Sample records for smoltification

  1. Improving Hatchery Effectiveness as Related to Smoltification: Proceedings of a Workshop held at Kah-Nee-Tah Lodge, Warm Springs, Oregon, May 20-23, 1985.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouck, Gerald R.

    The Bonneville Power Administration (BPA) intends to develop a smoltification research effort that would have broad support among the interested parties. BPA sponsored this workshop on smoltification and related research to gather leading technical experts in the field in smoltification, permit them to exchange information about the state of the art of smoltification research, and allow them to identify and rank high-priority projects. This document includes keynote speeches, technical papers, and other sessions that summarize both what is known and what information is needed.

  2. Influence of bacterial kidney disease on smoltification in salmonids: Is it a case of double jeopardy?

    USGS Publications Warehouse

    Mesa, M.G.; Maule, A.G.; Poe, T.P.; Schreck, C.B.

    1999-01-01

    We investigated the effects of a chronic, progressive infection with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), on selected aspects of smoltification in yearling juvenile spring chinook salmon (Oncorhynchus tshawytscha). After experimentally infecting fish with Rs using an immersion challenge, we sampled them every two weeks to monitor changes in gill Na+, K+-ATPase (ATPase), cortisol, infection level, mortality, growth, and other stress-related physiological factors during the normal time of parr-smolt transformation in fresh water (i.e., from winter to spring). A progressively worsening infection with Rs did not alter the normal changes in gill ATPase and condition factor associated with smoltification in juvenile chinook salmon. The infection did, however, lead to elevated levels of plasma cortisol and lactate and depressed levels of plasma glucose, indicating that the disease is stressful during the later stages. A dramatic proliferation of BKD was associated with maximal responses of indicators of smoltification, suggesting that the process of smoltification itself can trigger outbreaks of disease. Our results suggest mechanisms that probably influence the reported inability of Rs-infected fish to successfully adapt to sea water.

  3. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure.

    PubMed

    Breves, Jason P; Fujimoto, Chelsea K; Phipps-Costin, Silas K; Einarsdottir, Ingibjörg E; Björnsson, Björn Thrandur; McCormick, Stephen D

    2017-01-18

    In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,-5a,-5b1,-5b2,-6b1 and-6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na + /K + -ATPase (Nka) activity, Na + /K + /2Cl - cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,-5b1 and-5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.

  4. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure

    USGS Publications Warehouse

    Breves, Jason P.; Fujimoto, Chelsea K.; Phipps-Costin, Silas K.; Einarsdottir, Ingibjörg E.; Björnsson, Björn Thrandur; McCormick, Stephen

    2017-01-01

    BackgroundIn preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,−5a,−5b1,−5b2,−6b1 and−6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na+ /K + /2Cl − cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters.ResultsIndicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,−5b1 and−5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March.ConclusionsSalmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.

  5. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel 3.

  6. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L.

    PubMed

    Kantserova, Nadezda P; Lysenko, Liudmila A; Veselov, Alexey E; Nemova, Nina N

    2017-08-01

    Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.

  7. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11??-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11??-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon. ?? 2007 Elsevier Inc. All rights reserved.

  8. Skin reflectance as a non-lethal measure of smoltification for juvenile salmonids

    USGS Publications Warehouse

    Haner, Philip V.; Faler, Joyce C.; Schrock, Robin M.; Rondorf, Dennis W.; Maule, Alec G.

    1995-01-01

    Our efforts to find nonlethal methods of assessing the parr-smoll transformation of juvenile steelhead Oncorhynchus mykiss and spring and fall chinook salmon O. tshawytscha led to the development of a video system for quantitatively measuring skin silvering using skin reflectance. Gill Na'.K'-ATPase activity, skin guanine concentration, and skin reflectance were recorded from groups of fish marked with freeze brands at hatcheries and downstream sample sites in the Columbia River basin. Skin reflectance of migrants was significantly higher than that of fish before release; nonmigrants (released fish that did not migrate) had significantly lower skin reflectance than migrants from the same groups. Skin reflectance was significantly correlated with gill ATPasc activity and skin guanine concentration. Skin reflectance increased during the parrsmolt transformation and could be used as a nonlethal indicator of smoltification.

  9. Growth, smoltification, and smolt-to-adult return of spring chinook salmon from hatcheries on the Deschutes river, Oregon

    USGS Publications Warehouse

    Beckman, B.R.; Dickhoff, Walton W.; Zaugg, W.S.; Sharpe, C.; Hirtzel, S.; Schrock, R.; Larsen, D.A.; Ewing, R.D.; Palmisano, A.; Schreck, C.B.; Mahnken, C.V.W.

