer pool displayed radically different specific activity curves indicative of the changes in perfusion and metabolic rate associated with a strong dive response. Since the radiotracer curves during exercise and diving differed qualitatively and quantitatively, it is possible that similar studies on freely diving animals can be used to assess the role of the diving response during underwater swimming in nature.

  8. A forensic diving medicine examination of a highly publicised scuba diving fatality.

    PubMed

    Edmonds, Carl

    2012-12-01

    A high-profile diving death occurred in 2003 at the site of the wreck of the SS Yongala off the Queensland coast. The victim's buddy, her husband, was accused of her murder and found guilty of manslaughter in an Australian court. A detailed analysis of all the evidence concerning this fatality suggests alternative medical reasons for her death. The value of decompression computers in determining the diving details and of CT scans in clarifying autopsy findings is demonstrated. The victim was medically, physically and psychologically unfit to undertake the fatal dive. She was inexperienced and inadequately supervised. She was over-weighted and exposed for the first time to difficult currents. The analysis of the dive demonstrates how important it is to consider the interaction of all factors and to not make deductions from individual items of information. It also highlights the importance of early liaison between expert divers, technicians, diving clinicians and pathologists, if inappropriate conclusions are to be avoided.

  9. Strategic Acoustic Control of a Hummingbird Courtship Dive.

    PubMed

    Clark, Christopher J; Mistick, Emily A

    2018-04-23

    Male hummingbirds court females with a high-speed dive in which they "sing" with their tail feathers. The male's choice of trajectory provides him strategic control over acoustic frequency and pressure levels heard by the female. Unlike related species, male Costa's hummingbirds (Calypte costae) choose to place their dives to the side of females. Here we show that this minimizes an audible Doppler curve in their dive sound, thereby depriving females of an acoustic indicator that would otherwise reveal male dive speed. Wind-tunnel experiments indicate that the sounds produced by their feathers are directional; thus, males should aim their tail toward females. High-speed video of dives reveal that males twist half of their tail vertically during the dive, which acoustic-camera video shows effectively aims this sound sideways, toward the female. Our results demonstrate that male animals can strategically modulate female perception of dynamic aspects of athletic motor displays, such as their speed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The cardiovascular system and diving risk.

    PubMed

    Bove, Alfred A

    2011-01-01

    Recreational scuba diving is a sport that requires a certain physical capacity, in addition to consideration of the environmental stresses produced by increased pressure, low temperature and inert gas kinetics in tissues of the body. Factors that may influence ability to dive safely include age, physical conditioning, tolerance of cold, ability to compensate for central fluid shifts induced by water immersion, and ability to manage exercise demands when heart disease might compromise exercise capacity. Patients with coronary heart disease, valvular heart disease, congenital heart disease and cardiac arrhythmias are capable of diving, but consideration must be given to the environmental factors that might interact with the cardiac disorder. Understanding of the interaction of the diving environment with various cardiac disorders is essential to providing a safe diving environment to individual divers with known heart disease.

  11. Gliding flight: speed and acceleration of ideal falcons during diving and pull out.

    PubMed

    Tucker

    1998-01-14

    Some falcons, such as peregrines (Falco peregrinus), attack their prey in the air at the end of high-speed dives and are thought to be the fastest of animals. Estimates of their top speed in a dive range up to 157 m s-1, although speeds this high have never been accurately measured. This study investigates the aerodynamic and gravitational forces on 'ideal falcons' and uses a mathematical model to calculate speed and acceleration during diving. Ideal falcons have body masses of 0.5-2.0 kg and morphological and aerodynamic properties based on those measured for real falcons. The top speeds reached during a dive depend on the mass of the bird and the angle and duration of the dive. Given enough time, ideal falcons can reach top speeds of 89-112 m s-1 in a vertical dive, the higher speed for the heaviest bird, when the parasite drag coefficient has a value of 0.18. This value was measured for low-speed flight, and it could plausibly decline to 0.07 at high speeds. Top speeds then would be 138-174 m s-1. An ideal falcon diving at angles between 15 and 90 degrees with a mass of 1 kg reaches 95 % of top speed after travelling approximately 1200 m. The time and altitude loss to reach 95 % of top speed range from 38 s and 322 m at 15 degrees to 16 s and 1140 m at 90 degrees, respectively. During pull out at top speed from a vertical dive, the 1 kg ideal falcon can generate a lift force 18 times its own weight by reducing its wing span, compared with a lift force of 1.7 times its weight at full wing span. The falcon loses 60 m of altitude while pulling out of the dive, and lift and loss of altitude both decrease as the angle of the dive decreases. The 1 kg falcon can slow down in a dive by increasing its parasite drag and the angle of attack of its wings. Both lift and drag increase with angle of attack, but the falcon can cancel the increased lift by holding its wings in a cupped position so that part of the lift is directed laterally. The increased drag of wings producing maximum lift is great enough to decelerate the falcon at -1.5 times the acceleration of gravity at a dive angle of 45 degrees and a speed of 41 m s-1 (0.5 times top speed). Real falcons can control their speeds in a dive by changing their drag and by choosing the length of the dive. They would encounter both advantages and disadvantages by diving at the top speeds of ideal falcons, and whether they achieve those speeds remains to be investigated.

  12. Diving accidents in sports divers in Orkney waters.

    PubMed

    Trevett, A J; Forbes, R; Rae, C K; Sheehan, C; Ross, J; Watt, S J; Stephenson, R

    2001-12-01

    Scapa Flow in Orkney is one of the major world centres for wreck diving. Because of the geography of Orkney and the nature of the diving, it is possible to make relatively accurate estimates of the number of dives taking place. The denominator of dive activity allows the unusual opportunity of precise calculation of accident rates. In 1999, one in every 178 sports divers visiting Orkney was involved in a significant accident, in 2000 the figure was one in 102. Some of these accidents appear to have been predictable and could be avoided by better education and preparation of visiting divers.

  13. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    PubMed

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.

  14. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    NASA Astrophysics Data System (ADS)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  15. 29 CFR Appendix B to Subpart T of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  16. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  17. 29 CFR Appendix B to Subpart T of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  18. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving...

  19. The relative risk of decompression sickness during and after air travel following diving.

    PubMed

    Freiberger, J J; Denoble, P J; Pieper, C F; Uguccioni, D M; Pollock, N W; Vann, R D

    2002-10-01

    Decompression sickness (DCS) can be provoked by post-dive flying but few data exist to quantify the risk of different post-dive, preflight surface intervals (PFSI). We conducted a case-control study using field data from the Divers Alert Network to evaluate the relative risk of DCS from flying after diving. The PFSI and the maximum depths on the last day of diving (MDLD) were analyzed from 627 recreational dive profiles. The data were divided into quartiles based on surface interval and depth. Injured divers (cases) and uninjured divers (controls) were compared using logistic regression to determine the association of DCS with time and depth while controlling for diver and dive profiles characteristics. These included PFSI, MDLD, gender, height, weight, age, and days of diving. The means (+/-SD) for cases and controls were as follows: PFSI, 20.7 +/- 9.6 h vs. 27.1 +/- 6.7 h; MDLD, 22.5 +/- 14 meters sea water (msw) vs. 19 +/- 11.3 msw; male gender, 60% vs. 70%; weight, 75.8 +/- 18 kg vs. 77.6 +/- 16 kg; height, 173 +/- 16 cm vs. 177 +/- 9 cm; age, 36.8 +/- 10 yr vs. 42.9 +/- 11 yr; diving > or = 3 d, 58% vs. 97%. Relative to flying > 28 h after diving, the odds of DCS (95% CI) were: 1.02 (0.61, 1.7) 24-28 h; 1.84 (1.0, 3.3) 20-24 h; and 8.5 (3.85, 18.9) < 20 h. Relative to a depth of < 14.7 msw, the odds of DCS (95% CI) were: 1.2 (0.6, 1.7) 14.7-18.5 msw; 2.9 (1.65, 5.3) 18.5-26 msw; and 5.5 (2.96, 1 0.0) > 26 msw. Odds ratios approximate relative risk in rare diseases such as DCS. This study demonstrated an increase in relative risk from flying after diving following shorter PFSIs and/or greater dive depths on the last day. The relative risk increases geometrically as the PFSI becomes smaller.

  20. Body mass and anaerobic tolerance influence vertical habitat selection in meso- and bathypelagic foraging toothed whales of the Bahamas

    NASA Astrophysics Data System (ADS)

    Joyce, T. W.; Durban, J. W.; Fearnbach, H. H.; Claridge, D. E.; Ballance, L. T.

    2016-02-01

    Diving and spatial distribution data from small (55g) satellite transmitter tags attached to five species of deep-diving toothed whales were used to examine the physiological and ecological tradeoffs influencing vertical foraging ranges in the Bahamas. These tradeoffs have important consequences in terms of the ecological impacts of different toothed whale predators on meso- and bathypelagic prey populations, and also on relative vulnerabilities to human impacts (e.g., noise, vessel-strike). Within this assemblage, larger toothed-whales were hypothesized to more efficiently access deeper prey by having the capacity to sustain longer dives, based on a divergence of metabolic rates from oxygen storage capacity as mass increases. However, the observed vertical foraging ranges of melon-headed whales (Peponocephala electra, n=13), short-finned pilot whales (Globicephala macrorhynchus, n=15), Blainville's beaked whales (Mesoplodon densirostris, n=12), Cuvier's beaked whales (Ziphius cavirostris, n=7), and sperm whales (Physeter macrocephalus, n=27), only weakly support hypothesized increases in dive duration and depth as power law functions body mass (R2=0.36 & 0.23). In particular, the relatively small beaked whales (M.d. 853kg; Z.c. 1557kg) performed extremely long and deep foraging dives (M.d. max. 67mins & 1888m; Z.c. max. 103mins & 1888m) relative to expectations of simple allometric scaling. Based on foraging dive durations and post-foraging dive recovery patterns, both beaked whales appear to exceed aerobic dive limits, which enabled access to bathypelagic niches but at the cost of significantly longer recovery periods between foraging dives and comparatively low foraging time efficiency (<29% of time in foraging strata). The inclusion of aerobic and anaerobic dive strategies in allometric models of dive duration and depth yielded considerably greater explanatory power (R2=0.96 & 0.90), providing an improved framework for interpreting the tradeoffs between body size, diving efficiency, and access to different prey layers. Vertical foraging ranges in turn had important implications in terms of responses to diurnal variation in light intensity, and the relative affinities of different species to deep-scattering and benthic boundary layers of prey.

  1. Social networks and smoking: exploring the effects of peer influence and smoker popularity through simulations.

    PubMed

    Schaefer, David R; Adams, Jimi; Haas, Steven A

    2013-10-01

    Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw on recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention strategies targeted toward micro-level processes. Our approach begins by estimating a stochastic actor-based model using data from one school in the National Longitudinal Study of Adolescent Health. The model provides estimates of several factors predicting friendship ties and smoking behavior. We then use estimated model parameters to simulate the coevolution of friendship and smoking behavior under potential intervention scenarios. Namely, we manipulate the strength of peer influence on smoking and the popularity of smokers relative to nonsmokers. We measure how these manipulations affect smoking prevalence, smoking initiation, and smoking cessation. Results indicate that both peer influence and smoking-based popularity affect smoking behavior and that their joint effects are nonlinear. This study demonstrates how a simulation-based approach can be used to explore alternative scenarios that may be achievable through intervention efforts and offers new hypotheses about the association between friendship and smoking.

  2. Social Networks and Smoking: Exploring the Effects of Influence and Smoker Popularity through Simulations

    PubMed Central

    Schaefer, David R.; adams, jimi; Haas, Steven A.

    2015-01-01

    Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw upon recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention strategies targeted toward micro-level processes. Our approach begins by estimating a stochastic actor-based model using data from one school in the National Longitudinal Study of Adolescent Health. The model provides estimates of several factors predicting friendship ties and smoking behavior. We then use estimated model parameters to simulate the co-evolution of friendship and smoking behavior under potential intervention scenarios. Namely, we manipulate the strength of peer influence on smoking and the popularity of smokers relative to nonsmokers. We measure how these manipulations affect smoking prevalence, smoking initiation, and smoking cessation. Results indicate that both peer influence and smoking-based popularity affect smoking behavior, and that their joint effects are nonlinear. This study demonstrates how a simulation-based approach can be used to explore alternative scenarios that may be achievable through intervention efforts and offers new hypotheses about the association between friendship and smoking. PMID:24084397

  3. NREL's Earl Christensen Honored with Two Awards from National Biodiesel

    Science.gov Websites

    issues. Christensen's recent research focused on evaluating the effects of long-term storage on biodiesel simulating the effects of time on B20 blends, he discovered that fuel samples from around the country are providing funding for NREL to take a much deeper dive into the fundamental science of the effects of

  4. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales.

    PubMed

    Aoki, Kagari; Sato, Katsufumi; Isojunno, Saana; Narazaki, Tomoko; Miller, Patrick J O

    2017-10-15

    To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales . Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag) 1/3 and therefore to body mass 0.05 The transit speed of tagged animals (2.7±0.3 m s -1 ) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s -1 ). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m -3 , ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg -1 , ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion. © 2017. Published by The Company of Biologists Ltd.

  5. Individual Foraging Strategies Reveal Niche Overlap between Endangered Galapagos Pinnipeds

    PubMed Central

    Villegas-Amtmann, Stella; Jeglinski, Jana W. E.; Costa, Daniel P.; Robinson, Patrick W.; Trillmich, Fritz

    2013-01-01

    Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced. PMID:23967096

  6. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    PubMed

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  7. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population.

    PubMed

    Goenadi, Catherina Josephine; Law, David Zhiwei; Lee, Jia Wen; Ong, Ee Lin; Chee, Wai Kitt; Cheng, Jason

    2016-01-01

    Swimming goggles increase the intraocular pressure (IOP) via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s) of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Tonometry was performed in both eyes of all subjects with an AVIA(®)Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT) was also measured in each eye, using a contact pachymeter (OcuScan(®)Alcon). Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21-52) were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40). The IOP decreased by 0.43 mm Hg (p $1003c; 0.05) to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337), gender (r = -0.174, p = 0.283) or CCT (r = -0.123, p = 0.445). There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery.

  8. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population

    PubMed Central

    Goenadi, Catherina Josephine; Law, David Zhiwei; Lee, Jia Wen; Ong, Ee Lin; Chee, Wai Kitt; Cheng, Jason

    2016-01-01

    Purpose Swimming goggles increase the intraocular pressure (IOP) via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s) of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Methods Tonometry was performed in both eyes of all subjects with an AVIA®Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT) was also measured in each eye, using a contact pachymeter (OcuScan®Alcon). Results Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21–52) were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40). The IOP decreased by 0.43 mm Hg (p $1003c; 0.05) to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337), gender (r = −0.174, p = 0.283) or CCT (r = −0.123, p = 0.445). Conclusion There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery. PMID:27462262

  9. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    PubMed

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  12. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    PubMed

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  13. First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives.

    PubMed

    Schorr, Gregory S; Falcone, Erin A; Moretti, David J; Andrews, Russel D

    2014-01-01

    Cuvier's beaked whales (Ziphius cavirostris) are known as extreme divers, though behavioral data from this difficult-to-study species have been limited. They are also the species most often stranded in association with Mid-Frequency Active (MFA) sonar use, a relationship that remains poorly understood. We used satellite-linked tags to record the diving behavior and locations of eight Ziphius off the Southern California coast for periods up to three months. The effort resulted in 3732 hr of dive data with associated regional movements--the first dataset of its kind for any beaked whale--and included dives to 2992 m depth and lasting 137.5 min, both new mammalian dive records. Deep dives had a group mean depth of 1401 m (s.d. = 137.8, n = 1142) and duration of 67.4 min (s.d. = 6.9). The group mean time between deep dives was 102.3 min (s.d. = 30.8, n = 783). While the previously described stereotypic pattern of deep and shallow dives was apparent, there was considerable inter- and intra-individual variability in most parameters. There was significant diel behavioral variation, including increased time near the surface and decreased shallow diving at night. However, maximum depth and the proportion of time spent on deep dives (presumed foraging), varied little from day to night. Surprisingly, tagged whales were present within an MFA sonar training range for 38% of days locations were received, and though comprehensive records of sonar use during tag deployments were not available, we discuss the effects frequent acoustic disturbance may have had on the observed behaviors. These data better characterize the true behavioral range of this species, and suggest caution should be exercised when drawing conclusions about behavior using short-term datasets.

  14. Open water scuba diving accidents at Leicester: five years' experience.

    PubMed Central

    Hart, A J; White, S A; Conboy, P J; Bodiwala, G; Quinton, D

    1999-01-01

    OBJECTIVES: The aim of this study was to determine the incidence, type, outcome, and possible risk factors of diving accidents in each year of a five year period presenting from one dive centre to a large teaching hospital accident and emergency (A&E) department. METHODS: All patients included in this study presented to the A&E department at a local teaching hospital in close proximity to the largest inland diving centre in the UK. Our main outcome measures were: presenting symptoms, administration of recompression treatment, mortality, and postmortem examination report where applicable. RESULTS: Overall, 25 patients experienced a serious open water diving accident at the centre between 1992 and 1996 inclusive. The percentage of survivors (n = 18) with symptoms of decompression sickness receiving recompression treatment was 52%. All surviving patients received medical treatment for at least 24 hours before discharge. The median depth of diving accidents was 24 metres (m) (range 7-36 m). During the study period, 1992-96, the number of accidents increased from one to 10 and the incidence of diving accidents increased from four per 100,000 to 15.4 per 100,000. Over the same time period the number of deaths increased threefold. CONCLUSIONS: The aetiology of the increase in the incidence of accidents is multifactorial. Important risk factors were thought to be: rapid ascent (in 48% of patients), cold water, poor visibility, the number of dives per diver, and the experience of the diver. It is concluded that there needs to be an increased awareness of the management of diving injuries in an A&E department in close proximity to an inland diving centre. PMID:10353047

  15. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge.

    PubMed

    Goldbogen, Jeremy A; Calambokidis, John; Croll, Donald A; Harvey, James T; Newton, Kelly M; Oleson, Erin M; Schorr, Greg; Shadwick, Robert E

    2008-12-01

    Lunge feeding in rorqual whales is a drag-based feeding mechanism that is thought to entail a high energetic cost and consequently limit the maximum dive time of these extraordinarily large predators. Although the kinematics of lunge feeding in fin whales supports this hypothesis, it is unclear whether respiratory compensation occurs as a consequence of lunge-feeding activity. We used high-resolution digital tags on foraging humpback whales (Megaptera novaengliae) to determine the number of lunges executed per dive as well as respiratory frequency between dives. Data from two whales are reported, which together performed 58 foraging dives and 451 lunges. During one study, we tracked one tagged whale for approximately 2 h and examined the spatial distribution of prey using a digital echosounder. These data were integrated with the dive profile to reveal that lunges are directed toward the upper boundary of dense krill aggregations. Foraging dives were characterized by a gliding descent, up to 15 lunges at depth, and an ascent powered by steady swimming. Longer dives were required to perform more lunges at depth and these extended apneas were followed by an increase in the number of breaths taken after a dive. Maximum dive durations during foraging were approximately half of those previously reported for singing (i.e. non-feeding) humpback whales. At the highest lunge frequencies (10 to 15 lunges per dive), respiratory rate was at least threefold higher than that of singing humpback whales that underwent a similar degree of apnea. These data suggest that the high energetic cost associated with lunge feeding in blue and fin whales also occurs in intermediate sized rorquals.

  16. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    PubMed

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  17. To what extent might N2 limit dive performance in king penguins?

    PubMed

    Fahlman, A; Schmidt, A; Jones, D R; Bostrom, B L; Handrich, Y

    2007-10-01

    A mathematical model was used to explore if elevated levels of N2, and risk of decompression sickness (DCS), could limit dive performance (duration and depth) in king penguins (Aptenodytes patagonicus). The model allowed prediction of blood and tissue (central circulation, muscle, brain and fat) N2 tensions (P(N2)) based on different cardiac outputs and blood flow distributions. Estimated mixed venous P(N2) agreed with values observed during forced dives in a compression chamber used to validate the assumptions of the model. During bouts of foraging dives, estimated mixed venous and tissue P(N2) increased as the bout progressed. Estimated mean maximum mixed venous P(N2) upon return to the surface after a dive was 4.56+/-0.18 atmospheres absolute (ATA; range: 4.37-4.78 ATA). This is equivalent to N2 levels causing a 50% DCS incidence in terrestrial animals of similar mass. Bout termination events were not associated with extreme mixed venous N2 levels. Fat P(N2) was positively correlated with bout duration and the highest estimated fat P(N2) occurred at the end of a dive bout. The model suggested that short and shallow dives occurring between dive bouts help to reduce supersaturation and thereby DCS risk. Furthermore, adipose tissue could also help reduce DCS risk during the first few dives in a bout by functioning as a sink to buffer extreme levels of N2.

  18. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry

    NASA Astrophysics Data System (ADS)

    Lindvai-Soos, Daniel; Horn, Martin

    2018-07-01

    In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.

  19. First aid kits for recreational dive boats, what should they contain?

    PubMed

    Pye, Jacqueline; Greenhalgh, Trisha

    2010-09-01

    Well-equipped first-aid kits are necessary but not always provided on recreational dive boats. We aimed to review the types of illness and injury likely to be encountered on such boats and inform a content list for such kits. We conducted a 3-round Delphi study by email using a volunteer panel of 18 experts drawn from diving, dive medicine and nursing. In round 1, panellists shared examples of illnesses and injuries they had come across personally. These scenarios were circulated along with findings from a literature review, including existing recommendations. In rounds 2 and 3, the list of kit for dive boats in different settings was iteratively refined through online discussion and feedback. Passengers and crew on recreational dive boats may encounter a range of medical problems from minor injuries to serious accidents and non-dive-related illnesses. Recommended kit varied depending on context and setting (e.g. distance from land, qualifications and experience of crew). Consensus was quickly reached on key first-aid items but experts' views on emergency medicines differed. The study highlights the diversity of medical problems encountered on recreational dive boats. We offer preliminary guidance on the content of suitable first-aid kits and suggest areas for further research. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A day in the life of a diabetic diver: the Undersea and Hyperbaric Medical Society/Divers Alert Network protocol for diving with diabetes in action.

