Sample records for smooth chaotic potentials

  1. Breaking time reversal in a simple smooth chaotic system.

    PubMed

    Tomsovic, Steven; Ullmo, Denis; Nagano, Tatsuro

    2003-06-01

    Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement extends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting numerical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a minor proportion of regular motion in its phase space.

  2. Separation of Trend and Chaotic Components of Time Series and Estimation of Their Characteristics by Linear Splines

    NASA Astrophysics Data System (ADS)

    Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.

    2018-03-01

    This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.

  3. Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpathak, Bhooshan, E-mail: bhooshan@ee.iitb.ac.in; Pillai, Harish K., E-mail: hp@ee.iitb.ac.in; Bandyopadhyay, Santanu, E-mail: santanu@me.iitb.ac.in

    2015-10-15

    In this paper, we analytically examine the unstable periodic orbits and chaotic orbits of the 1-D linear piecewise-smooth discontinuous map. We explore the existence of unstable orbits and the effect of variation in parameters on the coexistence of unstable orbits. Further, we show that this structuring is different from the well known period adding cascade structure associated with the stable periodic orbits of the same map. Further, we analytically prove the existence of chaotic orbit for this map.

  4. Criticality in the quantum kicked rotor with a smooth potential.

    PubMed

    Dutta, Rina; Shukla, Pragya

    2008-09-01

    We investigate the possibility of an Anderson-type transition in the quantum kicked rotor with a smooth potential due to dynamical localization of the wave functions. Our results show the typical characteristics of a critical behavior, i.e., multifractal eigenfunctions and a scale-invariant level statistics at a critical kicking strength which classically corresponds to a mixed regime. This indicates the existence of a localization to delocalization transition in the quantum kicked rotor. Our study also reveals the possibility of other types of transition in the quantum kicked rotor, with a kicking strength well within the strongly chaotic regime. These transitions, driven by the breaking of exact symmetries, e.g., time reversal and parity, are similar to weak-localization transitions in disordered metals.

  5. The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data

    NASA Astrophysics Data System (ADS)

    Drótos, G.; Jung, C.

    2016-06-01

    The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.

  6. Generating a Double-Scroll Attractor by Connecting a Pair of Mutual Mirror-Image Attractors via Planar Switching Control

    NASA Astrophysics Data System (ADS)

    Sun, Changchun; Chen, Zhongtang; Xu, Qicheng

    2017-12-01

    An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.

  7. Non-smooth saddle-node bifurcations III: Strange attractors in continuous time

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.

    2016-08-01

    Non-smooth saddle-node bifurcations give rise to minimal sets of interesting geometry built of so-called strange non-chaotic attractors. We show that certain families of quasiperiodically driven logistic differential equations undergo a non-smooth bifurcation. By a previous result on the occurrence of non-smooth bifurcations in forced discrete time dynamical systems, this yields that within the class of families of quasiperiodically driven differential equations, non-smooth saddle-node bifurcations occur in a set with non-empty C2-interior.

  8. Smooth muscle tumors of soft tissue and non-uterine viscera: biology and prognosis.

    PubMed

    Miettinen, Markku

    2014-01-01

    Smooth muscle tumors are here considered an essentially dichotomous group composed of benign leiomyomas and malignant leiomyosarcomas. Soft tissue smooth muscle tumors with both atypia and mitotic activity are generally diagnosed leiomyosarcomas acknowledging potential for metastasis. However, lesions exist that cannot be comfortably placed in either category, and in such cases the designation 'smooth muscle tumor of uncertain biologic potential' is appropriate. The use of this category is often necessary with limited sampling, such as needle core biopsies. Benign smooth muscle tumors include smooth muscle hamartoma and angioleiomyoma. A specific category of leiomyomas are estrogen-receptor positive ones in women. These are similar to uterine leiomyomas and can occur anywhere in the abdomen and abdominal wall. Leiomyosarcomas can occur at any site, although are more frequent in the retroperitoneum and proximal extremities. They are recognized by likeness to smooth muscle cells but can undergo pleomorphic evolution ('dedifferentiation'). Presence of smooth muscle actin is nearly uniform and desmin-positivity usual. This and the lack of KIT expression separate leiomyosarcoma from GIST, an important problem in abdominal soft tissues. EBV-associated smooth muscle tumors are a specific subcategory occurring in AIDS or post-transplant patients. These tumors can have incomplete smooth muscle differentiation but show nuclear EBER as a diagnostic feature. In contrast to many other soft tissue tumors, genetics of smooth muscle tumors are poorly understood and such diagnostic testing is not yet generally applicable in this histogenetic group. Leiomyosarcomas are known to be genetically complex, often showing 'chaotic' karyotypes including aneuploidy or polyploidy, and no recurrent tumor-specific translocations have been detected.

  9. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  10. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  11. Mars: Fretted and chaotic terrains

    NASA Technical Reports Server (NTRS)

    Sharp, R. P.

    1973-01-01

    Fretted Martian terrain is characterized by smooth, flat, lowland areas separated from a cratered upland by abrupt escarpments of complex planimetric configuration and a maximum estimated height approaching 1 to 2 km. It is the product of some unusual erosive or abstractive process that has created steep escarpments. Chaotic terrain differs from fretted terrain in having a rough floor topography featuring a haphazard jumble of large angular blocks, and by arc-shaped slump blocks on its bounding escarpments. Its existence has now been confirmed by Mariner 9 pictures, and the characteristics, location, and areal extent of chaotic terrain have been more accurately and completely defined.

  12. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  13. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  14. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojun; School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001; Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn

    Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuousmore » change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.« less

  15. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  16. Chaotic behavior of the coronary circulation.

    PubMed

    Trzeciakowski, Jerome; Chilian, William M

    2008-05-01

    The regulation of the coronary circulation is a complex paradigm in which many inputs that influence vasomotor tone have to be integrated to provide the coronary vasomotor adjustments to cardiac metabolism and to perfusion pressure. We hypothesized that the integration of many disparate signals that influence membrane potential of smooth muscle cells, calcium sensitivity of contractile filaments, receptor trafficking result in complex non-linear characteristics of coronary vasomotion. To test this hypothesis, we measured an index of vasomotion, flowmotion, the periodic fluctuations of flow that reflect dynamic changes in resistances in the microcirculation. Flowmotion was continuously measured in periods ranging from 15 to 40 min under baseline conditions, during antagonism of NO synthesis, and during combined purinergic and NOS antagonism in the beating heart of anesthetized open-chest dogs. Flowmotion was measured in arterioles ranging from 80 to 135 microm in diameter. The signals from the flowmotion measurements were used to derive quantitative indices of non-linear behavior: power spectra, chaotic attractors, correlation dimensions, and the sum of the Lyapunov exponents (Kolmogorov-Sinai entropy), which reflects the total chaos and unpredictability of flowmotion. Under basal conditions, the coronary circulation demonstrated chaotic non-linear behavior with a power spectra showing three principal frequencies in flowmotion. Blockade of nitric oxide synthase or antagonism of purinergic receptors did not affect the correlation dimensions, but significantly increased the Kolmogorov-Sinai entropy, altered the power spectra of flowmotion, and changed the nature of the chaotic attractor. These changes are consistent with the view that certain endogenous controls, nitric oxide and various purines (AMP, ADP, ATP, adenosine) make the coronary circulation more predictable, and that blockade of these controls makes the control of flow less predictable and more chaotic.

  17. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less

  18. Effect of smoothing on robust chaos.

    PubMed

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  19. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    PubMed

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  20. Volcanic cones in Hydraotes chaos : implications for the chaotic terrains formation

    NASA Astrophysics Data System (ADS)

    Meresse, S.; Costard, F.; Mangold, N.; Masson, P.; Neukum, G.

    2006-12-01

    Numerous geologic scenarios have been proposed for the chaotic terrains formation. They include (1) sub-ice volcanism and other magma-ice interactions and (2) catastrophic release of groundwater from confined aquifers. The lack of volcanic morphology in the chaos was an handicap for the hypothesis of magma-ice interactions but the HRSC (High Resolution Stereo Camera) images have recently revealed possible volcanic cones inside the Hydraotes chaos. About thirty cones lie on the lowest parts of the chaos at elevation between -4300 and -5100 meters. They have basal diameters of 500-1900 m and heights exceeding 100 m. They are observed on young surface: the south smooth floor and inside the narrow valleys separating the mesas. The cones are relatively fresh. Similar morphologies of small cone-shaped structures have been previously identified in the northern lowlands of Mars (Chryse, Acidalia, Amazonis, Isidis and Elysuim Planitia) but their origin remains uncertain. A number of volcanic or cold climate landforms were proposed as potential terrestrial analogues : Icelandic pseudocraters (or rootless cones), cinder cones, tuff cones, pingos and spatter cones. The morphologic measurements made on the Hydraotes cones argue rather for a volcanic origin in comparison with terrestrial analogues. These first volcanic cones observed in Hydraotes chaos suggest that volcanic or subvolcanic activity might have played an important part in the chaotic terrains formation and outflow channels genesis.

  1. Simulations of submonolayer Xe on Pt(111): The case for a chaotic low temperature phase

    NASA Astrophysics Data System (ADS)

    Novaco, Anthony D.; Bavaresco, Jessica

    2018-04-01

    Molecular dynamics simulations are reported for the structural and thermodynamic properties of submonolayer xenon adsorbed on the (111) surface of platinum for temperatures up to the (apparently incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated with a standard two-dimensional molecular dynamics simulation, the model takes into consideration the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to describe the apparent smoothing of the corrugation with increasing temperature. We examine the importance of this thermal smoothing to the relative stability of several observed and proposed low-temperature structures. Structure factor calculations are compared to experimental results in an attempt to determine the low temperature structure of this system. These calculations provide strong evidence that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt(111) substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard wisdom regarding this system, namely, that the very low temperature phase of this system is a striped incommensurate phase. We present the case for further experimental investigation of this and similar systems as possible examples of chaotic low temperature phases in two dimensions.

  2. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  3. Coupled chaotic fluctuations in a model of international trade and innovation: Some preliminary results

    NASA Astrophysics Data System (ADS)

    Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori

    2018-05-01

    We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.

  4. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.

    PubMed

    Therriault, Daniel; White, Scott R; Lewis, Jennifer A

    2003-04-01

    The creation of geometrically complex fluidic devices is a subject of broad fundamental and technological interest. Here, we demonstrate the fabrication of three-dimensional (3D) microvascular networks through direct-write assembly of a fugitive organic ink. This approach yields a pervasive network of smooth cylindrical channels (approximately 10-300 microm) with defined connectivity. Square-spiral towers, isolated within this vascular network, promote fluid mixing through chaotic advection. These vertical towers give rise to dramatic improvements in mixing relative to simple straight (1D) and square-wave (2D) channels while significantly reducing the device planar footprint. We envisage that 3D microvascular networks will provide an enabling platform for a wide array of fluidic-based applications.

  5. Using chaos to generate variations on movement sequences

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Stuart, Joshua

    1998-12-01

    We describe a method for introducing variations into predefined motion sequences using a chaotic symbol-sequence reordering technique. A progression of symbols representing the body positions in a dance piece, martial arts form, or other motion sequence is mapped onto a chaotic trajectory, establishing a symbolic dynamics that links the movement sequence and the attractor structure. A variation on the original piece is created by generating a trajectory with slightly different initial conditions, inverting the mapping, and using special corpus-based graph-theoretic interpolation schemes to smooth any abrupt transitions. Sensitive dependence guarantees that the variation is different from the original; the attractor structure and the symbolic dynamics guarantee that the two resemble one another in both aesthetic and mathematical senses.

  6. Periodic orbit spectrum in terms of Ruelle-Pollicott resonances

    NASA Astrophysics Data System (ADS)

    Leboeuf, P.

    2004-02-01

    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.

  7. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.

    PubMed

    Innocenti, Giacomo; Morelli, Alice; Genesio, Roberto; Torcini, Alessandro

    2007-12-01

    The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the external current I. For increasing current values, the model exhibits a peculiar cascade of nonchaotic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic state dominated by bursting events. At higher I-values, this phase is substituted by a regime of continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to silence. The analysis is focused on the transition between the two chaotic phases displayed by the model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is observable. However, the transition appears to be continuous and smoothed out over a finite current interval, where bursts and spikes coexist. The beginning of the transition (from the bursting side) is signaled from a structural modification in the interspike interval return map. This change in the map shape is associated with the disappearance of the family of solutions responsible for the onset of the bursting chaos. The successive passage from bursting to spiking chaos is associated with a progressive pruning of unstable long-lasting bursts.

  8. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations.

    PubMed

    Kügler, Philipp; Bulelzai, M A K; Erhardt, André H

    2017-04-04

    Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.

  9. Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.

    NASA Astrophysics Data System (ADS)

    Greenfield, Alan Barry

    Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.

  10. On the relevance of chaos for halo stars in the solar neighbourhood II

    NASA Astrophysics Data System (ADS)

    Maffione, Nicolas P.; Gómez, Facundo A.; Cincotta, Pablo M.; Giordano, Claudia M.; Grand, Robert J. J.; Marinacci, Federico; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Frenk, Carlos S.

    2018-05-01

    In a previous paper based on dark matter only simulations we show that, in the approximation of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not efficiently erase phase space signatures of past accretion events. In this second paper we further explore the effect of chaotic mixing using multicomponent Galactic potential models and solar neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations, thus naturally accounting for the gravitational potential associated with baryonic components, such as the bulge and disc. Despite the strong change in the global Galactic potentials with respect to those obtained in dark matter only simulations, our results confirm that a large fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after periods of time significantly larger than a Hubble time. In addition, significant diffusion in phase space is not observed on those particles that do exhibit chaotic behaviour within a Hubble time.

  11. Path Planning for Robot based on Chaotic Artificial Potential Field Method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2018-03-01

    Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.

  12. Effect of data gaps on correlation dimension computed from light curves of variable stars

    NASA Astrophysics Data System (ADS)

    George, Sandip V.; Ambika, G.; Misra, R.

    2015-11-01

    Observational data, especially astrophysical data, is often limited by gaps in data that arises due to lack of observations for a variety of reasons. Such inadvertent gaps are usually smoothed over using interpolation techniques. However the smoothing techniques can introduce artificial effects, especially when non-linear analysis is undertaken. We investigate how gaps can affect the computed values of correlation dimension of the system, without using any interpolation. For this we introduce gaps artificially in synthetic data derived from standard chaotic systems, like the Rössler and Lorenz, with frequency of occurrence and size of missing data drawn from two Gaussian distributions. Then we study the changes in correlation dimension with change in the distributions of position and size of gaps. We find that for a considerable range of mean gap frequency and size, the value of correlation dimension is not significantly affected, indicating that in such specific cases, the calculated values can still be reliable and acceptable. Thus our study introduces a method of checking the reliability of computed correlation dimension values by calculating the distribution of gaps with respect to its size and position. This is illustrated for the data from light curves of three variable stars, R Scuti, U Monocerotis and SU Tauri. We also demonstrate how a cubic spline interpolation can cause a time series of Gaussian noise with missing data to be misinterpreted as being chaotic in origin. This is demonstrated for the non chaotic light curve of variable star SS Cygni, which gives a saturated D2 value, when interpolated using a cubic spline. In addition we also find that a careful choice of binning, in addition to reducing noise, can help in shifting the gap distribution to the reliable range for D2 values.

  13. Orbital structure in oscillating galactic potentials

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Kandrup, Henry E.

    2004-01-01

    Subjecting a galactic potential to (possibly damped) nearly periodic, time-dependent variations can lead to large numbers of chaotic orbits experiencing systematic changes in energy, and the resulting chaotic phase mixing could play an important role in explaining such phenomena as violent relaxation. This paper focuses on the simplest case of spherically symmetric potentials subjected to strictly periodic driving with the aim of understanding precisely why orbits become chaotic and under what circumstances they will exhibit systematic changes in energy. Four unperturbed potentials V0(r) were considered, each subjected to a time dependence of the form V(r, t) =V0(r)(1 +m0 sinωt). In each case, the orbits divide clearly into regular and chaotic, distinctions which appear absolute. In particular, transitions from regularity to chaos are seemingly impossible. Over finite time intervals, chaotic orbits subdivide into what can be termed `sticky' chaotic orbits, which exhibit no large-scale secular changes in energy and remain trapped in the phase-space region where they started; and `wildly' chaotic orbits, which do exhibit systematic drifts in energy as the orbits diffuse to different phase-space regions. This latter distinction is not absolute, transitions corresponding apparently to orbits penetrating a `leaky' phase-space barrier. The three different orbit types can be identified simply in terms of the frequencies for which their Fourier spectra have the most power. An examination of the statistical properties of orbit ensembles as a function of driving frequency ω allows us to identify the specific resonances that determine orbital structure. Attention focuses also on how, for fixed amplitude m0, such quantities as the mean energy shift, the relative measure of chaotic orbits and the mean value of the largest Lyapunov exponent vary with driving frequency ω and how, for fixed ω, the same quantities depend on m0.

  14. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, V. B., E-mail: enter@spbstu.ru; Filimonov, A. V.

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  15. Power law asymptotics in the creation of strange attractors in the quasi-periodically forced quadratic family

    NASA Astrophysics Data System (ADS)

    Ohlson Timoudas, Thomas

    2017-12-01

    Let Φ be a quasi-periodically forced quadratic map, where the rotation constant ω is a Diophantine irrational. A strange non-chaotic attractor (SNA) is an invariant (under Φ) attracting graph of a nowhere continuous measurable function ψ from the circle {T} to [0, 1] . This paper investigates how a smooth attractor degenerates into a strange one, as a parameter \

  16. Quantum chaos inside black holes

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-06-01

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensemble of horizonless naked singularities (eventually smoothed at the Planck scale). We call these new items frizzy-balls, which can be rigorously defined by Euclidean path integral approach. This leads to interesting implications about information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  17. Do steady fast magnetic dynamos exist?

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Ott, Edward; Hanson, James D.; Kan, Ittai

    1989-01-01

    This paper considers the question of the existense of a steady fast kinematic magnetic dynamo for a conducting fluid with a steady velocity field and vanishingly small electrical resistivity. The analysis of examples of steady dynamos, found by considering the zero-resistivity dynamics, indicated that, for sufficiently small resistivity, dynamo action can indeed occur in steady smooth three-dimensional chaotic fluid flows and that fast dynamos should consequently be a typical occurrence for such flows.

  18. Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations

    NASA Astrophysics Data System (ADS)

    Knio, Omar M.; Collorec, Luc; Juvé, Daniel

    1995-02-01

    The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.

  19. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    PubMed

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  20. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.

  1. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force

    NASA Astrophysics Data System (ADS)

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  2. Melnikov processes and chaos in randomly perturbed dynamical systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki

    2018-07-01

    We consider a wide class of randomly perturbed systems subjected to stationary Gaussian processes and show that chaotic orbits exist almost surely under some nondegenerate condition, no matter how small the random forcing terms are. This result is very contrasting to the deterministic forcing case, in which chaotic orbits exist only if the influence of the forcing terms overcomes that of the other terms in the perturbations. To obtain the result, we extend Melnikov’s method and prove that the corresponding Melnikov functions, which we call the Melnikov processes, have infinitely many zeros, so that infinitely many transverse homoclinic orbits exist. In addition, a theorem on the existence and smoothness of stable and unstable manifolds is given and the Smale–Birkhoff homoclinic theorem is extended in an appropriate form for randomly perturbed systems. We illustrate our theory for the Duffing oscillator subjected to the Ornstein–Uhlenbeck process parametrically.

  3. Theory of chaos regularization of tunneling in chaotic quantum dots.

    PubMed

    Lee, Ming-Jer; Antonsen, Thomas M; Ott, Edward; Pecora, Louis M

    2012-11-01

    Recent numerical experiments of Pecora et al. [Phys. Rev. E 83, 065201 (2011)] have investigated tunneling between two-dimensional symmetric double wells separated by a tunneling barrier. The wells were bounded by hard walls and by the potential barrier which was created by a step increase from the zero potential within a well to a uniform barrier potential within the barrier region, which is a situation potentially realizable in the context of quantum dots. Numerical results for the splitting of energy levels between symmetric and antisymmetric eigenstates were calculated. It was found that the splittings vary erratically from state to state, and the statistics of these variations were studied for different well shapes with the fluctuation levels being much less in chaotic wells than in comparable nonchaotic wells. Here we develop a quantitative theory for the statistics of the energy level splittings for chaotic wells. Our theory is based on the random plane wave hypothesis of Berry. While the fluctuation statistics are very different for chaotic and nonchaotic well dynamics, we show that the mean splittings of differently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves.

  4. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.

    PubMed

    Chacón, Ricardo

    2006-09-15

    A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.

  5. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  6. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-06-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  7. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-04-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  8. Chaotic optical time-domain reflectometry using a distributed feedback laser diode modulated by an improved Colpitts oscillator

    NASA Astrophysics Data System (ADS)

    Li, Jing Xia; Xu, Hang; Liu, Li; Su, Peng Cheng; Zhang, Jian Guo

    2015-05-01

    We report a chaotic optical time-domain reflectometry for fiber fault location, where a chaotic probe signal is generated by driving a distributed feedback laser diode with an improved Colpitts chaotic oscillator. The results show that the unterminated fiber end, the loose connector, and the mismatch connector can be precisely located. A measurement range of approximately 91 km and a range independent resolution of 6 cm are achieved. This implementation method is easy to integrate and is cost effective, which gives it great potential for commercial applications.

  9. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  10. Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.

    2011-01-01

    Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex

  11. An energy-balance model with multiply-periodic and quasi-chaotic free oscillations. [for climate forecasting

    NASA Technical Reports Server (NTRS)

    Bhattacharya, K.; Ghil, M.