    1999-01-01

    The relationship between smoltification and smolt-to-adult return (SAR) of spring chinook salmon Oncorhynchus tshawytscha from the Deschutes River, Oregon, was examined for four release groups in each of three successive years. Fish were reared, marked with coded wire tags, and released from Round Butte Hatchery, Pelton Ladder rearing facility, and Warm Springs National Fish Hatchery. Smolt releases occurred in nearly the same place at similar times, allowing a direct comparison of SAR to several characters representing smolt quality. Return rates varied significantly among facilities, varying over an order of magnitude each year. The highest average SAR was from Pelton Ladder, the lowest was from Warm Springs. Each of the characters used as metrics of smoltification - fish size, spring growth rate (February-April), condition factor, plasma hormone concentration (thyroxine, cortisol, and insulin-like growth factor-I [IGF-I]), stress challenge, gill Na+,K+-ATPase activity, and liver glycogen concentration - varied significantly among facilities and seasonally within hatchery groups. However, only spring growth rate, gill ATPase activity, and plasma IGF-I concentration showed significant relationships to SAR. These characters and SAR itself were consistently lower for fish released from Warm Springs Hatchery than for fish from Round Butte Hatchery and Pelton Ladder. This demonstrates that differences in the quality of fish released by facilities may have profound effects on subsequent survival and suggests that manipulations of spring growth rate may be used to influence the quality of smolts released from facilities.

  10. PCB impairs smoltification and seawater performance in anadromous Arctic charr (Salvelinus alpinus)

    USGS Publications Warehouse

    Jorgensen, E.H.; Aas-Hansen, O.; Maule, A.G.; Strand, J.E.T.; Vijayan, M.M.

    2004-01-01

    The impacts of polychlorinated biphenyl (PCB) exposure on smoltification and subsequent seawater performance were investigated in hatchery-reared, anadromous Arctic charr (Salvelinus alpinus). The fish were subjected to a 2-month summer seawater residence, after which they were orally dosed with 0 (Control, C), 1 (Low Dose, LD) or 100 mg Aroclor 1254 kg−1 body mass (High Dose, HD) in November. They were then held in fresh water, without being fed (to mimic their natural overwintering in freshwater), until they had smolted in June the next year. The smolts were then transferred to seawater and fed to mimic their summer feeding residence in seawater, followed by a period without food in freshwater from August until maturation in October. Compared with C and LD charr, the HD charr had either a transient or a permanent reduction in plasma growth hormone, insulin-like growth factor-1, and thyroxin and triiodothyronine titers during the period of smoltification. These hormonal alterations in the HD charr corresponded with impaired hyposmoregulatory ability in May and June, as well as reduced growth rate and survival after transference to seawater. Consequently, fewer fish in the HD group matured in October compared to the other two treatments. The HD fish had a liver PCB concentration ranging between 14 and 42 mg kg−1 wet mass, whereas there were similar, and very low, liver PCB concentrations in LD and C fish throughout the smolting period. Our findings suggest that PCB might compromise mechanisms important for fitness in a fish species living in an extreme environment.

  11. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  12. Introduction to the 8th International Workshop on Smoltification and a synthesis of major findings

    USGS Publications Warehouse

    Schreck, Carl B.; McCormick, Steven D.; Björnsson, Björn Thrandur; Stefansson, Sigurd O.; Ueda, Hiroshi

    2012-01-01

    The early life history of anadromous salmonid fishes, be they Atlantic (Salmo salar) or Pacific salmon (Oncorhynchus spp.), trout of those genera, or charrs (Salvelinus spp.), appears much more complex than previously thought. The seaward movement or migration is extremely polymorphic among and within species. To help provide understanding of the processes involved, and implications for conservation, management and husbandry, the 8th International Workshop on Smoltification was held on September 20–24, 2009, with participants from 9 different countries. Because the native distribution of these fishes is in northern latitudes, more or less circumglobally, similar workshops have been held roughly every four years in various countries, starting in LaJolla, California; and subsequently in Stirling, Scotland; Trondheim, Norway; St. Andrews, Canada; Muonio, Finland; Westport, Ireland; and Tono, Japan. Papers emanating from these previous workshops can be found in earlier Special Issues of Aquaculture while those from the 2009 workshop are presented here.

  13. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Treesearch

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  14. Currents of Change: A History of the Portland District, U.S. Army Corps of Engineers, 1980-2000

    DTIC Science & Technology

    2003-01-01

    splashing, sometimes the lake looks like a scene from the movie ’ Meatballs . "� Complicating the situation at Detroit Lake were the four...as pea-sized eggs buried in the gravel of cold, swiftly running water. After hatching, juvenile salmon undergo smoltification - a process that...near the top of the reservoir, triggering eggs to hatch off schedule in December or January - months ahead of time - when food supplies are low

  15. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxinmore » and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.« less

  16. Prerelease disease treatment with potassium permanganate for Fall Chinook salmon smolts

    USGS Publications Warehouse

    Smith, Stanley D.; Gould, Rowan W.; Zaugg, Wally S.; Harrell, Lee W.; Mahnken, Conrad V.W.