    PubMed

    Johnson, Rebecca

    2016-09-01

    Some people with well-managed insulin-dependent diabetes can dive safely. Those cleared to participate should control tightly the variables that impact blood glucose levels, including activity, timing, food and insulin. Honest self-assessment is critical. A diabetic diver should cancel a dive if seasick, unusually anxious, or following significant high or low blood glucose levels in the preceding 24 hours. The diver should enter the water with a blood glucose level above 8.3 mmol·L⁻¹ and below 14 mmol·L⁻¹ with a stable or rising trend in blood glucose established with glucose tests at 90, 60, and 30 minutes prior to a dive. The diver should carry emergency glucose at all times and brief dive buddies about hypoglycaemia procedures. This is a personal account of the author's experience diving with type 1 diabetes and details how the UHMS/DAN recommendations are put into practice on dive days. Key elements of the self-assessment process, long- and rapid-acting insulin adjustments, meal timing, responses to blood glucose trends, handling hypoglycaemia and approaching multi-dive days are described. Some considerations for people using insulin pumps are also briefly discussed.

  1. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    PubMed

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  2. [The heart and underwater diving].

    PubMed

    Lafay, V

    2006-11-01

    Cardiovascular examination of a certain number of candidates for underwater diving raises justifiable questions of aptitude. An indicative list of contraindications has been proposed by the French Federation of Underwater Studies and Sports but a physiopathological basis gives a better understanding of what is involved. During diving, the haemodynamic changes due not only to the exercise but also to cold immersion, hyperoxaemia and decompression impose the absence of any symptomatic cardiac disease. Moreover, the vasoconstriction caused by the cold and hyperoxaemia should incite great caution in both coronary and hypertensive patients. The contraindication related to betablocker therapy is controversial and the debate has not been settled in France. The danger of drowning makes underwater diving hazardous in all pathologies carrying a risk of syncope. Pacemaker patients should be carefully assessed and the depth of diving limited. Finally, the presence of right-to-left intracardiac shunts increases the risk of complications during decompressionand contraindicates underwater diving. Patent foramen ovale is a special case but no special investigation is required for its detection. The cardiologist examining candidates for underwater diving should take all these factors into consideration because, although underwater diving is a sport associated with an increased risk, each year there are more and more people, with differing degrees of aptitude, who wish to practice it.

  3. Decompression syndrome and the evolution of deep diving physiology in the Cetacea

    NASA Astrophysics Data System (ADS)

    Beatty, Brian Lee; Rothschild, Bruce M.

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  4. Shallow Water Diving - The NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel; Kelsey-Seybold

    2010-01-01

    This slide presentation reviews some of the problems and solutions that personnel have experienced during sessions in the Neutral Bu0yancy Lab (NBL). It reviews the standard dive that occurs at the NBL, Boyles and Henry's laws as they relate to the effects of diving. It then reviews in depth some of the major adverse physiologic events that happen during a diving session: Ear and Sinus Barotrauma, Decompression Sickness, (DCS), Pulmonary Barotrauma (i.e., Arterial Gas Embolism (AGE). Mediastinal Emphysema, Subcutaneous Emphysema, and Pneumothorax) Oxygen Toxicity and Hypothermia. It includes information about the pulmonary function in NBL divers. Also included is recommendations about flying after diving.

  5. Decompression syndrome and the evolution of deep diving physiology in the Cetacea.

    PubMed

    Beatty, Brian Lee; Rothschild, Bruce M

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  6. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  7. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  8. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  9. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  10. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable... from a dive team member; (3) Communications are lost and can not be quickly re-established between the...

  11. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.

    PubMed

    Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2017-01-01

    Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.

  12. Extracting Databases from Dark Data with DeepDive.

    PubMed

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  13. Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire

    NASA Astrophysics Data System (ADS)

    Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai

    2018-02-01

    According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.

  14. Underwater and Dive Station Work-Site Noise Surveys

    DTIC Science & Technology

    2008-03-14

    A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and

  15. 'Diving reflex' in man - Its relation to isometric and dynamic exercise.

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.

    1972-01-01

    To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.

  16. Smoking cessation treatment and outcomes patterns simulation: a new framework for evaluating the potential health and economic impact of smoking cessation interventions.

    PubMed

    Getsios, Denis; Marton, Jenő P; Revankar, Nikhil; Ward, Alexandra J; Willke, Richard J; Rublee, Dale; Ishak, K Jack; Xenakis, James G

    2013-09-01

    Most existing models of smoking cessation treatments have considered a single quit attempt when modelling long-term outcomes. To develop a model to simulate smokers over their lifetimes accounting for multiple quit attempts and relapses which will allow for prediction of the long-term health and economic impact of smoking cessation strategies. A discrete event simulation (DES) that models individuals' life course of smoking behaviours, attempts to quit, and the cumulative impact on health and economic outcomes was developed. Each individual is assigned one of the available strategies used to support each quit attempt; the outcome of each attempt, time to relapses if abstinence is achieved, and time between quit attempts is tracked. Based on each individual's smoking or abstinence patterns, the risk of developing diseases associated with smoking (chronic obstructive pulmonary disease, lung cancer, myocardial infarction and stroke) is determined and the corresponding costs, changes to mortality, and quality of life assigned. Direct costs are assessed from the perspective of a comprehensive US healthcare payer ($US, 2012 values). Quit attempt strategies that can be evaluated in the current simulation include unassisted quit attempts, brief counselling, behavioural modification therapy, nicotine replacement therapy, bupropion, and varenicline, with the selection of strategies and time between quit attempts based on equations derived from survey data. Equations predicting the success of quit attempts as well as the short-term probability of relapse were derived from five varenicline clinical trials. Concordance between the five trials and predictions from the simulation on abstinence at 12 months was high, indicating that the equations predicting success and relapse in the first year following a quit attempt were reliable. Predictions allowing for only a single quit attempt versus unrestricted attempts demonstrate important differences, with the single quit attempt simulation predicting 19 % more smoking-related diseases and 10 % higher costs associated with smoking-related diseases. Differences are most prominent in predictions of the time that individuals abstain from smoking: 13.2 years on average over a lifetime allowing for multiple quit attempts, versus only 1.2 years with single quit attempts. Differences in abstinence time estimates become substantial only 5 years into the simulation. In the multiple quit attempt simulations, younger individuals survived longer, yet had lower lifetime smoking-related disease and total costs, while the opposite was true for those with high levels of nicotine dependence. By allowing for multiple quit attempts over the course of individuals' lives, the simulation can provide more reliable estimates on the health and economic impact of interventions designed to increase abstinence from smoking. Furthermore, the individual nature of the simulation allows for evaluation of outcomes in populations with different baseline profiles. DES provides a framework for comprehensive and appropriate predictions when applied to smoking cessation over smoker lifetimes.

  17. Variability in circulating gas emboli after a same scuba diving exposure.

    PubMed

    Papadopoulou, V; Germonpré, P; Cosgrove, D; Eckersley, R J; Dayton, P A; Obeid, G; Boutros, A; Tang, M-X; Theunissen, S; Balestra, C

    2018-06-01

    A reduction in ambient pressure or decompression from scuba diving can result in ultrasound-detectable venous gas emboli (VGE). These environmental exposures carry a risk of decompression sickness (DCS) which is mitigated by adherence to decompression schedules; however, bubbles are routinely observed for dives well within these limits and significant inter-personal variability in DCS risk exists. Here, we assess the variability and evolution of VGE for 2 h post-dive using echocardiography, following a standardized pool dive in calm warm conditions. 14 divers performed either one or two (with a 24 h interval) standardized scuba dives to 33 mfw (400 kPa) for 20 min of immersion time at NEMO 33 in Brussels, Belgium. Measurements were performed at 21, 56, 91 and 126 min post-dive: bubbles were counted for all 68 echocardiography recordings and the average over ten consecutive cardiac cycles taken as the bubble score. Significant inter-personal variability was demonstrated despite all divers following the same protocol in controlled pool conditions: in the detection or not of VGE, in the peak VGE score, as well as time to VGE peak. In addition, intra-personal differences in 2/3 of the consecutive day dives were seen (lower VGE counts or faster clearance). Since VGE evolution post-dive varies between people, more work is clearly needed to isolate contributing factors. In this respect, going toward a more continuous evaluation, or developing new means to detect decompression stress markers, may offer the ability to better assess dynamic correlations to other physiological parameters.

  18. Bilateral sectioning of the anterior ethmoidal nerves does not eliminate the diving response in voluntarily diving rats

    PubMed Central

    Chotiyanonta, Jill S; DiNovo, Karyn M; McCulloch, Paul F

    2013-01-01

    The diving response is characterized by bradycardia, apnea, and increased peripheral resistance. This reflex response is initiated by immersing the nose in water. Because the anterior ethmoidal nerve (AEN) innervates the nose, our hypothesis was that intact AENs are essential for initiating the diving response in voluntarily diving rats. Heart rate (HR) and arterial blood pressure (BPa) were monitored using implanted biotransmitters. Sprague-Dawley rats were trained to voluntarily swim 5 m underwater. During diving, HR decreased from 480 ± 15 to 99 ± 5 bpm and BPa increased from 136 ± 2 to 187 ± 3 mmHg. Experimental rats (N = 9) then received bilateral AEN sectioning, while Sham rats (N = 8) did not. During diving in Experimental rats 7 days after AEN surgery, HR decreased from 478 ± 13 to 76 ± 4 bpm and BPa increased from 134 ± 3 to 186 ± 4 mmHg. Responses were similar in Sham rats. Then, during nasal stimulation with ammonia vapors in urethane-anesthetized Experimental rats, HR decreased from 368 ± 7 to 83 ± 4 bpm, and BPa increased from 126 ± 7 to 175 ± 4 mmHg. Responses were similar in Sham rats. Thus, 1 week after being sectioned the AENs are not essential for initiating a full cardiorespiratory response during both voluntary diving and nasal stimulation. We conclude that other nerve(s) innervating the nose are able to provide an afferent signal sufficient to initiate the diving response, although neuronal plasticity within the medullary dorsal horn may be necessary for this to occur. PMID:24400143

  19. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Personnel... control the exposure of others to hyperbaric conditions shall be trained in diving-related physics and...

  20. Time Variation of the Distance Separating Bomb and Dive Bomber Subsequent to Bomb Release

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1952-01-01

    A study has been made of the variation of the distance separating bomb and aircraft with time after release as applied to dive-bombing operations, Separation distances determined from this study are presented in terms of two variables only, dive angle and maximum airplane accelerometer reading; the values of separation distance include the effects of delay in initiation of the pull-out and lag in attainment of the maximum normal acceleration.Contains analysis and calculations of the separation distances between bomb and dive bomber following bomb release, Separation distances as determined by the dive angle and the maximum airplane accelerometer reading are presented in a single chart.

  1. Diving dynamics of seabirds

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Chang, Brian; Croson, Matt; Straker, Lorian; Dove, Carla

    2015-03-01

    Diving is the activity of falling from air into water, which is somewhat dangerous due to the impact. Humans dive for entertainments less than 20 meters high, however seabirds dive as a hunting mechanism from more than 20 meters high. Moreover, most birds including seabirds have a slender and long neck compared to many other animals, which can potentially be the weakest part of the body upon axial impact compression. Motivated by the diving dynamics, we investigate the effect of surface and geometric configurations on structures consisting of a beak-like cone and a neck-like elastic beam. A transition from non-buckling to buckling is characterized and understood through physical experiments and an analytical model.

  2. Time to stop mucking around? Impacts of underwater photography on cryptobenthic fauna found in soft sediment habitats.

    PubMed

    De Brauwer, Maarten; Saunders, Benjamin J; Ambo-Rappe, Rohani; Jompa, Jamaluddin; McIlwain, Jennifer L; Harvey, Euan S

    2018-07-15

    Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Abdominally implanted transmitters with percutaneous antennas affect the dive performance of Common Eiders

    USGS Publications Warehouse

    Powell, Abby N.; Latty, Christopher J.; Hollmén, Tuula E.; Petersen, Margaret R.; Andrews, Russel D.

    2010-01-01

    Implanted transmitters have become an important tool for studying the ecology of sea ducks, but their effects remain largely undocumented. To address this, we assessed how abdominally implanted transmitters with percutaneous antennas affect the vertical dive speeds, stroke frequencies, bottom time, and dive duration of captive Common Eiders (Somateria mollissima). To establish baselines, we recorded video of six birds diving 4.9 m prior to surgery, implanted them with 38- to 47-g platform transmitter terminals, and then recorded their diving for 3.5 months after surgery to determine effects. Descent speeds were 16–25% slower and ascent speeds were 17–44% slower after surgery, and both remained below baseline at the end of the study. Dive durations were longer than baseline until day 22. On most days between 15 and 107 days after surgery, foot-stroke frequencies of birds foraging on the bottom were slower. Foot- and wing-stroke frequencies during descent and bottom time did not differ across the time series. If birds that rely on benthic invertebrates for sustenance dive slower and stay submerged longer after being implanted with a satellite transmitter, their foraging energetics may be affected. Researchers considering use of implanted transmitters with percutaneous antennas should be mindful of these effects and the possibility of concomitant alterations in diving behavior, foraging success, and migratory behavior compared to those of unmarked conspecifics.

  4. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.

    PubMed

    Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng

    2018-03-01

    Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating more vivid thin turbulent features.

  5. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Commercial Diving Operations Specific Operations Procedures § 1910.424... physically confining spaces. (4) A diver-carried reserve breathing gas supply shall be provided for each... breathing gas supply shall be in the closed position prior to the dive. ...

  6. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1086 Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  7. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to those...

  8. 29 CFR 1926.1081 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1081 Pre-dive procedures. Note: The requirements applicable to construction work under this section are...

  9. 29 CFR 1926.1083 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1083 Post-dive procedures. Note: The requirements applicable to construction work under this section are...

  10. 29 CFR 1926.1082 - Procedures during dive.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures § 1926.1082 Procedures during dive. Note: The requirements applicable to construction work under this section are...

  11. Wind-Tunnel Investigations of Diving Brakes

    NASA Technical Reports Server (NTRS)

    Fucha, D.

    1942-01-01

    Unduly high diving speeds can be effectively controlled by diving brakes but their employment involves at the same time a number of disagreeable features: namely, rotation of zero lift direction, variation of diviving moment, and, the creation of a potent dead air region.

  12. Influence of solar heating and precipitation scavenging on the simulated lifetime of post-nuclear war smoke

    NASA Technical Reports Server (NTRS)

    Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.

    1985-01-01

    The behavior of smoke injected into the atmosphere by massive fires that might follow a nuclear war was simulated. Studies with a three-dimensional global atmospheric circulation model showed that heating of the smoke by sunlight would be important and might produce several effects that would decrease the efficiency with which precipitation removes smoke from the atmosphere. The heating gives rise to vertical motions that carry smoke well above the original injection height. Heating of the smoke also causes the tropopause, which is initially above the smoke, to reform below the heated smoke layer. Smoke above the tropopause is physically isolated from precipitation below. Consequently, the atmospheric residence time of the remaining smoke is greatly increased over the prescribed residence times used in previous models of nuclear winter.

  13. Comparison of environmental tobacco smoke (ETS) concentrations generated by an electrically heated cigarette smoking system and a conventional cigarette.

    PubMed

    Tricker, Anthony R; Schorp, Matthias K; Urban, Hans-Jörg; Leyden, Donald; Hagedorn, Heinz-Werner; Engl, Johannes; Urban, Michael; Riedel, Kirsten; Gilch, Gerhard; Janket, Dinamis; Scherer, Gerhard

    2009-01-01

    Smoking conventional lit-end cigarettes results in exposure of nonsmokers to potentially harmful cigarette smoke constituents present in environmental tobacco smoke (ETS) generated by sidestream smoke emissions and exhaled mainstream smoke. ETS constituent concentrations generated by a conventional lit-end cigarette and a newly developed electrically heated cigarette smoking system (EHCSS) that produces only mainstream smoke and no sidestream smoke emissions were investigated in simulated "office" and "hospitality" environments with different levels of baseline indoor air quality. Smoking the EHCSS (International Organisation for Standardization yields: 5 mg tar, 0.3 mg nicotine, and 0.6 mg carbon monoxide) in simulated indoor environments resulted in significant reductions in ETS constituent concentrations compared to when smoking a representative lit-end cigarette (Marlboro: 6 mg tar, 0.5 mg nicotine, and 7 mg carbon monoxide). In direct comparisons, 24 of 29 measured smoke constituents (83%) showed mean reductions of greater than 90%, and 5 smoke constituents (17%) showed mean reductions between 80% and 90%. Gas-vapor phase ETS markers (nicotine and 3-ethenylpyridine) were reduced by an average of 97% (range 94-99%). Total respirable suspended particles, determined by online particle measurements and as gravimetric respirable suspended particles, were reduced by 90% (range 82-100%). The mean and standard deviation of the reduction of all constituents was 94 +/- 4%, indicating that smoking the new EHCSS in simulated "office" and "hospitality" indoor environments resulted in substantial reductions of ETS constituents in indoor air.

  14. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  15. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco.

    PubMed

    Spisni, Enzo; Marabotti, Claudio; De Fazio, Luigia; Valerii, Maria Chiara; Cavazza, Elena; Brambilla, Stefano; Hoxha, Klarida; L'Abbate, Antonio; Longobardi, Pasquale

    2017-03-01

    The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.

  16. First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives

    PubMed Central

    Schorr, Gregory S.; Falcone, Erin A.; Moretti, David J.; Andrews, Russel D.

    2014-01-01

    Cuvier’s beaked whales (Ziphius cavirostris) are known as extreme divers, though behavioral data from this difficult-to-study species have been limited. They are also the species most often stranded in association with Mid-Frequency Active (MFA) sonar use, a relationship that remains poorly understood. We used satellite-linked tags to record the diving behavior and locations of eight Ziphius off the Southern California coast for periods up to three months. The effort resulted in 3732 hr of dive data with associated regional movements – the first dataset of its kind for any beaked whale – and included dives to 2992 m depth and lasting 137.5 min, both new mammalian dive records. Deep dives had a group mean depth of 1401 m (s.d. = 137.8, n = 1142) and duration of 67.4 min (s.d. = 6.9). The group mean time between deep dives was 102.3 min (s.d. = 30.8, n = 783). While the previously described stereotypic pattern of deep and shallow dives was apparent, there was considerable inter- and intra-individual variability in most parameters. There was significant diel behavioral variation, including increased time near the surface and decreased shallow diving at night. However, maximum depth and the proportion of time spent on deep dives (presumed foraging), varied little from day to night. Surprisingly, tagged whales were present within an MFA sonar training range for 38% of days locations were received, and though comprehensive records of sonar use during tag deployments were not available, we discuss the effects frequent acoustic disturbance may have had on the observed behaviors. These data better characterize the true behavioral range of this species, and suggest caution should be exercised when drawing conclusions about behavior using short-term datasets. PMID:24670984

  17. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies. PMID:27746745

  18. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples ( n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska ( n = 9). Human blood samples ( n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

  19. Optimal diving behaviour and respiratory gas exchange in birds.

    PubMed

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also influence diving behaviour such as, perhaps, prey density and predator avoidance.

  20. Evaluation of High Resolution Rapid Refresh-Smoke (HRRR-Smoke) model products for a case study using surface PM2.5 observations

    NASA Astrophysics Data System (ADS)

    Deanes, L. N.; Ahmadov, R.; McKeen, S. A.; Manross, K.; Grell, G. A.; James, E.

    2016-12-01

    Wildfires are increasing in number and size in the western United States as climate change contributes to warmer and drier conditions in this region. These fires lead to poor air quality and diminished visibility. The High Resolution Rapid Refresh-Smoke modeling system (HRRR-Smoke) is designed to simulate fire emissions and smoke transport with high resolution. The model is based on the Weather Research and Forecasting model, coupled with chemistry (WRF-Chem) and uses fire detection data from the Visible Infrared and Imaging Radiometer Suite (VIIRS) satellite instrument to simulate wildfire emissions and their plume rise. HRRR-Smoke is used in both real-time applications and case studies. In this study, we evaluate the HRRR-Smoke for August 2015, during one of the worst wildfire seasons on record in the United States, by focusing on wildfires that occurred in the northwestern US. We compare HRRR-Smoke simulations with hourly fine particulate matter (PM2.5) observations from the Air Quality System (https://www.epa.gov/aqs) from multiple air quality monitoring sites in Washington state. PM2.5 data includes measurements from urban, suburban and remote sites in the state. We discuss the model performance in capturing large PM2.5 enhancements detected at surface sites due to wildfires. We present various statistical parameters to demonstrate HRRR-Smoke's performance in simulating surface PM2.5 levels.

  1. New Polish occupational health and safety regulations for underwater works.

    PubMed

    Kot, Jacek; Sićko, Zdzisław

    2007-01-01

    In Poland, the new regulation of the Ministry of Health on Occupational Health for Underwater Works (dated 2007) pursuant to the Act on Underwater Works (dated 2003) has just been published. It is dedicated for commercial, non-military purposes. It defines health requirements for commercial divers and candidates for divers, medical assessment guide with a list of specific medical tests done on initial and periodical medical examination in order for a diver or a candidate for diver to be recognised fit for work, health surveillance during diving operations, compression and decompression procedures, list of content for medical equipment to be present at any diving place, formal qualifications for physicians conducting medical assessment of divers, requirements for certifications confirming the medical status of divers and candidates for divers. Decompression tables cover divings up to 120 meters of depth using compressed air, oxygen, nitrox and heliox as breathing mixtures. There are also decompression tables for repetitive diving, altitude diving and diving in the high-density waters (mud diving). It this paper, general description of health requirements for divers, as well as decompression tables that are included in the new Regulation on Occupational Health for Underwater Works are presented.