    1979-01-01

    A slightly modified version of the one-dimensional time-dependent energy-balance climate model of Ghil and Bhattacharya (1978) is presented. The albedo-temperature parameterization has been reformulated and the smoothing of the temperature distribution in the tropics has been eliminated. The model albedo depends on time-lagged temperature in order to account for finite growth and decay time of continental ice sheets. Two distinct regimes of oscillatory behavior which depend on the value of the albedo-temperature time lag are considered.

  12. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  13. On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction

    NASA Astrophysics Data System (ADS)

    Molnar, T. G.; Dombovari, Z.; Insperger, T.; Stepan, G.

    2017-11-01

    The single-degree-of-freedom model of orthogonal cutting is investigated to study machine tool vibrations in the vicinity of a double Hopf bifurcation point. Centre manifold reduction and normal form calculations are performed to investigate the long-term dynamics of the cutting process. The normal form of the four-dimensional centre subsystem is derived analytically, and the possible topologies in the infinite-dimensional phase space of the system are revealed. It is shown that bistable parameter regions exist where unstable periodic and, in certain cases, unstable quasi-periodic motions coexist with the equilibrium. Taking into account the non-smoothness caused by loss of contact between the tool and the workpiece, the boundary of the bistable region is also derived analytically. The results are verified by numerical continuation. The possibility of (transient) chaotic motions in the global non-smooth dynamics is shown.

  14. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.

    PubMed

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

  15. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  16. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    NASA Astrophysics Data System (ADS)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the fundamental features of the attractor crisis (cf. right panel). Finally, that the spectral gap is small close to the crisis suggests that the linear concept of Climate Sensitivity may be applied only far from an attractor crisis.

  17. Lyapunov exponents for infinite dimensional dynamical systems

    NASA Technical Reports Server (NTRS)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  18. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Guan, Jian; Ma, Chunyang

    2016-08-15

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less

  19. Soft inflation

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  20. Soft inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  1. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    PubMed

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  2. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

    PubMed Central

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior. PMID:29089882

  3. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    PubMed

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Adaptive synchronisation of memristor-based neural networks with leakage delays and applications in chaotic masking secure communication

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Xu, Rui

    2018-04-01

    Chaotic synchronisation has caused extensive attention due to its potential application in secure communication. This paper is concerned with the problem of adaptive synchronisation for two different kinds of memristor-based neural networks with time delays in leakage terms. By applying set-valued maps and differential inclusions theories, synchronisation criteria are obtained via linear matrix inequalities technique, which guarantee drive system being synchronised with response system under adaptive control laws. Finally, a numerical example is given to illustrate the feasibility of our theoretical results, and two schemes for secure communication are introduced based on chaotic masking method.

  5. Preliminary chaotic model of snapover on high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  6. Stability and bifurcation analysis of oscillators with piecewise-linear characteristics - A general approach

    NASA Technical Reports Server (NTRS)

    Noah, S. T.; Kim, Y. B.

    1991-01-01

    A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.

  7. Quantum transport in chaotic and integrable ballistic cavities with tunable shape

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Faini, G.; Mailly, D.

    1997-10-01

    We have performed magnetotransport measurements in ballistic cavities and obtained the average by small modulations on the shapes and/or on the Fermi level. We work with cavities whose underlying classical dynamics is chaotic (stadia and Sinaï billiards) and integrable (circles and rectangles). The former show a Lorentzian weak-localization peak, in agreement with semiclassical predictions and other averaging methods that have been used in recent measurements. For integrable cavities our measurements show that the shape of the weak localization is very sensitive to the exact geometry of the sample: a linear magnetoconductance has been observed for rectangles as expected by the theory for integrable cavities, whereas for circles the shape is always Lorentzian. These discrepancies illustrate the nongeneric behavior of scattering through integrable geometries, that we analyze taking into account the interplay of integrability with smooth disorder and geometrical effects. The power spectra of the conductance fluctuations are also analyzed, the deduced typical areas are in good agreement with those obtained from the weak localization. Periodic orbits in nonaveraged Fourier transforms of the magnetoconductance for regular cavities are clearly identified indicating the good quality of our samples.

  8. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  9. Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2017-03-01

    We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.

  10. Chaotic one-dimensional domains induced by periodic potentials in normal-dispersion fiber lasers

    NASA Astrophysics Data System (ADS)

    Urzagasti, Deterlino; Vargas, Bryan A.; Quispe-Flores, Luzmila A.

    2017-10-01

    We investigate numerically the effects of external time-periodic potentials on time-localized perturbations to the amplitude of electromagnetic waves propagating in normal-dispersion fiber lasers which are described by the complex Ginzburg-Landau equation. Two main effects were found: The formation of domains enclosed by two maxima of the external periodic field and the generation of a chaotic behavior of these domains in the region of relatively high amplitudes and low frequencies of the external fields. Maps and bifurcation diagrams of the largest Lyapunov exponent and moments, such as energy and momentum, are also provided for different values of the amplitude and frequency of such external potentials.

  11. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    ERIC Educational Resources Information Center

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  12. On swinging spring chaotic oscillations

    NASA Astrophysics Data System (ADS)

    Aldoshin, Gennady T.; Yakovlev, Sergey P.

    2018-05-01

    In this work, chaotic modes of Swinging spring oscillations, their appearing conditions and probable scenario of evolution are studied. Swinging spring two-dimensional potential has (under certain conditions) local maximum. It can lead to stochastic attractor appearing. The system instability reason is inner (auto-parametric) resonance with frequencies ratio 2:1, which allows us to conclude that attractor could evolve according to the period doubling scenario, which was predicted by Feigenbaum in 1978.

  13. Predictability analysis and validation of a low-dimensional model - an application to the dynamics of cereal crops observed from satellite

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain; Drapeau, Laurent

    2013-04-01

    The global modeling approach aims to obtain parsimonious models of observed dynamics from few or single time series (Letellier et al. 2009). Specific algorithms were developed and validated for this purpose (Mangiarotti et al. 2012a). This approach was applied to the dynamics of cereal crops in semi-arid region using the vegetation index derived from satellite data as a proxy of the dynamics. A low-dimensional autonomous model could be obtained. The corresponding attractor is characteristic of weakly dissipative chaos and exhibits a toroidal-like structure. At present, only few theoretical cases of such chaos are known, and none was obtained from real world observations. Under smooth conditions, a robust validation of three-dimensional chaotic models can be usually performed based on the topological approach (Gilmore 1998). Such approach becomes more difficult for weakly dissipative systems, and almost impossible under noisy observational conditions. For this reason, another validation approach is developed which consists in comparing the forecasting skill of the model to other forecasts for which no dynamical model is required. A data assimilation process is associated to the model to estimate the model's skill; several schemes are tested (simple re-initialization, Extended and Ensemble Kalman Filters and Back and Forth Nudging). Forecasts without model are performed based on the search of analogous states in the phase space (Mangiarotti et al. 2012b). The comparison reveals the quality of the model's forecasts at short to moderate horizons and contributes to validate the model. These results suggest that the dynamics of cereal crops can be reasonably approximated by low-dimensional chaotic models, and also bring out powerful arguments for chaos. Chaotic models have often been used as benchmark to test data assimilation schemes; the present work shows that such tests may not only have a theoretical interest, but also almost direct applicative potential. Moreover, other global models could be obtained for other regions. The model considered here is not a particular case which highlights the usefulness to investigate and to widen this field of modeling and research. References: Letellier, C., Aguirre, L.A., Freitas, U.S., 2009. Frequently asked questions about global modeling. Chaos, 19, doi:10.1063/1.3125705. Gilmore R., 1998. Topological analysis of chaotic dynamical systems. Review of Modern Physics, 70, 1455-1530. Mangiarotti, S., Coudret, R., Drapreau, L., Jarlan, L., 2012a. Polynomial Search and Global Modeling - two algorithms for modelling chaos. Physical Review E, 86(4), 046205. Mangiarotti, S., Mazzega, P., Mougin, E., Hiernaux, P., 2012b. Predictability of vegetation cycles over the semi-arid region of Gourma (Mali) from forecasts of AVHRR-NDVI signals. Remote Sensing of Environment, 123, 246-257.

  14. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  15. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  16. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  17. A bifurcation giving birth to order in an impulsively driven complex system

    NASA Astrophysics Data System (ADS)

    Seshadri, Akshay; Sujith, R. I.

    2016-08-01

    Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system, whereby their dynamics can be investigated. We investigate the problem of pattern formation in a turbulent combustion system and apply this formalism with the aim of explaining the observed dynamics. We identify that the transition of this system from low amplitude chaotic oscillations to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation. Further, we provide an explanation for the occurrence of intermittent oscillations in the system.

  18. A bifurcation giving birth to order in an impulsively driven complex system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, Akshay, E-mail: akshayseshadri@gmail.com; Sujith, R. I., E-mail: sujith@iitm.ac.in

    Nonlinear oscillations lie at the heart of numerous complex systems. Impulsive forcing arises naturally in many scenarios, and we endeavour to study nonlinear oscillators subject to such forcing. We model these kicked oscillatory systems as a piecewise smooth dynamical system, whereby their dynamics can be investigated. We investigate the problem of pattern formation in a turbulent combustion system and apply this formalism with the aim of explaining the observed dynamics. We identify that the transition of this system from low amplitude chaotic oscillations to large amplitude periodic oscillations is the result of a discontinuity induced bifurcation. Further, we provide anmore » explanation for the occurrence of intermittent oscillations in the system.« less

  19. Level statistics of a noncompact cosmological billiard

    NASA Astrophysics Data System (ADS)

    Csordas, Andras; Graham, Robert; Szepfalusy, Peter

    1991-08-01

    A noncompact chaotic billiard on a two-dimensional space of constant negative curvature, the infinite equilateral triangle describing anisotropy oscillations in the very early universe, is studied quantum-mechanically. A Weyl formula with a logarithmic correction term is derived for the smoothed number of states function. For one symmetry class of the eigenfunctions, the level spacing distribution, the spectral rigidity Delta3, and the Sigma2 statistics are determined numerically using the finite matrix approximation. Systematic deviations are found both from the Gaussian orthogonal ensemble (GOE) and the Poissonian ensemble. However, good agreement with the GOE is found if the fundamental triangle is deformed in such a way that it no longer tiles the space.

  20. Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model

    DOE PAGES

    Liu, Jie; Ru, Peng; Zhang, Wei-Ning; ...

    2014-10-15

    We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ valuemore » at high pion pair momentum.« less

  1. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    NASA Astrophysics Data System (ADS)

    Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2015-09-01

    In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  2. RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.

    2016-04-01

    The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.

  3. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  4. Experimental chaotic quantification in bistable vortex induced vibration systems

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear out the regularity of periodic responses. For this purpose, a surrogate data test is used in order to check the hypotheses for the presence of chaotic behavior. The analyses from the experimental results support the hypothesis from simulation that chaotic response is likely occur on the real system.

  5. Neural network representation and learning of mappings and their derivatives

    NASA Technical Reports Server (NTRS)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  6. Analysis of chaotic saddles in a nonlinear vibro-impact system

    NASA Astrophysics Data System (ADS)

    Feng, Jinqian

    2017-07-01

    In this paper, a computational investigation of chaotic saddles in a nonlinear vibro-impact system is presented. For a classical Duffing vibro-impact oscillator, we employ the bisection procedure and an improved stagger-and-step method to present evidence of visual chaotic saddles on the fractal basin boundary and in the internal basin, respectively. The results show that the period saddles play an important role in the evolution of chaotic saddle. The dynamics mechanics of three types of bifurcation such as saddle-node bifurcation, chaotic saddle crisis bifurcation and interior chaotic crisis bifurcation are discussed. The results reveal that the period saddle created at saddle-node bifurcation is responsible for the switch of the internal chaotic saddle to the boundary chaotic saddle. At chaotic saddle crisis bifurcation, a large chaotic saddle can divide into two different chaotic saddle connected by a period saddle. The intersection points between stable and unstable manifolds of this period saddle supply access for chaotic orbits from one chaotic saddle to another and eventually induce the coupling of these two chaotic saddle. Interior chaotic crisis bifurcation is associated with the intersection of stable and unstable manifolds of the period saddle connecting two chaotic invariant sets. In addition, the gaps in chaotic saddle is responsible for the fractal structure.

  7. A novel high-resolution chaotic lidar with optical injection to chaotic laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Yun-cai; Wang, An-bang

    2008-03-01

    A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.

  8. Dynamics and locomotion of flexible foils in a frictional environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  9. Dynamics and locomotion of flexible foils in a frictional environment.

    PubMed

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  10. Does Planck really rule out monomial inflation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Kari; Karčiauskas, Mindaugas, E-mail: kari.enqvist@helsinki.fi, E-mail: mindaugas.karciauskas@helsinki.fi

    2014-02-01

    We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale μ. In cosmology, there are not enough measurements to fix μ so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic φ{sup 2} models, some may be ruledmore » out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic φ{sup 4} models to meet the Planck constraints.« less

  11. Chaotic attractors with separated scrolls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouallegue, Kais, E-mail: kais-bouallegue@yahoo.fr

    2015-07-15

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This newmore » approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results.« less

  12. The chaotic regime of D-term inflation

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Domcke, V.; Schmitz, K.

    2014-11-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of `chaotic inflation'.

  13. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Du, Mao-Kang; He, Bo; Wang, Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  14. Chaos in the gauge/gravity correspondence

    NASA Astrophysics Data System (ADS)

    Pando Zayas, Leopoldo A.; Terrero-Escalante, César A.

    2010-09-01

    We study the motion of a string in the background of the Schwarzschild black hole in AdS 5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.

  15. Exact coherent structures and chaotic dynamics in a model of cardiac tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Greg; Marcotte, Christopher D.; Grigoriev, Roman O., E-mail: roman.grigoriev@physics.gatech.edu

    Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This ismore » especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.« less

  16. Chaotic behavior of channeling particles.

    PubMed

    Chen, Ling; Kaloyeros, Alain E.; Wang, Guang-Hou

    1994-03-01

    Channeling describes the collimated motion of energetic charged particles along the lattice plane or axis in a crystal. The energetic particles are steered through the channels formed by strings of atomic constituents in the lattice. In the case of planar channeling, the motion of a charged particle between the atomic planes can be periodic or quasiperiodic, such as a simple oscillatory motion in the transverse direction. In practice, however, the periodic motion of the channeling particles can be accompanied by an irregular, chaotic behavior. In this paper, the Moliere potential, which is considered as a good analytical approximation for the interaction of channeling particles with the rows of atoms in the lattice, is used to simulate the channeling behavior of positively charged particles in a tungsten (100) crystal plane. By appropriate selection of channeling parameters, such as the projectile energy E(0) and incident angle psi(0), the transition of channeling particles from regular to chaotic motion is demonstrated. It is argued that the fine structures that appear in the angular scan channeling experiments are due to the particles' chaotic motion.

  17. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less

  18. Universality and chaotic dynamics in reactive scattering of ultracold KRb molecules with K atoms

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Croft, James F. E.; Balakrishnan, Naduvalath; Kendrick, Brian K.

    2017-04-01

    We study the benchmark reaction between the most-celebrated ultracold polar molecule, KRb, with an ultracold K atom. For the first time we map out an accurate ab initio ground potential energy surface of the K2Rb complex in full dimensionality and performed a numerically exact quantum-mechanical calculation of reaction dynamics based on coupled-channels approach in hyperspherical coordinates. An analysis of the adiabatic hyperspherical potentials reveals a chaotic distribution for the short-range complex that plays a key role in governing the reaction outcome. The equivalent distribution for a lighter collisional system with a smaller density of states (here the Li2Yb trimer) only shows random behavior. We find an extreme sensitivity of our chaotic system to a small perturbation associated with the weak non-additive three-body potential contribution that does not affect the total reaction rate coefficient but leads to a significant change in the rotational distribution in the product molecule. In both cases the distribution of these rates is random or Poissonian. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and PHY-1619788 (S.K.), ARO MURI Grant No. W911NF-12-1-0476 (N.B. & S.K.), and DOE LDRD Grant No. 20170221ER (B.K.).

  19. Self-balanced real-time photonic scheme for ultrafast random number generation

    NASA Astrophysics Data System (ADS)

    Li, Pu; Guo, Ya; Guo, Yanqiang; Fan, Yuanlong; Guo, Xiaomin; Liu, Xianglian; Shore, K. Alan; Dubrova, Elena; Xu, Bingjie; Wang, Yuncai; Wang, Anbang

    2018-06-01

    We propose a real-time self-balanced photonic method for extracting ultrafast random numbers from broadband randomness sources. In place of electronic analog-to-digital converters (ADCs), the balanced photo-detection technology is used to directly quantize optically sampled chaotic pulses into a continuous random number stream. Benefitting from ultrafast photo-detection, our method can efficiently eliminate the generation rate bottleneck from electronic ADCs which are required in nearly all the available fast physical random number generators. A proof-of-principle experiment demonstrates that using our approach 10 Gb/s real-time and statistically unbiased random numbers are successfully extracted from a bandwidth-enhanced chaotic source. The generation rate achieved experimentally here is being limited by the bandwidth of the chaotic source. The method described has the potential to attain a real-time rate of 100 Gb/s.

  20. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  1. Urey Prize Lecture - Chaotic dynamics in the solar system

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.

  2. Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Christoph, Jan; Parlitz, Ulrich

    2017-08-01

    In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.

  3. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.

    PubMed

    Zou, Yong; Donner, Reik V; Kurths, Jürgen

    2012-03-01

    Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.

  4. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2014-10-01

    The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.

  5. Impact of Eccentricity on East-west Stationkeeping for GPS Class of Orbits

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    1999-01-01

    There exists a strong relationship between eccentricity and the potential for a repeating groundtrack orbit to exhibit chaotic motion. This is true at all values of eccentricity, but, perhaps most dramatic, is that it is true even for orbits that are nearly circular. These complex motions can have a significant impact on the east-west stationkeeping process for maintaining the repeating groundtrack property of a commensurate orbit. Ely and Howell have shown that traditional stationkeeping (SK) methods are unable to maintain a repeating groundtrack in the presence of complex dynamics, such as with chaotic motion. They developed an alternate SK method that is able to maintain a repeating groundtrack for eccentric, commensurate orbits. The focus of the current study is to investigate orbits with characteristics that are similar to GPS satellites except with modestly larger eccentricities. It will be shown that at eccentricities larger than approx. .01 the chaotic regions become significant, and the need arises for a robust stationkeeping approach, such as developed in. FurtheRmore, the investigation will reveal that the influence of luni-solar perturbations contributes to the growth of eccentricity, thus increasing the probability of encountering chaotic motion during a typical satellite lifetime.

  6. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  7. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms

    NASA Astrophysics Data System (ADS)

    Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya

    2017-01-01

    In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.

  8. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  9. Breaking chaotic secure communication using a spectrogram

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Yang, Lin-Bao; Yang, Chun-Mei

    1998-10-01

    We present the results of breaking a kind of chaotic secure communication system called chaotic switching scheme, also known as chaotic shift keying, in which a binary message signal is scrambled by two chaotic attractors. The spectrogram which can reveal the energy evolving process in the spectral-temporal space is used to distinguish the two different chaotic attractors, which are qualitatively and statistically similar in phase space. Then mathematical morphological filters are used to decode the binary message signal without the knowledge of the binary message signal and the transmitter. The computer experimental results are provided to show how our method works when both the chaotic and hyper-chaotic transmitter are used.

  10. Characterization of mixing in an electroosmotically stirred continuous micro mixer

    NASA Astrophysics Data System (ADS)

    Beskok, Ali

    2005-11-01

    We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.

  11. Generalized Smooth Transition Map Between Tent and Logistic Maps

    NASA Astrophysics Data System (ADS)

    Sayed, Wafaa S.; Fahmy, Hossam A. H.; Rezk, Ahmed A.; Radwan, Ahmed G.

    There is a continuous demand on novel chaotic generators to be employed in various modeling and pseudo-random number generation applications. This paper proposes a new chaotic map which is a general form for one-dimensional discrete-time maps employing the power function with the tent and logistic maps as special cases. The proposed map uses extra parameters to provide responses that fit multiple applications for which conventional maps were not enough. The proposed generalization covers also maps whose iterative relations are not based on polynomials, i.e. with fractional powers. We introduce a framework for analyzing the proposed map mathematically and predicting its behavior for various combinations of its parameters. In addition, we present and explain the transition map which results in intermediate responses as the parameters vary from their values corresponding to tent map to those corresponding to logistic map case. We study the properties of the proposed map including graph of the map equation, general bifurcation diagram and its key-points, output sequences, and maximum Lyapunov exponent. We present further explorations such as effects of scaling, system response with respect to the new parameters, and operating ranges other than transition region. Finally, a stream cipher system based on the generalized transition map validates its utility for image encryption applications. The system allows the construction of more efficient encryption keys which enhances its sensitivity and other cryptographic properties.

  12. Chaotic inflation from nonlinear sigma models in supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.

    2015-02-11

    We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu–Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make theKähler potential of the NLSM invariant in supergravity. This field must have a shift symmetrymore » — making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space SU(3)/SU(2) × U(1), with the Higgs as the NGB, including breaking the inflaton’s shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E₇/SO(10) × U(1) × U(1) which incorporates the first two generations of (light) quarks as the Nambu–Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here), including a connection to Witten–Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion« less

  13. Dynamics of a railway vehicle on a laterally disturbed track

    NASA Astrophysics Data System (ADS)

    Christiansen, Lasse Engbo; True, Hans

    2018-02-01

    In this article a theoretical investigation of the dynamics of a railway bogie running on a tangent track with a periodic disturbance of the lateral track geometry is presented. The dynamics is computed for two values of the speed of the vehicle in combination with different values of the wavelength and amplitude of the disturbance. Depending on the combinations of the speed, the wavelength and the amplitude, straight line forward motion, different modes of symmetric or asymmetric periodic oscillations or aperiodic motions, which are presumably chaotic, are found. Statistical methods are applied for the investigation. In the case of sinusoidal oscillations they provide information about the phase shift between the different variables and the amplitudes of the oscillations. In the case of an aperiodic motion the statistical measures indicate some non-smooth transitions.