    1995-01-01

    Standard potassium permanganate treatment (2 mg KMnO4/L freshwater for 1 h on three consecutive days) was applied to presmolts (parr) and smolts of fall chinook salmon (Oncorhynchus tshawytscha). Smoltification was determined by gill Na+,K+-ATPase activity. Treatments were conducted 73, 59, 45, 31, 16, and 2 d prior to full-strength seawater entry in aquaria. Potassium permanganate did not affect either growth or survival in seawater over 25 d. We observed a delayed rise in gill Na+,K+-ATPase activity in fish treated 16 d prior to seawater entry.

  17. Assessment of smolt condition for travel time analysis. Annual report 1989

    USGS Publications Warehouse

    Beeman, J.W.; Rondorf, D.W.; Faler, J.C.; Free, M.E.; Haner, P.V.

    1990-01-01

    The Water Budget is a volume of water used to enhance environmental conditions (flows) in the Columbia and Snake rivers for juvenile salmonids during their seaward migration. To manage the Water Budget, the Fish Passage Center estimates travel times of juvenile salmonids in index reaches of the main-stem rivers, using information on river flows and the migrational characteristics of the juvenile salmonids. This study was initiated to provide physiological information on the juvenile salmonids used for these travel time estimates. The physiological ability to respond to stressors was evaluated by measuring concentrations of plasma cortisol, glucose, and chlorides before and after a 30-s handling-stress challenge test. As in 1988, most groups responded satisfactorily to the challenge. The scope for response was compromised among two groups of juvenile chinook salmon that were trucked to release sites and in steelhead from one hatchery after unusual marking and transportation protocols were used. The development of smoltification was assessed by measuring gill Na+-K+ ATPase activity and plasma thyroxine concentrations. Mean ATPase activities of marked hatchery groups of juvenile chinook salmon and steelhead changed little during the month before release and rose sharply for about the first 20 d of the migration after release. Mean plasma thyroxine was highest during the first 20 d after release. Mean gill ATPase activity of spring chinook salmon from the migration-at-large peaked at about the 90th percentile of passage at Rock Island and Lower Granite dams, and at about the 50th percentile of passage at McNary Dam. Mean gill ATPase activity of wild steelhead was higher than gill ATPase activity of hatchery steelhead at Rock Island Dam, the Snake River Trap, and Lower Granite Dam, but not at McNary Dam. This was attributed to a time-dependent relationship between increases in ATPase activity and the number of days fish migrated before recapture. Correlations of gill ATPase activity and/or plasma thyroxine concentrations with condition factor, morphology, or skin guanine concentration may be useful as non-lethal indicators of smoltification for inclusion in a smoltification index. Prevalence of bacterial kidney disease in spring chinook salmon was generally higher than in 1988, ranging from 81-100% using an enzyme-linked immunosorbent assay (ELISA) method. Fish from Snake River hatcheries had more severe infections than those from mid-Columbia hatcheries. The percentage of fish with severe infections was lower at two downstream dams than at the Snake River hatcheries of origin, suggesting a bias in dam collection facilities or that these fish ceased to migrate, either of which could lead to biases in travel time estimates.

  18. Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation

    USGS Publications Warehouse

    Stefansson, S.O.; Nilsen, Tom O.; Ebbesson, Lars O.E.; Wargelius, A.; Madsen, Steffen S.; Bjornsson, B. Th; McCormick, S.D.

    2007-01-01

    Atlantic salmon (Salmo salar) rely on changes in photoperiod for the synchronization of the developmental events constituting the parr-smolt transformation. In the absence of photoperiod cues, parr-smolt transformation is incomplete, and such 'pseudo-smolts' normally fail to adapt to seawater. The present study addresses the endocrine and molecular mechanisms controlling the development of hypo-osmoregulatory ability and how artificial photoperiod can disrupt these changes. Juvenile Atlantic salmon reared under constant light (LL) from first feeding, were separated into two groups, and exposed to either LL or simulated natural photoperiod (LDN) from October, eight months prior to the expected completion of smoltification. Juveniles reared on LL grew well, but failed to show the smolt-related reduction in condition factor in spring. Gill mRNA levels of Na+, K+-ATPase (NKA) isoform ??1a decreased in LDN fish through completion of parr-smolt transformation, while levels remained unchanged in the LL group. In contrast, ??1b expression increased 6-fold in the LDN group between February and May, again with no change in the LL group. Further, Na+, K+, 2Cl- co-transporter (NKCC) showed a transient increase in expression in smolts on LDN between February and May, while no changes in mRNA levels were seen in juveniles under LL. Consequently, gill NKA activity and NKA ?? and NKCC protein abundance were significantly lower in juveniles on LL than in smolts on LDN. LL fish in spring had lower circulating levels of thyroid hormones (THs), growth hormone (GH) and cortisol. Gill GH-receptor mRNA levels, determined by quantitative PCR, were less than 50% of controls. In contrast, circulating levels of IGF-1 and gill IGF-1 receptor expression, were comparable to controls. Our findings show that continuous light prevents the completion of parr-smolt transformation at a very basic level, disrupting the natural up-regulation of key elements of the endocrine system involved in the regulation of the parr-smolt transformation, and consequently inhibiting the smoltification-related increase in expression, abundance and activity of gill ion transport proteins. ?? 2007 Elsevier B.V. All rights reserved.