  2. Pressure equilibration in the penguin middle ear.

    PubMed

    Sadé, Jacob; Handrich, Yves; Bernheim, Joelle; Cohen, David

    2008-01-01

    King penguins have a venous structure in the form of a corpus cavernosum (CC) in their middle ear (ME) submucosa. The CC may be viewed as a special organelle that can change ME volume for pressure equilibration during deep-sea diving it is a pressure regulating organelle (PRO). A similar CC and muscles also surround the external ear (EE) and may constrict it, isolating the tympanic membrane from the outside. A CC was previously found also in the ME of marine diving mammals and can be expected to exist in other deep diving animals, such as marine turtles. Marine animals require equalization of middle ear (ME) pressure when diving hundreds or thousands of meters to catch prey. We investigated what mechanism enables king penguins to protect their ME when they dive to great depths. Biopsies and serial sections of the ME and the EE of the deep diving king penguin (Aptenodytes patagonicus) were examined microscopically. It was demonstrated that the penguin ME has an extensive network of small and large submucosal venous sinuses. This venous formation, a corpus cavernosum, can expand and potentially 'flood' the ME almost completely on diving, thus elevating ME pressure and reducing the ME space. The EE has a similar protective mechanism.

  3. Increase in serum noradrenaline concentration by short dives with bradycardia in Indo-Pacific bottlenose dolphin Tursiops aduncus.

    PubMed

    Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya

    2017-07-01

    In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Extracting Databases from Dark Data with DeepDive

    PubMed Central

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365

  5. Smoke incursions into urban areas: simulation of a Georgia prescribed burn

    Treesearch

    Y. Liu; S. Goodrick; G. Achtemeier

    2009-01-01

    This study investigates smoke incursion into urban areas by examining a prescribed burn in central Georgia,USA, on 28 February 2007. Simulations were conducted with a regional modeling framework to understand transport, dispersion,and structure of smoke plumes, the air quality effects, sensitivity to emissions,...

  6. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis.

  7. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  8. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit?

    DTIC Science & Technology

    2014-09-30

    were 55 + 8, 51 + 6, and 40 + bpm. As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia ...slow heart rate), and a gradual increase in heart rate during the bottom phase of the dive and during ascent. The degree of bradycardia was more...deeper dives of longer duration, and the degree of bradycardia increases with maximum depth and duration of dives. 4 0 20 40 60 80 100 120 140 0

  9. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    DTIC Science & Technology

    2004-12-01

    Decompression Models Table Al. Decompression Table Based on the StandAir Model and Comparison with the VVaI-1 8 Algorithm. A-l-A-4 Table A2. The VVaI-1 8...cannot be as strong as might be desired - especially for dives with long TDTs. Comparisons of the positions of the dive-outcome symbols with the... comparisons for several depth/bottom-time combinations. The three left-hand panels, for dives with short bottom times, show that the crossover point

  11. Diving depths

    NASA Astrophysics Data System (ADS)

    Clanet, Christophe; Guillet, Thibault; Coux, Martin; Quéré, David

    2017-11-01

    Many seabirds (gannets, pelicans, gulls, albatrosses) dive into water at high speeds (25 m/s) in order to capture underwater preys. Diving depths of 20 body lengths are reported in the literature. This value is much larger than the one achieved by men, which is typically of the order of 3. We study this difference by comparing the vertical impact of slender vs bluff bodies. We quantify the influence of wetting and of the geometry on the trajectory and discuss the different laws that govern the diving depth.

  12. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    DTIC Science & Technology

    2015-09-30

    resting heart rate (70 bpm ) (Ponganis et al. 1997) is reached, and e) duration of and heart rate during the ascent tachycardia. If possible, heart rate...Resting heart rates were 54 + 6 beats min-1 ( bpm ), and in dives of 1-3 min, 3-5 min, and > 5 min, dive heart rates (number of beats/dive duration...were 55 + 8, 51 + 6, and 40 + bpm . As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia

  13. DECOMPRESSION FROM He-N2-O2 (TRIMIX) BOUNCE DIVES IS NOT MORE EFFICIENT THAN FROM He-O2 (HELIOX) BOUNCE DIVES

    DTIC Science & Technology

    2015-05-28

    true, trimix would be an attractive alternative to heliox for U. S. Navy MK 16 MOD 1 underwater breathing apparatus (UBA) diving. However, there is no...for the semi-closed circuit Canadian Underwater Mine-countermeasures Apparatus (CUMA) that are shorter than...diving15-17 and by the U.S. Navy for the MK 6 semi- closed circuit underwater breathing apparatus (UBA);18,19 each of these programs tested trimix schedules

  14. Wind-Tunnel Tests on Various Types of Dive Brakes Mounted in Proximity of the Leading Edge of the Wing

    NASA Technical Reports Server (NTRS)

    Lattanzi, Bernardino; Bellante, Erno

    1949-01-01

    The present report is concerned with a series of tests on a model airplane fitted with four types of dive flaps of various shapes, positions, and incidence located near the leading edge of the wing (from 5 to 20 percent of the wing chord). Tests were also made on a stub airfoil fitted with a ventral dive (located at 8 percent of the wing chord). The hinge moments of the dive flaps were measured.

  15. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox.

    PubMed

    Germonpré, Peter; Balestra, Costantino; Hemelryck, Walter; Buzzacott, Peter; Lafère, Pierre

    2017-05-01

    Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed. Identification of the breathing gas was not possible on subjective assessment alone, while cognitive assessments showed significantly better performance while breathing EANx. Before the dives, breathing air, mean time to complete the task was 1795 ms for MathProc and 1905 ms for Ptrail. When arriving at depth MathProc took 1616 ms on air and 1523 ms on EANx, and Ptrail took 1318 ms on air and and 1356 ms on EANx, followed 15 min later by significant performance inhibition while breathing air during the ascent and the postdive phase, supporting the concept of late dive/postdive impairment. The results suggest that EANx could protect against decreased neuro-cognitive performance induced by inert gas narcosis. It was not possible for blinded divers to identify which gas they were breathing and differences in postdive fatigue between air and EANx diving deserve further investigation.Germonpré P, Balestra C, Hemelryck W, Buzzacott P, Lafère P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp Med Hum Perform. 2017; 88(5):469-475.

  16. Can We Predict Foraging Success in a Marine Predator from Dive Patterns Only? Validation with Prey Capture Attempt Data

    PubMed Central

    Viviant, Morgane; Monestiez, Pascal; Guinet, Christophe

    2014-01-01

    Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator. PMID:24603534

  17. Preconditioning to Reduce Decompression Stress in Scuba Divers.

    PubMed

    Germonpré, Peter; Balestra, Costantino

    2017-02-01

    Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.

  18. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    PubMed

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  19. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.

  20. The effect of tobacco control policies on smoking prevalence and smoking-attributable deaths. Findings from the Netherlands SimSmoke Tobacco Control Policy Simulation Model.

    PubMed

    Nagelhout, Gera E; Levy, David T; Blackman, Kenneth; Currie, Laura; Clancy, Luke; Willemsen, Marc C

    2012-02-01

    To develop a simulation model projecting the effect of tobacco control policies in the Netherlands on smoking prevalence and smoking-attributable deaths. Netherlands SimSmoke-an adapted version of the SimSmoke simulation model of tobacco control policy-uses population, smoking rates and tobacco control policy data for the Netherlands to predict the effect of seven types of policies: taxes, smoke-free legislation, mass media, advertising bans, health warnings, cessation treatment and youth access policies. Outcome measures were smoking prevalence and smoking-attributable deaths. With a comprehensive set of policies, as recommended by MPOWER, smoking prevalence can be decreased by as much as 21% in the first year, increasing to a 35% reduction in the next 20 years and almost 40% by 30 years. By 2040, 7706 deaths can be averted in that year alone with the stronger set of policies. Without effective tobacco control policies, almost a million lives will be lost to tobacco-related diseases between 2011 and 2040. Of those, 145,000 can be saved with a comprehensive tobacco control package. Smoking prevalence and smoking-attributable deaths in the Netherlands can be reduced substantially through tax increases, smoke-free legislation, high-intensity media campaigns, stronger advertising bans and health warnings, comprehensive cessation treatment and youth access laws. The implementation of these FCTC/MPOWER recommended policies could be expected to show similar or even larger relative reductions in smoking prevalence in other countries which currently have weak policies. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  1. Can repetitive mental simulation of smoking engender habituation?

    PubMed Central

    Audrain-McGovern, Janet; Strasser, Andrew A.; Wileyto, E. Paul

    2016-01-01

    Smoking cue exposure sensitizes smokers to cigarettes (i.e., increases cravings). Research examining the overlap between perception and mental imagery suggests that mentally simulating smoking a cigarette in a manner analogous to actually smoking should lead to habituation or a decrease in a smoker’s motivation to smoke. We sought to determine whether repetitive mental simulation of smoking can engender habituation thereby reducing smoking cue-induced craving and shifts in mood, latency to smoke, and the hedonic response to smoking. These hypotheses were tested in non-treatment seeking smokers (n=61; 24 female/ 37male) ages 18–55 years old, who were not incentivized to quit. We used a 2 (In Vivo Cue: Smoking, Neutral) x 2 (Imagery: Repetitive, Limited) within-subjects design. Results revealed that repetitive imagery altered the effect of cue type for negative mood and subjective cigarette reward as evidenced by significant imagery x cue interactions. Repetitive imagery after a smoking cue reduced negative mood more than limited imagery (β = −1.19, p = .004). Repetitive imagery also reduced the reward derived from smoking a cigarette more than limited imagery (β = −.41, p < .0001). Only main effects of cue type on craving (β = 3.39, p = .01) and positive mood (β = −1.18, p = .03) were found. Greater imagery strength predicted a longer latency to smoke (β = .76, p = .001). Cognitive strategies that directly engage cue-induced craving through repetitive smoking imagery may reduce smoking cue-induced increases in negative mood and reward from a cigarette lapse potentially preventing smoking relapse. PMID:27929344

  2. The characteristics simulation of FMCW laser backscattering signals

    NASA Astrophysics Data System (ADS)

    Liu, Bohu; Song, Chengtian; Duan, Yabo

    2018-04-01

    A Monte Carlo simulation model of FMCW laser transmission in a smoke interference environment was established in this paper. The aerosol extinction coefficient and scattering coefficient changed dynamically in the simulation according to the smoke concentration variation, aerosol particle distributions and photon spatial positions. The simulation results showed that the smoke backscattering interference produced a number of amplitude peaks in the beat signal spectrum; the SNR of target echo signal to smoke interference was related to the transmitted laser wavelength and the aerosol particle size distribution; a better SNR could be obtained when the laser wavelength was in the range of 560-1660 nm. The characteristics of FMCW laser backscattering signals generated by simulation are consistent with the theoretical analysis. Therefore, this study was greatly helpful for improving the ability of identifying target and anti-interference in the further research.

  3. 29 CFR 1926.1085 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Surface-supplied air diving. 1926.1085 Section 1926.1085 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Procedures § 1926.1085 Surface-supplied air diving. Note: The requirements applicable to construction work...

  4. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  5. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  6. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  7. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Mixed-gas diving. Note: The requirements applicable to construction work under this section are...

  8. 29 CFR 1926.1085 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Surface-supplied air diving. 1926.1085 Section 1926.1085 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Procedures § 1926.1085 Surface-supplied air diving. Note: The requirements applicable to construction work...

  9. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  10. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  11. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  12. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  13. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  14. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  15. Suitability Analysis For Scuba Diving To Develop Marine Tourism At Saebus Island, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wijaya, Putranto; Putra, Tri; Hidayat, Fatra; Levraeni, Chandra; Rizmaadi, Mada; Ambariyanto, Ambariyanto

    2018-02-01

    Indonesian government currently has policies to improve the performance of the tourism sector, including marine tourism. One of the attractions of marine tourism is the coral ecosystem especially through scuba diving activities. The purpose of this study was to determine the suitability of the coral ecosystem on Saebus Island, East Java, to find appropriate locations for scuba diving activities. Purposive samplings were done around the island to determine four stations which will be assessed through suitability analysis. Tourism Suitability Index was used to assess all stations for scuba diving activities. The result showed that all four stations were categorized as very suitable with the score: 85%, 85%, 85% and 83%, respectively. Several aspects that need to be improved and anticipated for diving at all stations are coral coverage and water current. These results suggest that there are several spots around Saebus Island that are suitable for diving site, and can be promoted as marine tourism destination.

  16. Provisional report on diving-related fatalities in Australian waters 2003.

    PubMed

    Walker, Douglas; Lippmann, John

    2009-03-01

    An individual case review of the diving-related deaths that were reported to have occurred in Australia in 2003 was conducted as part of the combined Project Stickybeak/DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident are provided, as well as details from the post mortem examination, where available. In total there were 22 reported fatalities, 18 men and four women. Twelve deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving and one while using surface-supply breathing apparatus. Cardiac-related issues were thought to have contributed to the deaths of six snorkel divers (50%) and four scuba divers (44%) in this series. There were three deaths in breath-hold divers likely to have been associated with apnoeic hypoxia blackout. Inexperience, time away from diving and lack of common sense were features in several scuba deaths.

  17. Provisional report on diving-related fatalities in Australian waters 2005.

    PubMed

    Walker, Douglas; Lippmann, John; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Jamieson, Scott

    2010-09-01

    An individual case review of diving-related deaths reported as occurring in Australia in 2005 was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 24 reported fatalities, comprising four females and 20 males. Fourteen deaths occurred while snorkelling and/or breath-hold diving, nine while scuba diving, and one while using surface-supply breathing apparatus. Four deaths from large marine animal attacks were recorded. Once again, cardiac-related issues were thought to have contributed to some deaths: five snorkel divers and at least two but possibly up to four scuba divers. Three of the deaths in breath-hold divers were likely to have been associated with apnoeic hypoxia blackout. Pre-existing medical conditions, trauma from marine creatures and snorkelling or diving alone were features in several deaths in this series.

  18. Wind and water tunnel testing of a morphing aquatic micro air vehicle

    PubMed Central

    Ortega Ancel, Alejandro; Kovač, Mirko

    2017-01-01

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive. PMID:28163877

  19. Foraging depths of sea otters and implications to coastal marine communities

    USGS Publications Warehouse

    Bodkin, James L.; Esslinger, George G.; Monson, Daniel H.

    2004-01-01

    We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths ≤20 m on 0.85 of their foraging dives while male sea otters dove to depths ≥45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.

  20. The direct radiative effect of wildfire smoke on a severe thunderstorm event in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Toll, V.; Männik, A.

    2015-03-01

    On August 8, 2010, a severe derecho type thunderstorm in the Baltic Sea region coincided with smoke from wildfires in Russia. Remarkable smoke aerosol concentrations, with a maximum aerosol optical depth of more than 2 at 550 nm, were observed near the thunderstorm. The impact of the wildfire smoke on the thunderstorm through direct radiative effects was investigated using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. HARMONIE was successfully able to resolve the dynamics of the thunderstorm, and simulations that considered the influence of the smoke-related aerosols were compared to simulation without aerosols. As simulated by the HARMONIE model, the smoke reduced the shortwave radiation flux at the surface by as much as 300 W/m2 and decreased the near-surface temperature by as much as 3 °C in the vicinity of the thunderstorm and respectively 100 W/m2 and 1 °C in the thunderstorm region. Atmospheric instability decreased through the direct radiative effect of aerosols, and several dynamic features of the simulated thunderstorm appeared slightly weaker.

  1. 46 CFR 197.404 - Responsibilities of the diving supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... planning and execution of the diving operation including the responsibility for the safety and health of... SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Operations § 197.404... provisions of this subpart; (2) Be fully cognizant of the provisions of the operations manual required by...

  2. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  3. Scuba Diving and Kinesiology: Development of an Academic Program

    ERIC Educational Resources Information Center

    Kovacs, Christopher R.; Walter, Daniel

    2015-01-01

    The use of scuba diving as a recreational activity within traditional university instructional programs has been well established. Departments focusing on kinesiology, physical education, or exercise science have often provided scuba diving lessons as part of their activity-based course offerings. However, few departments have developed an…

  4. 75 FR 36062 - Availability of Conservation Seat and Diving Operations Seat for the Flower Garden Banks National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Conservation Seat and Diving Operations Seat for the Flower Garden Banks National Marine Sanctuary Advisory... Flower Garden Banks National Marine Sanctuary Advisory Council: Conservation and Diving Operations... Jennifer Morgan, NOAA--Flower Garden Banks National Marine Sanctuary, 4700 Avenue U, Bldg. 216, Galveston...

  5. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving...

  6. Spinal Injuries in the Aquatics Environment, Part I: Prevention.

    ERIC Educational Resources Information Center

    Dworkin, Gerald M.

    1987-01-01

    Water-related activities are the number one cause of spinal cord injuries resulting from sports and recreation activities. This article discusses principles of safe diving; principles of safe water sliding; ways to reduce springboard diving accidents; factors contributing to springboard diving accidents; and safety recommendations for open water…

  7. 46 CFR 197.346 - Diver's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...

  8. 46 CFR 197.346 - Diver's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... breathing gas supply with a cylinder pressure gage readable by the diver during the dive; and (ii) A diver... (8) A depth gage. (b) Each diver using a heavyweight diving outfit must— (1) Have a helmet group consisting of helmet, breastplate, and associated valves and connections; (2) Have a diving dress group...

  9. Insulin-dependent diabetes mellitus and recreational scuba diving in Australia.

    PubMed

    Johnson, Rebecca

    2016-09-01

    Dive medicine bodies worldwide recognise that, with comprehensive screening and careful management, people with insulin-dependent diabetes (IDDM) can dive safely. Despite this, people with IDDM in Australia are generally denied access to dive training, an out-dated status quo that is not acceptable to the Australian diabetes community. This paper reflects upon the important advocacy work that has been done to progress this issue, and what is still required to open up access and bring Australia into line with more flexible and supportive international standards.

  10. Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.

    PubMed

    Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda

    2016-01-01

    The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.

  11. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    PubMed

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    PubMed Central

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  13. Benefits of thermal acclimation in a tropical aquatic ectotherm, the Arafura filesnake, Acrochordus arafurae.

    PubMed

    Bruton, Melissa J; Cramp, Rebecca L; Franklin, Craig E

    2012-05-01

    The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.

  14. Allometric scaling of lung volume and its consequences for marine turtle diving performance.

    PubMed

    Hochscheid, Sandra; McMahon, Clive R; Bradshaw, Corey J A; Maffucci, Fulvio; Bentivegna, Flegra; Hays, Graeme C

    2007-10-01

    Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.

  15. ISS Destiny Laboratory Smoke Detection Model

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Urban, David L.; Ruff, Gary A.

    2007-01-01

    Smoke transport and detection were modeled numerically in the ISS Destiny module using the NIST, Fire Dynamics Simulator code. The airflows in Destiny were modeled using the existing flow conditions and the module geometry included obstructions that simulate the currently installed hardware on orbit. The smoke source was modeled as a 0.152 by 0.152 m region that emitted smoke particulate ranging from 1.46 to 8.47 mg/s. In the module domain, the smoke source was placed in the center of each Destiny rack location and the model was run to determine the time required for the two smoke detectors to alarm. Overall the detection times were dominated by the circumferential flow, the axial flow from the intermodule ventilation and the smoke source strength.

  16. Important parameters for smoke plume rise simulation with Daysmoke

    Treesearch

    L. Liu; G.L. Achtemeier; S.L. Goodrick; W. Jackson

    2010-01-01

    Daysmoke is a local smoke transport model and has been used to provide smoke plume rise information. It includes a large number of parameters describing the dynamic and stochastic processes of particle upward movement, fallout, fluctuation, and burn emissions. This study identifies the important parameters for Daysmoke simulations of plume rise and seeks to understand...

  17. Some new cave diving exploration results from Croatian karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Davor; Garasic, Mladen

    2017-04-01

    In the recent years, several international cave diving expeditions took place in the Dinaric karst of Croatia. The objectives were conducting a new research of previously known karstic springs and also exploring new ones. The deepest karst cave in Croatia filled with water is Crveno jezero (lake) near Imotski town, with water depth of 281 meters and total cave depth of 528 meters. Volume of water in this cave is about 16 millions m3. Diving expeditions were held in 1997 and 1998.The deepest karst spring in the Dinaric karst of Croatia is Vrelo of Una River (with max discharge about 100 m3/s), where divers measured depth of -248 meters. Explorations were made in 2007 and 2016. Sinac spring in Pla\\vsko Polje has been dived to the depth of -203 meters. Cave diving was done in 1984, 1999, 2003, 2007 - 2016. Furthermore, very popular springs of the river Kupa (-155 m) in Gorski Kotar (explored since1995 till 2015), river Gacka (-105 in depth, 1150m in length) in Lika, explored from 1992 to 2016, river Cetina (-110 m in depth, 1300 m in length), cave diving explored from 2000 to 2016 in the Dalmatinska Zagora, Rumin Veliki spring (- 150 m in depth) in the Sinjska Krajina (explored and dived in 2006 and 2010), than rivers Krnjeza and Krupa in Ravni kotari with diving depths of over 100 meters (in 2004 and 2005) and so on. Along the Adriatic coast in Croatia there are many deep and long submarine springs (vrulje), ie. caves under seawater springs. called - vruljas for example Vrulja Zecica with over 900 meters ine length and Vrulja Modrič with completely flooded cave channels that extend over 2300 meters in length. Cave diving was conducted from 2010 to 2016. Vrulja Dubci is also worth mentioning (dived and explored in 2000), 161 meters deep and so on. Tectonic activity plays a dominant role in the creation and function of these caves. Geological, hydrogeological and lithostratigraphic conditions are also very important in speleogenesis of these caves in Croatian karst system.