  14. Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen

    This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.

  15. Evolution of complexity following a quantum quench in free field theory

    NASA Astrophysics Data System (ADS)

    Alves, Daniel W. F.; Camilo, Giancarlo

    2018-06-01

    Using a recent proposal of circuit complexity in quantum field theories introduced by Jefferson and Myers, we compute the time evolution of the complexity following a smooth mass quench characterized by a time scale δ t in a free scalar field theory. We show that the dynamics has two distinct phases, namely an early regime of approximately linear evolution followed by a saturation phase characterized by oscillations around a mean value. The behavior is similar to previous conjectures for the complexity growth in chaotic and holographic systems, although here we have found that the complexity may grow or decrease depending on whether the quench increases or decreases the mass, and also that the time scale for saturation of the complexity is of order δ t (not parametrically larger).

  16. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  17. Solvable Hydrodynamics of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2017-12-01

    The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudomomentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.

  18. Hybrid electronic/optical synchronized chaos communication system.

    PubMed

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  19. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  20. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp; Yamada, Michio; Chian, Abraham C.-L.

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originatemore » from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.« less

  1. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.

    PubMed

    Saiki, Yoshitaka; Yamada, Michio; Chian, Abraham C-L; Miranda, Rodrigo A; Rempel, Erico L

    2015-10-01

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.

  2. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-06-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  3. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-03-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  4. Attributes and origins of ancient submarine slides and filled embayments: examples from the Gulf Coast basin

    USGS Publications Warehouse

    Morton, Robert

    1993-01-01

    Submarine slides exhibit landward-dipping, wavy, mounded, and chaotic seismic reflections that are manifestations of slump blocks and other mass transport material. Composition of these internally derived slide deposits depends on the composition of the preexisting shelf margin. Embayment fill above the slide consists mostly of externally derived mudstones and sandstones deposited by various disorganized slope processes, as well as more organized submarine channel-levee systems. Thickest slope sandstones, which are potential hydrocarbon reservoirs, commonly occur above the basal slide mudstones where seismic reflections change from chaotic patterns to overlying wavy or subhorizontal reflections.

  5. Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.

    2007-01-01

    The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.

  6. Parallel heat transport in integrable and chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less

  7. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape

    PubMed Central

    2017-01-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792

  8. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-15

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performedmore » simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.« less

  9. Partially chaotic orbits in a perturbed cubic force model

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2017-11-01

    Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.

  10. Insights on chaotic dynamics: mixing experiments between natural silicate melts from Vulcano island (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, Stefano; Morgavi, Daniele; Vetere, Francesco; Petrelli, Maurizio; Perugini, Diego

    2017-04-01

    keywords: Magma mixing, chaotic dynamics, time series experiments Magma mixing is a petrologic phenomenon which is recognized as potential trigger of highly explosive eruptions and its evidence is commonly observable in natural rocks. Here we tried to replicate the dynamic conditions of mixing performing a set of chaotic mixing experiments between shoshonitic and rhyolitic magmas from Vulcano island. Vulcano is the southernmost island of the Aeolian Archipelago (Aeolian Islands, Italy); it is completely built by volcanic rocks with variable degree of evolution ranging from basalt to rhyolite (e.g. Keller 1980; Ellam et al. 1988; De Astis 1995; De Astis et al. 2013) and its magmatic activity dates back to about 120 ky. Last eruption occurred in 1888-1890. The chaotic mixing experiments were performed by using the new ChaOtic Magma Mixing Apparatus (COMMA), held at the Department of Physics and Geology, University of Perugia. This new experimental device allows to track the evolution of the mixing process and the associated modulation of chemical composition between different magmas. Experiments were performed at 1200°C and atmospheric pressure with a viscosity ratio higher than three orders of magnitude. The experimental protocol was chosen to ensure the occurrence of chaotic dynamics in the system and the run duration was progressively increased (e.g. 10.5 h, 21 h, 42 h). The products of each experiment are crystal-free glasses in which the variation of major elements was investigated along different profiles using electron microprobe (EMPA) at Institute für Mineralogie, Leibniz Universität of Hannover (Germany). The efficiency of the mixing process is estimated by calculating the decrease of concentration variance in time and it is shown that the variance of major elements exponentially decays. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. It is also observable that the mixing structures generated during the mixing experiments are topologically identical to those observed in natural mixed volcanic rocks.

  11. Universality and chaoticity in ultracold K+KRb chemical reactions

    DOE PAGES

    Croft, J. F. E.; Makrides, C.; Li, M.; ...

    2017-07-19

    A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanokelvin. Here we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We map out an accurate ab initio ground-state potential energy surface of the K 2Rb complex in full dimensionality and report numerically-exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysismore » of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome.« less

  12. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  13. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    NASA Astrophysics Data System (ADS)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  14. A more secure parallel keyed hash function based on chaotic neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhongquan

    2011-08-01

    Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.

  15. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  16. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pairmore » of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.« less

  17. Hidden imperfect synchronization of wall turbulence.

    PubMed

    Tardu, Sedat F

    2010-03-01

    Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. The local amplitude is globally highly intermittent, but not in the phase locked regions wherein it varies smoothly. These behaviors are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type I intermittency behavior, in concordance with saddle-node bifurcation, and the periodic orbits of saddle nature recently identified in Couette turbulence. The imperfect synchronization is related to the footprint of coherent Reynolds shear stress producing eddies convecting in the low buffer.

  18. Plasma transport in the Io torus - The importance of microscopic diffusion

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.

    1991-01-01

    This paper considers the question of whether the distribution of mass in the Io plasma torus is consistent with the concept of interchange eddy transport. Specifically, the flux tube content exhibits a gradual decrease with increasing radial distance from the source near Io without any evidence for substantial density irregularity associated with the plasma source or loss. Using a simple one-dimensional numerical model to simulate macroscopic interchange eddy transport, it is demonstrated that this smooth equilibrium distribution of mass can occur but only with the inclusion of a minimal level of small scale microscopic mixing at a rate approaching Bohm diffusion. Otherwise, the system exhibits a chaotic appearance which never approaches an equilibrium distribution. Various physical mechanisms for the microscopic diffusion process which is required to provide a sufficiently rapid mixing of material between the macroscopic eddies are discussed.

  19. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  20. Exploring plenoptic properties of correlation imaging with chaotic light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Vaccarelli, Ornella; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-11-01

    In a setup illuminated by chaotic light, we consider different schemes that enable us to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows us to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.

  1. Study of some chaotic inflationary models in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nawazish, Iqra

    2018-04-01

    In this paper, we discuss an inflationary scenario via scalar field and fluid cosmology for an anisotropic homogeneous universe model in f(R) gravity. We consider an equation of state which corresponds to a quasi-de Sitter expansion and investigate the effect of the anisotropy parameter for different values of the deviation parameter. We evaluate potential models like linear, quadratic and quartic models which correspond to chaotic inflation. We construct the observational parameters for a power-law model of f(R) gravity and construct the graphical analysis of tensor-scalar ratio and spectral index which indicates the consistency of these parameters with Planck 2015 data.

  2. Hamiltonian flows with random-walk behaviour originating from zero-sum games and fictitious play

    NASA Astrophysics Data System (ADS)

    van Strien, Sebastian

    2011-06-01

    In this paper we introduce Hamiltonian dynamics, inspired by zero-sum games (best response and fictitious play dynamics). The Hamiltonian functions we consider are continuous and piecewise affine (and of a very simple form). It follows that the corresponding Hamiltonian vector fields are discontinuous and multi-valued. Differential equations with discontinuities along a hyperplane are often called 'Filippov systems', and there is a large literature on such systems, see for example (di Bernardo et al 2008 Theory and applications Piecewise-Smooth Dynamical Systems (Applied Mathematical Sciences vol 163) (London: Springer); Kunze 2000 Non-Smooth Dynamical Systems (Lecture Notes in Mathematics vol 1744) (Berlin: Springer); Leine and Nijmeijer 2004 Dynamics and Bifurcations of Non-smooth Mechanical Systems (Lecture Notes in Applied and Computational Mechanics vol 18) (Berlin: Springer)). The special feature of the systems we consider here is that they have discontinuities along a large number of intersecting hyperplanes. Nevertheless, somewhat surprisingly, the flow corresponding to such a vector field exists, is unique and continuous. We believe that these vector fields deserve attention, because it turns out that the resulting dynamics are rather different from those found in more classically defined Hamiltonian dynamics. The vector field is extremely simple: outside codimension-one hyperplanes it is piecewise constant and so the flow phit piecewise a translation (without stationary points). Even so, the dynamics can be rather rich and complicated as a detailed study of specific examples show (see for example theorems 7.1 and 7.2 and also (Ostrovski and van Strien 2011 Regular Chaotic Dynf. 16 129-54)). In the last two sections of the paper we give some applications to game theory, and finish with posing a version of the Palis conjecture in the context of the class of non-smooth systems studied in this paper. To Jacob Palis on his 70th birthday.

  3. Video encryption using chaotic masks in joint transform correlator

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  4. Visibility graphlet approach to chaotic time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less

  5. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    NASA Astrophysics Data System (ADS)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  6. Characterizing chaotic melodies in automatic music composition

    NASA Astrophysics Data System (ADS)

    Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang

    2010-09-01

    In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.

  7. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  8. Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.

    PubMed

    Chacón, R; Martínez, J A

    2002-03-01

    Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.

  9. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model

    PubMed Central

    Xu, Kesheng; Maidana, Jean P.; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons. PMID:28344550

  10. Stages of chaotic synchronization.

    PubMed

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  11. Chaotic Stochasticity: A Ubiquitous Source of Unpredictability in Epidemics

    NASA Astrophysics Data System (ADS)

    Rand, D. A.; Wilson, H. B.

    1991-11-01

    We address the question of whether or not childhood epidemics such as measles and chickenpox are chaotic, and argue that the best explanation of the observed unpredictability is that it is a manifestation of what we call chaotic stochasticity. Such chaos is driven and made permanent by the fluctuations from the mean field encountered in epidemics, or by extrinsic stochastic noise, and is dependent upon the existence of chaotic repellors in the mean field dynamics. Its existence is also a consequence of the near extinctions in the epidemic. For such systems, chaotic stochasticity is likely to be far more ubiquitous than the presence of deterministic chaotic attractors. It is likely to be a common phenomenon in biological dynamics.

  12. Studies in astronomical time series analysis. IV - Modeling chaotic and random processes with linear filters

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1990-01-01

    While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.

  13. A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Akgul, A.; Kaçar, S.; Çavuşoğlu, U.

    2018-02-01

    Hyperjerk systems have received significant interest in the literature because of their simple structure and complex dynamical properties. This work presents a new chaotic hyperjerk system having two exponential nonlinearities. Dynamical properties of the chaotic hyperjerk system are discovered through equilibrium point analysis, bifurcation diagram, dissipativity and Lyapunov exponents. Moreover, an adaptive backstepping controller is designed for the synchronization of the chaotic hyperjerk system. Also, a real circuit of the chaotic hyperjerk system has been carried out to show the feasibility of the theoretical hyperjerk model. The chaotic hyperjerk system can also be useful in scientific fields such as Random Number Generators (RNGs), data security, data hiding, etc. In this work, three implementations of the chaotic hyperjerk system, viz. RNG, image encryption and sound steganography have been performed by using complex dynamics characteristics of the system.

  14. Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li

    2017-12-01

    In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.

  15. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  16. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  17. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  18. Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linde, Andrei

    2015-02-23

    I describe the first model of chaotic inflation in supergravity, which was proposed by Goncharov and the present author in 1983. The inflaton potential of this model has a plateau-type behavior V{sub 0}(1−(8/3) e{sup −√6|ϕ|}) at large values of the inflaton field. This model predicts n{sub s}=1−(2/N)≈0.967 and r=(4/(3N{sup 2}))≈4×10{sup −4}, in good agreement with the Planck data. I propose a slight generalization of this model, which allows to describe not only inflation but also dark energy and supersymmetry breaking.

  19. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  20. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  1. Using Chaotic System in Encryption

    NASA Astrophysics Data System (ADS)

    Findik, Oğuz; Kahramanli, Şirzat

    In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.

  2. Design and Hardware Implementation of a New Chaotic Secure Communication Technique

    PubMed Central

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385

  3. Design and Hardware Implementation of a New Chaotic Secure Communication Technique.

    PubMed

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.

  4. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.

  5. Entropy Production Within a Pulsed Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Heinisch, Christoph; Holthaus, Martin

    2016-10-01

    We suggest to subject anharmonically trapped Bose-Einstein condensates to sinusoidal forcing with a smooth, slowly changing envelope, and to measure the coherence of the system after such pulses. In a series of measurements with successively increased maximum forcing strength, one then expects an adiabatic return of the condensate to its initial state as long as the pulses remain sufficiently weak. In contrast, once the maximum driving amplitude exceeds a certain critical value there should be a drastic loss of coherence, reflecting significant heating induced by the pulse. This predicted experimental signature is traced to the loss of an effective adiabatic invariant, and to the ensuing breakdown of adiabatic motion of the system's Floquet state when the many-body dynamics become chaotic. Our scenario is illustrated with the help of a two-site model of a forced bosonic Josephson junction, but should also hold for other, experimentally accessible configurations.

  6. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of timemore » series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.« less

  7. The roles of a process development group in biopharmaceutical process startup.

    PubMed

    Goochee, Charles F

    2002-01-01

    The transfer of processes for biotherapeutic products into finalmanufacturing facilities was frequently problematic during the 1980's and early 1990's, resulting in costly delays to licensure(Pisano 1997). While plant startups for this class of products can become chaotic affairs, this is not an inherent or intrinsic feature. Major classes of process startup problems have been identified andmechanisms have been developed to reduce their likelihood of occurrence. These classes of process startup problems and resolution mechanisms are the major topic of this article. With proper planning and sufficient staffing, the probably of a smooth process startup for a biopharmaceutical product can be very high - i.e., successful process performance will often beachieved within the first two full-scale process lots in the plant. The primary focus of this article is the role of the Process Development Group in helping to assure this high probability of success.

  8. Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Haelterman, Marc; Massar, Serge

    2017-05-01

    Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. Its hardware implementations have received much attention because of their simplicity and remarkable performance on a series of benchmark tasks. In previous experiments, the output was uncoupled from the system and, in most cases, simply computed off-line on a postprocessing computer. However, numerical investigations have shown that feeding the output back into the reservoir opens the possibility of long-horizon time-series forecasting. Here, we present a photonic reservoir computer with output feedback, and we demonstrate its capacity to generate periodic time series and to emulate chaotic systems. We study in detail the effect of experimental noise on system performance. In the case of chaotic systems, we introduce several metrics, based on standard signal-processing techniques, to evaluate the quality of the emulation. Our work significantly enlarges the range of tasks that can be solved by hardware reservoir computers and, therefore, the range of applications they could potentially tackle. It also raises interesting questions in nonlinear dynamics and chaos theory.

  9. Quantum-chaotic cryptography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. L.; Ramos, R. V.

    2018-03-01

    In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.

  10. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.

    PubMed

    Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio

    2018-05-30

    Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

  11. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  12. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  13. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    NASA Astrophysics Data System (ADS)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  14. Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system

    NASA Astrophysics Data System (ADS)

    Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad

    2018-02-01

    This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.

  15. Effect of endothelin-1 on the serotonin-induced contraction of smooth muscle in the guinea pig trachea.

    PubMed

    Yoshida, M; Aizawa, H; Hara, N

    1999-01-01

    Endothelin (ET), a potent constrictor of smooth muscle including that of the airways, may contribute to the development of airway hyperresponsiveness. To investigate the role of ET-1 on the airway smooth muscle, we examined the effects of ET-1 on the serotonin-induced contraction of guinea pig tracheal smooth muscle. The changes in isometric tension evoked by serotonin were measured before and after the application of a subthreshold dose (a dose which did not induce smooth muscle contraction by itself) of ET-1. Serotonin caused smooth muscle contraction in a dose-dependent manner. The subthreshold doses of ET-1 (1 pM) and sarafotoxin 6c (1 pM), a selective ETB receptor agonist, were found to potentiate significantly the contraction induced by serotonin. A potentiating effect of ET-1 was not altered by indomethacin or calphostin C, a protein kinase C inhibitor. These results suggest that a subthreshold concentration of ET-1 can potentiate serotonin-induced contraction of smooth muscle through the activation of ETB receptor, while in contrast cyclooxygenase and protein kinase C were found not to be involved in this mechanism.

  16. Dynamics and circuit of a chaotic system with a curve of equilibrium points

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Volos, Christos; Kapitaniak, Tomasz; Jafari, Sajad; Wang, Xiong

    2018-03-01

    Although chaotic systems have been intensively studied since the 1960s, new systems with mysterious features are still of interest. A novel chaotic system including hyperbolic functions is proposed in this work. Especially, the system has an infinite number of equilibrium points. Dynamics of the system are investigated by using non-linear tools such as phase portrait, bifurcation diagram, and Lyapunov exponent. It is interesting that the system can display coexisting chaotic attractors. An electronic circuit for realising the chaotic system has been implemented. Experimental results show a good agreement with theoretical ones.

  17. Computations of Chaotic Flows in Micromixers

    DTIC Science & Technology

    2006-04-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6410--06-8948 Computations of Chaotic Flows in Micromixers April 7, 2006 Approved for...PAGES 17. LIMITATION OF ABSTRACT Computations of Chaotic Flows in Micromixers Carolyn R. Kaplan, Junhui Liu, David R. Mott, and Elaine S. Oran NRL/MR...striations form in time 1 _______________ Manuscript approved December 8, 2005. COMPUTATIONS OF CHAOTIC FLOWS IN MICROMIXERS or distance. Sometimes it is

  18. Performance of Multi-chaotic PSO on a shifted benchmark functions set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-03-10

    In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.

  19. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  20. Adjoint-based Sensitivity of Jet Noise to Near-nozzle Forcing

    NASA Astrophysics Data System (ADS)

    Chung, Seung Whan; Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2017-11-01

    Past efforts have used optimal control theory, based on the numerical solution of the adjoint flow equations, to perturb turbulent jets in order to reduce their radiated sound. These efforts have been successful in that sound is reduced, with concomitant changes to the large-scale turbulence structures in the flow. However, they have also been inconclusive, in that the ultimate level of reduction seemed to depend upon the accuracy of the adjoint-based gradient rather than a physical limitation of the flow. The chaotic dynamics of the turbulence can degrade the smoothness of cost functional in the control-parameter space, which is necessary for gradient-based optimization. We introduce a route to overcoming this challenge, in part by leveraging the regularity and accuracy with a dual-consistent, discrete-exact adjoint formulation. We confirm its properties and use it to study the sensitivity and controllability of the acoustic radiation from a simulation of a M = 1.3 turbulent jet, whose statistics matches data. The smoothness of the cost functional over time is quantified by a minimum optimization step size beyond which the gradient cannot have a certain degree of accuracy. Based on this, we achieve a moderate level of sound reduction in the first few optimization steps. This material is based [in part] upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  1. Sensitivity analysis of primary resonances and bifurcations of a controlled piecewise-smooth system with negative stiffness

    NASA Astrophysics Data System (ADS)

    Huang, Dongmei; Xu, Wei

    2017-11-01

    In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.

  2. Zone-specific remodeling of tumor blood vessels affects tumor growth.

    PubMed

    Tilki, Derya; Kilic, Nerbil; Sevinc, Sema; Zywietz, Friedrich; Stief, Christian G; Ergun, Suleyman

    2007-11-15

    Chaotic organization, abnormal leakiness, and structural instability are characteristics of tumor vessels. However, morphologic events of vascular remodeling in relation to tumor growth are not sufficiently studied yet. By using the rat rhabdomyosarcoma tumor model vascular morphogenesis was studied by light and electron microscopy and immunohistochemistry in relation to tumor regions such as tumor surrounding (TSZ), marginal (TMZ), intermediate (TIZ), and center (TCZ) zones. The analyses revealed that blood vessels of TSZ display a regular ultrastructure, whereas blood vessels of TMZ showed a chaotic organization and unstable structure with a diffuse or even lacking basal lamina, and missing or irregular assembled periendothelial cells. In contrast, blood vessels of TIZ and TCZ exhibited a more or less stabilized vessel structure with increased diameter. Correspondingly, normal assembly of alpha-smooth-muscle-actin (alpha-SMA)-positive cells into the vessel wall was observed in blood vessels of TSZ, TIZ, and TCZ. Also, Ang1 immunostaining was strongest in large vessels of TIZ and TCZ, whereas Ang2 staining was prominent in small vessels of TIZ. Tie2 staining was detectable in small and large vessels of all tumor zones. Immunostaining for alpha(v)beta(3)-integrin was strongest in small vessels of TMZ, whereas large vessels of TIZ and TCZ were almost negative. The results indicate a zone-specific remodeling of tumor blood vessels by stabilization of vessels in TIZ and TCZ, whereas small vessels of these zones obviously undergo regression leading to tumor necrosis. Thus, a better understanding of vascular remodeling and stabilization in tumors would enable new strategies in tumor therapy and imaging. (c) 2007 American Cancer Society.

  3. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  4. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  5. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

    NASA Astrophysics Data System (ADS)

    Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry

    2009-03-01

    In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.

  6. Design and simulation of the micromixer with chaotic advection in twisted microchannels.

    PubMed

    Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi

    2003-05-01

    Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.

  7. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    NASA Astrophysics Data System (ADS)

    Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).

  8. The equal combination synchronization of a class of chaotic systems with discontinuous output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Runzi; Zeng, Yanhui

    This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.