  19. Environmental endocrinology of salmon smoltification

    USGS Publications Warehouse

    Bjornsson, Bjorn Thrandur; Stefansson, S.O.; McCormick, S.D.

    2011-01-01

    Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry. ?? 2010.

  20. Pen rearing and imprinting of fall Chinook salmon

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  1. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  2. Identification and expressional analysis of NLRC5 inflammasome gene in smolting Atlantic salmon (Salmo salar).

    PubMed

    Pontigo, Juan Pablo; Agüero, María José; Sánchez, Patricio; Oyarzún, Ricardo; Vargas-Lagos, Carolina; Mancilla, Jorge; Kossmann, Hans; Morera, Francisco J; Yáñez, Alejandro J; Vargas-Chacoff, Luis

    2016-11-01

    The NOD-like receptors (NLRs) were recently identified as an intracellular pathogen recognition receptor family in vertebrates. While the immune system participation of NLRs has been characterized and analyzed in various mammalian models, few studies have considered NLRs in teleost species. Therefore, this study analyzed the Atlantic salmon (Salmo salar) NLRC5. Structurally, Atlantic salmon NLRC5 presented leucine-rich repeat subfamily genes. Phylogenetically, NLRC5 was moderately conserved between S. salar and other species. Real-time quantitative PCR revealed NLRC5 expression in almost all analyzed organs, with greatest expressions in the head kidney, spleen, and hindgut. Furthermore, NLRC5 gene expression decreased during smolt stage. These data suggest that NLRC5 participates in the Atlantic salmon immune response and is regulated, at least partly, by the smoltification process, suggesting that there is a depression of immune system from parr at smolt stage. This is the first report on the NLRC5 gene in salmonid smolts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    PubMed

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002.more » The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.« less

  5. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy L.; Hair, Don; Carmichael, Richard W.

    2004-07-01

    BPA Fish and Wildlife Program Project Number 1998-01-001 provides funding for the Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program. This report satisfies the requirement that an annual report be submitted for FY 2003. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, these fish are spawned (within stocks) and their progeny reared to smoltification before being released into themore » natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. This report covers activities conducted and provides data analyses for the Grande Ronde Spring Chinook Salmon Captive broodstock Program from 1 January--31 December 2003. Since the fiscal year ends in the middle of the spawning period, an annual report based on calendar year is more logical. This document is the FY 2003 annual report. Detailed information on historic and present population status, project background, goals and objectives, significance to regional programs and relationships to other programs, methods and previous results are available in the 1995-2002 Project Status Report (Hoffnagle et al 2003).« less

  6. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation.

    PubMed

    Tipsmark, C K; Madsen, S S

    2012-08-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Toxicokinetics and effects of PCBs in Arctic fish: a review of studies on Arctic charr

    USGS Publications Warehouse

    Jorgensen, EH; Vijayan, M.N.; Killie, J.-E.A.; Aluru, N.; Aas-Hansen, O.; Maule, A.

    2006-01-01

    In a series of environmentally realistic laboratory experiments, toxicokinetics and effects of polychlorinated biphenyls (PCBs) were studied in the Arctic charr (Salvelinus alpinus). Winter fasting and emaciation, which are common among Arctic charr living in high latitudes, resulted in a redistribution of the lipophilic PCBs from lipid-storing tissue such as the muscle, to vital organs that must be considered sensitive toward PCB (liver and brain). This redistribution was accompanied by a significant potentiation of the hepatic cytochrome P-450 (CYP) 1A biomarker response, from low activities in October (within those measured in uncontaminated charr) to a high, probably maximum, induction in May. Performance studies demonstrated a clear effect of environmentally realistic PCB levels on endocrine mechanisms, immune function, and seawater preadaptation (smoltification) in charr that had been feed deprived for several months after contamination with Aroclor 1254, whereas a high PCB dose exerted only minor, if any, effects in charr that had been fed after contamination. These results demonstrate that emaciation results in decreased dose-response relationships in fish, and indicate that arctic animals undergoing seasonal cycles of "fattening" and emaciation may be extra sensitive toward persistent, lipophilic organochlorines. Pilot studies on Arctic charr from Bjørnøya Island revealed marked CYP1A biomarker responses and an upregulation of genes involved in cellular homeostatic mechanisms in charr from Lake Ellasjøen (high PCB levels).