  18. Diving accidents: a cohort study from the Netherlands.

    PubMed

    Smithuis, J W; Gips, E; van Rees Vellinga, T P; Gaakeer, M I

    2016-12-01

    Diving is, besides professional reasons, an increasingly popular leisure activity. Whilst statistically compared to other sports safe, diving accidents can result in serious complications. In order to treat this specific patient category adequately, early diagnosis is important. In this study, we explore various medical aspects of diving accidents. By sharing our experiences, we intend to create awareness and enhance urgent medical care for this specific category of patients. We conducted a retrospective cohort study using anonymized patient records from the emergency department (ED) of the Admiraal De Ruyter Hospital (ADRZ) and affiliated Medical Centre Hyperbaric Oxygen Therapy (MCHZ1) both in Goes, Netherlands. We evaluated all patients that presented to our ED as a diving accident from 1 November 2011 to 30 August 2015. In the selected period, 43 patients presented to our ED with complaints after diving; 84 % were male and 49 % older than 40 years, and they came by ambulance or referred by a general practitioner or other medical centres in the area; 70 % presented the same date as their dive, 21 % 1 to 3 days and 9 % later than 3 days after having dived. Pain was the most frequently reported symptom (44 %), followed by constitutional symptoms (42 %). Numbness or paraesthesia was reported in 33 %. Respiratory symptoms, dizziness, a change in mental status (e.g. apathy, confused or restlessness) and problems with coordination were present in 10-21 % of the cases. Symptoms that were apparent in less than 10 % of the cases were cutis marmorata, visual or auditory complaints, muscle weakness, cardiovascular symptoms or a malfunction of the anal sphincter or urinary bladder. Most of our patients exhibited more than one symptom; 70 % of all patients received hyperbaric oxygen recompression therapy. The limited number of patients presenting with complaints after a diving incident, the difficulty of recognition and the (potential) huge impact if not recognized and treated adequately make us believe that every diving accident should be discussed with a centre of expertise.

  19. The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea).

    PubMed

    Houghton, Jonathan D R; Doyle, Thomas K; Davenport, John; Wilson, Rory P; Hays, Graeme C

    2008-08-01

    Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed ;deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.

  20. Performance of life support breathing apparatus for under-ice diving operations.

    PubMed

    Lang, Michael A; Clarke, John R

    2017-01-01

    Single-hose scuba regulators dived in very cold water may suffer first- or second-stage malfunction, yielding complete occlusion of air flow or massive freeflow that rapidly expends a diver's air supply. This study, conducted in Antarctica, evaluated the under-ice performance of a sampling of commercially available regulators. Seventeen science divers logged a total of 305 dives in -1.86°C seawater under 6-meter-thick Antarctic fast-ice over two field seasons in 2008 and 2009. Dive profiles had an average depth of 30 msw and dive time of 29 minutes, including a mandatory three-minute safety stop at 6 msw. Sixty-nine unmodified regulator units (17 models) from 12 different manufacturers underwent standardized pre-dive regulator care and were randomly assigned to divers. Depths and times of onset of second-stage regulator freeflow were recorded. In 305 dives, there were 65 freeflows. The freeflows were not evenly distributed across the regulator brands. Regulator failure rates fell into two categories (⟨ 11% and ⟩ 26%). The regulators classified for the purpose of the test as "acceptable" (⟨ 11% failure rate: Dive-Rite Jetstream, Sherwood Maximus SRB3600, Poseidon Xstream Deep, Poseidon Jetstream, Sherwood Maximus SRB7600, Poseidon Cyklon, Mares USN22 Abyss) experienced only nine freeflows out of 146 exposures for a 6% overall freeflow incidence. Those classified as "unacceptable" (⟨ 26% failure rate) suffered 56 freeflows out of 159 exposures (35% freeflow incidence.). Contrary to expectations, the pooled incidences for the seven best performing regulators was significantly different by Chi-square test from the 10 remaining regulators (P ⟨ 0.001).

  1. Behaviour and buoyancy regulation in the deepest-diving reptile: the leatherback turtle.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Myers, Andy E; Garner, Steve; Liebsch, Nikolai; Whitney, Nicholas M; Hays, Graeme C; Wilson, Rory P; Lutcavage, Molly E

    2010-12-01

    In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.

  2. Determinants of arterial gas embolism after scuba diving.

    PubMed

    Ljubkovic, Marko; Zanchi, Jaksa; Breskovic, Toni; Marinovic, Jasna; Lojpur, Mihajlo; Dujic, Zeljko

    2012-01-01

    Scuba diving is associated with breathing gas at increased pressure, which often leads to tissue gas supersaturation during ascent and the formation of venous gas emboli (VGE). VGE crossover to systemic arteries (arterialization), mostly through the patent foramen ovale, has been implicated in various diving-related pathologies. Since recent research has shown that arterializations frequently occur in the absence of cardiac septal defects, our aim was to investigate the mechanisms responsible for these events. Divers who tested negative for patent foramen ovale were subjected to laboratory testing where agitated saline contrast bubbles were injected in the cubital vein at rest and exercise. The individual propensity for transpulmonary bubble passage was evaluated echocardiographically. The same subjects performed a standard air dive followed by an echosonographic assessment of VGE generation (graded on a scale of 0-5) and distribution. Twenty-three of thirty-four subjects allowed the transpulmonary passage of saline contrast bubbles in the laboratory at rest or after a mild/moderate exercise, and nine of them arterialized after a field dive. All subjects with postdive arterialization had bubble loads reaching or exceeding grade 4B in the right heart. In individuals without transpulmonary passage of saline contrast bubbles, injected either at rest or after an exercise bout, no postdive arterialization was detected. Therefore, postdive VGE arterialization occurs in subjects that meet two criteria: 1) transpulmonary shunting of contrast bubbles at rest or at mild/moderate exercise and 2) VGE generation after a dive reaches the threshold grade. These findings may represent a novel concept in approach to diving, where diving routines will be tailored individually.

  3. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  4. 78 FR 2957 - Notice of Applicability of Special Use Permit Requirements to Certain Categories of Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... MONITOR, NOAA has determined that enhancing recreational diving access to the wreck is a priority. NOAA... diving near the USS MONITOR; and (2) fireworks displays. The remaining two special use permit categories..., etc. Specific examples of such events involve the promotion of SCUBA diving; an annual underwater...

  5. 75 FR 81224 - Availability of Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the Flower Garden Banks National... seats on the Flower Garden Banks National Marine Sanctuary Advisory Council: Recreational Diving, Oil... February 4, 2010. ADDRESSES: Application kits may be obtained from Jennifer Morgan, NOAA--Flower Garden...

  6. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    ERIC Educational Resources Information Center

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  7. Studies of Beaked Whale Diving Behavior and Odontocete Stock Structure in Hawai’i in March/April 2006

    DTIC Science & Technology

    2006-09-01

    also been reported for northern bottlenose whales (Hooker and Baird 1999), and for deep- diving beluga whales, Delphinapterus leucas (Martin and...Smith. 1992. Deep diving in wild, free-ranging beluga whales, Delphinapterus leucas . Canadian Journal of Fisheries and Aquatic Sciences 49:462-466

  8. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation; and (5) The nearest U.S. Coast Guard Rescue Coordination Center. (c) First aid supplies. (1) A first aid kit appropriate for the diving operation and approved by a physician shall be available at the dive location. (2) When used in a decompression chamber or bell, the first aid kit shall be suitable...

  9. Mesoscale modeling of Central American smoke transport to the United States: 1. ``Top-down'' assessment of emission strength and diurnal variation impacts

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Christopher, Sundar A.; Nair, U. S.; Reid, Jeffrey S.; Prins, Elaine M.; Szykman, James; Hand, Jenny L.

    2006-03-01

    As is typical in the Northern Hemisphere spring, during 20 April to 21 May 2003, significant biomass burning smoke from Central America was transported to the southeastern United States (SEUS). A coupled aerosol, radiation, and meteorology model that is built upon the heritage of the Regional Atmospheric Modeling System (RAMS), having newly developed capabilities of Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithm, was used to simulate the smoke transport and quantify the smoke radiative impacts on surface energetics, boundary layer, and other atmospheric processes. This paper, the first of a two-part series, describes the model and examines the ability of RAMS-AROMA to simulate the smoke transport. Because biomass-burning fire activities have distinct diurnal variations, the FLAMBE hourly smoke emission inventory that is derived from the geostationary satellite (GOES) fire products was assimilated into the model. In the "top-down" analysis, ground-based observations were used to evaluate the model performance, and the comparisons with model-simulated results were used to estimate emission uncertainties. Qualitatively, a 30-day simulation of smoke spatial distribution as well as the timing and location of the smoke fronts are consistent with those identified from the PM2.5 observation network, local air quality reports, and the measurements of aerosol optical thickness (AOT) and aerosol vertical profiles from the Southern Great Plains (SGP) Atmospheric Radiation Measurements (ARM) site in Oklahoma. Quantitatively, the model-simulated daily mean near-surface dry smoke mass correlates well with PM2.5 mass at 34 locations in Texas and with the total carbon mass and nonsoil potassium mass (KNON) at three IMPROVE sites along the smoke pathway (with linear correlation coefficients R = 0.77, 0.74, and 0.69 at the significance level larger than 0.99, respectively). The top-down sensitivity analysis indicates that the total smoke particle emission during the study period is about 1.3 ± 0.2 Tg. The results further indicate that the simulation with a daily smoke emission inventory provides a slightly better correlation with measurements in the downwind region on daily scales but gives an unrealistic diurnal variation of AOT in the smoke source region. This study suggests that the assimilation of emission inventories from geostationary satellites is superior to that of polar orbiting satellites and has important implications for the modeling of air quality in areas influenced by fire-related pollutants from distant sources.

  10. Two fatal cases of immersion pulmonary oedema - using dive accident investigation to assist the forensic pathologist.

    PubMed

    Smart, David R; Sage, Martin; Davis, F Michael

    2014-06-01

    Immersion pulmonary oedema (IPE) is being increasingly recognized in swimmers, snorkellers and scuba divers presenting with acute symptoms of respiratory distress following immersion, but fatal case reports are uncommon. We report two fatal cases of probable IPE in middle-aged women, one whilst snorkelling and the other associated with a scuba dive. In the snorkeller's case, an episode of exercise-related chest tightness and shortness of breath that occurred 10 months previously was investigated but this proved negative, and she was on no medications. However, at autopsy, moderate left ventricular hypertrophy was noted. The scuba diver had suffered several previous episodes of severe shortness of breath following dives, one being so severe it led to cyanosis and impaired consciousness. At inquest, the pathologist's diagnosis was given as drowning and IPE was not mentioned. Expert input from doctors trained in diving medicine should be compulsory in the investigation of diving deaths, and forensic pathologists should be properly trained in and have guidelines for the conduct of post-immersion and post-diving autopsies.

  11. Respiration and heart rate at the surface between dives in northern elephant seals.

    PubMed

    Le Boeuf, B J; Crocker, D E; Grayson, J; Gedamke, J; Webb, P M; Blackwell, S B; Costa, D P

    2000-11-01

    All underwater activities of diving mammals are constrained by the need for surface gas exchange. Our aim was to measure respiratory rate (fb) and heart rate (fh) at the surface between dives in free-ranging northern elephant seals Mirounga angustirostris. We recorded fb and fh acoustically in six translocated juveniles, 1.8-2. 4 years old, and three migrating adult males from the rookery at Año Nuevo, California, USA. To each seal, we attached a diving instrument to record the diving pattern, a satellite tag to track movements and location, a digital audio tape recorder or acoustic datalogger with an external hydrophone to record the sounds of respiration and fh at the surface, and a VHF transmitter to facilitate recovery. During surface intervals averaging 2.2+/-0.4 min, adult males breathed a mean of 32.7+/-5.4 times at a rate of 15. 3+/-1.8 breaths min(-)(1) (means +/- s.d., N=57). Mean fh at the surface was 84+/-3 beats min(-)(1). The fb of juveniles was 26 % faster than that of adult males, averaging 19.2+/-2.2 breaths min(-)(1) for a mean total of 41.2+/-5.0 breaths during surface intervals lasting 2.6+/-0.31 min. Mean fh at the surface was 106+/-3 beats min(-)(1). fb and fh did not change significantly over the course of surface intervals. Surface fb and fh were not clearly associated with levels of exertion, such as rapid horizontal transit or apparent foraging, or with measures of immediately previous or subsequent diving performance, such as diving duration, diving depth or swimming speed. Together, surface respiration rate and the duration of the preceding dive were significant predictors of surface interval duration. This implies that elephant seals minimize surface time spent loading oxygen depending on rates of oxygen uptake and previous depletion of stores.

  12. Can Foraging Ecology Drive the Evolution of Body Size in a Diving Endotherm?

    PubMed Central

    Cook, Timothée R.; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes. PMID:23409169

  13. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    PubMed

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  14. Parameter estimation of the copernicus decompression model with venous gas emboli in human divers.

    PubMed

    Gutvik, Christian R; Dunford, Richard G; Dujic, Zeljko; Brubakk, Alf O

    2010-07-01

    Decompression Sickness (DCS) may occur when divers decompress from a hyperbaric environment. To prevent this, decompression procedures are used to get safely back to the surface. The models whose procedures are calculated from, are traditionally validated using clinical symptoms as an endpoint. However, DCS is an uncommon phenomenon and the wide variation in individual response to decompression stress is poorly understood. And generally, using clinical examination alone for validation is disadvantageous from a modeling perspective. Currently, the only objective and quantitative measure of decompression stress is Venous Gas Emboli (VGE), measured by either ultrasonic imaging or Doppler. VGE has been shown to be statistically correlated with DCS, and is now widely used in science to evaluate decompression stress from a dive. Until recently no mathematical model has existed to predict VGE from a dive, which motivated the development of the Copernicus model. The present article compiles a selection experimental dives and field data containing computer recorded depth profiles associated with ultrasound measurements of VGE. It describes a parameter estimation problem to fit the model with these data. A total of 185 square bounce dives from DCIEM, Canada, 188 recreational dives with a mix of single, repetitive and multi-day exposures from DAN USA and 84 experimentally designed decompression dives from Split Croatia were used, giving a total of 457 dives. Five selected parameters in the Copernicus bubble model were assigned for estimation and a non-linear optimization problem was formalized with a weighted least square cost function. A bias factor to the DCIEM chamber dives was also included. A Quasi-Newton algorithm (BFGS) from the TOMLAB numerical package solved the problem which was proved to be convex. With the parameter set presented in this article, Copernicus can be implemented in any programming language to estimate VGE from an air dive.

  15. Can foraging ecology drive the evolution of body size in a diving endotherm?

    PubMed

    Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  16. [Spatio-temporal dynamics of fishing effort in a multi-species artisanal diving fishery and its effects on catch variability: insights for sustainable management].

    PubMed

    Naranjo Madrigall, Helven; Salas Marquez, Silvia

    2014-12-01

    Artisanal diving fisheries are a source of income, employment and food security of coastal areas in many countries. Understanding the dynamics of these fisheries, including the spatial and temporal dynamics of fishing effort, gears and species can help to address the challenges involved in fisheries management. We aimed to analyze the differences in fishing strategies undertaken by fishers that use two different diving methods (hookah and free diving), the conditions and their potential impacts on catches when adjustments to those strategies are applied over time. For this, detailed information of fishing operations from artisanal boats in the North Pacific coast of Costa Rica was analyzed in two fishing seasons (2007-2008 and 2011-2012). Data were collected by onboard observers (fishing site, fishing time, species composition, depth and visibility). Additionally, interviews with divers were applied to obtain information of price per species, species volume and fishing operations. From the total number of trips during both seasons, hookah diving was represented by a sample size of 69.3%, while free diving, with a sample of 41.9%. More than 15 species were identified in each fishing season. Nevertheless, three categories had substantial contributions in both seasons with differences in the proportions for each case: green lobster (Panulirus gracilis), octopus (Octopus sp.) and parrotfish (Scarus perrico and S. ghobban). It is worth noting that an important proportion of catch was retained by fishers for personal consumption purposes, including species of high commercial value. Additional night diving activity, increased the number of dives from one season to another. Besides, cooperation processes in free diving fishing operations, and changes in fishing effort between seasons, defined important changes in fishing strategies. Potential causes of changes in fishing strategies and the implications for management to ensure the sustainability of these fisheries in the long term are discussed.

  17. The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Cui, Bing; Xiao, Si

    2015-10-01

    Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.

  18. Simulating Dynamic Network Models and Adolescent Smoking: The Impact of Varying Peer Influence and Peer Selection.

    PubMed

    Lakon, Cynthia M; Hipp, John R; Wang, Cheng; Butts, Carter T; Jose, Rupa

    2015-12-01

    We used a stochastic actor-based approach to examine the effect of peer influence and peer selection--the propensity to choose friends who are similar--on smoking among adolescents. Data were collected from 1994 to 1996 from 2 schools involved in the National Longitudinal Study of Adolescent to Adult Health, with respectively 2178 and 976 students, and different levels of smoking. Our experimental manipulations of the peer influence and selection parameters in a simulation strategy indicated that stronger peer influence decreased school-level smoking. In contrast to the assumption that a smoker may induce a nonsmoker to begin smoking, adherence to antismoking norms may result in an adolescent nonsmoker inducing a smoker to stop smoking and reduce school-level smoking.

  19. Simulating Dynamic Network Models and Adolescent Smoking: The Impact of Varying Peer Influence and Peer Selection

    PubMed Central

    Hipp, John R.; Wang, Cheng; Butts, Carter T.; Jose, Rupa

    2015-01-01

    We used a stochastic actor-based approach to examine the effect of peer influence and peer selection—the propensity to choose friends who are similar—on smoking among adolescents. Data were collected from 1994 to 1996 from 2 schools involved in the National Longitudinal Study of Adolescent to Adult Health, with respectively 2178 and 976 students, and different levels of smoking. Our experimental manipulations of the peer influence and selection parameters in a simulation strategy indicated that stronger peer influence decreased school-level smoking. In contrast to the assumption that a smoker may induce a nonsmoker to begin smoking, adherence to antismoking norms may result in an adolescent nonsmoker inducing a smoker to stop smoking and reduce school-level smoking. PMID:26469641

  20. Indoor air quality (IAQ) evaluation of a Novel Tobacco Vapor (NTV) product.

    PubMed

    Ichitsubo, Hirokazu; Kotaki, Misato

    2018-02-01

    The impact of using a Novel Tobacco Vapor (NTV) product on indoor air quality (IAQ) was simulated using an environmentally-controlled chamber. Three environmental simulations were examined; two non-smoking areas (conference room and dining room) and one ventilated smoking area (smoking lounge). IAQ was evaluated by (i) measuring constituents in the mainstream NTV product emissions, (ii) and by determining classical environmental tobacco smoke (ETS) and representative air quality markers. Analysis of the mainstream emissions revealed that vapor from the NTV product is chemically simpler than cigarette smoke. ETS markers (RSP, UVPM, FPM, solanesol, nicotine, 3-ethenylpyridine), volatile organic compound (toluene), carbon monoxide, propylene glycol, glycerol, and triacetin were below the limit of detection or the limit of quantification in both the non-smoking and smoking environments after using the NTV product. The concentrations of ammonia, carbonyls (formaldehyde, acetaldehyde, and acetone), and total volatile organic compounds were the same levels found in the chamber without NTV use. There was no significant increase in the levels of formaldehyde, acetone or ammonia in exhaled breath following NTV use. In summary, under the simulations tested, the NTV product had no measurable effect on the IAQ, in either non-smoking or smoking areas. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Lawrence, Lisa Ayers

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an “Educator's Companion” section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  2. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Ayers Lawrence, Lisa

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an "Educator's Companion" section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  3. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    PubMed

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Diving behaviour of Cuvier's beaked whales exposed to two types of military sonar.

    PubMed

    Falcone, Erin A; Schorr, Gregory S; Watwood, Stephanie L; DeRuiter, Stacy L; Zerbini, Alexandre N; Andrews, Russel D; Morrissey, Ronald P; Moretti, David J

    2017-08-01

    Cuvier's beaked whales ( Ziphius cavirostris ) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away.

  5. Flying After Conducting an Aircraft Excessive Cabin Leakage Test.

    PubMed

    Houston, Stephen; Wilkinson, Elizabeth

    2016-09-01

    Aviation medical specialists should be aware that commercial airline aircraft engineers may undertake a 'dive equivalent' operation while conducting maintenance activities on the ground. We present a worked example of an occupational risk assessment to determine a minimum safe preflight surface interval (PFSI) for an engineer before flying home to base after conducting an Excessive Cabin Leakage Test (ECLT) on an unserviceable aircraft overseas. We use published dive tables to determine the minimum safe PFSI. The estimated maximum depth acquired during the procedure varies between 10 and 20 fsw and the typical estimated bottom time varies between 26 and 53 min for the aircraft types operated by the airline. Published dive tables suggest that no minimum PFSI is required for such a dive profile. Diving tables suggest that no minimum PFSI is required for the typical ECLT dive profile within the airline; however, having conducted a risk assessment, which considered peak altitude exposure during commercial flight, the worst-case scenario test dive profile, the variability of interindividual inert gas retention, and our existing policy among other occupational groups within the airline, we advised that, in the absence of a bespoke assessment of the particular circumstances on the day, the minimum PFSI after conducting ECLT should be 24 h. Houston S, Wilkinson E. Flying after conducting an aircraft excessive cabin leakage test. Aerosp Med Hum Perform. 2016; 87(9):816-820.

  6. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet

    PubMed Central

    Machovsky-Capuska, Gabriel E.; Howland, Howard C.; Raubenheimer, David; Vaughn-Hirshorn, Robin; Würsig, Bernd; Hauber, Mark E.; Katzir, Gadi

    2012-01-01

    Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air. PMID:22874749

  7. Diving behaviour of Cuvier's beaked whales exposed to two types of military sonar

    PubMed Central

    Schorr, Gregory S.; Watwood, Stephanie L.; DeRuiter, Stacy L.; Zerbini, Alexandre N.; Andrews, Russel D.; Morrissey, Ronald P.; Moretti, David J.

    2017-01-01

    Cuvier's beaked whales (Ziphius cavirostris) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away. PMID:28879004

  8. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints.

    PubMed

    Saide, Pablo E; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M; Pierce, R Bradley; Carmichael, Gregory R

    2016-09-16

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  9. Assessment of Biomass Burning Smoke Influence on Environmental Conditions for Multi-Year Tornado Outbreaks by Combining Aerosol-Aware Microphysics and Fire Emission Constraints

    NASA Technical Reports Server (NTRS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; Da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-01-01

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRFChem for its use in applications such as NWP and cloud-resolving simulations.

  10. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  11. Effect of Diving and Diving Hoods on the Bacterial Flora of the External Ear Canal and Skin

    DTIC Science & Technology

    1982-05-01

    in parentheses itidicate number of sites tested. b One strain isolated from skin laceration exposed to water. "Diver developed external otitis media 5... otitis media (11), skin infections skin of wearing diving hoods in and out of the (6), and diarrheal diseases (10). One aspect of water. We

  12. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The...