  9. Modelling of long-wave chaotic radar system for anti-stealth applications

    NASA Astrophysics Data System (ADS)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  10. The onset of chaos in orbital pilot-wave dynamics.

    PubMed

    Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  11. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  12. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

    PubMed

    Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F

    2009-03-01

    Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

  13. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  14. A new chaotic oscillator with free control

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Akgul, Akif; Iu, Herbert H. C.; Zhao, Yibo

    2017-08-01

    A novel chaotic system is explored in which all terms are quadratic except for a linear function. The slope of the linear function rescales the amplitude and frequency of the variables linearly while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy modification of the linear function. When implemented as an electronic circuit, the corresponding chaotic signal can be controlled by two independent potentiometers, which is convenient for constructing a chaos-based application system. To the best of our knowledge, this class of chaotic oscillators has never been reported.

  15. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrio, Roberto, E-mail: rbarrio@unizar.es; Serrano, Sergio; Angeles Martínez, M.

    2014-06-01

    We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis.

  16. Genome chaos: survival strategy during crisis.

    PubMed

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  17. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  18. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    PubMed

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  19. Chaotic mixing in microchannels via low frequency switching transverse electroosmotic flow generated on integrated microelectrodes.

    PubMed

    Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J

    2010-03-21

    In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.

  20. A combination chaotic system and application in color image encryption

    NASA Astrophysics Data System (ADS)

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  1. Timing variation in an analytically solvable chaotic system

    NASA Astrophysics Data System (ADS)

    Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.

    2017-02-01

    We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.

  2. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  3. Synchronisation and Circuit Realisation of Chaotic Hartley System

    NASA Astrophysics Data System (ADS)

    Varan, Metin; Akgül, Akif; Güleryüz, Emre; Serbest, Kasım

    2018-06-01

    Hartley chaotic system is topologically the simplest, but its dynamical behaviours are very rich and its synchronisation has not been seen in literature. This paper aims to introduce a simple chaotic system which can be used as alternative to classical chaotic systems in synchronisation fields. Time series, phase portraits, and bifurcation diagrams reveal the dynamics of the mentioned system. Chaotic Hartley model is also supported with electronic circuit model simulations. Its exponential dynamics are hard to realise on circuit model; this paper is the first in literature that handles such a complex modelling problem. Modelling, synchronisation, and circuit realisation of the Hartley system are implemented respectively in MATLAB-Simulink and ORCAD environments. The effectiveness of the applied synchronisation method is revealed via numerical methods, and the results are discussed. Retrieved results show that this complex chaotic system can be used in secure communication fields.

  4. Generating random numbers by means of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  5. Theoretical and numerical studies of chaotic mixing

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun

    Theoretical and numerical studies of chaotic mixing are performed to circumvent the difficulties of efficient mixing, which come from the lack of turbulence in microfluidic devices. In order to carry out efficient and accurate parametric studies and to identify a fully chaotic state, a spectral element algorithm for solution of the incompressible Navier-Stokes and species transport equations is developed. Using Taylor series expansions in time marching, the new algorithm employs an algebraic factorization scheme on multi-dimensional staggered spectral element grids, and extends classical conforming Galerkin formulations to nonconforming spectral elements. Lagrangian particle tracking methods are utilized to study particle dispersion in the mixing device using spectral element and fourth order Runge-Kutta discretizations in space and time, respectively. Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in microfluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. These are the stirring index based on the box counting method, Poincare sections, finite time Lyapunov exponents, the probability density function of the stretching field, and mixing index inverse, based on the standard deviation of scalar species distribution. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing length (lm) is characterized as function of the Pe number, and lm ∝ ln(Pe) scaling is demonstrated for fully chaotic cases. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified in a zeta potential patterned straight micro channel, where a continuous flow is generated by superposition of a steady pressure driven flow and time periodic electroosmotic flow induced by a stream-wise AC electric field. Finally, it is shown that the invariant manifold of hyperbolic periodic point determines the geometry of fast mixing zones in oscillatory flows in two-dimensional cavity.

  6. Chaotic evolution of the long-period Milankovitch cycle during the early Mesozoic: independent evidences from the Newark lacustrine sequence (North America) and the pelagic bedded chert sequence (Japan)

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Olsen, P. E.; Tada, R.

    2012-12-01

    The correlation of Earth's orbital parameters with climatic variations has been used to generate astronomically calibrated geologic time scales of high accuracy. However, because of the chaotic behavior of the solar planets, the orbital models have a large uncertainty beyond several tens of million years in the past. This chaotic behavior also causes the long-period astronomical cycles (> 0.5 Myr periodicity) to modulate their frequency and amplitude. In other words, their modulation patterns could be potential constraints for the orbital models. Here we report the first geologic constraints on the timing of frequency transition and amplitude modulation of the ~ 2 Myr long eccentricity cycles during the early Mesozoic. We examined the lake level records of the early Mesozoic Newark lacustrine sequence in North America and the biogenic silica burial rate of the pelagic bedded chert sequence in the Inuyama area, Japan, which are proven to be reflect the astronomical cycle (Olsen, 1986; Olsen and Kent, 1996; Ikeda et al., 2010). The time scales of the two sequences were orbitally calibrated with the end-Triassic mass extinction interval as the age anchor, covering ~ 30 Myr and ~ 65 Myr, respectively (Olsen et al., 2011; Ikeda et al., 2010, in prep). We find that the frequency modulation of ~ 2 Myr cycle between 2.4 Myr to 1.6 Myr cycle have occurred at least the Middle to Late Triassic. In addition, the ~ 2 Myr cycle modulate its amplitude with ~ 10 Myr periodicity with in-phase relation between the two. Similar modulation patterns of ~ 2 Myr cycles from the two independent geologic records indicate convincing evidences for the chaotic behavior of the Solar planets. Because these modulation patterns are different from the results of the orbital models by Laskar et al. (2004, 2011), our records will provide the new and challenging constraints for the orbital models in terms of chaotic behavior of Solar planets.

  7. Quantification of chaotic strength and mixing in a micro fluidic system

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Beskok, Ali

    2007-11-01

    Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in micro fluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. The 'chaotic electroosmotic stirrer' of Qian and Bau (2002 Anal. Chem. 74 3616-25) is utilized as the benchmark case due to its well-defined flow kinematics. Lagrangian particle tracking methods are utilized to study particle dispersion in the conceptual device using spectral element and fourth-order Runge-Kutta discretizations in space and time, respectively. Stirring efficiency is predicted using the stirring index based on the box counting method, and Poincaré sections are utilized to identify the chaotic and regular regions under various actuation conditions. Finite time Lyapunov exponents are calculated to quantify the chaotic strength, while the probability density function of the stretching field is utilized as an alternative method to demonstrate the statistical analysis of chaotic and partially chaotic cases. Mixing index inverse, based on the standard deviation of scalar species distribution, is utilized as a metric to quantify the mixing efficiency. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing time (tm) is characterized as a function of the Pe number, and tm ~ ln(Pe) scaling is demonstrated for fully chaotic cases, while tm ~ Peα scaling with α ≈ 0.33 and α = 0.5 are observed for partially chaotic and regular cases, respectively. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified.

  8. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  9. Synchronization and an application of a novel fractional order King Cobra chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com; Ratnavelu, K., E-mail: kuru052001@gmail.com

    2014-09-01

    In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness ofmore » the proposed theoretical results.« less

  10. Analytically solvable chaotic oscillator based on a first-order filter.

    PubMed

    Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N

    2016-02-01

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.

  11. Analytically solvable chaotic oscillator based on a first-order filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.

    2016-02-15

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less

  12. Fuzzy fractals, chaos, and noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the conceptmore » of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.« less

  13. A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad

    2018-06-01

    Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.

  14. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  15. A new transiently chaotic flow with ellipsoid equilibria

    NASA Astrophysics Data System (ADS)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  16. Obituary: Henry Emil Kandrup, 1955-2003

    NASA Astrophysics Data System (ADS)

    Merritt, David; Gottesman, Stephen T.

    2004-12-01

    Henry Emil Kandrup died on 18 October 2003 at his home in Gainesville Florida. Henry was a theoretical astrophysicist specializing in the application of chaotic dynamics to stellar systems. At the time of his death, Henry was a Professor at the University of Florida where he had taught for 13 years. Henry was born in Manhasset, New York on July 24, 1955 and spent most of his childhood in Great Neck. His parents, Jytte and Fred, were immigrants from Denmark where his father had worked as a silver smith. Henry was a precocious child, skipping both third and fifth grades. With the help of Sidney Spivack, a professor of sociology at Columbia University, his parents enrolled Henry in the Brooks Preparatory School in Andover, Massachusetts. After graduating at age 16, Henry enrolled at Cornell, transferring to Princeton the following year. Henry's parents adored their only child and worked hard to provide him with intellectual opportunities. Henry became an accomplished musician (organ, piano, French horn) and linguist (English, Danish, German) and was a passionate devotee of opera and ballet. Henry received his PhD in 1980 from the University of Chicago, where his thesis advisor was James Ipser. He taught at Oakland University in Michigan and Syracuse University in New York before coming to the University of Florida in 1990. Henry was sui generis. He shunned conventionality in his personal appearance and in his public demeanor, and always chose forthrightness and candor over polite silence. But to those of us who knew Henry well, his bluntness was a reflection of his intellectual consistency. Henry always said exactly what he thought, both in his published work and his public presentations, and never compromised himself for the sake of appearances. Nothing that he said or wrote was less than fully thought out. Henry's PhD thesis was entitled "Stochastic Problems in Stellar Dynamics," and most of his subsequent research was in this field. Motion in stellar systems can be stochastic for three reasons: deflection of trajectories by close encounters; non-integrability of the smoothed-out potential; and an oscillating mean field. Henry made important contributions to our understanding of all three sorts of chaos. In a series of papers from the early 1990's, Henry developed the idea of ``chaotic phase mixing," the process by which an ensemble of points evolves toward a uniform coarse-grained population of phase space. Prior to Henry's work, the evolution of stellar systems to a steady state was attributed loosely to "violent relaxation," defined as phase-space repopulation driven by changes in the smooth potential. Henry pointed out that changes in the gravitational potential do not by themselves constitute relaxation; at best, they can contribute to relaxation by inducing a degree of chaos in the stellar trajectories. But it is the chaos that is responsible for the mixing and hence for the approach to a steady state. Among his other important contributions to stellar dynamics were a formal demonstration of the equivalence of Landau damping and phase mixing, and a proof (with J. F. Sygnet) of the linear stability of a broad class of stellar systems. Shortly before his death, Henry was working on the chaotic dynamics of charged particle beams and on the influence of binary super massive black holes on orbital motion in galaxies. Henry was one of the principle organizers of more than a dozen workshops on non-linear dynamics in astronomy and astrophysics that were held at the University of Florida. At the time of his death, he was negotiating with Springer Verlag over publication of a monograph, Hamiltonian Galactic Dynamics. Henry was famous for the energetic quality of his lectures. Like many other excellent teachers, he drew upon his research to enliven his undergraduate teaching. Under Research Interests, his web site lists "creative utilization of playdough, margaritas, and spirographs in graduate and undergraduate teaching." Henry received numerous teaching citations and awards; he was consistently voted the best teacher in the department by his University of Florida students, and his Introductory Astronomy courses at Syracuse were cited as "Recommended Courses" in Lisa Birnbach's New and Improved College Book for 1990. Henry was also well known for his dedication to students and postdocs. He was an exceptionally patient and gentle advisor, never openly critical, and often gave more credit to his students than was strictly necessary. He also took a deep personal interest in his students' welfare; as he told one of them, "an advisor should spend half of his time as the student's analyst." Henry was a model scientist in many ways. It is hard to imagine stellar dynamics without him.

  17. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    NASA Astrophysics Data System (ADS)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  18. An Investigation of Traveling-Wave Electrophoresis using a Trigonometric Potential

    NASA Astrophysics Data System (ADS)

    Vopal, James

    Traveling-wave electrophoresis, a technique for microfluidic separations in lab-on-achip devices, is investigated using a trigonometric model that naturally incorporates the spatial periodicity of the device. Traveling-wave electrophoresis can be used to separate high-mobility ions from low-mobility ions in forensic and medical applications, with a separation threshold that can be tuned for specific applications by simply choosing the traveling wave frequency. Our simulations predict plateaus in the average ion velocity verses the mobility, plateaus that correspond to Farey fractions and yield Devil's staircases for non-zero discreteness values. The plateaus indicate that ions with different mobilities can travel with the same average velocity. To determine the conditions for chaos, Lyapunov exponents and contact maps are employed. Through the use of contact maps, the chaotic trajectories are determined to be either narrowband or broadband. Narrowband chaotic trajectories are exhibited in the plateaus of the average velocity, while broadband chaotic trajectories are exhibited where the average velocity varies nonmonotonically with the mobility. Narrowband chaos will be investigated in future work incorporating the role of diffusion. The results of this and future work can be used to develop new tools for electrophoretic separation.

  19. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    NASA Astrophysics Data System (ADS)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less

  1. Impact of a smoothness incentive.

    DOT National Transportation Integrated Search

    2006-01-01

    Smoothness, the absence of bumps and dips in the riding surface of a pavement, improves the quality of the ride and is believed to prolong the life of the pavement. This research addressed the impact of potential pay adjustments for smoothness on mai...

  2. A chaotic view of behavior change: a quantum leap for health promotion.

    PubMed

    Resnicow, Ken; Vaughan, Roger

    2006-09-12

    The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston. Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and chaotic paradigms are however, not mutually exclusive, as behavior change may include both chaotic and cognitive processes. Studies of addiction suggest that many decisions to change are quantum rather than planned events; motivation arrives as opposed to being planned. Moreover, changes made through quantum processes appear more enduring than those that involve more rational, planned processes. How such processes may apply to nutrition and physical activity behavior and related interventions merits examination.

  3. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    PubMed

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  4. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  5. Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Sato, Norihisa; Adachi, Masaharu

    In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.

  6. Multiswitching combination synchronisation of non-identical fractional-order chaotic systems

    NASA Astrophysics Data System (ADS)

    Bhat, Muzaffar Ahmad; Khan, Ayub

    2018-06-01

    In this paper, multiswitching combination synchronisation (MSCS) scheme has been investigated in a class of three non-identical fractional-order chaotic systems. The fractional-order Lorenz and Chen systems are taken as the drive systems. The combination of multidrive systems is then synchronised with the fractional-order Lü chaotic system. In MSCS, the state variables of the two drive systems synchronise with different state variables of the response system, simultaneously. Based on the stability of fractional-order chaotic systems, the MSCS of three fractional-order non-identical systems has been investigated. For the synchronisation of three non-identical fractional-order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method.

  7. Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.

    PubMed

    Zheng, Song

    2015-09-01

    In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Sand incursion into temperate (Lithuania) and tropical (the Bahamas) maritime vegetation: Georadar visualization of target-rich aeolian lithosomes

    NASA Astrophysics Data System (ADS)

    Buynevich, Ilya V.; Savarese, Michael; Curran, H. Allen; Bitinas, Albertas; Glumac, Bosiljka; Pupienis, Donatas; Kopcznski, Karen; Dobrotin, Nikita; Gnivecki, Perry; Boush, Lisa Park; Damušytė, Aldona

    2017-08-01

    Interaction of windblown sand with maritime vegetation, either as dune migration or episodic grain transport is a common phenomenon along many sandy coasts. Vegetation introduces antecedent surface roughness, especially when scaled to the landform height, but its role may be concealed if overwhelmed by aeolian incursion and burial. Where field observations and cores lack detail for characterizing this complex process, ground-penetrating radar (GPR) offers continuous visualization of aeolian sequences. Along the Curonian Spit, Lithuania, dune reactivation phases resulted in massive invasion of siliciclastic sand triggered by natural perturbations and land clearance. Massive (>30 m high) dunes entombed mature pine, oak, and alder stands and this process is ongoing. Mid-frequency (200 MHz) georadar surveys reveal landward-dipping lateral accretion surfaces interrupted by high-amplitude point-source anomalies produced by recently buried trees. In tropical regions, dense vegetation and potential for rapid lithification of carbonate sand results in more complex internal structures. Along the windward coast of San Salvador Island, the Bahamas, a massive dune has buried several generations of maritime scrubland, resulting in highly chaotic reflection pattern and high target density. On a nearby Little Exuma Island, numerous reentrants in aeolianites promoted formation of blowouts and incursion of windblown sand 10-25 m into a silver thatch palm forest. High-frequency (800 MHz) GPR images resolve diffractions from trunks and roots buried by > 2 m of oolitic sand. Basal refection morphology helps differentiate the irregular dune/beachrock surface from a smooth palm-frond mat. Aside from detecting and mapping buried vegetation, geophysical images capture its effect on sediment accumulation. This has the potential for differentiating its effect from other discordant structures within dunes (clasts, dissolution voids, trunk molds, burrows, and cultural remains).

  9. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  10. Relativistic quantum Darwinism in Dirac fermion and graphene systems

    NASA Astrophysics Data System (ADS)

    Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis

    2012-02-01

    We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.

  11. The chaotic set and the cross section for chaotic scattering in three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Jung, C.; Merlo, O.; Seligman, T. H.; Zapfe, W. P. K.

    2010-10-01

    This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step towards a more general understanding of chaotic scattering in higher dimensions. Despite the strong restrictions, it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out the implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern that reflects the fractal structure of the chaotic invariant set. This allows us to determine structures in the cross section from the invariant set and, conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.

  12. Synchronization of chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years tomore » a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.« less

  13. Experimental analysis of chaotic neural network models for combinatorial optimization under a unifying framework.

    PubMed

    Kwok, T; Smith, K A

    2000-09-01

    The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters.

  14. A new chaotic communication scheme based on adaptive synchronization.

    PubMed

    Xiang-Jun, Wu

    2006-12-01

    A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.

  15. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  16. Chaotic carrier pulse position modulation communication system and method

    DOEpatents

    Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.

    2001-01-01

    A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.

  17. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  18. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the linearized model, the control gain matrix is calculated using the pole placement technique. The results show that the OGY controller is capable of stabilizing the chaotic responses by driving them to the desired inter-well period-one periodic vibrations and it is also shown that the harvested power is successfully improved. For validation purpose, a real-time experiment was carried out on a computer-based forced-feedback testing platform to validate the applicability of the controller in real-time applications. The experimental results confirm the feasibility of the controller to stabilize the responses.

  19. Horseshoes in a Chaotic System with Only One Stable Equilibrium

    NASA Astrophysics Data System (ADS)

    Huan, Songmei; Li, Qingdu; Yang, Xiao-Song

    To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.

  20. High-temperature apparatus for chaotic mixing of natural silicate melts.

    PubMed

    Morgavi, D; Petrelli, M; Vetere, F P; González-García, D; Perugini, D

    2015-10-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10(6) Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  1. Computations of Chaotic Flows in Micromixers

    DTIC Science & Technology

    2005-01-01

    2005 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Computations of Chaotic Flows in Micromixers 5a. CONTRACT...Std Z39-18 215simulation, computing, and modeling 2005 NRL Review Computations of Chaotic Flows In Micromixers FIGURE 6 Schematic of staggered

  2. Chaos in Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Raman, Arvind

    2006-01-01

    Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this “deterministic” uncertainty.

  3. Simple Chaotic Flow with Circle and Square Equilibrium

    NASA Astrophysics Data System (ADS)

    Gotthans, Tomas; Sprott, Julien Clinton; Petrzela, Jiri

    Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).

  4. Experimental realization of a highly secure chaos communication under strong channel noise

    NASA Astrophysics Data System (ADS)

    Ye, Weiping; Dai, Qionglin; Wang, Shihong; Lu, Huaping; Kuang, Jinyu; Zhao, Zhenfeng; Zhu, Xiangqing; Tang, Guoning; Huang, Ronghuai; Hu, Gang

    2004-09-01

    A one-way coupled spatiotemporally chaotic map lattice is used to construct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to practice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.

  5. Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.

    PubMed

    Rong, Shiguang; Hai, Wenhua; Xie, Qiongtao; Zhu, Qianquan

    2009-09-01

    We study the effects of chaotic dynamics on atomic tunneling between two weakly coupled Bose-Einstein condensates driven by a double-frequency periodic field. Under the Melnikov's chaos criterion, we divide the parameter space into three parts of different types, regular region, low-chaoticity region, and high-chaoticity region, and give the accurate boundaries between the different regions. It is found that the atomic tunneling can be enhanced in the presence of chaos. Particularly, in the high-chaoticity regions, the chaos-induced inversion of the population imbalance is observed numerically.

  6. Identical synchronization of chaotic secure communication systems with channel induced coherence resonance

    NASA Astrophysics Data System (ADS)

    Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.

    2016-05-01

    This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.

  7. Wavelet threshold method of resolving noise interference in periodic short-impulse signals chaotic detection

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Zhang, Lu; Luo, Mao-Kang

    2010-03-01

    The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.

  8. Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.; Wang, Qiqi

    2018-02-01

    Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.

  9. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  10. Chaos in the brain: imaging via chaoticity of EEG/MEG signals

    NASA Astrophysics Data System (ADS)

    Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried

    1995-03-01

    Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.

  11. Chaotic diffusion in the Gliese-876 planetary system

    NASA Astrophysics Data System (ADS)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  12. Synthesis of a fully-integrated digital signal source for communications from chaotic dynamics-based oscillations

    NASA Astrophysics Data System (ADS)

    Glenn, Chance Michael, Sr.

    This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.

  13. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  14. Numerical explorations of R. M. Goodwin's business cycle model.