  8. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.

  9. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.

    PubMed

    Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G

    2010-10-01

    In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.

  10. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  11. Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation.

    PubMed

    Choi, Young Jae; Shin, Hyun Suk; Kim, Na Na; Cho, Sung Hwoan; Yamamoto, Yuzo; Ueda, Hiroshi; Lee, Jehee; Choi, Cheol Young

    2013-06-01

    This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    PubMed

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hepatic insulin-like growth-factor binding protein (igfbp) responses tofood restriction in Atlantic salmon smolts

    USGS Publications Warehouse

    Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen

    2016-01-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.

  14. Sex-biased survivorship and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    USGS Publications Warehouse

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  15. Sex biased survival and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    USGS Publications Warehouse

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  16. Movement of resident rainbow trout transplanted below a barrier to anadromy

    USGS Publications Warehouse

    Wilzbach, Margaret A.; Ashenfelter, Mark J.; Ricker, Seth J.

    2012-01-01

    We tracked the movement of resident coastal rainbow trout Oncorhynchus mykiss irideus that were experimentally transplanted below a migration barrier in a northern California stream. In 2005 and 2006, age-1 and older rainbow trout were captured above a 5-m-high waterfall in Freshwater Creek and individually marked with passive integrated transponder tags. Otolith microchemistry confirmed that the above-barrier trout were the progeny of resident rather than anadromous parents, and genetic analysis indicated that the rainbow trout were introgressed with cutthroat trout O. clarkii. At each of three sampling events, half of the tagged individuals (n = 22 and 43 trout in 2005 and 2006, respectively) were released 5 km downstream from the waterfall (approximately 10 km upstream from tidewater), and an equal number of tagged individuals were released above the barrier. Tagged individuals were subsequently relocated with stationary and mobile antennae or recaptured in downstream migrant traps, or both, until tracking ceased in October 2007. Most transplanted individuals remained within a few hundred meters of their release location. Three individuals, including one rainbow trout released above the waterfall, were last detected in the tidally influenced lower creek. Two additional tagged individuals released above the barrier were found alive in below-barrier reaches and had presumably washed over the falls. Two of seven tagged rainbow trout captured in downstream migrant traps had smolted and one was a presmolt. The smoltification of at least some individuals, coupled with above-barrier "leakage" of fish downstream, suggests that above-barrier resident trout have the potential to exhibit migratory behavior and to enter breeding populations of steelhead (anadromous rainbow trout) within the basin.

  17. Na+/K+/2Cl- cotransporter and CFTR gill expression after seawater transfer in smolts (0+) of different Atlantic salmon (Salmo salar) families

    USGS Publications Warehouse

    Mackie, P.M.; Gharbi, K.; Ballantyne, J.S.; McCormick, S.D.; Wright, P.A.

    2007-01-01

    Smoltification involves morphological and physiological changes in the gills that prepare anadromous salmonids to osmoregulate efficiently in seawater. In a previous study, we found that different families of Atlantic salmon (Salmo salar) smolts vary in their ability to osmoregulate when abruptly transferred to cold seawater and that these differences are correlated with gill Na+/K+ ATPase activity. Here we extend these findings to test whether other key transport proteins, namely Na+/K+/2Cl- contransporter (NKCC) and the Cl- channel or cystic fibrosis transmembrane conductance regulator (CFTR), play a significant role in osmoregulatory differences between families. To facilitate molecular analysis of NKCC, we first isolated a gill cDNA containing the complete coding region (1147 aa) of an isoform previously reported as a partial sequence. Phylogenetic analysis showed that this isoform is most closely related to isoforms of the NKCC1a subfamily found in European eel and Mozambique tilapia. In a second step, we quantified NKCC protein abundance as well as mRNA expression levels for NKCC1a and two CFTR isoforms (CFTRI and CFTRII) in 0+ smolts from three families prior to and following seawater transfer. The family with the lowest salinity tolerance also showed significant increases in gill NKCC1a mRNA after seawater transfer. Taken together with our previous study, these data indicate that family differences in expression of transport proteins are in part related to salinity tolerance, although the best indicator of osmoregulatory performance between families may be gill Na+/K+ ATPase activity and CFTR I mRNA levels, rather than Na+/K+ ATPase and NKCC1a mRNA levels or NKCC protein abundance. ?? 2007 Elsevier B.V. All rights reserved.

  18. Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?