  13. A deep sea Hydrothermal Vent Bio-sampler for large volume in-situ filtration of hydrothermal vent fluids

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar

    2005-01-01

    This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.

  14. Scientific Diving Training Course. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents the scientific diving training course organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO) for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). This course of six weeks duration aims to produce a person who is capable of carrying out scientific diving tasks in the…

  15. EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA).

    PubMed

    Pastena, Lucio; Faralli, Fabio; Mainardi, Giovanni; Gagliardi, Riccardo

    2005-11-01

    The narcotic effect of nitrogen impairs diver performance and limits dive profiles, especially for deep dives using compressed air. It would be helpful to establish measurable correlates of nitrogen narcosis. The authors observed the electroencephalogram (EEG) of 10 subjects, ages 22-27 yr, who breathed air during a 3-min compression to a simulated depth of 80 msw (9 ATA). The EEG from a 19-electrode cap was recorded for 20 min while the subject reclined on a cot with eyes closed, first at 1 ATA before the dive and again at 9 ATA. Signals were analyzed using Fast Fourier Transform and brain mapping for frequency domains 0-4 Hz, 4-7 Hz, 7-12 Hz, and 12-15 Hz. Student's paired t-test and correlation tests were used to compare results for the two conditions. Two EEG patterns were observed. The first was an increase in delta and theta activity in all cortical regions that appeared in the first 2 min at depth and was related to exposure time. The second was an increase in delta and theta activity and shifting of alpha activity to the frontal regions at minute 6 of breathing air at 9 ATA and was related to the narcotic effects of nitrogen. If confirmed by studies with larger case series, this EEG pattern could be used to identify nitrogen narcosis for various gas mixtures and prevent the dangerous impact of nitrogen on diver performance.

  16. Injury survey in scuba divers of British Sub-Aqua Club: A retrospective study

    PubMed Central

    Hyun, Gwang-Suk; Jee, Yong-Seok; Park, Jung-Min; Cho, Nam-Heung; Cha, Jun-Youl

    2015-01-01

    Scuba diving itself is generally known as a safe sports. However, various injury accidents can happen, and the incidences vary depending on divers’ education grade levels about the risks. Therefore, the study set out to identify and analyze the causes and patterns of injuries depending on the divers’ safety education grade levels through a questionnaire survey targeting ocean divers (n=12), sports divers (n=16), and dive leaders (n=15), all of whom belong to the British Sub-Aqua Club. After conducting a frequency analysis on the collected questionnaires, the conclusions are made as follows. First, in terms of diving depth, the most frequent diving depth was 15–20 m among ocean divers, 20–25 m among sports divers, and 15–20 m in case of dive leaders. Second, with regard to the causes of injuries, the most frequently answered causes are ‘overtension’ and ‘low skill’ among ocean divers; ‘low skill’ among sports divers; ‘overaction’ among dive leaders. Third, in terms of injury patterns, the most frequently answered injury patterns are ‘ear’ injuries among ocean divers; ‘ankle’ injuries among sports divers; ‘ankle’ and ‘calf’ injuries among dive leaders. Fourth, with regard to who performed first-aid when an injury accident happened, the most frequent answers are ‘instructor’ among ocean divers; ‘instructor’ and ‘self’ among sports divers; ‘self’ among dive leaders. We might suggest that more efforts need to be made to improve divers’ low dependence on specialists for treatment and consultation so that we can prevent an injury from leading to the second injury accident. PMID:26730384

  17. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour.

    PubMed

    Richard, Gaëtan; Vacquié-Garcia, Jade; Jouma'a, Joffrey; Picard, Baptiste; Génin, Alexandre; Arnould, John P Y; Bailleul, Frédéric; Guinet, Christophe

    2014-07-15

    Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration. © 2014. Published by The Company of Biologists Ltd.

  18. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals. PMID:25999860

  19. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.

  20. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.

    PubMed

    Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark

    2015-05-01

    Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth. © 2015. Published by The Company of Biologists Ltd.

  1. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  2. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  3. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  4. Numerical simulation of the effects of dilution level, depth of inhalation, and smoke composition on nicotine vapor deposition during cigarette smoking.

    PubMed

    Ingebrethsen, Bradley J

    2006-12-01

    A numerical model of an aerosol containing vaporizable nicotine depositing to the walls of a tube was developed and applied to simulate the vapor deposition of nicotine in a denuder tube and under conditions approximating those in the respiratory tract during mainstream cigarette smoke inhalation. The numerical model was validated by comparison to data for denuder tube collection of nicotine from the smoke of three types of cigarette differing in smoke acidity and nicotine volatility. Simulations predict that the absorption of water by aerosol particles inhibits nicotine vapor deposition to tube walls, and that increased temperature, decreased tube diameter, and increased dilution enhance nicotine vapor deposition rate. The combined effect of changing these four parameters to approximate the transition from conducting to gas exchange regions of the respiratory tract was a significant net increase in predicted nicotine vapor deposition rate. Comparisons of nicotine deposition rates between conditions in the conducting airways and those in the gas exchange region were informative with regard to reported nicotine retention measurements during human smoking. Reports that vaporizable nicotine can penetrate past the conducting airways, that nicotine can be retained at near 100% efficiency from mainstream smoke, and that cigarettes with differing acidity and nicotine volatility have similar nicotine uptake rates are all shown to be consistent with the results of the model simulations.

  5. Smoking cues in a virtual world provoke craving in cigarette smokers.

    PubMed

    Baumann, Stephen B; Sayette, Michael A

    2006-12-01

    Twenty smoking-deprived cigarette smokers participated in a study to test the ability of smoking cues within a virtual world to provoke self-reported craving to smoke. Participants were exposed to 2 virtual-reality simulations displayed on a computer monitor: a control environment not containing any intentional smoking stimuli and a cue-exposure environment containing smoking stimuli. At various points, participants rated their urge to smoke on a scale of 0-100. Results indicated that baseline urge ratings were equivalent in both conditions, but the maximum increase in urge ratings was significantly higher in the cue-exposure environment than in the control environment. This is comparable to what in vivo studies have reported, but with the advantage of simulating more naturalistic and complex settings in a controlled environment. (c) 2006 APA, all rights reserved

  6. Quantitating Volatile Phenols in Cabernet Franc Berries and Wine after On-Vine Exposure to Smoke from a Simulated Forest Fire.

    PubMed

    Noestheden, Matthew; Dennis, Eric G; Zandberg, Wesley F

    2018-01-24

    Smoke-taint is a wine defect linked to organoleptic volatile phenols (VPs) in Vitis vinifera L. berries that have been exposed to smoke from wildland fires. Herein, the levels of smoke-taint-associated VPs are reported in Cabernet Franc berries from veraison to commercial maturity and in wine after primary fermentation following on-vine exposure to simulated wildland fire smoke. VPs increased after smoke exposure were rapidly stored as acid-labile conjugates, and the levels of both free VPs and conjugated forms remained constant through ripening to commercial maturity. An increase in total VPs after primary fermentation suggested the existence of VP-conjugates other than the acid-labile VP-glycosides already reported. This conclusion was supported with base hydrolysis on the same samples. Relative to published results, the data suggested a multifactorial regional identity for smoke-taint and they inform efforts to produce a predictive model for perceptible smoke-taint in wine based on the chemical composition of smoke-exposed berries.

  7. Code of Practice for Scientific Diving: Principles for the Safe Practice of Scientific Diving in Different Environments. Unesco Technical Papers in Marine Science 53.

    ERIC Educational Resources Information Center

    Flemming, N. C., Ed.; Max, M. D., Ed.

    This publication has been prepared to provide scientific divers with guidance on safe practice under varying experimental and environmental conditions. The Code offers advice and recommendations on administrative practices, insurance, terms of employment, medical standards, training standards, dive planning, safety with different breathing gases…

  8. Moderator and Mediator Effects of Scuba Diving Specialization on Marine-Based Environmental Knowledge-Behavior Contingency

    ERIC Educational Resources Information Center

    Thapa, Brijesh; Graefe, Alan R.; Meyer, Louisa A.

    2005-01-01

    Given the growth in scuba diving activities and the importance of environmental education programs to alleviate the potential impacts on coral reef ecosystems, there is a need to better understand the diving community, its environmental knowledge, and subsequent behavioral actions. The purpose of this study was to explore the role or influence of…

  9. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at appendix...

  10. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at appendix...

  11. Scuba diving accidents.

    PubMed

    Dembert, M L

    1977-08-01

    The principal scuba diving medical problems of barotrauma, air embolism and decompression sickness have as their pathophysiologic basis the Ideal Gas Law and Boyle's Law. Hyperbaric chamber recompression therapy is the only definitive treatment of air embolism and decompression sickness. However, with a basic knowledge of diving medicine, the family physician can provide effective supportive care to the patient prior to initiation of hyperbaric therapy.

  12. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart T.... 1910, Subpt. T, App. B Appendix B to Subpart T to Part 1910—Guidelines for Scientific Diving This appendix contains guidelines that will be used in conjunction with § 1910.401(a)(2)(iv) to determine those...

  13. Coral Dermatitis or Infectious Dermatitis: Report of a Case of Staphylococcus Aureus Infection of Skin After Scuba Diving

    PubMed Central

    2018-01-01

    Skin lesion which develops after deep sea diving is termed as coral dermatitis. The corals are known to produce a toxic substance which when comes in to contact with human skin may elicit hypersensitive reactions. Most previous reports highlight the allergic reactions caused by deep sea diving. This is a rare case of staphylococcal skin infection in a second-year medical student caused by Staphylococcus aureus; he reported a history of deep sea diving before being presented to the hospital with skin rashes. This case highlights the importance of considering infectious aetiology in cases of coral dermatitis. PMID:29666774

  14. The neuropsychology of repeated 1- and 3-meter springboard diving among college athletes.

    PubMed

    Zillmer, Eric A

    2003-01-01

    This study examined the neuropsychological effects of repeated springboard diving. It was hypothesized that the impact velocity, which can range from 20 to 30 mph, and accompanying deceleration in the water may lead to concussions and affect the diver's cognitive function. Six varsity National Collegiate Athletic Association Division 1 springboard divers participated in the study. Each diver performed a total of 50 practice dives from either the 1- or 3-m springboard. After each set of 10 dives, the participants were immediately evaluated at poolside using the Symbol Digit Modalities Test, the Stroop Color Word Test, and the Trail Making Test B. Baseline testing revealed, consistent with their athletic specialty, clear neurocognitive strengths among the divers on tests sensitive to proprioception, motor speed, and visual-spatial organization. Results from the serial assessments indicated no detectable neuropsychological deficits among competitive divers compared to baseline testing. Skilled diving at the collegiate level appears to be a safe sport and water appears to present the perfect medium for gradual deceleration. More studies, however, are warranted for 5-, 7.5-, and 10-m platform diving since the impact velocity of the diver from these heights is higher.

  15. Provisional report on diving-related fatalities in Australian waters 2008.

    PubMed

    Lippmann, John; Walker, Douglas; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Harris, Richard; Jamieson, Scott

    2013-03-01

    An individual case review of diving-related deaths, reported as occurring in Australia in 2008, was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 19 reported fatalities (the same as for 2007), 17 involving males. Twelve deaths occurred while snorkelling and/or breath-hold diving,and six while scuba diving. One diver died while using surface-supply breathing apparatus. Two breath-hold divers appear to have died as a result of apnoeic hypoxia, at least one case likely associated with hyperventilation. Two deaths resulted from trauma: one from impact with a boat and the other from an encounter with a great white shark. Cardiac-related issues were thought to have contributed to the deaths of five snorkellers and at least two, possibly three, scuba divers. Trauma from a marine creature, snorkelling or diving alone, apnoeic hypoxia and pre-existing medical conditions were once again features in several deaths in this series.

  16. Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei.

    PubMed

    Jones, Karl K; Snelling, Edward P; Watson, Amy P; Seymour, Roger S

    2015-11-01

    Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an 'air store', or they can act as a physical 'gas gill', extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration. © 2015. Published by The Company of Biologists Ltd.

  17. The development of an intermediate-duration tag to characterize the diving behavior of large whales.

    PubMed

    Mate, Bruce R; Irvine, Ladd M; Palacios, Daniel M

    2017-01-01

    The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales ( Physeter macrocephalus; N  = 46), blue whales ( Balaenoptera musculus; N  = 8), and fin whales ( B. physalus; N  = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well suited to studying the effects of anthropogenic sound on whales by allowing for pre- and post-exposure monitoring of the whale's dive behavior. This tag begins to bridge the gap between existing long-duration but low-data throughput tags, and short-duration, high-resolution data loggers.

  18. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire Dynamics Simulator comparisons with measured data.

    PubMed

    Hu, L H; Fong, N K; Yang, L Z; Chow, W K; Li, Y Z; Huo, R

    2007-02-09

    Smoke and toxic gases, such as carbon monoxide, are the most fatal factors in fires. This paper models fire-induced smoke spread and carbon monoxide transportation in an 88m long channel by Fire Dynamics Simulator (FDS) with large eddy simulation (LES). FDS is now a well-founded fire dynamics computational fluid dynamic (CFD) program, which was developed by National Institute of Standards and Technology (NIST). Two full scale experiments with fire sizes of 0.75 and 1.6MW were conducted in this channel to validate the program. The spread of the fire-induced smoke flow together with the smoke temperature distribution along the channel, and the carbon monoxide concentration at an assigned position were measured. The FDS simulation results were compared with experimental data with fairly good agreement demonstrated. The validation work is then extended to numerically study the carbon monoxide concentration distribution, both vertically and longitudinally, in this long channel. Results showed that carbon monoxide concentration increase linearly with the height above the floor and decreases exponentially with the distance away from the fire source.

  19. Poor flight performance in deep-diving cormorants.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  20. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  1. Cervical spine injuries from diving accident: a 10-year retrospective descriptive study on 64 patients.

    PubMed

    Chan-Seng, E; Perrin, F E; Segnarbieux, F; Lonjon, N

    2013-09-01

    Ninety percent of the lesions resulting from diving injuries affect the cervical spine and are potentially associated with spinal cord injuries. The objective is to determine the most frequent lesion mechanisms. Evaluate the therapeutic alternatives and the biomechanical evolution (kyphotic deformation) of diving-induced cervical spine injuries. Define epidemiological characteristics of diving injuries. A retrospective analysis over a period of 10 years was undertaken for patients admitted to the Department of Neurosurgery of Montpellier, France, with cervical spinal injuries due to a diving accident. Patients were re-evaluated and clinical and radiological evaluation follow-ups were done. This study included 64 patients. Cervical spine injuries resulting from diving predominantly affect young male subjects. They represent 9.5% of all the cervical spine injuries. In 22% of cases, patients presented severe neurological troubles (ASIA A, B, C) at the time of admission. A surgical treatment was done in 85% of cases, mostly using an anterior cervical approach. This is a retrospective study (type IV) with some limitations. The incidence of diving injuries in our region is one of the highest as compared to reports in the literature. Despite an increase of our surgical indications, 55% of these cases end up with a residual kyphotic deformation but there is no relationship between the severity of late vertebral deformity and high Neck Pain and Disability Scale (NPDS) scores. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    PubMed

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  3. Foraging patterns and prey selection in an increasing and expanding sea otter population

    USGS Publications Warehouse

    Laidre, K.L.; Jameson, R.J.

    2006-01-01

    Focal observations of sea otter (Enhydra lutris kenyoni) foraging patterns and prey selection were collected in coastal Washington between 1993 and 1999. Records consisted of 13,847 individual dives from 841 feeding bouts ranging from 1 min to >4 h. Average dive time was 55 s ?? 0.9 SE and average surface time was 45 s ?? 2.3 SE, irrespective of dive success. At least 77% of all dives (n = 10,636) were successful prey captures (dives in low light or of undetermined success were excluded). Prey capture success was significantly lower for subadults (63% ?? 5 SE) than adults (82% ?? 1 SE; P 60% red urchins (Strongylocentrotus franciscanus), with only 2 other prey species comprising >10% of their diet. Prey size and prey category were dominant predictor variables in generalized linear models of dive duration and postdive surface duration on successful dives. Significant increases in areal extent of surface canopy of giant kelp (Macrocystis integrifolia) and bull kelp (Nereocystis leutkeana) were found both in the outer coast and the Strait of Juan de Fuca (0.4-0.5 km2 per year, P < 0.05) and suggest increasing suitable habitat for a growing population. The growth and expansion of a small and isolated sea otter population provides a unique opportunity to examine the relationship between dietary diversity and population status and explore similarities and differences between trophic paradigms established for sea otter populations at other localities. ?? 2006 American Society of Mammalogists.

  4. Presumed Arterial Gas Embolism After Breath-Hold Diving in Shallow Water.

    PubMed

    Harmsen, Stefani; Schramm, Dirk; Karenfort, Michael; Christaras, Andreas; Euler, Michael; Mayatepek, Ertan; Tibussek, Daniel

    2015-09-01

    Dive-related injuries are relatively common, but almost exclusively occur in recreational or scuba diving. We report 2 children with acute central nervous system complications after breath-hold diving. A 12-year-old boy presented with unilateral leg weakness and paresthesia after diving beneath the water surface for a distance of ∼25 m. After ascent, he suddenly felt extreme thoracic pain that resolved spontaneously. Neurologic examination revealed right leg weakness and sensory deficits with a sensory level at T5. Spinal MRI revealed a nonenhancing T2-hyperintense lesion in the central cord at the level of T1/T2 suggesting a spinal cord edema. A few weeks later, a 13-year-old girl was admitted with acute dizziness, personality changes, confusion, and headache. Thirty minutes before, she had practiced diving beneath the water surface for a distance of ∼25 m. After stepping out, she felt sudden severe thoracic pain and lost consciousness. Shortly later she reported headache and vertigo, and numbness of the complete left side of her body. Neurologic examination revealed reduced sensibility to all modalities, a positive Romberg test, and vertigo. Cerebral MRI revealed no pathologic findings. Both children experienced a strikingly similar clinical course. The chronology of events strongly suggests that both patients were suffering from arterial gas embolism. This condition has been reported for the first time to occur in children after breath-hold diving beneath the water surface without glossopharyngeal insufflation. Copyright © 2015 by the American Academy of Pediatrics.

  5. Left ventricle changes early after breath-holding in deep water in elite apnea divers.

    PubMed

    Pingitore, Alessandro; Gemignani, Angelo; Menicucci, Danilo; Passera, Mirko; Frassi, Francesca; Marabotti, Claudio; Piarulli, Andrea; Benassi, Antonio; L'Abbate, Antonio; Bedini, Remo

    2010-01-01

    To study by ultrasounds cardiac morphology and function early after breath-hold diving in deep water in elite athletes. Fifteen healthy male divers (age 28 +/- 3 years) were studied using Doppler-echocardiography, immediately before (basal condition, BC) and two minutes after breath-hold diving (40 meters, acute post-apnea condition, APAC). Each subject performed a series of three consecutive breath-hold dives (20-30 and 40 m depth). End-diastolic left ventricular (LV) diameter (EDD) and end-diastolic LV volume (EDV) increased significantly (p < 0.01). Stroke volume (SV), cardiac index (CI), septal and posterior systolic wall-thickening (SWT) also significantly increased after diving (p < 0.01). No wall motion abnormalities were detected, and wall motion score index was unchanged between BC and APAC. Doppler mitral E wave increased significantly (p < 0.01), whereas the A wave was unchanged. Systemic vascular resistance (SVR) decreased significantly after diving (p < 0.05). In the factor analysis, filtering out the absolute values smaller than 0.7 in the loading matrix, it resulted that factor I consists of EDV, posterior SWT, SV and CI, factor II of diastolic blood pressure, waves A and E and factor III of heart rate and SVR. Systo-diastolic functions were improved in the early period after deep breath-hold diving due to favorable changes in loading conditions relative to pre-diving, namely the recruitment of left ventricular preload reserve and the reduction in afterload.

  6. Mesoscale modeling of smoke transport over Central Africa: influences of trade winds, subtropical high, ITCZ and vertical statistics

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, J.; Hyer, E. J.; Ichoku, C. M.

    2012-12-01

    A fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem), is used to simulate the transport of smoke aerosol over the Central Africa during February 2008. Smoke emission used in this study is specified from the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance is evaluated using MODIS true color images, measured Aerosol Optical Depth (AOD) from space-borne MODIS (550 nm) and ground-based AERONET (500 nm), and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) level 1 and 2 products. The simulated smoke transport is in good agreement with the validation data. Analyzing from three smoke events, smoke is constrained in a narrow belt between the Equator and 10°N near the surface, with the interplay of trade winds, subtropical high, and ITCZ. At the 700 hpa level, smoke expands farther meridionally. Topography blocks the smoke transport to the southeast of study area, because of high mountains located near the Great Rift Valley region. The simulation with injection height of 650 m is consistent with CALIOP measurements. The particular phenomenon, aerosol above cloud, is studied statistically from CALIOP observations. The total percentage of aerosol above cloud is about 5%.

  7. Assessment of biomass burning smoke influence on environmental conditions for multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-09-01

    We use the Weather Research and Forecasting (WRF) system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the U.S. during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included, and smoke emissions are constrained using an inverse modeling technique and satellite-based aerosol optical depth observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low-level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics, and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  8. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    PubMed Central

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2018-01-01

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations. PMID:29619287

  9. Tobacco Policies in Louisiana: Recommendations for Future Tobacco Control Investment from SimSmoke, a Policy Simulation Model.

    PubMed

    Levy, David; Fergus, Cristin; Rudov, Lindsey; McCormick-Ricket, Iben; Carton, Thomas

    2016-02-01

    Despite the presence of tobacco control policies, Louisiana continues to experience a high smoking burden and elevated smoking-attributable deaths. The SimSmoke model provides projections of these health outcomes in the face of existing and expanded (simulated) tobacco control polices. The SimSmoke model utilizes population data, smoking rates, and various tobacco control policy measures from Louisiana to predict smoking prevalence and smoking-attributable deaths. The model begins in 1993 and estimates are projected through 2054. The model is validated against existing Louisiana smoking prevalence data. The most powerful individual policy measure for reducing smoking prevalence is cigarette excise tax. However, a comprehensive cessation treatment policy is predicted to save the most lives. A combination of tobacco control policies provides the greatest reduction in smoking prevalence and smoking-attributable deaths. The existing Louisiana excise tax ranks as one of the lowest in the country and the legislature is against further increases. Alternative policy measures aimed at lowering prevalence and attributable deaths are: cessation treatments, comprehensive smoke-free policies, and limiting youth access. These three policies have a substantial effect on smoking prevalence and attributable deaths and are likely to encounter more favor in the Louisiana legislature than increasing the state excise tax.