    PubMed

    Jakimowicz, Aleksander

    2010-01-01

    Goodwin's model, which was formulated in , still attracts economists' attention. The model possesses numerous interesting properties that have been discovered only recently due to the development of the chaos theory and the complexity theory. The first numerical explorations of the model were conducted in the early s by Strotz, McAnulty and Naines (1953). They discovered the coexistence of attractors that are well-known today, two properties of chaotic systems: the sensitive dependence on the initial conditions and the sensitive dependence on parameters. The occurrence of periodic and chaotic attractors is dependent on the value of parameters in a system. In case of certain parametric values fractal basin boundaries exist which results in enormous system sensitivity to external noise. If periodic attractors are placed in the neighborhood of the fractal basin boundaries, then even a low external noise can move the trajectory into the region in which the basin's structure is tangled. This leads to a kind of movement that resembles a chaotic movement on a strange attractor. In Goodwin's model, apart from typical chaotic behavior, there exists yet another kind of complex movements - transient chaotic behavior that is caused by the occurrence of invariant chaotic sets that are not attracting. Such sets are represented by chaotic saddles. Some of the latest observation methods of trajectories lying on invariant chaotic sets that are not attracting are straddle methods. This article provides examples of the basin boundary straddle trajectory and the saddle straddle trajectory. These cases were studied by Lorenz and Nusse (2002). I supplement the results they acquired with calculations of capacity dimension and correlation dimension.

  15. Detection of chaotic dynamics in human gait signals from mobile devices

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  16. The simulation of electromagnetically driven strong Langmuir turbulence effect on the backscatter radiation from ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    2016-07-01

    Numerical simulations of the dynamics of electromagnetic fields in a smoothly inhomogeneous nonlinear plasma layer in frameworks of the nonlinear Schrödinger equation with boundary conditions responsible for the pumping of the field in the layer by an incident wave and the inverse radiation losses supplemented the volume field dissipation due to the electromagnetic excitation of Langmuir turbulence are carried out. The effects of the threshold of non-linearity and it's evolution, of the threshold and saturation levels of dissipation in the vicinity of the wave reflection point on the features of the dynamics of reflection and absorption indexes are investigated. We consider the hard drive damping depending on the local field amplitude and hysteresis losses with different in several times "on" and "off" absorption thresholds as well. The dependence of the thresholds of the steady-state, periodic and chaotic regimes of plasma-wave interaction on the scenario of turbulence evolution is demonstrated. The results are compared with the experimental observations of Langmuir stage ionospheric modification.

  17. On the adaptivity and complexity embedded into differential evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less

  18. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  19. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  20. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.

    PubMed

    Uenohara, Seiji; Mitsui, Takahito; Hirata, Yoshito; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-06-01

    We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.

  1. Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.

    PubMed

    Namikawa, Jun

    2005-08-01

    Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.

  2. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  3. Literalism, perspectivism, chaotic fragmentalism and psychotherapy techniques.

    PubMed

    Leitner, L M

    1982-12-01

    Literalism and chaotic fragmentalism have been advanced as two concepts to explain psychopathology while perspectivism has been used to explain psychological health (Landfield, 1980 a). It is hypothesized that, to the extent that they are therapeutic, all therapies move clients toward perspectivism and away from literalism and chaotic fragmentalism. Eight major schools of psychotherapy are discussed in terms of the principles of technique which enable them to change literalism and chaotic fragmentalism. The advantages of a unifying theory permitting diversity of techniques are discussed in relation to the ability of the clinician to be flexible yet not confused. Further, the unifying concepts of literalism, perspectivism, and chaotic fragmentalism are used to understand systematically the strengths and weaknesses of many therapeutic techniques. Finally, the implications of the differences in therapeutic techniques for changing different types of literalisms are discussed.

  4. Chaotic Experiences and Low-Income Children’s Social-Emotional Development

    PubMed Central

    Bobbitt, Kaeley C.; Gershoff, Elizabeth T.

    2016-01-01

    Development in early childhood is increasingly likely to take place in multiple contexts. Continuity and discontinuity in children’s experiences across multiple contexts have important implications for their development. This study examines the extent to which children experience chaos in their homes and in their preschool settings is linked with their social-emotional development over the course of the preschool year. Data from a large, representative sample of low-income preschool children attending Head Start was used to test a series of multi-level models. Children whose experiences of their homes were highly chaotic, regardless of the how chaotic their experiences of their classroom were, decreased in their social-emotional skills over the preschool year. Chaotic experiences in the home environment thus appear to have more influence on children’s development than do chaotic preschool experiences. PMID:28435178

  5. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhang, Limeng; Pan, Biwei; Chen, Guangcan; Guo, Lu; Lu, Dan; Zhao, Lingjuan; Wang, Wei

    2017-04-01

    An ultra-fast physical random number generator is demonstrated utilizing a photonic integrated device based broadband chaotic source with a simple post data processing method. The compact chaotic source is implemented by using a monolithic integrated dual-mode amplified feedback laser (AFL) with self-injection, where a robust chaotic signal with RF frequency coverage of above 50 GHz and flatness of ±3.6 dB is generated. By using 4-least significant bits (LSBs) retaining from the 8-bit digitization of the chaotic waveform, random sequences with a bit-rate up to 640 Gbit/s (160 GS/s × 4 bits) are realized. The generated random bits have passed each of the fifteen NIST statistics tests (NIST SP800-22), indicating its randomness for practical applications.

  6. Solving large scale traveling salesman problems by chaotic neurodynamics.

    PubMed

    Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki

    2002-03-01

    We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.

  7. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  8. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud

  9. Information's role in the estimation of chaotic signals

    NASA Astrophysics Data System (ADS)

    Drake, Daniel Fred

    1998-11-01

    Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.

  10. Regular transport dynamics produce chaotic travel times.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  11. Fast and secure encryption-decryption method based on chaotic dynamics

    DOEpatents

    Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.

    1995-01-01

    A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.

  12. Dynamic analysis of a buckled asymmetric piezoelectric beam for energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, Louis, E-mail: louis01@umail.ucsb.edu; Moehlis, Jeff

    2016-03-15

    A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.

  13. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    PubMed

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  14. Regular transport dynamics produce chaotic travel times

    NASA Astrophysics Data System (ADS)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  15. Bistability and chaos in the Taylor-Green dynamo.

    PubMed

    Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj

    2012-03-01

    Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.

  16. Electromagnetic banana kinetic equation and its applications in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Chu, M. S.; Sabbagh, S. A.; Seol, J.

    2018-03-01

    A banana kinetic equation in tokamaks that includes effects of the finite banana width is derived for the electromagnetic waves with frequencies lower than the gyro-frequency and the bounce frequency of the trapped particles. The radial wavelengths are assumed to be either comparable to or shorter than the banana width, but much wider than the gyro-radius. One of the consequences of the banana kinetics is that the parallel component of the vector potential is not annihilated by the orbit averaging process and appears in the banana kinetic equation. The equation is solved to calculate the neoclassical quasilinear transport fluxes in the superbanana plateau regime caused by electromagnetic waves. The transport fluxes can be used to model electromagnetic wave and the chaotic magnetic field induced thermal particle or energetic alpha particle losses in tokamaks. It is shown that the parallel component of the vector potential enhances losses when it is the sole transport mechanism. In particular, the fact that the drift resonance can cause significant transport losses in the chaotic magnetic field in the hitherto unknown low collisionality regimes is emphasized.

  17. Ergodic properties of spiking neuronal networks with delayed interactions

    NASA Astrophysics Data System (ADS)

    Palmigiano, Agostina; Wolf, Fred

    The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony

  18. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  19. Chaotic Motifs in Gene Regulatory Networks

    PubMed Central

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs. PMID:22792171

  20. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  1. Gauge Fields in Homogeneous and Inhomogeneous Cosmologies

    NASA Astrophysics Data System (ADS)

    Darian, Bahman K.

    Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on homogeneous cosmologies is amenable to a formal treatment. This dissertation is a report on a systematic approach to the general construction of invariant YM fields on homogeneous cosmologies undertaken for the first time in this context. This construction is subsequently followed by the investigation of the behavior of YM field variables for the most simple of self-gravitating YM fields. Particularly interesting was a dynamical system analysis and the discovery of chaotic signature in the axially symmetric Bianchi I-YM cosmology. Homogeneous YM fields are well studied and are known to have chaotic properties. The chaotic behavior of YM field variables in homogeneous cosmologies might eventually lead to an invariant definition of chaos in (general) relativistic cosmological models. By choosing the gauge fields to be Abelian, the construction and the field equations presented so far reduce to that of electromagnetic field in homogeneous cosmologies. A perturbative analysis of gravitationally interacting electromagnetic and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi formulation of general relativity. An essential feature of this analysis is the spatial gradient expansion of the generating functional (Hamilton principal function) to solve the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-Walker cosmology with an exponential potential for the scalar field are presented.

  2. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2010-01-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  3. Generating Random Numbers by Means of Nonlinear Dynamic Systems

    ERIC Educational Resources Information Center

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-01-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the…

  4. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg; BioSystems and Micromechanics

    2015-07-15

    Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxationmore » times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.« less

  5. Composing chaotic music from the letter m

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Anastasios D.

    Chaotic music is composed from a proposed iterative map depicting the letter m, relating the pitch, duration and loudness of successive steps. Each of the two curves of the letter m is based on the classical logistic map. Thus, the generating map is xn+1 = r xn(1/2 - xn) for xn between 0 and 1/2 defining the first curve, and xn+1 = r (xn - 1/2)(1 - xn) for xn between 1/2 and 1 representing the second curve. The parameter r which determines the height(s) of the letter m varies from 2 to 16, the latter value ensuring fully developed chaotic solutions for the whole letter m; r = 8 yielding full chaotic solutions only for its first curve. The m-model yields fixed points, bifurcation points and chaotic regions for each separate curve, as well as values of the parameter r greater than 8 which produce inter-fixed points, inter-bifurcation points and inter-chaotic regions from the interplay of the two curves. Based on this, music is composed from mapping the m- recurrence model solutions onto actual notes. The resulting musical score strongly depends on the sequence of notes chosen by the composer to define the musical range corresponding to the range of the chaotic mathematical solutions x from 0 to 1. Here, two musical ranges are used; one is the middle chromatic scale and the other is the seven- octaves range. At the composer's will and, for aesthetics, within the same composition, notes can be the outcome of different values of r and/or shifted in any octave. Compositions with endings of non-repeating note patterns result from values of r in the m-model that do not produce bifurcations. Scores of chaotic music composed from the m-model and the classical logistic model are presented.

  6. Extracellular Cl- regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum.

    PubMed

    Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico

    2018-01-01

    What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed in W/W v mice, which lack pacemaker ICCs in the small intestine. We conclude that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in ICCs plays a major role in generation or propagation of slow waves. Furthermore, these data support a role for ICCs in setting smooth muscle E m and that altering Cl - homeostasis in ICCs can alter smooth muscle E m . © 2017 Mayo Clinic. Experimental Physiology © 2017 The Physiological Society.

  7. Fault detection technique for wavelength division multiplexing passive optical network using chaotic fiber laser

    NASA Astrophysics Data System (ADS)

    Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian

    2014-03-01

    We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.

  8. A quasi-crisis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren

    2002-03-01

    A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads: ∝ (p-p_c)^-ν , where is defined as the averaged length of quasi-transients. The scaling exponent ν=1.66 ± 0.04. The critical parameter value equals p_c=-1.0069799. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  9. A discrete-time chaos synchronization system for electronic locking devices

    NASA Astrophysics Data System (ADS)

    Minero-Ramales, G.; López-Mancilla, D.; Castañeda, Carlos E.; Huerta Cuellar, G.; Chiu Z., R.; Hugo García López, J.; Jaimes Reátegui, R.; Villafaña Rauda, E.; Posadas-Castillo, C.

    2016-11-01

    This paper presents a novel electronic locking key based on discrete-time chaos synchronization. Two Chen chaos generators are synchronized using the Model-Matching Approach, from non-linear control theory, in order to perform the encryption/decryption of the signal to be transmitted. A model/transmitter system is designed, generating a key of chaotic pulses in discrete-time. A plant/receiver system uses the above mentioned key to unlock the mechanism. Two alternative schemes to transmit the private chaotic key are proposed. The first one utilizes two transmission channels. One channel is used to encrypt the chaotic key and the other is used to achieve output synchronization. The second alternative uses only one transmission channel for obtaining synchronization and encryption of the chaotic key. In both cases, the private chaotic key is encrypted again with chaos to solve secure communication-related problems. The results obtained via simulations contribute to enhance the electronic locking devices.

  10. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  11. Simulation and Visualization of Chaos in a Driven Nonlinear Pendulum -- An Aid to Introducing Chaotic Systems in Physics

    NASA Astrophysics Data System (ADS)

    Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue

    2013-03-01

    The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.

  12. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao

    2018-04-01

    A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.

  13. Chaotic dynamics of controlled electric power systems

    NASA Astrophysics Data System (ADS)

    Kozlov, V. N.; Trosko, I. U.

    2016-12-01

    The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.

  14. Terminal Transient Phase of Chaotic Transients

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Parlitz, Ulrich

    2018-03-01

    Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.

  15. A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.

    2017-06-01

    The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.

  16. Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.

    PubMed

    Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F

    2014-02-07

    Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.

  17. PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-03-10

    In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.

  18. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  19. Route to broadband chaos in a chaotic laser diode subject to optical injection.

    PubMed

    Wang, An-Bang; Wang, Yun-Cai; Wang, Juan-Fen

    2009-04-15

    We experimentally and numerically demonstrate a route to bandwidth-enhanced chaos that is induced by an additional optical injection for a chaotic laser diode with optical feedback. The measured and calculated optical spectra consistently reveal that the mechanism of bandwidth enhancement is the interaction between the injection and chaotic laser field via beating. The bandwidth can be maximized only when the injected light is detuned into the edge of the optical spectrum of the chaotic laser field and the beating frequency exceeds the original bandwidth. The simulated dynamics maps indicate that 20 GHz broadband chaos can be obtained by commonly used laser diodes.

  20. Widely tunable chaotic fiber laser for WDM-PON detection

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian

    2014-05-01

    A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.

  1. Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia

    We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.

  2. Detecting unstable periodic orbits in chaotic time series using synchronization

    NASA Astrophysics Data System (ADS)

    Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold

    2017-07-01

    An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.

  3. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    NASA Astrophysics Data System (ADS)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  4. Parameter estimation for chaotic systems using improved bird swarm algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Chuangbiao; Yang, Renhuan

    2017-12-01

    Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.

  5. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  6. Chaotic CDMA watermarking algorithm for digital image in FRFT domain

    NASA Astrophysics Data System (ADS)

    Liu, Weizhong; Yang, Wentao; Feng, Zhuoming; Zou, Xuecheng

    2007-11-01

    A digital image-watermarking algorithm based on fractional Fourier transform (FRFT) domain is presented by utilizing chaotic CDMA technique in this paper. As a popular and typical transmission technique, CDMA has many advantages such as privacy, anti-jamming and low power spectral density, which can provide robustness against image distortions and malicious attempts to remove or tamper with the watermark. A super-hybrid chaotic map, with good auto-correlation and cross-correlation characteristics, is adopted to produce many quasi-orthogonal codes (QOC) that can replace the periodic PN-code used in traditional CDAM system. The watermarking data is divided into a lot of segments that correspond to different chaotic QOC respectively and are modulated into the CDMA watermarking data embedded into low-frequency amplitude coefficients of FRFT domain of the cover image. During watermark detection, each chaotic QOC extracts its corresponding watermarking segment by calculating correlation coefficients between chaotic QOC and watermarked data of the detected image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark. Experimental results show that the watermarking algorithm has good performances in three aspects: better imperceptibility, anti-attack robustness and security.

  7. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  8. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  9. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map.

    PubMed

    Long, Zhili; Wang, Rui; Fang, Jiwen; Dai, Xufei; Li, Zuohua

    2017-07-01

    Piezoelectric actuators invariably exhibit hysteresis nonlinearities that tend to become significant under the open-loop condition and could cause oscillations and errors in nanometer-positioning tasks. Chaotic map modified particle swarm optimization (MPSO) is proposed and implemented to identify the Prandtl-Ishlinskii model for piezoelectric actuators. Hysteresis compensation is attained through application of an inverse Prandtl-Ishlinskii model, in which the parameters are formulated based on the original model with chaotic map MPSO. To strengthen the diversity and improve the searching ergodicity of the swarm, an initial method of adaptive inertia weight based on a chaotic map is proposed. To compare and prove that the swarm's convergence occurs before stochastic initialization and to attain an optimal particle swarm optimization algorithm, the parameters of a proportional-integral-derivative controller are searched using self-tuning, and the simulated results are used to verify the search effectiveness of chaotic map MPSO. The results show that chaotic map MPSO is superior to its competitors for identifying the Prandtl-Ishlinskii model and that the inverse Prandtl-Ishlinskii model can provide hysteresis compensation under different conditions in a simple and effective manner.

  10. Cooling of a magmatic system under thermal chaotic mixing

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego

    2015-04-01

    The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.

  11. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    NASA Astrophysics Data System (ADS)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  12. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  13. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  14. High-temperature apparatus for chaotic mixing of natural silicate melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgavi, D.; Petrelli, M.; Vetere, F. P.

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed atmore » 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.« less

  15. Refining inflation using non-canonical scalars

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Sanil; Sahni, Varun; Toporensky, Aleksey

    2012-08-01

    This paper revisits the Inflationary scenario within the framework of scalar field models possessing a non-canonical kinetic term. We obtain closed form solutions for all essential quantities associated with chaotic inflation including slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio, etc. We also examine the Hamilton-Jacobi equation and demonstrate the existence of an inflationary attractor. Our results highlight the fact that non-canonical scalars can significantly improve the viability of inflationary models. They accomplish this by decreasing the tensor-to-scalar ratio while simultaneously increasing the value of the scalar spectral index, thereby redeeming models which are incompatible with the cosmic microwave background (CMB) in their canonical version. For instance, the non-canonical version of the chaotic inflationary potential, V(phi) ~ λphi4, is found to agree with observations for values of λ as large as unity! The exponential potential can also provide a reasonable fit to CMB observations. A central result of this paper is that steep potentials (such as Vproptophi-n) usually associated with dark energy, can drive inflation in the non-canonical setting. Interestingly, non-canonical scalars violate the consistency relation r = -8nT, which emerges as a smoking gun test for this class of models.

  16. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    NASA Astrophysics Data System (ADS)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  17. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    NASA Astrophysics Data System (ADS)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  18. Length oscillation induces force potentiation in infant guinea pig airway smooth muscle.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-12-01

    Deep inspiration counteracts bronchospasm in normal subjects but triggers further bronchoconstriction in hyperresponsive airways. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in force-generating ability of airway smooth muscle after mechanical oscillation. It is known that healthy immature airways of both humans and animals exhibit hyperresponsiveness. We hypothesize that the profile of active force generation after mechanical oscillation changes with maturation and that this change contributes to the expression of airway hyperresponsiveness in juveniles. We examined the effect of an acute sinusoidal length oscillation on the force-generating ability of tracheal smooth muscle from 1 wk, 3 wk, and 2- to 3-mo-old guinea pigs. We found that the length oscillation produced 15-20% initial reduction in active force equally in all age groups. This was followed by a force recovery profile that displayed striking maturation-specific features. Unique to tracheal strips from 1-wk-old animals, active force potentiated beyond the maximal force generated before oscillation. We also found that actin polymerization was required in force recovery and that prostanoids contributed to the maturation-specific force potentiation in immature airway smooth muscle. Our results suggest a potentiated mechanosensitive contractile property of hyperresponsive airway smooth muscle. This can account for further bronchoconstriction triggered by deep inspiration in hyperresponsive airways.

  19. Warm inflationary model in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Ramon

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  20. Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials

    NASA Astrophysics Data System (ADS)

    D'Ancona, Piero

    2015-04-01

    Let H be a selfadjoint operator and A a closed operator on a Hilbert space . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that is -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687-722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on , n ≥ 3.

  1. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  2. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.

  3. Assessing Chaos in Sickle Cell Anemia Crises

    NASA Astrophysics Data System (ADS)

    Harris, Wesley; Le Floch, Francois

    2006-11-01

    Recent developments in sickle cell research and blood flow modeling allow for new interpretations of the sickle cell crises. With an appropriate set of theoretical and empirical equations describing the dynamics of the red cells in their environment, and the response of the capillaries to major changes in the rheology, a complete mathematical system has been derived. This system of equations is believed to be of major importance to provide new and significant insight into the causes of the disease and related crises. With simulations, it has been proven that the system transition from a periodic solution to a chaotic one, which illustrates the onset of crises from a regular blood flow synchronized with the heart beat. Moreover, the analysis of the effects of various physiological parameters exposes the potential to control chaotic solutions, which, in turn, could lead to the creation of new and more effective treatments for sickle cell anemia. .

  4. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    PubMed

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  5. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Hongduo; Li, Ying, E-mail: mnsliy@mail.sysu.edu.cn

    2014-03-15

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However,more » developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.« less

  6. Parallel photonic information processing at gigabyte per second data rates using transient states

    NASA Astrophysics Data System (ADS)

    Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.

  7. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less

  8. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.

  9. Temperature crossover of decoherence rates in chaotic and regular bath dynamics.

    PubMed

    Sanz, A S; Elran, Y; Brumer, P

    2012-03-01

    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.

  10. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  11. Entanglement as a signature of quantum chaos.

    PubMed

    Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi

    2004-01-01

    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.

  12. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  13. Chaotic dynamics and its analysis of Hindmarsh-Rose neurons by Shil’nikov approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zuo, Min

    2015-08-01

    In this paper, the relationship between external current stimulus and chaotic behaviors of a Hindmarsh-Rose (HR) neuron is considered. In order to find out the range of external current stimulus which will produce chaotic behaviors of an HR neuron, the Shil’nikov technique is employed. The Cardano formula is taken to obtain the threshold of the chaotic motion, and series solution to a differential equation is utilized to obtain the homoclinic orbit of HR neurons. This analysis establishes mathematically the value of external current input in generating chaotic motion of HR neurons by the Shil’nikov method. The numerical simulations are performed to support the theoretical results. Project supported by the Beijing Natural Science Foundation, China (Grant No. 4132005), the National Natural Science Foundation of China (Grant No. 61403006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. YETP1449), and the Project of Scientific and Technological Innovation Platform, China (Grant No. PXM2015_014213_000063).