    PubMed Central

    Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott

    2010-01-01

    As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978

  19. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early migrants.

  20. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  1. Effects of short-day treatment on long-term growth performance and maturation of farmed Arctic charr Salvelinus alpinus reared in brackish water.

    PubMed

    Gunnarsson, S; Johansson, M; Gústavsson, A; Arnason, T; Arnason, J; Smáradóttir, H; Björnsson, B Th; Thorarensen, H; Imsland, A K

    2014-10-01

    The effects of a 6 week short-day photoperiod followed by continuous light, applied during the juvenile phase of Arctic charr Salvelinus alpinus in fresh water on smoltification and on the long-term growth and maturity following transfer to brackish water (BW) (constant salinity of either 17 and 27 or increasing salinity in steps from 17 to 27) were investigated. Prior to salinity transfer, the juveniles were either reared at continuous light (C group) or reared for 6 weeks on a short day (8L:16D, S group) followed by continuous light (24L:0D). Increased salinity had negative effect on growth, with female fish reared at 17 salinity weighing 19 and 27% more than the salinity-step group (17-27) and the 27 salinity group, respectively. The stepwise acclimation to salinity had limited advantage in terms of growth rate. Short photoperiod for 6 weeks (November to January) followed by continuous light improved growth, but not seawater (SW) tolerance. Gill Na(+) , K(+) -ATPase activity and plasma Na(+) levels changed with time, indicating some variation in osmoregulatory capacity during the experimental period. Overall, there appear to be interactive effects on maturation from applying short-day photoperiod followed by rearing at higher salinities. Plasma leptin varied with time and may be linked to stress caused by the observed variations in osmoregulatory ability. It is concluded that changes in growth rates observed in this study are mainly related to rearing salinity with higher growth rates at lower salinities. Short-day photoperiod has some growth-inducing effects but did not improve SW tolerance. Farmers of S. alpinus using BW for land-based rearing should keep salinity at moderate and stable levels according to these results to obtain best growth. © 2014 The Fisheries Society of the British Isles.

  2. Assessment of smolt condition for travel time analysis. Annual report 1988

    USGS Publications Warehouse

    Rondorf, D.W.; Beeman, J.W.; Faler, J.C.; Free, M.E.; Wagner, E.J.

    1989-01-01

    Estimates of migration rates and travel times of juvenile salmonids within index reaches of the Columbia River basin are collected through the Smolt Monitoring Program for use by the Fish Passage Center. With increased reliance upon travel time estimates in 1988 by the Fish Passage Center, this study was implemented to monitor the biological attributes of juvenile chinook salmon Oncorhynchus tshawytscha and steelhead trout 0.- mykiss used for the travel time estimates, The physiological ability of fish to respond to stress was assessed by measuring levels of plasma cortisol, glucose, and chloride before and after a stress-challenge test. Most mid-Columbia and Snake river groups responded normally to the stress challenge exhibiting an increase in plasma glucose and cortisol and a slight decrease in chloride. Fish trucked to release sites were more stressed than those released directly from the hatchery, but most still responded to the stress challenge test normally. An abnormal or extreme stress response occurred when there were deviations from preferred protocol, disease problems at hatcheries, or when fish were trucked over long periods (7h). The development of smoltification was evaluated by measuring gill Na+K+-ATPase, plasma thyroxine, purines, and body morphology. Most groups were similar at the hatcheries but differed as the migration to McNary Dam proceeded. Gill ATPase activity increased 2-3 fold during the first 20 days of migration, after which it changed little. Fish with longer in-river travel times appeared to be more smolted than those which were in the river for a shorter period of time. The prevalence of bacterial kidney disease (BKD) in spring chinook salmon was evaluated using the enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Prevalence of BKD in groups tested using the ELISA method was as high as 99% at some downstream locations. A review of indices is presented as a guide, to the development of an index of smolt condition and preliminary data are presented. An index could be used as a tool to synthesize information on fish condition to assist with management and evaluation of the Water Budget.

  3. Interactive effects of cortisol treatment and ambient seawater challenge on gill Na+,K+-ATPase and CFTR expression in two strains of Atlantic salmon smolts

    USGS Publications Warehouse

    Singer, T.D.; Finstad, B.; McCormick, S.D.; Wiseman, S.B.; Schulte, P.M.; McKinley, R.S.