  10. Three year follow up of a self certification system for the assessment of fitness to dive in Scotland

    PubMed Central

    Glen, S

    2004-01-01

    Background: The need for routine medical examinations of sport divers in the Scottish Sub-Aqua Club (Scot-SAC) was revised in March 2000, and a new system using a self administered screening questionnaire was developed to allow divers to be assessed when necessary by doctors with diving medicine experience. Objective: To assess the effect of the new medical system on medical referee workload, diver exclusion rates, and diving incident frequency. Methods: All divers were required to complete a questionnaire to screen for conditions that might affect fitness to dive. Divers answering "Yes" to any of the questions had their medical background assessed by a diving doctor, and, if necessary, received a clinical examination or investigation. The rate of diver exclusions based on the questionnaire response was recorded in conjunction with analysis of the incident reports. Results: The number of forms requiring review by diving doctors increased from 1.2% to 5.7% (p<0.0001, 95% confidence interval (CI) –0.06 to –0.03) in the year after the introduction of the new medical system and gradually increased in subsequent years to 7.7% (p<0.0001, 95% CI –0.08 to –0.05). The number of divers failing to be certified fit to dive increased slightly from 0.7% to 1.0% after one year (p = 0.26, 95% CI –0.01 to 0.00) and subsequently to 2.0% (p = 0.0003, 95% CI 0.02 to –0.01) after three years. Most divers were certified fit to dive on the basis of the questionnaire alone, and only 0.9% required objective investigation (such as exercise testing or echocardiography). Analysis of the incidents during three years of follow up confirmed that no incident occurred because of an undetected pre-existing medical condition. Two incidents involved divers with hypertension, but both had received medical examinations and investigation based on their responses to the questionnaire. Conclusion: The new self administered questionnaire system appears to be an effective screening tool for the detection of divers requiring detailed assessment by doctors with diving medicine experience. PMID:15562174

  11. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  12. Depletion of deep marine food patches forces divers to give up early.

    PubMed

    Thums, Michele; Bradshaw, Corey J A; Sumner, Michael D; Horsburgh, Judy M; Hindell, Mark A

    2013-01-01

    Many optimal foraging models for diving animals examine strategies that maximize time spent in the foraging zone, assuming that prey acquisition increases linearly with search time. Other models have considered the effect of patch quality and predict a net energetic benefit if dives where no prey is encountered early in the dive are abandoned. For deep divers, however, the energetic benefit of giving up is reduced owing to the elevated energy costs associated with descending to physiologically hostile depths, so patch residence time should be invariant. Others consider an asymptotic gain function where the decision to leave a patch is driven by patch-depletion effects - the marginal value theorem. As predator behaviour is increasingly being used as an index of marine resource density and distribution, it is important to understand the nature of this gain function. We investigated the dive behaviour of the world's deepest-diving seal, the southern elephant seal Mirounga leonina, in response to patch quality. Testing these models has largely been limited to controlled experiments on captive animals. By integrating in situ measurements of the seal's relative lipid content obtained from drift rate data (a measure of foraging success) with area-restricted search behaviour identified from first-passage time analysis, we identified regions of high- and low-quality patches. Dive durations and bottom times were not invariant and did not increase in regions of high quality; rather, both were longer when patches were of relatively low quality. This is consistent with the predictions of the marginal value theorem and provides support for a nonlinear relationship between search time and prey acquisition. We also found higher descent and ascent rates in high-quality patches suggesting that seals minimized travel time to the foraging patch when quality was high; however, this was not achieved by increasing speed or dive angle. Relative body lipid content was an important predictor of dive behaviour. Seals did not schedule their diving to maximize time spent in the foraging zone in higher-quality patches, challenging the widely held view that maximizing time in the foraging zone translates to greater foraging success. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  13. A Subducted Seamount Revealed: 2016, NOAA OER Deepwater Exploration of the Marianas

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Kelley, C.; Pomponi, S. A.; Glickson, D.; Amon, D.

    2017-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea Plate edge.

  14. Environmentally Benign Battlefield Effects Black Smoke Simulator

    DTIC Science & Technology

    2006-11-01

    tested and results Fuel Oxidizer Color of Smoke Density of Smoke Sugar (Sucrose) KNO3 Grey Medium Dextrin KNO3 Grey Thin Microcrystalline...design. 3.5 Initial Prototype Scale Fiberboard Testing Several quality black smoke formulations were identified in the small pellet testing to

  15. Escape from a Diving Submarine Simulator: Impacts of Mindfulness Differences on Physio-Biological Responses and Cognitive Performances

    DTIC Science & Technology

    2009-10-01

    of various anxiety disorders [15,16]. Thus, it appears as a predictor of day-to-day self-regulated behavior and adaptability to stressful events...form was used for measuring the mindfulness-trait. The Spielberger State-Trait- Anxiety Form Y Inventory: The Spielberger State-Trait- Anxiety ... anxiety at particular moments. In the trait scale, the remaining 20 items ask respondents to indicate the intensity of their anxiety in general. Trait

  16. Modeling of Shoreline Changes of Tulamben Coast, Bali Indonesia

    NASA Astrophysics Data System (ADS)

    Yuanita, Nita; Pratama, Roka; Husrin, Semeidi

    2015-04-01

    Modeling of Shoreline Changes of Tulamben Coast, Bali Indonesia Tulamben coast is located in Lombok Strait on the northeastern coast of Bali island, Indonesia, as part of Karang Asem district. Severe erosion along the coastline has long been occurred in Karang Asem area and threatening houses, religious buildings (Hindu temples), and a national heritage site. As one of most popular diving site in Bali Island, Tulamben attracted many local and international tourist since 1980. The main attraction of Tulamben diving site is the USAT Liberty ship that was shipwrecked in Tulamben beach in 1942, after attacked by Japanese torpedo in Lombok Strait. Currently about 150 diver visit Tulamben per day. Due to physical changes of coastal environmental such as coastal erosion, sliding, and scouring, the shipwreck is vulnerable. It had been slipped off the beach several times and is predicted would be moved to deeper offshore floor if it is not protected. Coastal erosion in Karang Asem district is occurred probably due to interaction between cross-shore and long-shore wave-generated current and river sand supply decreasing after sand mining activities. In this study, the effect of cross-shore and longshore transport to coastal erosion in Tulamben is analyzed by doing numerical model. Numerical simulation of shoreline changes is performed by using Beach Processes Module of CEDAS (Coastal Engineering Design and Analysis System) consists of SBEACH and GENESIS. The model domain is covered Karang Asem coastline about 60 km length and wave data is calculated from hourly wind data (10 years). Simulated shoreline is calibrated using shoreline data from 1972 to 2013. Using calibrated model, then the simulation is performed from 2003 - 2013. From the simulation it is determined that longshore current and longshore sediment contribute to coastal erosion in Tulamben. Based on model results, several alternatives of general layout and configuration of coastal protection structures is proposed. The most optimum coastal protection system is determined by simulating proposed alternative using GENESIS.

  17. Go Deeper, Go Deeper: Understanding submarine command and control during the completion of dived tracking operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel T

    2018-05-01

    This is a world's first-of-a-kind study providing empirical evidence for understanding submarine control room performance when completing higher and lower demand Dived Tracking (DT) scenarios. A submarine control room simulator was built, using a non-commercial version of Dangerous Waters as the simulation engine. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during DT. The Event Analysis of Systemic Teamwork (EAST) method was used to model the social, task and information networks and describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command team roles and level of demand affected performance. Results indicate that command teams can covertly DT a contact differently depending on demand (e.g. volume of contacts). In low demand it was possible to use periscope more often than in high demand, in a 'duck-and-run' fashion. Therefore, the type of information and frequency of particular task completion, was significantly different between the higher and lower demand conditions. This resulted in different operators in the command team experiencing greater demand depending on how the DT mission objective was completed. Potential bottlenecks in the command team were identified and implications are discussed alongside suggestions for future work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Foraging dives by post-breeding northern pintails

    USGS Publications Warehouse

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  19. DIVE: A Graph-based Visual Analytics Framework for Big Data

    PubMed Central

    Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie

    2014-01-01

    The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197

  20. Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds.

    PubMed

    Felsõ, B; Rózsa, L

    2006-08-01

    Avian lice occupy different habitats in the host plumage that the physical environment outside the host body may affect in several ways. Interactions between host plumage and water may be an important source of such effects. Here, we use a comparative approach to examine the effect of a host's diving behavior on the taxonomic richness of its lice. Louse genera richness was significantly lower in clades of diving birds than on their nondiving sister clades. Species richness of host and body mass did not differ significantly between these clades; thus, these factors did not bias our results. This study suggests that the hosts' diving behavior can effectively influence ectoparasite communities.

  1. Spontaneous Action Representation in Smokers when Watching Movie Characters Smoke

    PubMed Central

    Wagner, Dylan D.; Cin, Sonya Dal; Sargent, James D.; Kelley, William M.; Heatherton, Todd F.

    2013-01-01

    Do smokers simulate smoking when they see someone else smoke? For regular smokers, smoking is such a highly practiced motor skill that it often occurs automatically, without conscious awareness. Research on the brain basis of action observation has delineated a frontopareital network that is commonly recruited when people observe, plan or imitate actions. Here, we investigated whether this action observation network would be preferentially recruited in smokers when viewing complex smoking cues, such as those occurring in motion pictures. Seventeen right-handed smokers and seventeen non-smokers watched a popular movie while undergoing functional magnetic resonance imaging. Using a natural stimulus, such as a movie, allowd us to keep both smoking and non-smoking participants naïve to the goals of the experiment. Brain activity evoked by scenes of movie smoking was contrasted with non-smoking control scenes which were matched for frequency and duration. Compared to non-smokers, smokers showed greater activity in left anterior intraparietal sulcus and inferior frontal gyrus, both regions involved in the simulation of contralateral hand-based gestures, when viewing smoking vs. control scenes. These results demonstrate that smokers spontaneously represent the action of smoking when viewing others smoke, the consequence of which may make it more difficult to abstain from smoking. PMID:21248113

  2. The role of tobacco control policies in reducing smoking and deaths caused by smoking in an Eastern European nation: results from the Albania SimSmoke simulation model.

    PubMed

    Levy, David T; Ross, Hana; Zaloshnja, Eduard; Shuperka, Roland; Rusta, Meriglena

    2008-12-01

    The Albania SimSmoke simulation model is used to examine the effects of tobacco control policies. The model is used to consider the projected trends in smoking prevalence and associated smoking-attributable deaths in the absence of new policies, and then to examine the effect of new policies that are consistent with the Framework Convention for Tobacco Control (FCTC) on these outcomes. The model shows that significant inroads to reducing smoking prevalence and premature mortality can be achieved through tax increases. Acomprehensive strategy to further reduce smoking rates should include a media campaign complete with programs to publicize and enforce clean air laws, a comprehensive cessation treatment program, strong health warnings, advertising bans, and youth access laws. Besides presenting the benefits of a comprehensive tobacco control strategy, the model helps to identify important information needed for both modeling and policymaking. The effectiveness of future tobacco control policy will require proper surveillance and evaluation schemes for Albania.

  3. From the eye of the albatrosses: a bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean.

    PubMed

    Sakamoto, Kentaro Q; Takahashi, Akinori; Iwata, Takashi; Trathan, Philip N

    2009-10-07

    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently 'featureless' ocean, with a minimal requirement for energetically costly diving or landing activities.

  4. From the Eye of the Albatrosses: A Bird-Borne Camera Shows an Association between Albatrosses and a Killer Whale in the Southern Ocean

    PubMed Central

    Sakamoto, Kentaro Q.; Takahashi, Akinori; Iwata, Takashi; Trathan, Philip N.

    2009-01-01

    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently ‘featureless’ ocean, with a minimal requirement for energetically costly diving or landing activities. PMID:19809497

  5. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  6. Click rates and silences of sperm whales at Kaikoura, New Zealand

    NASA Astrophysics Data System (ADS)

    Douglas, Lesley A.; Dawson, Stephen M.; Jaquet, Nathalie

    2005-07-01

    Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via ``click counting.'' Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n=13 728 clicks) mean usual click rate was 1.272 clicks s-1 (95% CI=0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.

  7. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Decompression illness secondary to occupational diving: recommended management based current legistation and practice in Malaysia.

    PubMed

    Rozali, A; Khairuddin, H; Sherina, M S; Zin, B Mohd; Sulaiman, A

    2008-06-01

    Occupational divers are exposed to hazards which contribute to the risk of developing decompression illnesses (DCI). DCI consists of Type I decompression sickness (DCS), Type II DCS and arterial gas embolism (AGE), developed from formation of bubbles in the tissues or circulation as a result of inadequate elimination of inert gas (nitrogen) after a dive. In Malaysia, DCI is one of the significant contributions to mortality and permanent residual morbidity in diving accidents. This is a case of a diver who suffered from Type II DCS with neurological complications due to an occupational diving activity. This article mentions the clinical management of the case and makes several recommendations based on current legislations and practise implemented in Malaysia in order to educate medical and health practitioners on the current management of DCI from the occupational perspective. By following these recommendations, hopefully diving accidents mainly DCI and its sequalae among occupational divers can be minimized and prevented, while divers who become injured receive the proper compensation for their disabilities.

  9. Convolutional Architecture Exploration for Action Recognition and Image Classification

    DTIC Science & Technology

    2015-01-01

    that has 200 videos taken in 720x480 resolution of 9 different sporting activities: diving, golf , swinging , kicking, lifting, horseback riding, running...sporting activities: diving, golf swinging , kicking, lifting, horseback riding, running, skateboarding, swinging (various gymnastics), and walking. In this...Testing Videos Diving 13 3 Golf Swinging 21 4 Horseback Riding 11 3 Kicking 21 4 Lifting 12 3 Running 12 3 Skateboarding 12 3 Swinging (Gymnastics) 28

  10. Blood Oxygen Conservation in Diving Sea Lions: How Low Does Oxygen Really Go

    DTIC Science & Technology

    2015-09-30

    5 6 7 0 20 40 60 80 100 % H b Sa tu ra tio n (S O2 ) Time into Dive (min) Arterial SO2 PostVenaCava SO2 AntVenaCava SO2 3 Figure 2. Rate of...change in posterior venacaval hemoglobin saturation ( SO2 ) in relation to stroke rate during descent, bottom phase, and ascent of all dives of sea

  11. Lung Mechanics in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    468. 13. Fahlman, A., et al., Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath -hold diving: the Scholander...vital to understand how diving mammals manage inert and metabolic gases during diving and will help determine what behavioral and physiological...N2 levels, and that they use both physiological and behavioral means to avoid DCS [1, 2]. But what physiological variables are the most important to

  12. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  13. Possible central nervous system oxygen toxicity seizures among US recreational air or enriched air nitrox open circuit diving fatalities 2004-2013.

    PubMed

    Buzzacott, P; Denoble, P J

    2017-01-01

    The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.

  14. Diurnal variation in the diving bradycardia response in young men.

    PubMed

    Konishi, Masayuki; Kawano, Hiroshi; Xiang, Mi; Kim, Hyeon-Ki; Ando, Karina; Tabata, Hiroki; Nishimaki, Mio; Sakamoto, Shizuo

    2016-04-01

    The present study aimed to examine diurnal variation of the diving bradycardia responses on the same day. Eighteen young men (age 26 ± 2 years; height 174.2 ± 6.0 cm; body mass 70.2 ± 8.1 kg; body fat 18.0 ± 3.8 %; mean ± standard deviation) participated in this study. Oral temperature, heart rate variability (HRV) from 5-min of electrocardiogram data, and diving bradycardia responses were measured at 0900, 1300, and 1700 hours daily. All participants performed diving reflex tests twice in the sitting position with the face immersed in cold water (1.9-3.1 °C) and apnea at midinspiration for a minimum of 30 s and as long as possible, in consecutive order. Oral temperature was found to be less in the morning (0900) than in the afternoon (1300) and evening (1700). In the frequency domain parameters of heart rate variability, the natural logarithms of high-frequency power were higher in the morning than in the evening. All participants showed bradycardia response to the two diving reflex tests. The peak values of R-R interval during the diving reflex test both for as long as possible and 30 s were longer in the morning than in the afternoon and evening. Our results indicated that the maximal bradycardia during the diving reflex test exhibits a diurnal variation, with peak levels at morning and gradual decrease towards the evening. The HRV indexes show the same variation.

  15. Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters

    NASA Astrophysics Data System (ADS)

    Rasmussen, M. H.; Akamatsu, T.; Teilmann, J.; Vikingsson, G.; Miller, L. A.

    2013-04-01

    For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup. The satellite tag transmitted for 201 day, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 h and 40 min and provided the first insight into the echolocation behaviour of a free-ranging white-beaked dolphin. The tag registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click intervals compared to those it used in V-shaped dives. The dolphin was in acoustic contact with other dolphins about five hours after it was released and stayed with these for the rest of the tagging time. Possible foraging attempts were found based on the reduction of click intervals from about 100 ms to 2-3 ms, which suggests a prey capture attempt. We found 19 punitive prey capture attempts and of these 53% occurred at the maximum dive depth. This suggests that more than half of the possible prey capture events occurred at or near the sea bed.

  16. A subjective evaluation of a drinking system for saturation divers.

    PubMed

    Hope, Arvid; Brekken, Rudolf

    2010-03-01

    Studies have shown that divers may lose large volumes of body fluids in hot water suit (HWS) dives lasting for four hours or longer, and that this dehydration is mainly caused by sweating. Body fluid balance may be impaired and the diver's alertness and power of judgement could be influenced by such imbalance. The main objective of the present study was to obtain a subjective judgement of a drinking system for divers (DSFD) and to obtain information related to body fluid loss during long saturation lock-out dives. Via a suction pipe imbedded in the microphone unit in the oronasal mask, the DSFD makes it possible for the diver to drink while in the water. Ten divers tested the drinking system during 12 saturation lock-out dives lasting on average for 5.5 h. A questionnaire was answered after each dive. The divers drank 21 times (range 5-30 times) during the dives, and the average drinking volume was 1.4 litre (range 1.0-1.5 litre) but only drank 0.04 litre (range 0-0.3 litre) in the bell after diving. The system was easy to operate and preparation and clothing did not cause any delay. The suction pipe did not intrude and the microphone performed excellently. The work in water was not hindered by DSFD and all divers were very satisfied with the drinking system. It was obvious that the need for fluid intake after a dive with DSFD was markedly reduced; another good indication of maintained body fluid balance.

  17. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    PubMed

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  18. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  19. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Yamamoto, Takashi; Sato, Nobuhiko; Watanuki, Yutaka; Will, Alexis; Kitaysky, Alexander S.; Takahashi, Akinori

    2016-04-01

    Subarctic environmental changes are expected to affect the foraging ecology of marine top predators, but the response to such changes may vary among species if they use food resources differently. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabird: common (Uria aalge: hereafter COMUs) and thick-billed (U. lomvia: hereafter TBMUs) murres breeding on St. George Island, located in the seasonal sea-ice region of the Bering Sea. We investigated their foraging trip and flight durations, diel patterns of dive depth, and underwater wing strokes, along with wing morphology and blood stable isotope signatures and stress hormones. Acceleration-temperature-depth loggers were attached to chick-guarding birds, and data were obtained from 7 COMUs and 12 TBMUs. Both species showed similar mean trip duration (13.2 h for COMUs and 10.5 h for TBMUs) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, the dive depths of COMUs had two peaks in shallow (18.1 m) and deep (74.2 m) depths, while those of TBMUs were 20.2 m and 59.7 m. COMUs showed more frequent wing strokes during the bottom phase of dives (1.90 s-1) than TBMUs (1.66 s-1). Fish occurred more frequently in the bill loads of COMUs (85 %) than those of TBMUs (56 %). The δ15N value of blood was significantly higher in COMUs (14.5 ‰) than in TBMUs (13.1 ‰). The relatively small wing area (0.053 m2) of COMUs compared to TBMUs (0.067 m2) may facilitate their increased agility while foraging and allow them to capture more mobile prey such as larger fishes that inhabit deeper depths. These differences in food resource use may lead to the differential responses of the two murre species to marine environmental changes in the Bering Sea.

  20. Temporal changes of populations and trophic relationships of wintering diving ducks in Chesapeake Bay

    USGS Publications Warehouse

    Perry, Matthew C.; Wells-Berlin, Alicia M.; Kidwell, David M.; Osenton, Peter C.

    2007-01-01

    Population and trophic relationships among diving ducks in Chesapeake Bay are diverse and complex as they include five species of bay ducks (Aythya spp.), nine species of seaducks (Tribe Mergini), and the Ruddy Duck (Oxyura jamaicensis). Here we considered the relationships between population changes and diet over the past half century to assess the importance of prey changes to wintering waterfowl in the Bay. Food habits of 643 diving ducks collected from Chesapeake Bay during 1999-2006 were determined by analyses of their gullet (esophagus and proventriculus) and gizzard contents and compared to historical data (1885-1979) of 1,541 diving ducks. Aerial waterfowl surveys, in general, suggest that six species of seaducks were more commonly located in the meso- to polyhaline areas of the Bay, whereas five species of bay ducks and Ruddy Ducks were in the oligo- to mesohaline areas. Seaducks fed on a molluscan diet of Hooked Mussel (Ischadium recurvum), Amethyst Gemclam (Gemma gemma), and Dwarf Surfclarn (Mulinia lateralis). Bay ducks and Ruddy Ducks fed more on Baltic Macoma (Macoma balthica), the adventive Atlantic Rangia (Rangia cuneata), and submerged aquatic vegetation (SAV). Mergansers were found over the widest salinity range in the Bay, probably because of their piscivorous diet. Each diving duck species appears to fill a unique foraging niche, although there is much overlap of selected prey. When current food habits are compared to historic data, only the Canvasback (Aythya valisineria) has had major diet changes, although SAV now accounts for less food volume for all diving duck species, except the Redhead (Aythya americana). Understanding the trophic-habitat relationships of diving ducks in coastal wintering areas will give managers a better understanding of the ecological effects of future environmental changes. Intensive restoration efforts on SAV and oyster beds should greatly benefit diving duck populations.