  14. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.

    PubMed

    Xia, H M; Wan, S Y M; Shu, C; Chew, Y T

    2005-07-01

    We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.

  15. Chaotic behaviour of the short-term variations in ozone column observed in Arctic

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo

    2015-09-01

    The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.

  16. Design and Smartphone-Based Implementation of a Chaotic Video Communication Scheme via WAN Remote Transmission

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Li, Chengqing; Lü, Jinhu; Wang, Qianxue

    This paper proposes a chaotic secure video remote communication scheme that can perform on real WAN networks, and implements it on a smartphone hardware platform. First, a joint encryption and compression scheme is designed by embedding a chaotic encryption scheme into the MJPG-Streamer source codes. Then, multiuser smartphone communications between the sender and the receiver are implemented via WAN remote transmission. Finally, the transmitted video data are received with the given IP address and port in an Android smartphone. It should be noted that, this is the first time that chaotic video encryption schemes are implemented on such a hardware platform. The experimental results demonstrate that the technical challenges on hardware implementation of secure video communication are successfully solved, reaching a balance amongst sufficient security level, real-time processing of massive video data, and utilization of available resources in the hardware environment. The proposed scheme can serve as a good application example of chaotic secure communications for smartphone and other mobile facilities in the future.

  17. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  18. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-04-01

    A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

  19. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  20. Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model

    NASA Astrophysics Data System (ADS)

    Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.

    2018-04-01

    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.

  1. Nonlinear dust-lattice waves: a modified Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, N. F.

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  2. A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design

    NASA Astrophysics Data System (ADS)

    Chavarette, Fábio Roberto; Balthazar, José Manoel; Felix, Jorge L. P.; Rafikov, Marat

    2009-05-01

    This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.

  3. Chaotic behavior in Malaysian stock market: A study with recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Niu, Betty Voon Wan; Noorani, Mohd Salmi Md; Jaaman, Saiful Hafizah

    2016-11-01

    The dynamics of stock market has been questioned for decades. Its behavior appeared random yet some found it behaves as chaos. Up to 5000 daily adjusted closing data of FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLSE) was investigated through recurrence plot and recurrence quantification analysis. Results were compared between stochastic system, chaotic system and deterministic system. Results show that KLSE daily adjusted closing data behaves chaotically.

  4. Chaotic Motions in the Real Fuzzy Electronic Circuits

    DTIC Science & Technology

    2012-12-30

    field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be...Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended ...model. The overall fuzzy model of the system is achieved by fuzzy blending of the linear system models. Consider a continuous-time nonlinear dynamic

  5. Cooling of a Magmatic System Under Thermal Chaotic Mixing

    NASA Astrophysics Data System (ADS)

    El Omari, Kamal; Le Guer, Yves; Perugini, Diego; Petrelli, Maurizio

    2015-07-01

    The cooling of a basaltic melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a two-dimensional (2D) cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly modulates the temperature fields over time and greatly increases the cooling rates. This mechanism has implications for the thermal lifetime of the magmatic body and may favor the appearance of chemical heterogeneities in the igneous system as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations, including the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositional zoning observed in many plutons worldwide.

  6. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  7. Extracting harmonic signal from a chaotic background with local linear model

    NASA Astrophysics Data System (ADS)

    Li, Chenlong; Su, Liyun

    2017-02-01

    In this paper, the problems of blind detection and estimation of harmonic signal in strong chaotic background are analyzed, and new methods by using local linear (LL) model are put forward. The LL model has been exhaustively researched and successfully applied for fitting and forecasting chaotic signal in many chaotic fields. We enlarge the modeling capacity substantially. Firstly, we can predict the short-term chaotic signal and obtain the fitting error based on the LL model. Then we detect the frequencies from the fitting error by periodogram, a property on the fitting error is proposed which has not been addressed before, and this property ensures that the detected frequencies are similar to that of harmonic signal. Secondly, we establish a two-layer LL model to estimate the determinate harmonic signal in strong chaotic background. To estimate this simply and effectively, we develop an efficient backfitting algorithm to select and optimize the parameters that are hard to be exhaustively searched for. In the method, based on sensitivity to initial value of chaos motion, the minimum fitting error criterion is used as the objective function to get the estimation of the parameters of the two-layer LL model. Simulation shows that the two-layer LL model and its estimation technique have appreciable flexibility to model the determinate harmonic signal in different chaotic backgrounds (Lorenz, Henon and Mackey-Glass (M-G) equations). Specifically, the harmonic signal can be extracted well with low SNR and the developed background algorithm satisfies the condition of convergence in repeated 3-5 times.

  8. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  9. Simultaneous measurement of mechanical responses and transepithelial potential difference and resistance, in guinea-pig isolated, perfused trachea using a novel apparatus: pharmacological characterization.

    PubMed

    Jing, Yi; Dowdy, Janet A; Van Scott, Michael R; Fedan, Jeffrey S

    2008-11-19

    The isolated, perfused trachea preparation has been used to compare reactivity of the intact airway in response to differential exposure of the mucosal (intraluminal) and serosal (extraluminal) surfaces to contractile and relaxant agonists and other agents, and to gain insight into the modulatory role of the epithelium and the pathways involved. The apparatus has also been configured for simultaneous measurement of transepithelial potential difference and changes in tracheal diameter, thereby providing parallel observations of epithelial and smooth muscle function and reactivity to drugs. The transepithelial potential difference is a product of transepithelial resistance and short circuit current, and the present study describes a novel isolated, perfused tracheal apparatus which allows simultaneous measurement of transepithelial potential difference, transepithelial resistance and mechanical responses of the smooth muscle. The apparatus was validated using well-known ion transport inhibitors [intraluminal amiloride and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB), extraluminal ouabain and bumetanide], bronchoactive agonists (extraluminal methacholine, histamine and terbutaline), and osmolytes (intraluminal d-mannitol and NaCl) to induce epithelium-derived relaxing factor-mediated relaxations. This apparatus will facilitate investigation of interactions between the epithelium and smooth muscle in airways that retain their in situ structure, and signaling mechanisms potentially involved in the regulation of airway smooth muscle tone.

  10. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  11. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    PubMed Central

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  12. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    PubMed

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Double Chaotic Layer Encryption Algorithm for Clinical Signals in Telemedicine.

    PubMed

    Murillo-Escobar, M A; Cardoza-Avendaño, L; López-Gutiérrez, R M; Cruz-Hernández, C

    2017-04-01

    Recently, telemedicine offers medical services remotely via telecommunications systems and physiological monitoring devices. This scheme provides healthcare delivery services between physicians and patients conveniently, since some patients can not attend the hospital due to any reason. However, transmission of information over an insecure channel such as internet or private data storing generates a security problem. Therefore, authentication, confidentiality, and privacy are important challenges in telemedicine, where only authorized users should have access to medical or clinical records. On the other hand, chaotic systems have been implemented efficiently in cryptographic systems to provide confidential and privacy. In this work, we propose a novel symmetric encryption algorithm based on logistic map with double chaotic layer encryption (DCLE) in diffusion process and just one round of confusion-diffusion for the confidentiality and privacy of clinical information such as electrocardiograms (ECG), electroencephalograms (EEG), and blood pressure (BP) for applications in telemedicine. The clinical signals are acquired from PhysioBank data base for encryption proposes and analysis. In contrast with recent schemes in literature, we present a secure cryptographic algorithm based on chaos validated with the most complete security analysis until this time. In addition, the cryptograms are validated with the most complete pseudorandomness tests based on National Institute of Standards and Technology (NIST) 800-22 suite. All results are at MATLAB simulations and all them show the effectiveness, security, robustness, and the potential use of the proposed scheme in telemedicine.

  14. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  16. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  17. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  18. Optical image hiding based on chaotic vibration of deformable moiré grating

    NASA Astrophysics Data System (ADS)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  19. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  20. Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime

    NASA Astrophysics Data System (ADS)

    Löck, Steffen; Bäcker, Arnd; Ketzmerick, Roland; Schlagheck, Peter

    2010-03-01

    We derive a prediction of dynamical tunneling rates from regular to chaotic phase-space regions combining the direct regular-to-chaotic tunneling mechanism in the quantum regime with an improved resonance-assisted tunneling theory in the semiclassical regime. We give a qualitative recipe for identifying the relevance of nonlinear resonances in a given ℏ regime. For systems with one or multiple dominant resonances we find excellent agreement to numerics.

  1. An information hiding method based on LSB and tent chaotic map

    NASA Astrophysics Data System (ADS)

    Song, Jianhua; Ding, Qun

    2011-06-01

    In order to protect information security more effectively, a novel information hiding method based on LSB and Tent chaotic map was proposed, first the secret message is Tent chaotic encrypted, and then LSB steganography is executed for the encrypted message in the cover-image. Compared to the traditional image information hiding method, the simulation results indicate that the method greatly improved in imperceptibility and security, and acquired good results.

  2. Color encryption scheme based on adapted quantum logistic map

    NASA Astrophysics Data System (ADS)

    Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.

    2014-04-01

    This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.

  3. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  4. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    PubMed

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  5. Quantifying chaotic dynamics from integrate-and-fire processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, A. N.; Saratov State Technical University, Politehnicheskaya Str. 77, 410054 Saratov; Pavlova, O. N.

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periodsmore » of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.« less

  6. Compound synchronization of four memristor chaotic oscillator systems and secure communication.

    PubMed

    Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie

    2013-03-01

    In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.

  7. Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media

    NASA Astrophysics Data System (ADS)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2018-01-01

    The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.

  8. Chaotic dynamics of a microswimmer in Poiseuille flow.

    PubMed

    Chacón, Ricardo

    2013-11-01

    The chaotic dynamics of pointlike, spherical particles in cylindrical Poiseuille flow is theoretically characterized and numerically confirmed when their own intrinsic swimming velocity undergoes temporal fluctuations around an average value. Two dimensionless ratios associated with the three significant temporal scales of the problem are identified that fully determine the chaos scenario. In particular, small but finite periodic fluctuations of swimming speed result in chaotic or regular motion depending on the position and orientation of the microswimmer with respect to the flow center line. Remarkably, the spatial extension of chaotic microswimmers is found to depend crucially on the fluctuations' period and amplitude and to be highly sensitive to the Fourier spectrum of the fluctuations. This has implications for the design of artificial microswimmers.

  9. Characterization of stickiness by means of recurrence.

    PubMed

    Zou, Yong; Thiel, Marco; Romano, M Carmen; Kurths, Jürgen

    2007-12-01

    We propose recurrence plots (RPs) to characterize the stickiness of a typical area-preserving map with coexisting chaotic and regular orbits. The difference of the recurrence properties between quasiperiodic and chaotic orbits is revisited, which helps to understand the complex patterns of the corresponding RPs. Moreover, several measures from the recurrence quantification analysis are used to quantify these patterns. Among these measures, the recurrence rate, quantifying the percentage of black points in the plot, is applied to characterize the stickiness of a typical chaotic orbit. The advantage of the recurrence based method in comparison to other standard techniques is that it is possible to distinguish between quasiperiodic and chaotic orbits that are temporarily trapped in a sticky domain, from very short trajectories.

  10. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  11. Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers

    NASA Astrophysics Data System (ADS)

    Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong

    As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.

  12. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  13. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  14. Scattering transform for nonstationary Schroedinger equation with bidimensionally perturbed N-soliton potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2006-12-15

    In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.

  15. Evidence of chaotic pattern in solar flux through a reproducible sequence of period-doubling-type bifurcations

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1991-01-01

    A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.

  16. Evidence of chaotic pattern in solar flux through a reproducible sequence of period-doubling-type bifurcations

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1991-01-01

    Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.

  17. Dynamic Regimes of El Niño Southern Oscillation and Influenza Pandemic Timing

    PubMed Central

    Oluwole, Olusegun Steven Ayodele

    2017-01-01

    El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influenza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 to 2016 were characterized to determine if influenza pandemics are coupled to chaotic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface temperature (SST) were compared. SOI and SST were decomposed to components using the algorithm of noise-assisted multivariate empirical mode decomposition. The components were Hilbert transformed to generate instantaneous amplitudes and phases. The trajectories and attractors of components were characterized in polar coordinates and state space. Influenza pandemics were mapped to dynamic regimes of SOI and SST joint recurrence of annual components. State space geometry of El Niños lagged by influenza pandemics were characterized and compared with other El Niños. Timescales of SOI and SST components ranged from sub-annual to multidecadal. The trajectories of SOI and SST components and the joint recurrence of annual components were dissipative toward chaotic attractors. Periodic, quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, but chaos–chaos transitions dominated. Influenza pandemics occurred during chaotic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged by influenza pandemics had distinct state space geometry (p < 0.0001). Chaotic dynamics explains the aperiodic timing, and varying duration and strength of El Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. Forecasts models from ENSO dynamics should compliment surveillance for novel influenza viruses. PMID:29218303

  18. Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zapfe, W. P. Karel; Merlo, Olivier; Seligman, T. H.

    2010-12-01

    We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.

  19. Making chaotic behavior in a damped linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji

    2001-06-01

    The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.

  20. Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman

    2011-06-01

    This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.

  1. Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Christof; Zapfe, W. P. Karel; Seligman, T. H.

    2010-12-23

    We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.

  2. Chaotic Brillouin optical correlation-domain analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai

    2018-04-01

    We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.

  3. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  4. Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars

    NASA Astrophysics Data System (ADS)

    Roda, Manuel; Marketos, George; Westerweel, Jan; Govers, Rob

    2017-10-01

    Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low-strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.

  5. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    PubMed

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  6. An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian

    2016-01-01

    User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.’s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.’s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance. PMID:27101305

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebogi, C.; Yorke, J.A.

    This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)

  8. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  9. Is the normal heart rate ``chaotic'' due to respiration?

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"

  10. Alteration of chaotic advection in blood flow around partial blockage zone: Role of hematocrit concentration

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman

    2013-01-01

    Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.

  11. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  12. Improvement and empirical research on chaos control by theory of "chaos + chaos = order".

    PubMed

    Fulai, Wang

    2012-12-01

    This paper focuses on advancing the understanding of Parrondian effects and their paradoxical behavior in nonlinear dynamical systems. Some examples are given to show that a dynamics combined by more than two discrete chaotic dynamics in deterministic manners can give rise to order when combined. The chaotic maps in our study are more general than those in the current literatures as far as "chaos + chaos = order" is concerned. Some problems left over in the current literatures are solved. It is proved both theoretically and numerically that, given any m chaotic dynamics generated by the one-dimensional real Mandelbrot maps, it is no possible to get a periodic system when all the m chaotic dynamics are alternated in random manner, but for any integer m(m ≥ 2) a dynamics combined in deterministic manner by m Mandelbrot chaotic dynamics can be found to give rise to a periodic dynamics of m periods. Numerical and mathematical analysis prove that the paradoxical phenomenon of "chaos + chaos = order" also exist in the dynamics generated by non-Mandelbrot maps.

  13. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  14. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  15. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  16. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  17. Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.

    1991-05-01

    Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less

  18. Chaotic examination

    NASA Astrophysics Data System (ADS)

    Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri

    2018-01-01

    In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.

  19. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  20. Computing with Chaos

    NASA Astrophysics Data System (ADS)

    Murali, K.; Sinah, Sudeshna; Ditto, William

    2004-03-01

    Recently there has been a new theoretical direction in harnessing the richness of spatially extended chaotic systems, namely the exploitation of coupled chaotic elements to do flexible computations [1]. The aim of this presentation is to demonstrate the use a single chaotic element to emulate different logic gates and perform different arithmetic tasks. Additionally we demonstrate that the elements can be controlled to switch easily between the different operational roles. Such a computing unit may then allow a more dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired hardware. The theoretical scheme for flexible implementation of all these fundamental logical operations utilizing low dimensional chaos [1] will be reviewed along with a specific realization of the theory in a chaotic circuit [2]. Results will also be presented from experiments done on leech neurons. [1] Sinha, S., Munakata, T. and Ditto, W.L., Phys. Rev. E 65 036216 [2] "Experimental realization of the fundamental NOR Gate using a chaotic circuit," K. Murali, Sudeshna Sinha and William L. Ditto Phys. Rev. E 68, 016205 (2003).

  1. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach

    PubMed Central

    Hashitani, H; Hayase, M; Suzuki, H

    2008-01-01

    Background and purpose: Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. Experimental approach: Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+ transients) were also examined in fura-2-loaded preparations. Key results: Imatinib (1–10 μM) suppressed spontaneous contractions and Ca2+ transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 μM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 μM), imatinib (10 μM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. Conclusions and implications: Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca2+]i in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 μM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca2+ handling. PMID:18414381

  2. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.

  3. Maximizing the security of chaotic optical communications.

    PubMed

    Hou, T T; Yi, L L; Yang, X L; Ke, J X; Hu, Y; Yang, Q; Zhou, P; Hu, W S

    2016-10-03

    The practical application of chaotic optical communications has been limited by two aspects: the difficulty in concealing the time delay - a critical security parameter in feedback chaotic systems, and the difficulty of significantly enlarging the key space without complicating the implementation. Here we propose an architecture to break the above limits. By introducing a frequency-dependent group delay module with frequency tuning resolution of 1 MHz into the chaotic feedback loop, we demonstrate excellent time delay concealment effect, and an additional huge key space of 1048 can be achieved at the same time. The effectiveness is proved by both numerical simulation and experiment. Besides, the proposed scheme is compatible with the existing commercial optical communication systems, thus pave the way for high-speed secure optical communications.

  4. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  5. Desktop chaotic systems: Intuition and visualization

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.

    1993-01-01

    This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.

  6. Transversal homoclinic orbits in a transiently chaotic neural network.

    PubMed

    Chen, Shyan-Shiou; Shih, Chih-Wen

    2002-09-01

    We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.

  7. Structure of chaotic magnetic field lines in IR-T1 tokamak due to ergodic magnetic limiter

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Salar Elahi, A.; Ghorannevis, M.

    2018-03-01

    In this paper we have studied an Ergodic Magnetic Limiter (EML) based chaotic magnetic field for transport control in the edge plasma of IR-T1 tokamak. The resonance created by the EML causes perturbation of the equilibrium field line in tokamak and as a result, the field lines are chaotic in the vicinity of the dimerized island chains. Transport barriers are formed in the chaotic field line and actually observe in tokamak with reverse magnetic shear. We used area-preserving non-twist (and twist) Poincaré maps to describe the formation of transport barriers, which are actually features of Hamiltonian systems. This transport barrier is useful in reducing radial diffusion of the field line and thus improving the plasma confinement.

  8. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  9. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    NASA Astrophysics Data System (ADS)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  10. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  11. Competitions hatch butterfly attractors in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Jin, Yu Ying

    2005-03-01

    Chaos in foreign exchange markets is a common issue of concern in the study of economic dynamics. In this work, we mainly investigate the competition effect on chaos in foreign exchange markets. As one of the main economic structures in the globalization process, competition between two target exchange rates with the same base currency forms a simple competitive exchange rate relation, where each exchange rate follows the chaotic model of De Grauwe (Exchange Rate Theory-Chaotic Models of Foreign Exchange Markets, Blackwell, Oxford, Cambridge, MA, 1993). The main discovery is, while each exchange rate is in its non-chaotic parameter regions, the effect of competition will “hatch” butterfly-like chaotic attractors in the competitive market. The positive Lyapunov exponent in the market explains the reason why chaos occurs.

  12. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  13. RealityFlythrough: Enhancing Situational Awareness for Medical Response to Disasters Using Ubiquitous Video

    PubMed Central

    McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.

    2005-01-01

    The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092

  14. A Generalized 2D-Dynamical Mean-Field Ising Model with a Rich Set of Bifurcations (Inspired and Applied to Financial Crises)

    NASA Astrophysics Data System (ADS)

    Smug, Damian; Sornette, Didier; Ashwin, Peter

    We analyze an extended version of the dynamical mean-field Ising model. Instead of classical physical representation of spins and external magnetic field, the model describes traders' opinion dynamics. The external field is endogenized to represent a smoothed moving average of the past state variable. This model captures in a simple set-up the interplay between instantaneous social imitation and past trends in social coordinations. We show the existence of a rich set of bifurcations as a function of the two parameters quantifying the relative importance of instantaneous versus past social opinions on the formation of the next value of the state variable. Moreover, we present a thorough analysis of chaotic behavior, which is exhibited in certain parameter regimes. Finally, we examine several transitions through bifurcation curves and study how they could be understood as specific market scenarios. We find that the amplitude of the corrections needed to recover from a crisis and to push the system back to “normal” is often significantly larger than the strength of the causes that led to the crisis itself.

  15. Asteroid taxonomy and the distribution of the compositional types

    NASA Technical Reports Server (NTRS)

    Zellner, B.

    1979-01-01

    Physical observations of minor planets documented in the TRIAD computer file are used to classify 752 objects into the broad compositional types C, S, M, E, R, and U (unclassifiable) according to the prescriptions adopted by Bowell et al. (1978). Diameters are computed from the photometric magnitude using radiometric and/or polarimetric data where available, or else from albedos characteristic of the indicated type. An analysis of the observational selection effects leads to tabulation of the actual number of asteroids, as a function of type and diameter, in each of 15 orbital element zones. For the whole main belt the population is 75% of type C, 15% of type S, and 10% of other types, with no belt-wide dependence of the mixing ratios on diameter. In some zones the logarithmic diameter-frequency relations are decidedly nonlinear. The relative frequency of S-type objects decreases smoothly outward through the main belt, with exponential scale length 0.5 AU. The rarer types show a more chaotic, but generally flatter, distribution over distance. Characteristic type distributions, contrasting with the background population, are found for the Eos, Koronis, Nysa and Themis families.