    2003-01-01

    During peak smoltification, the interactive effects of cortisol and ambient seawater challenge were compared in two strains of Atlantic salmon (Salmo salar) smolts: a domesticated strain, AquaGen and a native River Imsa strain. Tissue and blood samples were taken from untreated fish on 20 May. Fish were then transferred to experimental tanks, allowed to recover for 24 h and cortisol (50 mg kg body mass-1), dissolved in vegetable oil, or vegetable oil alone (sham) was implanted. Samples were taken 5 days post implantation. Fish were then exposed to 24 h ambient seawater challenge (FW-SW) or freshwater to freshwater replacement (FW-FW) and sampled as before. Sham implantation had no significant impact on any of the measured parameters. Cortisol implantation significantly elevated plasma cortisol in FW-FW Imsa smolts, while no effect was observed in FW-SW Imsa smolts. Cortisol implantation had no effect on the plasma cortisol levels of AquaGen smolts regardless of FW-SW challenge. Increased plasma cortisol corresponded with significantly higher plasma glucose levels in FW-FW Imsa smolts. Plasma Na+ and Cl- levels were not affected by cortisol implantation but were significantly increased in FW-SW smolts of both strains. Gill Na+,K+-ATPase activity increased in response to cortisol implantation in only FW-FW smolts but not FW-SW smolts. Gill Na+,K+-ATPase ??-subunit mRNA levels were not affected by strain, cortisol injection or transfer protocol, while both CFTR I and CFTR II mRNA levels were significantly higher in AquaGen versus Imsa smolts regardless of treatment. CFTR I mRNA was elevated following cortisol implantation in FW-FW smolts from both strains suggesting CFTR I expression is under the control of cortisol. These findings also suggest that plasma cortisol levels are regulated differently between strains and that cortisol implantation and ambient FW-SW challenge interact, interfering with the individual effects of each of these factors. ?? 2003 Published by Elsevier Science B.V.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report are listed below by major objective. Objective 1: This study documented that captively reared Chinook exhibited spawn timing similar to their founder anadromous population. An analysis of spawn timing data of captively reared Chinook salmon that had received different levels of antibioticmore » treatment did not suggest that antibiotic treatments during the freshwater or seawater phase of the life cycle affects final maturation timing. No effect of rearing density was found with respect to spawn timing or other reproductive behaviors. Objective 2: This study investigated the critical period(s) for imprinting for sockeye salmon by exposing juvenile salmon to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression differs between coho and sockeye salmon. While temporal patterns differ between these species, exposure to arginine elicited increases in odorant receptor mRNA expression in sockeye salmon. Objective 3: This study: (i) identified the critical period when maturation is initiated in male spring Chinook salmon and when body growth affects onset of puberty, (ii) described changes in the reproductive endocrine system during onset of puberty and throughout spermatogenesis in male spring Chinook salmon, (iii) found that the rate of oocyte development prior to vitellogenesis is related to body growth in female spring Chinook, and (iv) demonstrated that growth regimes which reduce early (age 2) male maturation slow the rate of primary and early secondary oocyte growth, but do not alter number of oocytes at these stages of development. Objective 4 : This study, (1) determined that infected fish treated with oxytetracycline-medicated feed (as fry or as presmolts) had improved survival compared to nonmedicated fish, (2) determined that a single 14-day course of oral azithromycin at first feeding or at the start of smoltification is sufficient for significant azithromycin retention in internal tissues for at least a year, and (3) established that Renibacterium salmoninarum with an azithromycin-resistant phenotype can be isolated from Chinook salmon receiving macrolide antibiotic treatment. Objective 5: This study determined that for Chinook salmon rearing in similar, 'common environment' regimes in seawater, control fish have survived at a higher rate since seawater transfer than have experimentally inbred fish. However, in all groups, the variation among families in survival has been substantial, ranging from 0% to 100% over the entire year and from 0% to 40% since seawater transfer. The highly significant effect of variation among families within both stocks indicates that substantial genetic variation for size remains in these populations.« less

  5. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMGmore » tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature compared to those exposed to the chilled temperature. However, the percentage of embryos surviving to the eye-stage, total fecundity, and mean egg mass did not differ between treatments. This work is being continued with larger samples sizes and increased duration of temperature exposure. Exercise during the months prior to final maturation had no detectable effects on fertilization success or embryo viability in Redfish Lake Sockeye. Problems with highly variable or low eyed-embryo survival are most likely due to problems with fertilization. Synchronizing spawn timing between males and females may improve gamete fertility, perhaps by making oocyte maturation and ovulation more readily detectable and synchronous within the individual. Improvements in milt production (using GnRHa) and fertilization protocols have apparently increased fertilization success in Redfish Lake sockeye over previous years. Broodstock treatment with azithromycin immediately prior to spawning can protect against acute challenge with R. salmoninarum. Among fish challenged with 10,000 virulent R. salmoninarum cells per fish, progeny of broodstock treated with azithromycin exhibited significantly greater survival than progeny of sham-treated broodstock. Work on the efficacy of antibiotic treatment and vaccination against BKD before and after smoltification in offspring chinook salmon captive broodstocks is ongoing. To date, the long-term study of inbreeding indicates that the potential for anadromous Chinook salmon to respond rapidly to close inbreeding, with adverse consequences for marine survival and, possibly, growth. The effects of inbreeding expressed during early life history do not reveal significant effects. Overall, the results would support recommendations for initiating artificially propagated populations with sufficient, outbred broodstock and implementing carefully monitored breeding practices to minimize rates of inbreeding during a program's duration.« less