  1. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds.

    PubMed

    Carter, Matt Ian Daniel; Bennett, Kimberley A; Embling, Clare B; Hosegood, Philip J; Russell, Debbie J F

    2016-01-01

    In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.

  2. Pop-up satellite archival tag effects on the diving behaviour, growth and survival of adult Atlantic salmon Salmo salar at sea.

    PubMed

    Hedger, R D; Rikardsen, A H; Thorstad, E B

    2017-01-01

    The effects of large, externally attached pop-up satellite archival tags (PSATs) were compared with those of small implanted data storage tags (DSTs) on adult Atlantic salmon Salmo salar during their ocean migration in regards to depth utilization, diving depth, diving rate, diving speed and temperatures experienced. Additionally the return rate and growth of individuals tagged with PSATs was compared with those of small acoustic tags and DSTs. Overall, the depth distribution of individuals tagged with PSATs was similar to that of those tagged with DSTs, reflecting the pelagic nature of S. salar at sea. Individuals tagged with PSATs, however, dived less frequently and to shallower depths, and dived and surfaced at slower velocities. Sea surface temperatures experienced by individuals tagged with PSATs were similar to those experienced by those tagged with DSTs for the same time of year, suggesting that there were no large differences in the ocean migration. Return rates did not depend on whether individuals were tagged with PSATs or not, indicating that survival at sea was not impacted by PSATs in comparison to small internal tags. Individuals tagged with PSATs, however, had a smaller increase in body mass than those tagged with acoustic tags or DSTs. It was concluded that PSATs are suitable for use in researching large-scale migratory behaviour of adult S. salar at sea, but that some effects on their behaviour from tagging must be expected. Effects of PSATs may be largest in the short term when S. salar are swimming in bursts at high speeds. Even though individuals tagged with PSATs performed deep and frequent dives, the results of this study suggest that untagged individuals would perform even deeper and more frequent dives than tagged individuals. © 2016 The Fisheries Society of the British Isles.

  3. Evaluating the Impact of Handling and Logger Attachment on Foraging Parameters and Physiology in Southern Rockhopper Penguins

    PubMed Central

    Ludynia, Katrin; Dehnhard, Nina; Poisbleau, Maud; Demongin, Laurent; Masello, Juan F.; Quillfeldt, Petra

    2012-01-01

    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1–3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour. PMID:23185623

  4. Apparent Sea Level Rise due to Loading of the Atlantic City Pier by Spectators Viewing (1929-1978) Diving Horses

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2012-12-01

    Cyril Galvin, Coastal Engineer Springfield, Virginia 22150 USA Since 1911, the Steel Pier at Atlantic City, New Jersey, has been the site of the Atlantic City tide gauge, except for two intervals: 1911-1921 when the gauge was at the Million Dollar Pier in Atlantic City, and 1985-1991 when the gauge was at the Ventnor Fishing Pier (see Table 2, Zervos, 2009). By design, the Steel Pier was an amusement pier, and its most famous amusement was the Diving Horses: they dove bareback with a woman rider from a platform about 40 feet above sea level. They did that between 1929 and 1978, except for seven years - a post-war period, 1945 to 1953, when diving was suspended. The popularity of the diving horses is recorded on photos of crowds which occupied the bleachers at the seaward end of the pier to view the diving horses. By my count, the crowd pictured in the end papers of the book by Steve Liebowitz (2009) was about 4000 people. Typically, there were multiple shows daily. The weight of the crowd, estimated from the count of the crowd, was about 150 tons. This weight was loaded down on the piles by the crowd of spectators, and unloaded between shows of the diving horses. Most of the piles supporting the pier deck were imbedded in sand newly deposited since 1850. Using Atlantic City sea levels from the PSMSL data base and historical facts from Liebowitz (2009), and beginning with a 1912 start of the tide gauge, the apparent sea level rose at a rate of 3.1mm/yr until 1929 when the horses began diving. With the 1929 start of diving, the apparent sea level rise tripled, averaging 9.4 mm/yr until the act was suspended in 1945. In the 1945-1953 interval, when the horses did not dive (no crowds on the pier), apparent sea level fell (sea level FELL) at a rate of -1.6 mm/yr. The horses resumed diving in 1953, when the apparent sea level resumed at a rate of 4.0mm/yr. This 4.0 mm/yr is identical to the longtime sea level trend (1911-2006) from Zervos (2009) of 3.99mm/yr The history of apparent sea level rise at Steel Pier is consistent with increases caused by loading the pier deck with crowds, and the absence of apparent sea level rise when the pier deck was not loaded by spectators. CG/08Aug 2012

  5. Cognitive symptoms and welding fume exposure.

    PubMed

    Ross, John A S; Macdiarmid, Jennifer I; Semple, Sean; Watt, Stephen J; Moir, Gill; Henderson, George

    2013-01-01

    Prevalence of moderate to severe cognitive symptoms is markedly higher in UK professional divers who have also worked as a welder (28%) than in either divers who have not welded (18%) or offshore workers who have worked neither as a diver nor as a welder (6%). To determine whether cognitive symptoms are related to welding fume exposure or diving. Three age-matched groups of male workers were studied using postal questionnaire: professional divers who had worked as a welder (PDW, n = 361), professional welders who had not dived (NDW, n = 352), and offshore oil field workers who had neither dived nor welded (NDNW, n =503). Health-related quality of life was assessed by the Short Form 12 questionnaire (SF12). Cognitive symptomatology was assessed using the Cognitive Failures Questionnaire (CFQ). A single variable for welding fume exposure (mg m(-3) days) was calculated, incorporating welding experience in different environments and using different welding techniques and respiratory protective equipment. The level of fume exposure during hyperbaric welding operations was measured during such work as ambient PM(10) (particles of 10 µm or less). Diving exposure was assessed as the number of dives performed plus the number of days spent working during saturation diving. Questionnaires were returned by 153 PDW, 108 NDW, and 252 NDNW. SF12 scores were the same in all groups and fell within normative values. Mean (95% CI) CFQ scores were higher in PDW [40.3 (37.7-42.9)] than in both NDW [34.6 (31.6-37.7)] and NDNW [32.1 (30.4-33.9)], but the scores in no groups fell outside the normative range. The mean PM(10) exposure during hyperbaric welding operations was 2.58 mg m(-3). The geometric mean mg m(-3) days (95% CI) for welding fume exposure in NDW [33 128 (24 625-44 567) n = 85] was higher than for that in PDW [10 904 (8103-14 673) n = 112]. For PDW the geometric mean (95% CI) diving exposure was 1491 [(1192-1866) n = 94] dives and days in saturation. In the general linear model regression analyses adjusted for age, alcohol consumption, and somatization, there was no signification association of CFQ score with either welding fume exposure (F = 0.072, P = 0.79, n = 152) or diving exposure (F = 0.042, P = 0.84, n = 74). In conclusion, cognitive sympomatology was not related to retrospectively assessed measures of welding fume exposure or diving experience. In addition, the levels of cognitive symptomatology, even in PDW, did not exceed normative values.

  6. Sensitivity of air quality simulation to smoke plume rise

    Treesearch

    Yongqiang Liu; Gary Achtemeier; Scott Goodrick

    2008-01-01

    Plume rise is the height smoke plumes can reach. This information is needed by air quality models such as the Community Multiscale Air Quality (CMAQ) model to simulate physical and chemical processes of point-source fire emissions. This study seeks to understand the importance of plume rise to CMAQ air quality simulation of prescribed burning to plume rise. CMAQ...

  7. Experimental model of smoking and simulation of reflux with acid and pepsin in rats.

    PubMed

    Zen Junior, José Hélio; Del Negro, André; Colli Neto, José Alexandre; Araujo, Marina Rachel; Altemani, Albina Maria; Andreollo, Nelson Adami

    2012-01-01

    To develop experimental models to evaluate the effects of hydrochloric acid associated with the pepsin instilled in the mucosa of the upper esophagus and the esophagogastric junction of young male rats Wistar, simulating injury caused by gastroesophageal reflux on the mucosa of aero-digestive tract in humans as well as the action of the risk exposure of mucosa to cigarette smoke. Fifty young male Wistar rats divided in 5 groups with 10 animals each one, respectively simulating pharyngo-laryngeal reflux and gastroesophageal reflux, pharyngo-laryngeal reflux and smoking, smoking only, gastroesophageal reflux and control group. The histopathologic studies no recorded neoplasias, only mild changes and no significant alterations. The hemo-oximetry (carboxyhemoglobin and methemoglobim) and CO2 concentration confirm that the animals were submitted to high intensity of exposure to carcinogens in tobacco and its derivatives. The experimental models were highly efficient, practical, easy to use and economical and can be employed in other similar studies to determine the harmful effects by smoking and reflux.

  8. Exploring Scenarios to Dramatically Reduce Smoking Prevalence: A Simulation Model of the Three-Part Cessation Process

    PubMed Central

    Mabry, Patricia L.; Graham, Amanda L.; Orleans, C. Tracy; Abrams, David B.

    2010-01-01

    Objectives. We used a simulation model to analyze whether the Healthy People 2010 goal of reducing smoking prevalence from the current 19.8% rate to 12% by 2010 could be accomplished by increasing quit attempts, increasing the use of treatments, or increasing the effectiveness of treatment. Methods. We expanded on previous versions of the tobacco control simulation model SimSmoke to assess the effects of an increase in quit attempts, treatment use, and treatment effectiveness to reduce smoking prevalence. In the model, we considered increases in each of these parameters individually and in combination. Results. Individually, 100% increases in quit attempts, treatment use, and treatment effectiveness reduced the projected 2020 prevalence to 13.9%, 16.7%, and 15.9%, respectively. With a combined 100% increase in all components, the goal of a 12% adult smoking prevalence could be reached by 2012. Conclusions. If we are to come close to reaching Healthy People 2010 goals in the foreseeable future, we must not only induce quit attempts but also increase treatment use and effectiveness. Simulation models provide a useful tool for evaluating the potential to reach public health targets. PMID:20466969

  9. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    PubMed

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  10. Scientific Diving

    EPA Pesticide Factsheets

    Scientific diving plays an important role in helping EPA protect our oceans and waterways. EPA's divers set a high standard for safety and operational procedures in dangerous polluted water conditions.

  11. Conditioning Bottlenose Dolphins (Tursiops Truncatus Gilli) for Voluntary Diving Studies

    DTIC Science & Technology

    1992-12-31

    biology. ’Discovery’ Rep. 37:1-324. Dolphin, W.F. (1987) Dive behavior and estimated energy expenditure of foraging humpback whales in southeast...case with sperm whales feeding on deep sea squid (Clarke, 1980). Other cetaceans are important constituents of multi-species communities sharing common...diving behavior of these animals remains very sketchy (Kooyman, 1989). Much of what is known about the ecology of pelagic whales and dolphins has been

  12. Case Control Study of Type II Decompression Sickness Associated with Patent Foramen Ovale in Experimental No-Decompression Dives

    DTIC Science & Technology

    2010-05-01

    right-to-left shunt, RLS, transcranial Doppler, TCD, transthoracic echocardiography, TTE , air diving no-stop limits, Navy Experimental Diving...participation. The ultrasonographer and Principal Investigator (PI) were not blinded to either the transthoracic echocardiography ( TTE ) or...his or her ability to detect a PFO/RLS that depends upon a transiently elevated right atrial pressure. The technically easier TTE , in which the US

  13. Interactions among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2015-09-30

    differentiate krill from larger fish targets, as krill have greater backscatter at 120kHz than 38kHz. Figure 3. Clover leaf sampling design...response in dive axis 1 (dive time, surface time, breaths , dive depth, etc.) showed a significant before-after effect including potential changes in...acoustic instruments for fish density estimation: a practical guide. International Council for the Exploration of the Sea (ICES) Cooperative

  14. KSC-04pd1501

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat, members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission don dive suits. From left are Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. John Herrington is mission commander. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  15. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    PubMed

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  16. The role of public policies in reducing smoking: the Minnesota SimSmoke tobacco policy model.

    PubMed

    Levy, David T; Boyle, Raymond G; Abrams, David B

    2012-11-01

    Following the landmark lawsuit and settlement with the tobacco industry, Minnesota pursued the implementation of stricter tobacco control policies, including tax increases, mass media campaigns, smokefree air laws, and cessation treatment policies. Modeling is used to examine policy effects on smoking prevalence and smoking-attributable deaths. To estimate the effect of tobacco control policies in Minnesota on smoking prevalence and smoking-attributable deaths using the SimSmoke simulation model. Minnesota data starting in 1993 are applied to SimSmoke, a simulation model used to examine the effect of tobacco control policies over time on smoking initiation and cessation. Upon validating the model against smoking prevalence, SimSmoke is used to distinguish the effect of policies implemented since 1993 on smoking prevalence. Using standard attribution methods, SimSmoke also estimates deaths averted as a result of the policies. SimSmoke predicts smoking prevalence accurately between 1993 and 2011. Since 1993, a relative reduction in smoking rates of 29% by 2011 and of 41% by 2041 can be attributed to tobacco control policies, mainly tax increases, smokefree air laws, media campaigns, and cessation treatment programs. Moreover, 48,000 smoking-attributable deaths will be averted by 2041. Minnesota SimSmoke demonstrates that tobacco control policies, especially taxes, have substantially reduced smoking prevalence and smoking-attributable deaths. Taxes, smokefree air laws, mass media, cessation treatment policies, and youth-access enforcement contributed to the decline in prevalence and deaths averted, with the strongest component being taxes. With stronger policies, for example, increasing cigarette taxes to $4.00 per pack, Minnesota's smoking rate could be reduced by another 13%, and 7200 deaths could be averted by 2041. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  17. CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety

    DTIC Science & Technology

    2011-03-01

    Mile per hour ms Millisecond NEDU Navy Experimental Diving Unit PFD Personal flotation device PIW Person in the water PVC Polyvinyl chloride RDC...electrically resistive, yet conductive, clay. We then encapsulated the clay around a 1/2” diameter, 6-inch long copper rod, and then tightly wrapped it with...short length of 12 American Wire Gauge (AWG) stranded copper wire to the copper rod within each electrode. For each electrode pair, we joined

  18. Evaluation of Head Mounted and Head Down Information Displays During Simulated Mine-Countermeasures Dives to 42 msw

    DTIC Science & Technology

    2008-04-01

    visualisation tête basse (VTB) ou d’un visiocasque pour l’exécution de leurs tâches courantes sous l’eau. Neuf plongeurs de lutte contre les mines ont...existe peu d’information empirique sur l’aptitude des plongeurs à utiliser un dispositif multifonction de visualisation tête basse (VTB) ou d’un...experiment, the diver was also linked to the researchers and operations crew via audio communications. 11 Display Screen Chamber Laptop Diver

  19. Diving response after a one-week diet and overnight fasting.

    PubMed

    Ghiani, Giovanna; Marongiu, Elisabetta; Olla, Sergio; Pinna, Marco; Pusceddu, Matteo; Palazzolo, Girolamo; Sanna, Irene; Roberto, Silvana; Crisafulli, Antonio; Tocco, Filippo

    2016-01-01

    We hypothesized that overnight fasting after a short dietary period, especially with carbohydrates, could allow performing breath-hold diving with no restraint for diaphragm excursion and blood shift and without any increase of metabolism, and in turn improve the diving response. During two separate sessions, 8 divers carried out two trials: (A) a 30-m depth dive, three hours after a normal breakfast and (B) a dive to the same depth, but after following a diet and fasting overnight. Each test consisted of 3 apnea phases: descent, static and ascent whose durations were measured by a standard chronometer. An impedance cardiograph, housed in an underwater torch, provided data on trans-thoracic fluid index (TFI), stroke volume (SV), heart rate (HR) and cardiac output (CO). Mean blood pressure (MBP), arterial O2 saturation (SaO2), blood glucose (Glu) and blood lactate (BLa) were also collected. In condition B, duration of the static phase of the dive was longer than A (37.8 ± 7.4 vs. 27.3 ± 8.4 s respectively, P < 0.05). In static phases, mean ∆ SV value (difference between basal and nadir values) during fasting was lower than breakfast one (-2.6 ± 5.1 vs. 5.7 ± 7.6 ml, P < 0.05). As a consequence, since mean ∆ HR values were equally decreased in both metabolic conditions, mean ∆ CO value during static after fasting was lower than the same phase after breakfast (-0.4 ± 0.5 vs. 0.4 ± 0.5 L · min(-1) respectively, P < 0.05). At emersion, despite the greater duration of dives during fasting, SaO2 was higher than A (92.0 ± 2.7 vs. 89.4 ± 2.9 % respectively, P < 0.05) and BLa was lower in the same comparison (4.2 ± 0.7 vs. 5.3 ± 1.1 mmol∙L(-1), P < 0.05). An adequate balance between metabolic and splancnic status may improve the diving response during a dive at a depth of 30 m, in safe conditions for the athlete's health.

  20. NOAA Deepwater Exploration of the Marianas 2016: Pacific Plate, Mariana Trench, and Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Glickson, D.; Kelley, C.; Drazen, J.; Stern, R. J.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 made 18 (ROV) dives exploring the following: 7 Cretaceous-age, Pacific Plate guyots east of the Trench; 1 small volcano on a Pacific Plate fracture; 3 areas of the inner trench slope; 2 forearc serpentinite mud volcanoes; and 5 forearc fault blocks. The Pacific Plate guyots are heavily manganese encrusted. Part of the rationale for those dives was to make baseline characterization of biota and habitats before potential mining. These guyots had striking diversity and abundance of fauna. Dives on 2 guyots examined high-relief scarps, formed when both down-going plate and edifices fractured outboard of the trench. The scarp on one had Cretaceous reef sequences, whereas the other exposed layers of volcanics. The dive on a small (1 km diameter, 141 m high) volcano on a plate fracture near the trench affirmed that it was relatively young, maybe like Petit-Spot volcanoes east of the Japan Trench. A dive in a canyon west of Guam transitioned from a steep slope of volcanic talus to a gentle sediment-covered slope. The inner trench slope opposite the subducting guyot that exposes reef deposits, revealed similar sequences, suggesting that the guyot is being incorporated into the Mariana forearc. The other inner slope dive traversed talus with fragments of serpentinized peridotite and lies near a chain of forearc serpentinite mud volcanoes. The 2 serpentinite mud volcanoes explored have sedimented, apparently inactive, surfaces, though we recovered a serpentinized peridotite sample from one of them. Dives on the forearc fault blocks attest to dynamic vertical tectonism. Three in the northern forearc show sediment sequences of varying types and textures, all dipping trenchward. Spectacular mid-forearc fault scarps strike east-west, stair-stepping down southward and were traversed on 2 dives. We saw many sequences of indurated sediments. Mapping on Legs 2 and 3 of the expedition showed that these fault scarps are mirrored to the south by north-facing scarps. Thus, vertical tectonics on a grand scale has formed an immense and previously unknown graben across the forearc. These dive results provide a wealth of information for future research into the history of plate convergence processes associated with formation of the Mariana Trench in this Marine National Monument area.

  1. Estimation of the rate of oxygen consumption of the common eider duck (Somateria mollissima), with some measurements of heart rate during voluntary dives.

    PubMed

    Hawkins, P A; Butler, P J; Woakes, A J; Speakman, J R

    2000-09-01

    The relationship between heart rate (f(H)) and rate of oxygen consumption (V(O2)) was established for a marine diving bird, the common eider duck (Somateria mollissima), during steady-state swimming and running exercise. Both variables increased exponentially with speed during swimming and in a linear fashion during running. Eleven linear regressions of V(O2) (ml kg(-1 )min(-1)) on f(H) (beats min(-1)) were obtained: five by swimming and six by running the birds. The common regression was described by V(O2)=10.1 + 0.15f(H) (r(2)=0.46, N=272, P<0.0001). The accuracy of this relationship for predicting mean V(O2) was determined for a group of six birds by recording f(H) continuously over a 2-day period and comparing estimated V(O2) obtained using the common regression with (i) V(O2) estimated using the doubly labelled water technique (DLW) and (ii) V(O2) measured using respirometry. A two-pool model produced the most accurate estimated V(O2) using DLW. Because of individual variability within mean values of V(O2) estimated using both techniques, there was no significant difference between mean V(O2) estimated using f(H) or DLW and measured V(O2) values (P>0.2), although individual errors were substantially less when f(H) was used rather than DLW to estimate V(O2). Both techniques are, however, only suitable for estimating mean V(O2) for a group of animals, not for individuals. Heart rate and behaviour were monitored during a bout of 63 voluntary dives by one female bird in an indoor tank 1.7 m deep. Tachycardia occurred both in anticipation of and following each dive. Heart rate decreased before submersion but was above resting values for the whole of the dive cycle. Mean f(H) at mean dive duration was significantly greater than f(H) while swimming at maximum sustainable surface speeds. Heart rate was used to estimate mean V(O2) during the dive cycle and to predict aerobic dive limit (ADL) for shallow dives.

  2. The Role of Public Policies in Reducing Smoking

    PubMed Central

    Levy, David T.; Boyle, Raymond G.; Abrams, David B.

    2015-01-01

    Background Following the landmark lawsuit and settlement with the tobacco industry, Minnesota pursued the implementation of stricter tobacco control policies, including tax increases, mass media campaigns, smokefree air laws, and cessation treatment policies. Modeling is used to examine policy effects on smoking prevalence and smoking-attributable deaths. Purpose To estimate the effect of tobacco control policies in Minnesota on smoking prevalence and smoking-attributable deaths using the SimSmoke simulation model. Methods Minnesota data starting in 1993 are applied to SimSmoke, a simulation model used to examine the effect of tobacco control policies over time on smoking initiation and cessation. Upon validating the model against smoking prevalence, SimSmoke is used to distinguish the effect of policies implemented since 1993 on smoking prevalence. Using standard attribution methods, SimSmoke also estimates deaths averted as a result of the policies. Results SimSmoke predicts smoking prevalence accurately between 1993 and 2011. Since 1993, a relative reduction in smoking rates of 29% by 2011 and of 41% by 2041 can be attributed to tobacco control policies, mainly tax increases, smokefree air laws, media campaigns, and cessation treatment programs. Moreover, 48,000 smoking-attributable deaths will be averted by 2041. Conclusions Minnesota SimSmoke demonstrates that tobacco control policies, especially taxes, have substantially reduced smoking prevalence and smoking-attributable deaths. Taxes, smokefree air laws, mass media, cessation treatment policies, and youth-access enforcement contributed to the decline in prevalence and deaths averted, with the strongest component being taxes. With stronger policies, for example, increasing cigarette taxes to $4.00 per pack, Minnesota’s smoking rate could be reduced by another 13%, and 7200 deaths could be averted by 2041. PMID:23079215

  3. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

  4. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).