  16. Salvaging catastrophe in transcatheter aortic valve implantation: rehearsal, preassigned roles, and emergency preparedness.

    PubMed

    Tam, Derrick Y; Jones, Philip M; Kiaii, Bob; Diamantouros, Pantelis; Teefy, Patrick; Bainbridge, Daniel; Cleland, Andrew; Fernandes, Philip; Chu, Michael W A

    2015-08-01

    Emergency rescue plans for acute complications during transcatheter aortic valve implantation (TAVI) commonly include cardiopulmonary resuscitation, femoro-femoral cardiopulmonary bypass (CPB), and hemodynamic stabilization before definitive intervention is achieved. Nevertheless, most cases of emergency resuscitation remain chaotic and disorganized and often take longer than necessary, even in experienced centres. We sought to determine which factors and procedures may be associated with improved patient outcomes when emergencies arise during TAVI. MEDLINE(®) and EMBASE™ were searched with the following key words: "TAVI" or "TAVR" or "transcatheter valve implantation" or "transcatheter valve replacement" and "emergency cardiac surgery" or "conversion". Two hundred seventeen articles met the criteria and were reviewed. Utilization of a formal emergency checklist by a multidisciplinary TAVI team may reduce procedural errors, smooth the transition to CPB, and ultimately speed the delivery of corrective measures including emergency cardiac surgery. A well-organized regularly-rehearsed emergency rescue plan that preassigns resuscitative roles may shorten the duration of patient instability and resuscitation and improve patient outcomes when catastrophe occurs in TAVI. The anesthesia team plays a central role in preventing, detecting, and treating intraprocedural complications during TAVI.

  17. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  18. Mixing by Unstirring: Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection

    NASA Astrophysics Data System (ADS)

    Weijs, Joost H.; Bartolo, Denis

    2017-07-01

    We show how to achieve both fast and hyperuniform dispersions of particles in viscous fluids. To do so, we first extend the concept of critical random organization to chaotic drives. We show how palindromic sequences of chaotic advection cause microscopic particles to effectively interact at long range, thereby inhibiting critical self-organization. Based on this understanding we go around this limitation and design sequences of stirring and unstirring which simultaneously optimize the speed of particle spreading and the homogeneity of the resulting dispersions.

  19. A note on chaotic unimodal maps and applications.

    PubMed

    Zhou, C T; He, X T; Yu, M Y; Chew, L Y; Wang, X G

    2006-09-01

    Based on the word-lift technique of symbolic dynamics of one-dimensional unimodal maps, we investigate the relation between chaotic kneading sequences and linear maximum-length shift-register sequences. Theoretical and numerical evidence that the set of the maximum-length shift-register sequences is a subset of the set of the universal sequence of one-dimensional chaotic unimodal maps is given. By stabilizing unstable periodic orbits on superstable periodic orbits, we also develop techniques to control the generation of long binary sequences.

  20. Dynamic Long-Term Anticipation of Chaotic States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Henning U.

    2001-07-02

    Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.

  1. Transient statistics in stabilizing periodic orbits

    NASA Astrophysics Data System (ADS)

    Meucci, R.; Gadomski, W.; Ciofini, M.; Arecchi, F. T.

    1995-11-01

    The statistics of chaotic and periodic transient time intervals preceding the stabilization of a given periodic orbit have been experimentally studied in a CO2 laser with modulated losses, subjected to a small subharmonic perturbation. As predicted by the theory, an exponential tail has been found in the probability distribution of chaotic transients. Furthermore, a fine periodic structure in the distributions of the periodic transients, resulting from the interaction of the control signal and the local structure of the chaotic attractor, has been revealed.

  2. Recent developments in chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, E.

    1994-02-01

    Before the relatively recent wide acceptance of the existence of chaotic dynamics, many physicists and engineers were under the impression that simple systems could necessarily only display simple solutions. This feeling had been unintentionally reinforced by conventional college courses which emphasize linear dynamics (partly because that is the only case with nice general solutions). More recently, physical experiments and numerical examples have abundantly demonstrated how wrong this feeling is. A brief review of chaotic dynamics is presented. Topics discussed include basic concepts, recent developments, and applications.

  3. Firefly algorithm with chaos

    NASA Astrophysics Data System (ADS)

    Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.

    2013-01-01

    A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.

  4. Transition of chaotic motion to a limit cycle by intervention of economic policy: an empirical analysis in agriculture.

    PubMed

    Sakai, Kenshi; Managi, Shunsuke; Vitanov, Nikolay K; Demura, Katsuhiko

    2007-04-01

    This paper investigates the transition of dynamics observed in an actual real agricultural economic dataset. Lyapunov spectrum analysis is conducted on the data to distinguish deterministic chaos and the limit cycle. Chaotic and periodic oscillation were identified before and after the second oil crisis, respectively. The statitonarity of the time series is investigated using recurrence plots. This shows that government intervention might reduce market instability by removing a chaotic market's long-term unpredictability.

  5. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos

    2017-01-01

    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  6. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  7. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  8. Experimental Control of a Fast Chaotic Time-Delay Opto-Electronic Device

    DTIC Science & Technology

    2003-01-01

    chaotic sources such as the erbium-doped Þber laser. The basic idea is to use the message as a driving signal for the chaotic system. The message...47 x 3.10 Block diagram of feedback loop. Light from the interferometer is con- verted into an electrical signal by the photodiode (PD). All...a time delay of τD. Finally, the electrical signal is converted back into light by the laser diode (LD). . . . . . . . . . . . . . . . . 48 3.11 Setup

  9. Stability analysis of piecewise non-linear systems and its application to chaotic synchronisation with intermittent control

    NASA Astrophysics Data System (ADS)

    Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min

    2017-10-01

    This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.

  10. Pseudo-Random Number Generator Based on Coupled Map Lattices

    NASA Astrophysics Data System (ADS)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  11. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  12. Randomly chosen chaotic maps can give rise to nearly ordered behavior

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł; Islam, Md. Shafiqul

    2005-10-01

    Parrondo’s paradox [J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85 (2000), 5226-5229] (see also [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72]) states that two losing gambling games when combined one after the other (either deterministically or randomly) can result in a winning game: that is, a losing game followed by a losing game = a winning game. Inspired by this paradox, a recent study [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] asked an analogous question in discrete time dynamical system: can two chaotic systems give rise to order, namely can they be combined into another dynamical system which does not behave chaotically? Numerical evidence is provided in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] that two chaotic quadratic maps, when composed with each other, create a new dynamical system which has a stable period orbit. The question of what happens in the case of random composition of maps is posed in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] but left unanswered. In this note we present an example of a dynamical system where, at each iteration, a map is chosen in a probabilistic manner from a collection of chaotic maps. The resulting random map is proved to have an infinite absolutely continuous invariant measure (acim) with spikes at two points. From this we show that the dynamics behaves in a nearly ordered manner. When the foregoing maps are applied one after the other, deterministically as in [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72], the resulting composed map has a periodic orbit which is stable.

  13. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  14. Single particle and collective behavior of electrons in a diamagnetic Kepler trap

    NASA Astrophysics Data System (ADS)

    Godino, Joseph L.

    2001-10-01

    The Diamagnetic Kepler Trap (DKT) is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. Our goal is to study the single particle and collective behavior of electrons in a DKT. We have three principal reasons for doing so. First, trajectories of a single electron in a DKT can exhibit chaotic motion. The transition from regular to chaotic motion is theoretically interesting and we want to understand how this occurs. Second, we want to understand the behavior of a system of electrons in a laboratory realization of a DKT. In this situation, we have a many particle system of electrons and ions that move under the influence of external potentials in a neutral background gas. Under these conditions, trapped electrons exhibit collective modes of oscillation. Finally, by understanding the behavior of the trapped electrons we believe that we may be able to develop the DKT into an ion beam source. Due to the complexity of the DKT, we break our investigation into three parts. First, we conduct a theoretical and computational study of the motion of a single electron in a DKT. To enhance our understanding, we develop a simple model of the DKT that retains the significant properties of the exact system while permitting us to go further with our theoretical analysis. We develop a solution to the model equations of motion, which provide us with additional insight into the behavior of trajectories near the chaotic transition. Second, we characterize the behavior of trapped electrons in our experimental DKT. We present a set of measurements showing the collective oscillations. In addition, when we operate the DKT at magnetic fields greater than 100 gauss, we observe a columnar plasma beam emerging from the trap that we also characterize. Finally, we simulate the dynamics of the electrons and ions in a DKT. Here we include their interactions with the neutral background gas, boundary effects and space charge. We use the information obtained from our simulations to enhance our knowledge of the electrons in the experimental system.

  15. (2R,3S,2”R,3”R)-manniflavanone, a new gastrointestinal smooth muscle L-type calcium channel inhibitor, which underlies the spasmolytic properties of Garcinia buchananii stem bark extract

    PubMed Central

    Balemba, Onesmo B.; Stark, Timo D.; Lösch, Sofie; Patterson, Savannah; McMillan, John S.; Mawe, Gary M.; Hofmann, Thomas

    2014-01-01

    Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca2+) imaging was used to analyze the effect of GBB on Ca2+ flashes and Ca2+ waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1–5 and M7, and (2R,3S,2”R,3”R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2”R,3”R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2”R,3”R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca2+ flashes and Ca2+ waves. GBB, M3 and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials. L-type Ca2+ channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2”R,3”R)-manniflavanone. GBB and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3S,2”R,3”R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2”R,3”R)-manniflavanone relax smooth muscle by inhibiting L-type Ca2+ channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias. PMID:26081368

  16. Antiphase synchronization in coupled chaotic oscillators.

    PubMed

    Liu, Weiqing; Xiao, Jinghua; Qian, Xiaolan; Yang, Junzhong

    2006-05-01

    Anti-phase synchronization (AS) in coupled chaotic oscillators is investigated. The necessary condition for AS is given and the stability of AS is studied. Results are demonstrated with numerical simulations and electronic circuits.

  17. Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers

    DTIC Science & Technology

    1988-10-27

    sideband. The total vector potential is then, A (z,t) = (1) •w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c’-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase... light c, ignoring the small correction of order w 2/W 2 from the dielectric contribution of the beam. Electrostatic contributions to the fields are...mass to me and the vector potentials according to ai=IeIAi/mec2 the dimensionless Hamiltonian describing the electron motion in the fields of Eq. (1

  18. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao

    2013-04-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.

  19. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  20. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  1. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    NASA Astrophysics Data System (ADS)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  2. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    PubMed

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  3. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  4. Chaotic Mixing in Magmatic Systems: a new experiment

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Perugini, D.; Dingwell, D. B.; Poli, G.; Ertel-Ingrisch, W.; Hess, K.

    2007-12-01

    Previous studies on magma mixing systems have evidenced that mixing processes could be controlled by chaotic dynamics. These processes are thought to be the source of fractal structures propagating within natural magmatic systems, from meter to the micrometer length scale (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). We have developed a device for experimental studies of chaotic mixing dynamics in silicate melts at high temperatures (up to 1700°C). This device has been inspired by the journal bearing or eccentric cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). This geometry is thought to be an ideal system for chaotic studies because a) it is experimentally accessible/feasible for silicate rheologies and b) it is subject to an analytical solution for the stream function. In the journal bearing system the flow region, is confined in the torus between the centers of the two cylinders. Their central axes are parallel but not coincident, i. e. the cylinders are eccentric. In order to generate chaos in a flow, the streamlines must be time dependent, resulting in alternating movements between the two cylinders. This means that at least one of the cylinders has alternating rotation directions. The dimension of this new experimental device follows the required main dimensionless numbers for a chaotic flow. Our first experimental goal is to characterize the mixing process in a prototypical system (haplogranite-haplobasalt)under variable mixing protocols. muenchen.de/

  5. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    PubMed Central

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  6. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    NASA Astrophysics Data System (ADS)

    Jia, Bing

    2014-03-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.

  7. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-07-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.

  8. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  9. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  10. Hypothesis on the Origin of Chaotic Pulse Train in Dart Leader

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Qie, X.; Sun, Z.; Jiang, R.; Liu, M.; Zhang, H.

    2017-12-01

    The origin of chaotic pulse train (CPT) during the dart leader propagation remains debatable. Based on previous observations, the `chaotic' dart leader is featured by chaotic electric fields, large charge transfer and high energetic radiation. In some cases, the cause of CPT was attributed to the concurrent branches or upward connecting leader. In this presentation, after carefully examining the simultaneous optical, electrical and VHF location data of triggered lightning in SHATLE and some results in other literature, we found the close relationship between the upper luminous leader segment and CPT. It is hypothesized that the CPT originates from the luminous corona zone around the upper leader channel beyond the leader tip. The fast, sufficient supply of negative charge from the cloud can result in a net negative charge layer around the ionized channel surface. Then new diffuse discharge can make a corona zone outside the channel and radiates in a chaotic way. The cloud charge reservoir and the speed of charge transfer, which can be indicated by the speed of the leader, are determinative to the generation of CPT. Using VHF location technique, we also estimated the speed evolution of the leader and link it with electric field change.

  11. Extreme multistability analysis of memristor-based chaotic system and its application in image decryption

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan

    2017-12-01

    An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.

  12. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  13. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  14. Chaotic gas turbine subject to augmented Lorenz equations.

    PubMed

    Cho, Kenichiro; Miyano, Takaya; Toriyama, Toshiyuki

    2012-09-01

    Inspired by the chaotic waterwheel invented by Malkus and Howard about 40 years ago, we have developed a gas turbine that randomly switches the sense of rotation between clockwise and counterclockwise. The nondimensionalized expressions for the equations of motion of our turbine are represented as a starlike network of many Lorenz subsystems sharing the angular velocity of the turbine rotor as the central node, referred to as augmented Lorenz equations. We show qualitative similarities between the statistical properties of the angular velocity of the turbine rotor and the velocity field of large-scale wind in turbulent Rayleigh-Bénard convection reported by Sreenivasan et al. [Phys. Rev. E 65, 056306 (2002)]. Our equations of motion achieve the random reversal of the turbine rotor through the stochastic resonance of the angular velocity in a double-well potential and the force applied by rapidly oscillating fields. These results suggest that the augmented Lorenz model is applicable as a dynamical model for the random reversal of turbulent large-scale wind through cessation.

  15. Inertial focusing and passive micro-mixing techniques for rare cells capturing microfluidic platform

    NASA Astrophysics Data System (ADS)

    Phadke, Manisha; Shaner, Sebastian; Shah, Shreyas; Rodriguez, Ygnacio; Wibowo, Denni; Whulanza, Yudan; Teriete, Peter; Allen, Jeff; Kassegne, Sam

    2018-02-01

    Isolation and capture of rare cells continues to be a daunting task that is still looking for an innovative and efficient method. While a variety of approaches have been suggested over the past several years, immunocapturing in a microfluidic platform carries a substantial promise as shown by recent published works. In this paper, we introduced a combination of inertial focusing and passive micro-mixing through 3D chevron-type features in a microchannel to induce chaotic mixing within antibody-coated microchannels and, ultimately, promote rare cell capture. The device introduced in this work contains curved microchannels that consist of a series of staggered chevron grooves. The curved channels enable inertial focusing while the chevron grooves allow for chaotic mixing. The microfluidics platform microfabricated through soft lithography has a polydimethylsiloxane (PDMS) foundation and was thinly coated with an alginate hydrogel derivatized with streptavidin. We submitted that our qualitative and quantitative results demonstrated the potentials in advancements in rare cell isolation through this integration of two techniques.

  16. A new gravitational N-body simulation algorithm for investigation of cosmological chaotic advection

    NASA Astrophysics Data System (ADS)

    Stalder, Diego H.; Rosa, Reinaldo R.; da Silva Junior, José R.; Clua, Esteban; Ruiz, Renata S. R.; Velho, Haroldo F. Campos; Ramos, Fernando M.; Araújo, Amarísio Da S.; Conrado, Vitor G.

    2012-10-01

    Recently alternative approaches in cosmology seeks to explain the nature of dark matter as a direct result of the non-linear spacetime curvature due to different types of deformation potentials. In this context, a key test for this hypothesis is to examine the effects of deformation on the evolution of large scales structures. An important requirement for the fine analysis of this pure gravitational signature (without dark matter elements) is to characterize the position of a galaxy during its trajectory to the gravitational collapse of super clusters at low redshifts. In this context, each element in an gravitational N-body simulation behaves as a tracer of collapse governed by the process known as chaotic advection (or lagrangian turbulence). In order to develop a detailed study of this new approach we develop the COsmic LAgrangian TUrbulence Simulator (COLATUS) to perform gravitational N-body simulations based on Compute Unified Device Architecture (CUDA) for graphics processing units (GPUs). In this paper we report the first robust results obtained from COLATUS.

  17. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.

  18. Runoff potentiality of a watershed through SCS and functional data analysis technique.

    PubMed

    Adham, M I; Shirazi, S M; Othman, F; Rahman, S; Yusop, Z; Ismail, Z

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.

  19. Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique

    PubMed Central

    Adham, M. I.; Shirazi, S. M.; Othman, F.; Rahman, S.; Yusop, Z.; Ismail, Z.

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling. PMID:25152911

  20. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  1. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  2. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  3. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  4. Improved numerical solutions for chaotic-cancer-model

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair

    2017-01-01

    In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.

  5. Chaotic itinerancy in the oscillator neural network without Lyapunov functions.

    PubMed

    Uchiyama, Satoki; Fujisaka, Hirokazu

    2004-09-01

    Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions. Copyright 2004 American Institute of Physics

  6. Chaotic advection in a 2-D mixed convection flow

    NASA Astrophysics Data System (ADS)

    Tangborn, Andrew V.; Silevitch, Daniel M.; Howes, Tony

    1995-06-01

    Two-dimensional numerical simulations of particle advection in a channel flow with spatially periodic heating have been carried out. The velocity field is found to be periodic above a critical Rayleigh number of around 18 000 and a Reynolds number of 10. Particle motion becomes chaotic in the lower half plane almost immediately after this critical value is surpassed, as characterized by the power spectral density and Poincaré section of the flow. As the Rayleigh number is increased further, particle motion in the entire domain becomes chaotic.

  7. Chaotic terrain of Mars - A tectonic interpretation from Mariner 6 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.; Harp, E. L.; Picard, M. D.; Ward, S. H.

    1973-01-01

    Sharp et al. (1971) define chaotic terrain as an irregular jumble of topographic forms covering a certain area within Pyrrhae Regio and adjacent regions centered at about 10 deg S., 35 deg W. This area is covered by Mariner 6 television imagery. An analysis of fracture patterns in the Martian surface from high-resolution Mariner 6 imagery suggests that the lineaments observed in both the chaotic terrain and the cratered plateau areas in Pyrrhae Regio are tectonic fractures resulting from stresses within the Martian crust.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.

    We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.

  9. In Six-month-old Infants, Prenatal Exposure to Maternal Anxiety is Associated with Less Developed Smooth Pursuit Eye Movements: An Initial Study.

    PubMed

    Pellegrino, Laurel; Ross, Randal G; Hunter, Sharon K

    2013-01-01

    There are an increasing number of reports suggesting an association between maternal anxiety experienced during pregnancy and adverse outcomes of the offspring. However, exploration of the biological changes in the brain that mediate that relationship has been hampered by the lack of appropriate biomarkers. This report represents an initial step exploring whether a potential infant biomarker, smooth pursuit eye movements, may be associated with prenatal exposure to maternal anxiety. Blinded cross-sectional study. Department of Psychiatry, University of Colorado School of Medicine. Data collected from July 2011 to May 2012. Forty-three infants including 34 whose prenatal maternal anxiety status was identified (12 with a known maternal prenatal anxiety diagnosis and 22 without) had eye movements recorded during a smooth pursuit eye movement task at four and/or six months of age. At 6 months of age, infants with prenatal exposure to maternal anxiety, compared to infants without such exposure, spent a higher percentage of time utilizing smooth pursuit (t=2.7, df=24, P =.013), had longer duration of smooth pursuit uninterrupted by saccades (t=2.5, df=24, P =.019), and had decreased frequency of forward saccades (t=3.8, df=24, P =.001). No differences between groups were identified at 4 months of age. Smooth pursuit abnormalities may, at six months of age, be a potential biomarker for prenatal maternal anxiety exposure.

  10. ASTEROIDS: Living in the Kingdom of Chaos

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.

    2000-10-01

    The existence of chaotic regions in the main asteroid belt, related with the lowest-order mean-motion and secular resonances, has long been known. However, only in the last decade have semi-analytic theories allowed a proper understanding of the chaotic behavior observed in numerical simulations which accurately incorporate the entire planetary system. The most spectacular result has been the discovery that the asteroids in some of these resonance may collide with the Sun on typical time scales of a few million year, their eccentricities being pumped to unity during their chaotic evolution. But the asteroid belt is not simply divided into violent chaotic zones and regular regions. It has been shown that the belt is criss-crossed by a large number of high-order mean-motion resonances with Jupiter or Mars, as well as by `three-body resonances' with Jupiter and Saturn. All these weak resonances cause the slow chaotic drift of the `proper' eccentricities and inclinations. The traces left by this evolution are visible, for example, in the structure of the Eos and Themis asteroid families. Weak chaos may also explain the anomalous dispersion of the eccentricities and inclinations observed in the Flora ``clan." Moreover, due to slow increases in their eccentricities, many asteroids start to cross the orbit of Mars, over a wide range of semimajor axes. The improved knowledge of the asteroid belt's chaotic structure provides, for the first time, an opportunity to build detailed quantitative models of the origin and the orbital distribution of Near-Earth Asteroids and meteorites. In turn, these models seem to imply that the semimajor axes of main-belt asteroids must also slowly evolve with time. For asteroids larger than about 20 km this is due mainly to encounters with Ceres, Pallas, and Vesta, while for smaller bodies the so-called Yarkovsky effect should dominate. Everything moves chaotically in the asteroid belt.