  6. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relativemore » frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory epithelium increased dramatically during final maturation in both Stanley Basin and Okanogan River sockeye. These increases appeared to be independent of odor exposure history, rising significantly in both arginine-naive and arginine-exposed fish. However, sockeye exposed to arginine during smolting demonstrated a larger increase in BAAR mRNA than arginine-naive fish. These results are consistent with the hypothesis that odorant receptors sensitive to home stream waters may be upregulated at the time of the homing migration and may afford opportunities to exploit this system to experimentally characterize imprinting success and ultimately identify hatchery practices that will minimize straying of artificially produced salmonids. Additional analysis of Sockeye salmon imprinting and further implications of these findings will be presented in the FY 2009 Annual Report. Objective 3: Photoperiod at emergence and ration after ponding were varied in Yakima River spring Chinook salmon to test the hypothesis that seasonal timing of emergence and growth during early stages of development alter seasonal timing of smoltification and age of male maturation. Fish reared under conditions to advance fry emergence and accelerate growth had the greatest variation in seasonal timing of smolting (fall, spring and summer) and highest rates of early male maturation with most males maturing at age 1 (35-40%). In contrast, fish with delayed emergence and slow growth had the least variation in phenotypes with most fish smolting as yearlings in the spring and no age-1 male maturation. Growth (not emergence timing) altered rates of age-2 male maturation. Results of this study demonstrate that altering fry development, as is often done in hatcheries, can profoundly affect later life history transitions and the range of phenotypes within a spring Chinook salmon population. Additional work in the next funding period will determine if these rearing regimes affected other aspects of smolt quality, which may affect ultimate survival upon ocean entry.« less

  7. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

    2009-03-31

    The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatcherymore » (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional Hatchery Program. We will attempt to collect natural parr in August 2009. This year 752 fish were removed from the captive population: 629 fish survived to gamete production and 123 fish died from various causes prior to spawning. Growth of the Captive Broodstock fish was similar to previous years. The saltwater fish have grown more slowly than those reared in freshwater. A total of 720 fish were sorted as maturing and 629 (87.4%) of them survived to spawn. We collected gametes from 273 females and 350 males from the 2002-2006 brood years in 2008, using 111 spawning matrices and collected 474,187 green eggs (1,737 eggs/female). All ripe males were spawned and no semen was collected for cryo-preservation. Of the 474,187 eggs collected for the BY 2008 F1 generation, 448,373 (94.6%) survived to the eyed stage. 68,612 (15.3%) were culled from females with high ELISA OD values for BKD prevention. For BY 2007, we collected a total of 477,048 eggs from all three populations and 407,369 (85.4%) reached the eyed stage, while 95,024 eyed eggs (23.3%) were culled for BKD prevention. Eyed eggs were hatched at Lookingglass Fish Hatchery, producing 267,131 fry. As parr, 153,371 fish were coded-wire tagged (CWT). For the 2006 F1 brood year, we collected 177,890 eggs and 149,073 (83.8%) reached the eyed stage. 83,826 eyed eggs (56.2%) were culled at the eyed stage for BKD prevention. 61,044 fry were produced (93.6%), 53,688 (88 %) survived to smolt. There were 54 bacterial kidney disease (BKD) mortalities at BOH and MRS, combined in this reporting period. Overall, there were fewer BKD mortalities in 2008 due to a reduced number of fish coming into the Captive Broodstock Program and a shift away from collecting wild parr to using eyed eggs from low ELISA females from the Conventional Hatchery Program. Unknown causes of death accounted for 32 deaths at MRS and BOH, combined in 2008. We continually examine and modify the operations of the Captive Broodstock Program to make improvements wherever possible. We continue to have difficulty with prevention and treatment of BKD outbreaks and continue to use erythromycin and azithromycin to treat this disease. We are also continuing to investigate other possible treatments and prophylactic measures. To reduce the incidence of BKD in offspring of the Captive Broodstock Program, we continue to allow culling of eyed eggs from females with high BKD ELISA values (generally >0.800 OD units but the cull level varies annually, depending on the distribution of ELISA values, number of eggs collected, and management considerations). We are also using ultrasound to determine maturity and sex of fish early in the maturation process and are now able to determine maturity and sex of most maturing fish in early April. This allows us to transfer maturing fish from saltwater to freshwater at a more natural time, which should improve fecundity and egg quality of saltwater-reared fish.« less

Top