    PubMed

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-08-15

    Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. © 2016. Published by The Company of Biologists Ltd.

  5. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.).

    PubMed

    Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W

    2017-01-01

    We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N  = 701) and non-foraging dives ( N  = 10,618) were kinematically distinct (Wilks' lambda: λ 16  = 0.321, P  < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

  6. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

    PubMed Central

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-01-01

    ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  7. Seasonal Movements, Aggregations and Diving Behavior of Atlantic Bluefin Tuna (Thunnus thynnus) Revealed with Archival Tags

    PubMed Central

    Walli, Andreas; Teo, Steven L. H.; Boustany, Andre; Farwell, Charles J.; Williams, Tom; Dewar, Heidi; Prince, Eric; Block, Barbara A.

    2009-01-01

    Electronic tags were used to examine the seasonal movements, aggregations and diving behaviors of Atlantic bluefin tuna (Thunnus thynnus) to better understand their migration ecology and oceanic habitat utilization. Implantable archival tags (n = 561) were deployed in bluefin tuna from 1996 to 2005 and 106 tags were recovered. Movement paths of the fish were reconstructed using light level and sea-surface-temperature-based geolocation estimates. To quantify habitat utilization we employed a weighted kernel estimation technique that removed the biases of deployment location and track length. Throughout the North Atlantic, high residence times (167±33 days) were identified in four spatially confined regions on a seasonal scale. Within each region, bluefin tuna experienced distinct temperature regimes and displayed different diving behaviors. The mean diving depths within the high-use areas were significantly shallower and the dive frequency and the variance in internal temperature significantly higher than during transit movements between the high-use areas. Residence time in the more northern latitude high-use areas was significantly correlated with levels of primary productivity. The regions of aggregation are associated with areas of abundant prey and potentially represent critical foraging habitats that have seasonally abundant prey. Throughout the North Atlantic mean diving depth was significantly correlated with the depth of the thermocline, and dive behavior changed in relation to the stratification of the water column. In this study, with numerous multi-year tracks, there appear to be repeatable patterns of clear aggregation areas that potentially are changing with environmental conditions. The high concentrations of bluefin tuna in predictable locations indicate that Atlantic bluefin tuna are vulnerable to concentrated fishing efforts in the regions of foraging aggregations. PMID:19582150

  8. Project Review of the Experimental Diving Unit

    DTIC Science & Technology

    1994-06-01

    Eaton p 1 -7 9 S.A. McDougall DTIC ELECTE S3pG1 1994 Defence and Civil Institute of Environmental Medicine G 1133 Sheppard Avenue West, P.O. Box 2000...Institute of Environmental Medicine (DCIEM) from 9 to 12 May 1994. Twelve projects are Licluded. Seven of these are tasks from National Defence...the stress of diving on live explosives and also because of the natural environment Improving the inte- gration of mine-countermeasures diving

  9. Deep-Diving California Sea Lions: Are they Pushing their Physiological Limit

    DTIC Science & Technology

    2013-09-30

    backpack digital recorders to measure blood oxygen depletion, heart rate, and flipper stroke rate in dives of California sea lions during maternal...relationship between changes in heart rate to blood O2 profiles, and 3) documentation of flipper stroke rate profiles during shallow and deep dives, and...assessment of the relationship of stroke rate to both changes in heart rate and changes in blood O2 profiles. APPROACH Objective 1: In order to

  10. Development and Testing of a Datalogging Device for Physiological Measurements of Deep-diving Odontocetes

    DTIC Science & Technology

    2013-09-30

    target species (such as melon-headed whales and false killer whales ) for some of these other projects were unusually low in 2013, so that there were...Science Center is supporting research on false killer whale movements in Hawaiian waters, and the Naval Postgraduate School (with funding from N45) is...determine the normal cardiovascular dive response of deep-diving odontocetes like beaked whales , and to examine how that response might be altered

  11. The Mammalian Diving Response: An Enigmatic Reflex to Preserve Life?

    PubMed Central

    2013-01-01

    The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents. PMID:23997188

  12. Acoustic Telemetry Validates a Citizen Science Approach for Monitoring Sharks on Coral Reefs

    PubMed Central

    Vianna, Gabriel M. S.; Meekan, Mark G.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081

  13. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    PubMed

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  14. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations.

    PubMed

    Elliott, Kyle H

    2016-12-01

    Animals' abilities to fly long distances and dive to profound depths fascinate earthbound researchers. Due to the difficulty of making direct measurements during flying and diving, many researchers resort to modeling so as to estimate metabolic rate during each of those activities in the wild, but those models can be inaccurate. Fortunately, the miniaturization, customization and commercialization of biologgers has allowed researchers to increasingly follow animals on their journeys, unravel some of their mysteries and test the accuracy of biomechanical models. I provide a review of the measurement of flying and diving metabolic rate in the wild, paying particular attention to mass loss, doubly-labelled water, heart rate and accelerometry. Biologgers can impact animal behavior and influence the very measurements they are designed to make, and I provide seven guidelines for the ethical use of biologgers. If biologgers are properly applied, quantification of metabolic rate across a range of species could produce robust allometric relationships that could then be generally applied. As measuring flying and diving metabolic rate in captivity is difficult, and often not directly translatable to field conditions, I suggest that applying multiple techniques in the field to reinforce one another may be a viable alternative. The coupling of multi-sensor biologgers with biomechanical modeling promises to improve precision in the measurement of flying and diving metabolic rate in wild animals. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    PubMed

    Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.

  16. Decompression illness in divers treated in Auckland, New Zealand, 1996-2012.

    PubMed

    Haas, Rachel M; Hannam, Jacqueline A; Sames, Christopher; Schmidt, Robert; Tyson, Andrew; Francombe, Marion; Richardson, Drew; Mitchell, Simon J

    2014-03-01

    The treatment of divers for decompression illness (DCI) in Auckland, New Zealand, has not been described since 1996, and subsequent trends in patient numbers and demographics are unmeasured. This was a retrospective audit of DCI cases requiring recompression in Auckland between 01 January 1996 and 31 December 2012. Data describing patient demographics, dive characteristics, presentation of DCI and outcomes were extracted from case notes and facility databases. Trends in annual case numbers were evaluated using Spearman's correlation coefficients (ρ) and compared with trends in entry-level diver certifications. Trends in patient demographics and delay between diving and recompression were evaluated using regression analyses. There were 520 DCI cases. Annual caseload decreased over the study period (ρ = 0.813, P < 0.0001) as did entry level diving certifications in New Zealand (ρ = 0.962, P < 0.0001). Mean diver age was 33.6 (95% confidence limits (CI) 32.7 to 34.5) years and age increased (P < 0.0001) over the study period. Median (range) delay to recompression was 2.06 (95% CI 0.02 to 23.6) days, and delay declined over the study period (P = 0.005). Numbers of DCI cases recompressed in Auckland have declined significantly over the last 17 years. The most plausible explanation is declining diving activity but improvements in diving safety cannot be excluded. The delay between diving and recompression has reduced.

  17. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  18. Investigating the neural correlates of smoking: Feasibility and results of combining electronic cigarettes with fMRI.

    PubMed

    Wall, Matthew B; Mentink, Alexander; Lyons, Georgina; Kowalczyk, Oliwia S; Demetriou, Lysia; Newbould, Rexford D

    2017-09-12

    Cigarette addiction is driven partly by the physiological effects of nicotine, but also by the distinctive sensory and behavioural aspects of smoking, and understanding the neural effects of such processes is vital. There are many practical difficulties associated with subjects smoking in the modern neuroscientific laboratory environment, however electronic cigarettes obviate many of these issues, and provide a close simulation of smoking tobacco cigarettes. We have examined the neural effects of 'smoking' electronic cigarettes with concurrent functional Magnetic Resonance Imaging (fMRI). The results demonstrate the feasibility of using these devices in the MRI environment, and show brain activation in a network of cortical (motor cortex, insula, cingulate, amygdala) and sub-cortical (putamen, thalamus, globus pallidus, cerebellum) regions. Concomitant relative deactivations were seen in the ventral striatum and orbitofrontal cortex. These results reveal the brain processes involved in (simulated) smoking for the first time, and validate a novel approach to the study of smoking, and addiction more generally.

  19. The role of public policies in reducing smoking and deaths caused by smoking in Vietnam: results from the Vietnam tobacco policy simulation model.

    PubMed

    Levy, David T; Bales, Sarah; Lam, Nguyen T; Nikolayev, Leonid

    2006-04-01

    A simulation model is developed for Vietnam to project smoking prevalence and associated premature mortality. The model examines independently and as a package the effects of five types of tobacco control policies: tax increases, clean air laws, mass media campaigns, advertising bans, and youth access policies. Predictions suggest that the largest reductions in smoking rates will result from implementing a comprehensive tobacco control policy package. Significant inroads may be achieved through tax increases. A media campaign along with programs to publicize and enforce clean air laws, advertising bans and youth access laws would further reduce smoking rates. Tobacco control policies have the potential to make large dents in smoking rates, which in turn could lead to many lives saved. In the absence of these measures, deaths from smoking will increase. The model also helps to identify information gaps pertinent both to modeling and policy-making.

  20. 36 CFR § 327.5 - Swimming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the District Commander. (b) An international diver down, or inland diving flag must be displayed during underwater activities. (c) Diving, jumping or swinging from trees, bridges or other structures...

  1. Sensitivity of Mesoscale Modeling of Smoke Direct Radiative Effect to the Emission Inventory: a Case Study in Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Zhang, Feng; Wang, Jun; Ichoku, Charles; Hyer, Edward J.; Yang, Zhifeng; Ge, Cui; Su, Shenjian; Zhang, Xiaoyang; Kondragunta, Shobha; Kaiser, Johannes W.; hide

    2014-01-01

    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15degW-42degE, 13degS-17degN) and monthly averages of column PM(sub 2.5) loading, surface PM(sub 2.5) concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA.

  2. Surveying, Modeling and 3d Representation of a wreck for Diving Purposes: Cargo Ship "vera"

    NASA Astrophysics Data System (ADS)

    Ktistis, A.; Tokmakidis, P.; Papadimitriou, K.

    2017-02-01

    This paper presents the results from an underwater recording of the stern part of a contemporary cargo-ship wreck. The aim of this survey was to create 3D representations of this wreck mainly for recreational diving purposes. The key points of this paper are: a) the implementation of the underwater recording at a diving site; b) the reconstruction of a 3d model from data that have been captured by recreational divers; and c) the development of a set of products to be used by the general public for the ex situ presentation or for the in situ navigation. The idea behind this project is to define a simple and low cost procedure for the surveying, modeling and 3D representation of a diving site. The perspective of our team is to repeat the proposed methodology for the documentation and the promotion of other diving sites with cultural features, as well as to train recreational divers in underwater surveying procedures towards public awareness and community engagement in the maritime heritage.

  3. Lunar cycles in diel prey migrations exert a stronger effect on the diving of juveniles than adult Galápagos fur seals.

    PubMed Central

    Horning, M; Trillmich, F

    1999-01-01

    In our study of the development of diving in Galápagos fur seals, we analysed changes in diving activity and body mass trends over the lunar cycle. Based on previously observed lunar cycles in colony attendance patterns, we hypothesized a greater impact of prey migrations of deep scattering layer organisms on younger fur seals. Using electronic dive recorders, we determined that seals dived less and deeper on moonlit nights than at new moon, and incurred body mass losses. These changes in foraging over the lunar cycle correlate with the suppression of the vertical migration of prey by lunar light. All effects were more pronounced in juveniles than adult females, with greater relative mass loss during full moon, which must (i) negatively affect long-term juvenile growth rates, (ii) lengthen periods of maternal dependence, and (iii) contribute to the lowest reproductive rate reported for seals. This underlines the importance of studying ontogeny in order to understand life histories, and for determining the susceptibility of animal populations to fluctuations in food availability. PMID:10406130

  4. Smoke Management: Toward a Data Base to Validate PB-Piedmont - Numerical Simulation of Smoke on the Ground at Night

    Treesearch

    Gary L. Achtemeier

    1999-01-01

    The use of fire for controlled burning to meet objectives for silviculture or for ecosystem management carries the risk of liability for smoke. Near-ground smoke can degrade air quality, reduce visibility, aggravate health problems, and create a general nuisance. At night, smoke can locally limit visibility over roadways creating serious hazards to transportation. PB-...

  5. The Role of Public Policies in Reducing Smoking Prevalence: Results from the Michigan SimSmoke Tobacco Policy Simulation Model

    PubMed Central

    Levy, David T.; Huang, An-Tsun; Havumaki, Joshua S.; Meza, Rafael

    2016-01-01

    Introduction Michigan has implemented several of the tobacco control policies recommended by the World Health Organization MPOWER goals. We consider the effect of those policies and additional policies consistent with MPOWER goals on smoking prevalence and smoking-attributable deaths (SADs). Methods The SimSmoke tobacco control policy simulation model is used to examine the effect of past policies and a set of additional policies to meet the MPOWER goals. The model is adapted to Michigan using state population, smoking and policy data starting in 1993. SADs are estimated using standard attribution methods. Upon validating the model, SimSmoke is used to distinguish the effect of policies implemented since 1993 against a counterfactual with policies kept at their 1993 levels. The model is then used to project the effect of implementing stronger policies beginning in 2014. Results SimSmoke predicts smoking prevalence accurately between 1993 and 2010. Since 1993, a relative reduction in smoking rates of 22% by 2013 and of 30% by 2054 can be attributed to tobacco control policies. Of the 22% reduction, 44% is due to taxes, 28% to smoke-free air laws, 26% to cessation treatment policies, and 2% to youth access. Moreover, 234,000 smoking-attributable deaths are projected to be averted by 2054. With additional policies consistent with MPOWER goals, the model projects that, by 2054, smoking prevalence can be further reduced by 17% with 80,000 deaths averted relative to the absence of those policies. Conclusions Michigan SimSmoke shows that tobacco control policies, including cigarette taxes, smoke-free air laws and cessation treatment policies, have substantially reduced smoking and smoking-attributable deaths. Higher taxes, strong mass media campaigns and cessation treatment policies would further reduce smoking prevalence and smoking-attributable deaths. PMID:26983616

  6. [Study on expert system of infrared spectral characteristic of combustible smoke agent].

    PubMed

    Song, Dong-ming; Guan, Hua; Hou, Wei; Pan, Gong-pei

    2009-05-01

    The present paper studied the application of expert system in prediction of infrared spectral characteristic of combustible anti-infrared smoke agent. The construction of the expert system was founded, based on the theory of minimum free energy and infrared spectral addition. After the direction of smoke agent was input, the expert system could figure out the final combustion products. Then infrared spectrogram of smoke could also be simulated by adding the spectra of all of the combustion products. Meanwhile, the screening index of smoke was provided in the wave bands of 3-5 im and 8-14 microm. FTIR spectroscope was used to investigate the performance of one kind of HC smoke. The combustion products calculated by the expert system were coincident with the actual data, and the simulant infrared spectrum was also similar to the real one of the smoke. The screening index given by the system was consistent with the known facts. It was showed that a new approach was offered for the fast discrimination of varieties of directions of smoke agent.

  7. Status update: is smoke on your mind? Using social media to assess smoke exposure

    NASA Astrophysics Data System (ADS)

    Ford, Bonne; Burke, Moira; Lassman, William; Pfister, Gabriele; Pierce, Jeffrey R.

    2017-06-01

    Exposure to wildland fire smoke is associated with negative effects on human health. However, these effects are poorly quantified. Accurately attributing health endpoints to wildland fire smoke requires determining the locations, concentrations, and durations of smoke events. Most current methods for assessing these smoke events (ground-based measurements, satellite observations, and chemical transport modeling) are limited temporally, spatially, and/or by their level of accuracy. In this work, we explore using daily social media posts from Facebook regarding smoke, haze, and air quality to assess population-level exposure for the summer of 2015 in the western US. We compare this de-identified, aggregated Facebook dataset to several other datasets that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol optical depth and Hazard Mapping System smoke plumes), daily (24 h) average surface particulate matter measurements, and model-simulated (WRF-Chem) surface concentrations. After adding population-weighted spatial smoothing to the Facebook data, this dataset is well correlated (R2 generally above 0.5) with the other methods in smoke-impacted regions. The Facebook dataset is better correlated with surface measurements of PM2. 5 at a majority of monitoring sites (163 of 293 sites) than the satellite observations and our model simulation. We also present an example case for Washington state in 2015, for which we combine this Facebook dataset with MODIS observations and WRF-Chem-simulated PM2. 5 in a regression model. We show that the addition of the Facebook data improves the regression model's ability to predict surface concentrations. This high correlation of the Facebook data with surface monitors and our Washington state example suggests that this social-media-based proxy can be used to estimate smoke exposure in locations without direct ground-based particulate matter measurements.

  8. 36 CFR 327.5 - Swimming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commander. (b) An international diver down, or inland diving flag must be displayed during underwater activities. (c) Diving, jumping or swinging from trees, bridges or other structures which cross or are...

  9. 36 CFR 327.5 - Swimming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commander. (b) An international diver down, or inland diving flag must be displayed during underwater activities. (c) Diving, jumping or swinging from trees, bridges or other structures which cross or are...

  10. 36 CFR 327.5 - Swimming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commander. (b) An international diver down, or inland diving flag must be displayed during underwater activities. (c) Diving, jumping or swinging from trees, bridges or other structures which cross or are...

  11. DFS Dive-control Brakes for Gliders and Airplanes ; And, Analytical Study of the Drag of the DFS Dive-control Brake

    NASA Technical Reports Server (NTRS)

    Jacobs, Hans; Wanner, Adolf

    1940-01-01

    These two reports are surveys on the progress and present state of development of dive-control flaps for gliders and airplanes. The second article describes how on the basis of wind tunnel and free-flight tests, the drag increase on brake flaps of the type DFS, can be predicted. Pressure records confirm a two-dimensional load distribution along the brake-flap surface Aerodynamically, the location of the brake flaps along the span is of importance for reasons of avoidance of vibration and oscillation phenomena on control and tail surfaces; statically, because of the magnitude of the frontal drag in diving with respect to the bending moments, which may become decisive for the dimensions of the wing attachment and for the wing covering.

  12. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study

    PubMed Central

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-01-01

    Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026

  13. Changes in Serum Ferritin and Other Factors Associated with Iron Metabolism During Chronic Hyperbaric Exposure

    DTIC Science & Technology

    1979-03-01

    tech- jects prior to their participation included standard radio- ques , using- radioisotopes ("SFe and S"Tcm-- diphospho- graphic surveys for evidence of... es were apparent by the third dive day for iron and the iv than ABN. It is of interest that no VGE were heard ajt seventh dive day for ferrtin. No...source of the increased amounts of ferritin levels in acute bepatocellular damage from serum ferritin and iron found during these dives ap.- paracetamol

  14. Hardware and Procedures for Using the Diveair2 Monitor to Test Diving Air Quality in the Field

    DTIC Science & Technology

    2011-09-01

    Dive System ( LWDS ), and the Fly- Away Dive System (FADS); b. one pressure-reducing regulator (“reducer”) mounted on the inside of the lid of the...1. compressors and air banks, 6 2. scuba bottles that had already been charged, 3. the Navy’s LWDS , both during and after charging, and...site where the charging whip attaches to that scuba bottle. c. A LWDS adaptor, to allow air from the LWDS to be sampled both during and after

  15. Neurologic outcome of controlled compressed-air diving.

    PubMed

    Cordes, P; Keil, R; Bartsch, T; Tetzlaff, K; Reuter, M; Hutzelmann, A; Friege, L; Meyer, T; Bettinghausen, E; Deuschl, G

    2000-12-12

    The authors compared the neurologic, neuropsychological, and neuroradiologic status of military compressed-air divers without a history of neurologic decompression illness and controls. No gross differences in the neuropsychometric test results or abnormal neurologic findings were found. There was no correlation between test results, diving experience, and number and size of cerebral MRI lesions. Prevalence of cerebral lesions was not increased in divers. These results suggest that there are no long-term CNS sequelae in military divers if diving is performed under controlled conditions.

  16. 15 CFR 922.102 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., coral, bottom formation, or marine plant. (B) Taking, gathering, cutting, damaging, destroying, or... the Sanctuary. (3) Diving or conducting diving operations from a vessel not flying in a conspicuous...

  17. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  18. Divers Alert Network

    MedlinePlus

    ... is Your Dive Safety Association Divers Alert Network DAN is Divers Alert Network, the diving industry’s largest ... Serving scuba divers for more than 30 years, DAN provides emergency assistance, medical information resources, educational opportunities ...

  19. Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae).

    PubMed

    Le Guen, Camille; Kato, Akiko; Raymond, Ben; Barbraud, Christophe; Beaulieu, Michaël; Bost, Charles-André; Delord, Karine; MacIntosh, Andrew J J; Meyer, Xavier; Raclot, Thierry; Sumner, Michael; Takahashi, Akinori; Thiebot, Jean-Baptiste; Ropert-Coudert, Yan

    2018-06-29

    The Southern Ocean is currently experiencing major environmental changes, including in sea-ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on nine years of sea-ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea-ice cover (ca. 20%). We further examined the effects of sea-ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea-ice cover. The relationship between several dive parameters and sea-ice cover in the foraging area appears to be quadratic. In years of low and high sea-ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea-ice cover. Our study therefore suggests that sea-ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea-ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey.

    PubMed

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L; Punt, André E; VanBlaricom, Glenn R; Weimerskirch, Henri; Bertrand, Sophie

    2015-11-01

    Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

Top