  11. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley

    2017-08-01

    At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.

  12. Chaotic trajectories in the standard map. The concept of anti-integrability

    NASA Astrophysics Data System (ADS)

    Aubry, Serge; Abramovici, Gilles

    1990-07-01

    A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).

  13. The Influence of Road Bumps Characteristics on the Chaotic Vibration of a Nonlinear Full-Vehicle Model with Driver

    NASA Astrophysics Data System (ADS)

    Fakhraei, J.; Khanlo, H. M.; Ghayour, M.; Faramarzi, Kh.

    In this paper, the chaotic behavior of a ground vehicle system with driver subjected to road disturbances is studied and the relationship between the nonlinear vibration of the vehicle and ride comfort is evaluated. The vehicle system is modeled as fully nonlinear with seven degrees of freedom and an additional degree of freedom for driver (8-DOF). The excitation force is the road irregularities that are assumed as road speed control bumps. The sinusoidal, consecutive half-sine and dented-rectangular waveforms are considered to simulate the road speed control bumps. The nonlinearities of the system are due to the nonlinear springs and dampers that are used in the suspension system and tires. The governing differential equations are extracted under Newton-Euler laws and solved via numerical methods. The chaotic behaviors were studied in more detail with special techniques such as bifurcation diagrams, phase plane portrait, Poincaré map and Lyapunov exponents. The ride comfort was evaluated as the RMS value of the vertical displacement of the vehicle body and driver. Firstly, the effect of amplitude (height) and frequency (vehicle’s speed) of these speed control bumps on chaotic vibrations of vehicle are studied. The obtained results show that various forms of vibrations, such as periodic, subharmonic and chaotic vibrations, can be detected in the system behavior with the change of the height and frequency of speed control bumps and present different types of strange attractors in the vehicle with and without driver. Then, the influence of nonlinear vibration on ride comfort and the relationship between chaotic vibrations of the vehicle and driving comfort are investigated. The results of analyzing the RMS diagrams reveal that the chaotic behaviors can directly affect the driving comfort and lead to the driver’s comfort being reduced. The obtained results can be used in the design of vehicle and road bumps pavement.

  14. Authenticity and privacy of a team of mini-UAVs by means of nonlinear recursive shuffling

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Ming-Kai; Baier, Patrick; Lee, Ting N.; Buss, James R.; Madan, Rabinder N.

    2006-04-01

    We have developed a real-time EOIR video counter-jittering sub-pixel image correction algorithm for a single mini- Unmanned Air Vehicle (m-UAV) for surveillance and communication (Szu et al. SPIE Proc. V 5439 5439, pp.183-197, April 12, 2004). In this paper, we wish to plan and execute the next challenge---- a team of m-UAVs. The minimum unit for a robust chain saw communication must have the connectivity of five second-nearest-neighbor members with a sliding, arbitrary center. The team members require an authenticity check (AC) among a unit of five, in order to carry out a jittering mosaic image processing (JMIP) on-board for every m-UAV without gimbals. The JMIP does not use any NSA security protocol ("cardinal rule: no-man, no-NSA codec"). Besides team flight dynamics (Szu et al "Nanotech applied to aerospace and aeronautics: swarming,' AIAA 2005-6933 Sept 26-29 2005), several new modules: AOA, AAM, DSK, AC, FPGA are designed, and the JMIP must develop their own control, command and communication system, safeguarded by the authenticity and privacy checks presented in this paper. We propose a Nonlinear Invertible (deck of card) Shuffler (NIS) algorithm, which has a Feistel structure similar to the Data Encryption Standard (DES) developed by Feistel et. al. at IBM in the 1970's; but DES is modified here by a set of chaotic dynamical shuffler Key (DSK), as re-computable lookup tables generated by every on-board Chaotic Neural Network (CNN). The initializations of CNN are periodically provided by the private version of RSA from the ground control to team members to avoid any inadvertent failure of broken chain among m-UAVs. Efficient utilization of communication bandwidth is necessary for a constantly moving and jittering m-UAV platform, e.g. the wireless LAN protocol wastes the bandwidth due to a constant need of hand-shaking procedures (as demonstrated by NRL; though sensible for PCs and 3 rd gen. mobile phones). Thus, the chaotic DSK must be embedded in a fault-tolerant Neural Network Associative Memory for the error-resilientconcealment mosaic image chip re-sent. However, the RSA public and private keys, chaos typing and initial value are given on set or sent to each m-UAV so that each platform knows only its private key. AC among 5 team members are possible using a reverse RSA protocol. A hashed image chip is coded by the sender's private key and nobody else knows in order to send to it to neighbors and the receiver can check the content by using the senders public key and compared the decrypted result with on-board image chips. We discover a fundamental problem of digital chaos approach in a finite state machine, of which a fallacy test of a discrete version is needed for a finite number of bits, as James Yorke advocated early. Thus, our proposed chaotic NIS for bits stream protection becomes desirable to further mixing the digital CNN outputs. The fault tolerance and the parallelism of Artificial Neural Network Associative Memory are necessary attributes for the neighborhood smoothness image restoration. The associated computational cost of O(N2) deems to be worthy, because the Chaotic version CNN of N-D can further provide the privacy only for the lost image chip (N=8x8) re-sent requested by its neighbors and the result is better performed than a simple 1-D logistic map. We gave a preliminary design of low end of FPGA firmware that to compute all on board seemed to be possible.

  15. The Chaotic Terrains of Mercury: A History of Large-Scale Crustal Devolatilization

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A. P.; Domingue, D. L.; Berman, D. C.; Kargel, J. S.; Baker, V. R.; Teodoro, L. F.; Banks, M.; Leonard, G.

    2018-05-01

    Approximately 400 million years after the Caloris basin impact, extensive collapse formed Mercury's chaotic terrains. Collapse likely resulted from regionally elevated heat flow devolatilizing crustal materials along NE and NW extensional faults.

  16. Shunting inhibitory cellular neural networks with chaotic external inputs

    NASA Astrophysics Data System (ADS)

    Akhmet, M. U.; Fen, M. O.

    2013-06-01

    Taking advantage of external inputs, it is shown that shunting inhibitory cellular neural networks behave chaotically. The analysis is based on the Li-Yorke definition of chaos. Appropriate illustrations which support the theoretical results are depicted.

  17. A new class of asymptotically non-chaotic vacuum singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinger, Paul, E-mail: paul.klinger@univie.ac.at

    2015-12-15

    The BKL conjecture, stated in the 1960s and early 1970s by Belinski, Khalatnikov and Lifschitz, proposes a detailed description of the generic asymptotic dynamics of spacetimes as they approach a spacelike singularity. It predicts complicated chaotic behaviour in the generic case, but simpler non-chaotic one in cases with symmetry assumptions or certain kinds of matter fields. Here we construct a new class of four-dimensional vacuum spacetimes containing spacelike singularities which show non-chaotic behaviour. In contrast with previous constructions, no symmetry assumptions are made. Rather, the metric is decomposed in Iwasawa variables and conditions on the asymptotic evolution of some ofmore » them are imposed. The constructed solutions contain five free functions of all space coordinates, two of which are constrained by inequalities. We investigate continuous and discrete isometries and compare the solutions to previous constructions. Finally, we give the asymptotic behaviour of the metric components and curvature.« less

  18. A Simple Snap Oscillator with Coexisting Attractors, Its Time-Delayed Form, Physical Realization, and Communication Designs

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser

    2018-05-01

    In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.

  19. Chaotic reconfigurable ZCMT precoder for OFDM data encryption and PAPR reduction

    NASA Astrophysics Data System (ADS)

    Chen, Han; Yang, Xuelin; Hu, Weisheng

    2017-12-01

    A secure orthogonal frequency division multiplexing (OFDM) transmission scheme precoded by chaotic Zadoff-Chu matrix transform (ZCMT) is proposed and demonstrated. It is proved that the reconfigurable ZCMT matrices after row/column permutations can be applied as an alternative precoder for peak-to-average power ratio (PAPR) reduction. The permutations and the reconfigurable parameters in ZCMT matrix are generated by a hyper digital chaos, in which a huge key space of ∼ 10800 is created for physical-layer OFDM data encryption. An encrypted data transmission of 8.9 Gb/s optical OFDM signals is successfully demonstrated over 20 km standard single-mode fiber (SSMF) for 16-QAM. The BER performance of the encrypted signals is improved by ∼ 2 dB (BER@ 10-3), which is mainly attributed to the effective reduction of PAPR via chaotic ZCMT precoding. Moreover, the chaotic ZCMT precoding scheme requires no sideband information, thus the spectrum efficiency is enhanced during transmission.

  20. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  1. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  2. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  3. Lagrangian coherent structures at the onset of hyperchaos in the two-dimensional Navier-Stokes equations.

    PubMed

    Miranda, Rodrigo A; Rempel, Erico L; Chian, Abraham C-L; Seehafer, Norbert; Toledo, Benjamin A; Muñoz, Pablo R

    2013-09-01

    We study a transition to hyperchaos in the two-dimensional incompressible Navier-Stokes equations with periodic boundary conditions and an external forcing term. Bifurcation diagrams are constructed by varying the Reynolds number, and a transition to hyperchaos (HC) is identified. Before the onset of HC, there is coexistence of two chaotic attractors and a hyperchaotic saddle. After the transition to HC, the two chaotic attractors merge with the hyperchaotic saddle, generating random switching between chaos and hyperchaos, which is responsible for intermittent bursts in the time series of energy and enstrophy. The chaotic mixing properties of the flow are characterized by detecting Lagrangian coherent structures. After the transition to HC, the flow displays complex Lagrangian patterns and an increase in the level of Lagrangian chaoticity during the bursty periods that can be predicted statistically by the hyperchaotic saddle prior to HC transition.

  4. On the efficiency of the image encryption and decryption by using logistic-sine chaotic system and logistic-tent chaotic system

    NASA Astrophysics Data System (ADS)

    Chiun, Lee Chia; Mandangan, Arif; Daud, Muhamad Azlan; Hussin, Che Haziqah Che

    2017-04-01

    We may secure the content of text, audio, image and video during their transmission from one party to another party via an open channel such as the internet by using cryptograph. Logistic-Sine System (LSS) is a combination on two 1D chaotic maps which are Logistic Map and Sine Map. By applying the LSS into cryptography, the image encryption and decryption can be performed. This study is focusing on the performance test of the image encryption and decryption processes by using the LSS. For comparison purpose, we compare the performance of the encryption and decryption by using two different chaotic systems, which are the LSS and Logistic-Tent System (LTS). The result shows that system with LSS is less efficient than LTS in term of encryption time but both systems have similar efficiency in term of decryption time.

  5. Evolution of secondary whirls in thermoconvective vortices: Strengthening, weakening, and disappearance in the route to chaos

    NASA Astrophysics Data System (ADS)

    Castaño, D.; Navarro, M. C.; Herrero, H.

    2016-01-01

    The appearance, evolution, and disappearance of periodic and quasiperiodic dynamics of fluid flows in a cylindrical annulus locally heated from below are analyzed using nonlinear simulations. The results reveal a route of the transition from a steady axisymmetric vertical vortex to a chaotic flow. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasiperiodic, and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario is verified in this convective flow. In the transition to chaos we find the appearance of subvortices embedded in the primary axisymmetric vortex, flows where the subvortical structure strengthens and weakens, that almost disappears before reforming again, leading to a more disorganized flow to a final chaotic regime. Results are remarkable as they connect to observations describing formation, weakening, and virtual disappearance before revival of subvortices in some atmospheric swirls such as dust devils.

  6. Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Euzzor, Stefano; Arecchi, F. Tito; Meucci, Riccardo

    2013-02-01

    The FitzHugh-Nagumo neurons driven by a periodic forcing undergo a period-doubling route to chaos and a transition to mixed-mode oscillations. When coupled, their dynamics tend to be synchronized. We show that the chaotically spiking neurons change their internal dynamics to subthreshold oscillations, the phenomenon referred to as firing death. These dynamical changes are observed below the critical coupling strength at which the transition to full chaotic synchronization occurs. Moreover, we find various dynamical regimes in the subthreshold oscillations, namely, regular, quasiperiodic, and chaotic states. We show numerically that these dynamical states may coexist with large-amplitude spiking regimes and that this coexistence is characterized by riddled basins of attraction. The reported results are obtained for neurons implemented in the electronic circuits as well as for the model equations. Finally, we comment on the possible scenarios where the coupling-induced firing death could play an important role in biological systems.

  7. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Chaos in the sunspot cycle - Analysis and prediction

    NASA Technical Reports Server (NTRS)

    Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.

    1991-01-01

    The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.

  9. Chimeras and clusters in networks of hyperbolic chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Cano, A. V.; Cosenza, M. G.

    2017-03-01

    We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.

  10. Secure multiple access for indoor optical wireless communications with time-slot coding and chaotic phase.

    PubMed

    Liang, Tian; Wang, Ke; Lim, Christina; Wong, Elaine; Song, Tingting; Nirmalathas, Ampalavanapillai

    2017-09-04

    In this paper, we report a novel mechanism to simultaneously provide secure connections for multiple users in indoor optical wireless communication systems by employing the time-slot coding scheme together with chaotic phase sequence. The chaotic phase sequence is generated according to the logistic map and applied to each symbol to secure the transmission. Proof-of-concept experiments are carried out for multiple system capacities based on both 4-QAM and 16-QAM modulation formats, i.e. 1.25 Gb/s, 2 Gb/s and 2.5 Gb/s for 4-QAM, and 2.5 Gb/s, 3.33 Gb/s and 4 Gb/s for 16-QAM. Experimental results show that in all cases the added chaotic phase does not degrade the legitimate user's signal quality while the illegal user cannot detect the signal without the key.

  11. Applying elliptic curve cryptography to a chaotic synchronisation system: neural-network-based approach

    NASA Astrophysics Data System (ADS)

    Hsiao, Feng-Hsiag

    2017-10-01

    In order to obtain double encryption via elliptic curve cryptography (ECC) and chaotic synchronisation, this study presents a design methodology for neural-network (NN)-based secure communications in multiple time-delay chaotic systems. ECC is an asymmetric encryption and its strength is based on the difficulty of solving the elliptic curve discrete logarithm problem which is a much harder problem than factoring integers. Because it is much harder, we can get away with fewer bits to provide the same level of security. To enhance the strength of the cryptosystem, we conduct double encryption that combines chaotic synchronisation with ECC. According to the improved genetic algorithm, a fuzzy controller is synthesised to realise the exponential synchronisation and achieves optimal H∞ performance by minimising the disturbances attenuation level. Finally, a numerical example with simulations is given to demonstrate the effectiveness of the proposed approach.

  12. An investigation of chaotic Kolmogorov flows

    NASA Technical Reports Server (NTRS)

    Platt, N.; Sirovich, L.; Fitzmaurice, N.

    1990-01-01

    A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.

  13. Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eye tracking.

    PubMed

    Hutton, Samuel B; Weekes, Brendan S

    2007-11-01

    The role of the posterior parietal cortex in smooth pursuit eye movements remains unclear. We used low frequency repetitive transcranial magnetic stimulation (rTMS) to study the cognitive and neural systems involved in the control of smooth pursuit eye movements. Eighteen participants were tested on two separate occasions. On each occasion we measured smooth pursuit eye tracking before and after 6 min of 1 Hz rTMS delivered at 90% of motor threshold. Low frequency rTMS over the posterior parietal cortex led to a significant reduction in smooth pursuit velocity gain, whereas rTMS over the motor cortex had no effect on gain. We conclude that low frequency offline rTMS is a potentially useful tool with which to explore the cortical systems involved in oculomotor control.

  14. The Role of Magnetic Helicity in Structuring the Solar Corona

    NASA Technical Reports Server (NTRS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2017-01-01

    Two of the most widely observed and striking features of the Suns magnetic field are coronal loops, which are smooth and laminar, and prominences or filaments, which are strongly sheared. Loops are puzzling because they show little evidence of tangling or braiding, at least on the quiet Sun, despite the chaotic nature of the solar surface convection. Prominences are mysterious because the origin of their underlying magnetic structure filament channels is poorly understood at best. These two types of features would seem to be quite unrelated and wholly distinct. We argue that, on the contrary, they are inextricably linked and result from a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a Parker (1972) corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: (1) in agreement with the helicity condensation model of Antiochos (2013), the inverse cascade of helicity by magnetic reconnection in the corona results in the formation of filament channels localized about polarity inversion lines; (2) this same process removes most complex fine structure from the rest of the corona, resulting in smooth and laminar coronal loops; (3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and (4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.

  15. THE ROLE OF MAGNETIC HELICITY IN STRUCTURING THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    Two of the most widely observed and striking features of the Sun's magnetic field are coronal loops, which are smooth and laminar, and prominences or filaments, which are strongly sheared. Loops are puzzling because they show little evidence of tangling or braiding, at least on the quiet Sun, despite the chaotic nature of the solar surface convection. Prominences are mysterious because the origin of their underlying magnetic structure—filament channels—is poorly understood at best. These two types of features would seem to be quite unrelated and wholly distinct. We argue that, on the contrary, they are inextricably linked and result frommore » a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a Parker (1972) corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: (1) in agreement with the helicity condensation model of Antiochos (2013), the inverse cascade of helicity by magnetic reconnection in the corona results in the formation of filament channels localized about polarity inversion lines; (2) this same process removes most complex fine structure from the rest of the corona, resulting in smooth and laminar coronal loops; (3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and (4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.« less

  16. On Asymptotic Behaviour and W 2, p Regularity of Potentials in Optimal Transportation

    NASA Astrophysics Data System (ADS)

    Liu, Jiakun; Trudinger, Neil S.; Wang, Xu-Jia

    2015-03-01

    In this paper we study local properties of cost and potential functions in optimal transportation. We prove that in a proper normalization process, the cost function is uniformly smooth and converges locally smoothly to a quadratic cost x · y, while the potential function converges to a quadratic function. As applications we obtain the interior W 2, p estimates and sharp C 1, α estimates for the potentials, which satisfy a Monge-Ampère type equation. The W 2, p estimate was previously proved by Caffarelli for the quadratic transport cost and the associated standard Monge-Ampère equation.

  17. Chaotic dynamics and control of deterministic ratchets.

    PubMed

    Family, Fereydoon; Larrondo, H A; Zarlenga, D G; Arizmendi, C M

    2005-11-30

    Deterministic ratchets, in the inertial and also in the overdamped limit, have a very complex dynamics, including chaotic motion. This deterministically induced chaos mimics, to some extent, the role of noise, changing, on the other hand, some of the basic properties of thermal ratchets; for example, inertial ratchets can exhibit multiple reversals in the current direction. The direction depends on the amount of friction and inertia, which makes it especially interesting for technological applications such as biological particle separation. We overview in this work different strategies to control the current of inertial ratchets. The control parameters analysed are the strength and frequency of the periodic external force, the strength of the quenched noise that models a non-perfectly-periodic potential, and the mass of the particles. Control mechanisms are associated with the fractal nature of the basins of attraction of the mean velocity attractors. The control of the overdamped motion of noninteracting particles in a rocking periodic asymmetric potential is also reviewed. The analysis is focused on synchronization of the motion of the particles with the external sinusoidal driving force. Two cases are considered: a perfect lattice without disorder and a lattice with noncorrelated quenched noise. The amplitude of the driving force and the strength of the quenched noise are used as control parameters.

  18. Enkephalinase inhibitor potentiates substance P- and capsaicin-induced bronchial smooth muscle contractions in humans.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Ando, M; Araki, S

    1991-06-01

    To determine the roles of endogenously released tachykinins (substance P, neurokinins A and B) in human bronchial tissues, and to determine the roles of enkephalinase (neutral endopeptidase, E.C. 3.4.24.11) in regulating the effects of the tachykinins, we studied the effects of substance P and capsaicin, which releases tachykinins, on human bronchial smooth muscle contraction in the presence or absence of enkephalinase inhibitor phosphoramidon in vitro. Substance P alone caused human bronchial smooth muscle contraction at 10(-6) M or more. Phosphoramidon (10(-7) to 10(-5) M) potentiated the substance P-induced contraction in a dose-dependent fashion, and phosphoramidon shifted the dose-response curve to lower concentrations. Capsaicin (10(-5) or 10(-4) M) alone caused bronchial smooth muscle contraction in four tissues from nine patients. After the contraction by capsaicin reached a plateau, phosphoramidon (10(-5) M) increased and prolonged the contraction significantly. Furthermore, pretreatment of bronchial tissues with phosphoramidon (10(-5) M) potentiated capsaicin-induced contraction in all tissues from five patients. Phosphoramidon (10(-5) M) shifted the dose-response curve to capsaicin to lower concentrations more than 1 log unit. Captopril did not alter the contractile response to substance P, suggesting that angiotensin-converting enzyme does not regulate the contractile response to substance P in human bronchial smooth muscle in vitro. These results suggest that enkephalinase regulates the contractile effects of exogenous substance P and endogenous substances, probably tachykinins, released by capsaicin in the human bronchus.

  19. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  20. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational techniques and novel prediction methodologies. The value and efficiency of these methods are explored in various case studies. Presented is an overview of chaotic systems with examples taken from the real world. A representation schema for rapid understanding of the various states of deterministically chaotic systems is presented. This schema is then used to detect anomalies and system state changes. Additionally, a novel prediction methodology which utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and compared with other nonlinear prediction methodologies. These novel methodologies are then demonstrated on applications such as wind energy, cyber security and classification of social networks.

Top