ERIC Educational Resources Information Center
Eddy, William F.; Mockus, Audris
1994-01-01
Describes animation algorithms for creating smooth functions of time- and space-varying phenomenon. The incidence of the disease mumps from 1968-88 in the United States is used to demonstrate the algorithms. Figures that illustrate the findings are included. (14 references) (KRN)
Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization
NASA Astrophysics Data System (ADS)
Liu, Chuanming; Yao, Huajian
2017-03-01
Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.
NASA Astrophysics Data System (ADS)
Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc
2011-06-01
This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Penalized spline estimation for functional coefficient regression models.
Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan
2010-04-01
The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.
Preprocessing of SAR interferometric data using anisotropic diffusion filter
NASA Astrophysics Data System (ADS)
Sartor, Kenneth; Allen, Josef De Vaughn; Ganthier, Emile; Tenali, Gnana Bhaskar
2007-04-01
The most commonly used smoothing algorithms for complex data processing are blurring functions (i.e., Hanning, Taylor weighting, Gaussian, etc.). Unfortunately, the filters so designed blur the edges in a Synthetic Aperture Radar (SAR) scene, reduce the accuracy of features, and blur the fringe lines in an interferogram. For the Digital Surface Map (DSM) extraction, the blurring of these fringe lines causes inaccuracies in the height of the unwrapped terrain surface. Our goal here is to perform spatially non-uniform smoothing to overcome the above mentioned disadvantages. This is achieved by using a Complex Anisotropic Non-Linear Diffuser (CANDI) filter that is a spatially varying. In particular, an appropriate choice of the convection function in the CANDI filter is able to accomplish the non-uniform smoothing. This boundary sharpening intra-region smoothing filter acts on interferometric SAR (IFSAR) data with noise to produce an interferogram with significantly reduced noise contents and desirable local smoothing. Results of CANDI filtering will be discussed and compared with those obtained by using the standard filters on simulated data.
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Bayesian estimation of dynamic matching function for U-V analysis in Japan
NASA Astrophysics Data System (ADS)
Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro
2012-05-01
In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.
NASA Technical Reports Server (NTRS)
Stenholm, Stig
1993-01-01
A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E
2018-03-01
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.
NASA Technical Reports Server (NTRS)
Harrington, R. F.; Swift, C. T.; Fedors, J. C.
1980-01-01
Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.
FGWAS: Functional genome wide association analysis.
Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-10-01
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.
Continuous versus discontinuous albedo representations in a simple diffusive climate model
NASA Astrophysics Data System (ADS)
Simmons, P. A.; Griffel, D. H.
1988-07-01
A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.
Perrakis, Konstantinos; Gryparis, Alexandros; Schwartz, Joel; Le Tertre, Alain; Katsouyanni, Klea; Forastiere, Francesco; Stafoggia, Massimo; Samoli, Evangelia
2014-12-10
An important topic when estimating the effect of air pollutants on human health is choosing the best method to control for seasonal patterns and time varying confounders, such as temperature and humidity. Semi-parametric Poisson time-series models include smooth functions of calendar time and weather effects to control for potential confounders. Case-crossover (CC) approaches are considered efficient alternatives that control seasonal confounding by design and allow inclusion of smooth functions of weather confounders through their equivalent Poisson representations. We evaluate both methodological designs with respect to seasonal control and compare spline-based approaches, using natural splines and penalized splines, and two time-stratified CC approaches. For the spline-based methods, we consider fixed degrees of freedom, minimization of the partial autocorrelation function, and general cross-validation as smoothing criteria. Issues of model misspecification with respect to weather confounding are investigated under simulation scenarios, which allow quantifying omitted, misspecified, and irrelevant-variable bias. The simulations are based on fully parametric mechanisms designed to replicate two datasets with different mortality and atmospheric patterns. Overall, minimum partial autocorrelation function approaches provide more stable results for high mortality counts and strong seasonal trends, whereas natural splines with fixed degrees of freedom perform better for low mortality counts and weak seasonal trends followed by the time-season-stratified CC model, which performs equally well in terms of bias but yields higher standard errors. Copyright © 2014 John Wiley & Sons, Ltd.
Learning the dynamics of objects by optimal functional interpolation.
Ahn, Jong-Hoon; Kim, In Young
2012-09-01
Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.
Calcium signaling in smooth muscle.
Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T
2011-09-01
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Colloidal nanocrystals and method of making
Kahen, Keith
2015-10-06
A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
NASA Technical Reports Server (NTRS)
Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John
2007-01-01
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Decraemer, W F; de La Rochefoucauld, O; Dong, W; Khanna, S M; Dirckx, J J J; Olson, E S
2007-05-01
It was shown that the mode of vibration of the stapes has a predominant piston component but rotations producing tilt of the footplate are also present. Tilt and piston components vary with frequency. Separately it was shown that the pressure gain between ear canal and scala vestibuli was a remarkably flat and smooth function of frequency. Is tilt functional contributing to the pressure in the scala vestibuli and helping in smoothing the pressure gain? In experiments on gerbil the pressure in the scala vestibuli directly behind the footplate was measured while recording simultaneously the pressure produced by the sound source in the ear canal. Successively the three-dimensional motion of the stapes was measured in the same animal. Combining the vibration measurements with an anatomical shape measurement from a micro-CT (CT: computed tomography) scan the piston-like motion and the tilt of the footplate was calculated and correlated to the corresponding scala vestibuli pressure curves. No evidence was found for the hypothesis that dips in the piston velocity are filled by peaks in tilt in a systematic way to produce a smooth middle ear pressure gain function. The present data allowed calculations of the individual cochlear input impedances.
Chi, Jen-Tsan; Rodriguez, Edwin H; Wang, Zhen; Nuyten, Dimitry S. A; Mukherjee, Sayan; van de Rijn, Matt; van de Vijver, Marc J.; Hastie, Trevor; Brown, Patrick O
2007-01-01
Smooth muscle is present in a wide variety of anatomical locations, such as blood vessels, various visceral organs, and hair follicles. Contraction of smooth muscle is central to functions as diverse as peristalsis, urination, respiration, and the maintenance of vascular tone. Despite the varied physiological roles of smooth muscle cells (SMCs), we possess only a limited knowledge of the heterogeneity underlying their functional and anatomic specializations. As a step toward understanding the intrinsic differences between SMCs from different anatomical locations, we used DNA microarrays to profile global gene expression patterns in 36 SMC samples from various tissues after propagation under defined conditions in cell culture. Significant variations were found between the cells isolated from blood vessels, bronchi, and visceral organs. Furthermore, pervasive differences were noted within the visceral organ subgroups that appear to reflect the distinct molecular pathways essential for organogenesis as well as those involved in organ-specific contractile and physiological properties. Finally, we sought to understand how this diversity may contribute to SMC-involving pathology. We found that a gene expression signature of the responses of vascular SMCs to serum exposure is associated with a significantly poorer prognosis in human cancers, potentially linking vascular injury response to tumor progression. PMID:17907811
Chi, Jen-Tsan; Rodriguez, Edwin H; Wang, Zhen; Nuyten, Dimitry S A; Mukherjee, Sayan; van de Rijn, Matt; van de Vijver, Marc J; Hastie, Trevor; Brown, Patrick O
2007-09-01
Smooth muscle is present in a wide variety of anatomical locations, such as blood vessels, various visceral organs, and hair follicles. Contraction of smooth muscle is central to functions as diverse as peristalsis, urination, respiration, and the maintenance of vascular tone. Despite the varied physiological roles of smooth muscle cells (SMCs), we possess only a limited knowledge of the heterogeneity underlying their functional and anatomic specializations. As a step toward understanding the intrinsic differences between SMCs from different anatomical locations, we used DNA microarrays to profile global gene expression patterns in 36 SMC samples from various tissues after propagation under defined conditions in cell culture. Significant variations were found between the cells isolated from blood vessels, bronchi, and visceral organs. Furthermore, pervasive differences were noted within the visceral organ subgroups that appear to reflect the distinct molecular pathways essential for organogenesis as well as those involved in organ-specific contractile and physiological properties. Finally, we sought to understand how this diversity may contribute to SMC-involving pathology. We found that a gene expression signature of the responses of vascular SMCs to serum exposure is associated with a significantly poorer prognosis in human cancers, potentially linking vascular injury response to tumor progression.
Kamarianakis, Yiannis; Gao, H Oliver
2010-02-15
Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.
Porcine Stomach Smooth Muscle Force Depends on History-Effects.
Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias
2017-01-01
The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm 2 . Maximum shortening velocity ( V max ) and curvature factor ( curv ) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant ( P < 0.05) FD [up to 32% maximum muscle force ( F im )] and FE (up to 16% F im ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying.
Porcine Stomach Smooth Muscle Force Depends on History-Effects
Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias
2017-01-01
The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying. PMID:29093684
Generalized semiparametric varying-coefficient models for longitudinal data
NASA Astrophysics Data System (ADS)
Qi, Li
In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.
Chen, Renjie; Peng, Roger D.; Meng, Xia; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong
2013-01-01
Epidemiological findings concerning the seasonal variation in the acute effect of particulate matter (PM) are inconsistent. We investigated the seasonality in the association between PM with an aerodynamic diameter of less than 10 μm (PM10) and daily mortality in 17 Chinese cities. We fitted the “main” time-series model after adjustment for time-varying confounders using smooth functions with natural splines. We established a “seasonal” model to obtain the season-specific effect estimates of PM10, and a “harmonic” model to show the seasonal pattern that allows PM10 effects to vary smoothly with the day in a year. At the national level, a 10 μg/m3 increase in the two-day moving average concentrations (lag 01) of PM10 was associated with 0.45% [95% posterior interval (PI), 0.15% to 0.76%], 0.17% (95% PI, −0.09% to 0.43%), 0.55% (95% PI, 0.15% to 0.96%) and 0.25% (95%PI, −0.05% to 0.56%) increases in total mortality for winter, spring, summer and fall, respectively. For the smoothly-varying plots of seasonality, we identified a two-peak pattern in winter and summer. The observed seasonal pattern was generally insensitive to model specifications. Our analyses suggest that the acute effect of particulate air pollution could vary by seasons with the largest effect in winter and summer in China. To our knowledge, this is the first multicity study in developing countries to analyze the seasonal variations of PM-related health effects. PMID:23500824
Towards practical control design using neural computation
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Mattern, Duane; Merrill, Walter
1991-01-01
The objective is to develop neural network based control design techniques which address the issue of performance/control effort tradeoff. Additionally, the control design needs to address the important issue if achieving adequate performance in the presence of actuator nonlinearities such as position and rate limits. These issues are discussed using the example of aircraft flight control. Given a set of pilot input commands, a feedforward net is trained to control the vehicle within the constraints imposed by the actuators. This is achieved by minimizing an objective function which is the sum of the tracking errors, control input rates and control input deflections. A tradeoff between tracking performance and control smoothness is obtained by varying, adaptively, the weights of the objective function. The neurocontroller performance is evaluated in the presence of actuator dynamics using a simulation of the vehicle. Appropriate selection of the different weights in the objective function resulted in the good tracking of the pilot commands and smooth neurocontrol. An extension of the neurocontroller design approach is proposed to enhance its practicality.
Gavino, V C; Milo, G E; Cornwell, D G
1982-03-01
Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.
Inflationary dynamics with a smooth slow-roll to constant-roll era transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odintsov, S.D.; Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com
In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces.more » In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.« less
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Musical sound analysis/synthesis using vector-quantized time-varying spectra
NASA Astrophysics Data System (ADS)
Ehmann, Andreas F.; Beauchamp, James W.
2002-11-01
A fundamental goal of computer music sound synthesis is accurate, yet efficient resynthesis of musical sounds, with the possibility of extending the synthesis into new territories using control of perceptually intuitive parameters. A data clustering technique known as vector quantization (VQ) is used to extract a globally optimum set of representative spectra from phase vocoder analyses of instrument tones. This set of spectra, called a Codebook, is used for sinusoidal additive synthesis or, more efficiently, for wavetable synthesis. Instantaneous spectra are synthesized by first determining the Codebook indices corresponding to the best least-squares matches to the original time-varying spectrum. Spectral index versus time functions are then smoothed, and interpolation is employed to provide smooth transitions between Codebook spectra. Furthermore, spectral frames are pre-flattened and their slope, or tilt, extracted before clustering is applied. This allows spectral tilt, closely related to the perceptual parameter ''brightness,'' to be independently controlled during synthesis. The result is a highly compressed format consisting of the Codebook spectra and time-varying tilt, amplitude, and Codebook index parameters. This technique has been applied to a variety of harmonic musical instrument sounds with the resulting resynthesized tones providing good matches to the originals.
Walking smoothness is associated with self-reported function after accounting for gait speed.
Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S
2013-10-01
Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.
Generalized linear mixed models with varying coefficients for longitudinal data.
Zhang, Daowen
2004-03-01
The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.
Maximum Principle in the Optimal Design of Plates with Stratified Thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roubicek, Tomas
2005-03-15
An optimal design problem for a plate governed by a linear, elliptic equation with bounded thickness varying only in a single prescribed direction and with unilateral isoperimetrical-type constraints is considered. Using Murat-Tartar's homogenization theory for stratified plates and Young-measure relaxation theory, smoothness of the extended cost and constraint functionals is proved, and then the maximum principle necessary for an optimal relaxed design is derived.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
Functional Generalized Structured Component Analysis.
Suk, Hye Won; Hwang, Heungsun
2016-12-01
An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.
An intelligent knowledge mining model for kidney cancer using rough set theory.
Durai, M A Saleem; Acharjya, D P; Kannan, A; Iyengar, N Ch Sriman Narayana
2012-01-01
Medical diagnosis processes vary in the degree to which they attempt to deal with different complicating aspects of diagnosis such as relative importance of symptoms, varied symptom pattern and the relation between diseases themselves. Rough set approach has two major advantages over the other methods. First, it can handle different types of data such as categorical, numerical etc. Secondly, it does not make any assumption like probability distribution function in stochastic modeling or membership grade function in fuzzy set theory. It involves pattern recognition through logical computational rules rather than approximating them through smooth mathematical functional forms. In this paper we use rough set theory as a data mining tool to derive useful patterns and rules for kidney cancer faulty diagnosis. In particular, the historical data of twenty five research hospitals and medical college is used for validation and the results show the practical viability of the proposed approach.
NASA Astrophysics Data System (ADS)
Vargas-Magaña, Mariana; Ho, Shirley; Fromenteau, Sebastien.; Cuesta, Antonio. J.
2017-05-01
The reconstruction algorithm introduced by Eisenstein et al., which is widely used in clustering analysis, is based on the inference of the first-order Lagrangian displacement field from the Gaussian smoothed galaxy density field in redshift space. The smoothing scale applied to the density field affects the inferred displacement field that is used to move the galaxies, and partially erases the non-linear evolution of the density field. In this article, we explore this crucial step in the reconstruction algorithm. We study the performance of the reconstruction technique using two metrics: first, we study the performance using the anisotropic clustering, extending previous studies focused on isotropic clustering; secondly, we study its effect on the displacement field. We find that smoothing has a strong effect in the quadrupole of the correlation function and affects the accuracy and precision with which we can measure DA(z) and H(z). We find that the optimal smoothing scale to use in the reconstruction algorithm applied to Baryonic Oscillations Spectroscopic Survey-Constant (stellar) MASS (CMASS) is between 5 and 10 h-1 Mpc. Varying from the `usual' 15-5 h-1 Mpc shows ˜0.3 per cent variations in DA(z) and ˜0.4 per cent H(z) and uncertainties are also reduced by 40 per cent and 30 per cent, respectively. We also find that the accuracy of velocity field reconstruction depends strongly on the smoothing scale used for the density field. We measure the bias and uncertainties associated with different choices of smoothing length.
Photometric functions for photoclinometry and other applications
McEwen, A.S.
1991-01-01
Least-squared fits to the brightness profiles across a disk or "limb darkening" described by Hapke's photometric function are found for the simpler Minnaert and lunar-Lambert functions. The simpler functions are needed to reduce the number of unknown parameters in photoclinometry, especially to distinguish the brightness variations of the surface materials from that due to the resolved topography. The limb darkening varies with the Hapke parameters for macroscopic roughness (??), the single-scattering albedo (w), and the asymmetry factor of the particle phase function (g). Both of the simpler functions generally provide good matches to the limb darkening described by Hapke's function, but the lunar-Lambert function is superior when viewing angles are high and when (??) is less than 30??. Although a nonunique solution for the Minnaert function at high phase angles has been described for smooth surfaces, the discrepancy decreases with increasing (??) and virtually disappears when (??) reaches 30?? to 40??. The variation in limb darkening with w and g, pronounced for smooth surfaces, is reduced or eliminated when the Hapke parameters are in the range typical of most planetary surfaces; this result simplifies the problem of photoclinometry across terrains with variable surface materials. The Minnaert or lunar-Lambert fits to published Hapke models will give photoclinometric solutions that are very similar (>1?? slope discrepancy) to the Hapke-function solutions for nearly all of the bodies and terrains thus far modeled by Hapke's function. ?? 1991.
Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, H. M.
2018-04-01
We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.
Modifications of Erectile Tissue Components in the Penis during the Fetal Period
Gallo, Carla B. M.; Costa, Waldemar S.; Furriel, Angelica; Bastos, Ana L.; Sampaio, Francisco J. B.
2014-01-01
Background The penile erectile tissue has a complex microscopic anatomy with important functions in the mechanism of penile erection. The knowledge of such structures is necessary for understanding the normal physiology of the adult penis. Therefore, it is important to know the changes of these penile structures during fetal development. This study aims to analyze the development of the main components of the erectile tissue, such as collagen, smooth muscle fibers and elastic system fibers, in human fetuses. Methodology/Principal Findings We studied the penises of 56 human fetuses aged 13 to 36 weeks post-conception (WPC). We used histochemical and immunohistochemical staining, as well as morphometric techniques to analyze the collagen, smooth muscle fibers and elastic system fibers in the corpus cavernosum and in the corpus spongiosum. These elements were identified and quantified as percentage by using the Image J software (NIH, Bethesda, USA). From 13 to 36 WPC, in the corpus cavernosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 19.88% to 36.60%, from 4.39% to 29.76% and from 1.91% to 8.92%, respectively. In the corpus spongiosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 34.65% to 45.89%, from 0.60% to 11.90% and from 3.22% to 11.93%, respectively. Conclusions We found strong correlation between the elements analyzed with fetal age, both in corpus cavernosum and corpus spongiosum. The growth rate of these elements was more intense during the second trimester (13 to 24 WPC) of gestation, both in corpus cavernosum and in corpus spongiosum. There is greater proportional amount of collagen in the corpus spongiosum than in corpus cavernosum during all fetal period. In the corpus spongiosum, there is about four times more collagen than smooth muscle fibers and elastic system fibers, during all fetal period studied. PMID:25170760
Functional overestimation due to spatial smoothing of fMRI data.
Liu, Peng; Calhoun, Vince; Chen, Zikuan
2017-11-01
Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff
2014-01-01
Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561
Short Course on Implementation of Zone Technology in the Repair and Overhaul Environment
1996-04-01
Pier Zone & Sys Pier/DD/Staging Zone Management Approach Varies Function to Project Project/Matrix Project/Matrix Project Project Fig. 9-3. Nature of...intractable problems that currently exist. Nature can give us many clues. If only we could harness the material that makes the dolphin’s outer shell so smooth...the natural effect of requiring peak manning and confined outfitting schedules. Through the application of system oriented logic to actual work accom
De Sá Teixeira, Nuno Alexandre
2016-09-01
The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements' instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates.
Optimization of Neutral Atom Imagers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.
2008-01-01
The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.
Tağluk, M E; Cakmak, E D; Karakaş, S
2005-04-30
Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.
NASA Astrophysics Data System (ADS)
Pearce, John; Thomsen, Sharon
2017-02-01
Large vessels can be reliably sealed with radio frequency current. High apposition pressures are necessary to ensure a high probability of a successful seal. However, the complex architecture of the vessels, particularly arteries, means that results can vary substantially even with similar thermal histories. The relative volume fractions and spatial distributions of collagen, elastin, and smooth muscle dominate the vessel function in vivo and can even vary from proximal to distal locations in the same vessel. We begin by reviewing the architectural features characteristic of porcine and canine large vessels and conclude with an experimental and numerical modeling demonstration of the reasons why cylindrical electrodes are a sub-optimal choice.
Bifurcation theory for finitely smooth planar autonomous differential systems
NASA Astrophysics Data System (ADS)
Han, Maoan; Sheng, Lijuan; Zhang, Xiang
2018-03-01
In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.
Radial Basis Function Based Quadrature over Smooth Surfaces
2016-03-24
Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29
Fiber-connected, indefinite Morse 2-functions on connected n-manifolds
Gay, David T.; Kirby, Robion C.
2011-01-01
We discuss generic smooth maps from smooth manifolds to smooth surfaces, which we call “Morse 2-functions,” and homotopies between such maps. The two central issues are to keep the fibers connected, in which case the Morse 2-function is “fiber-connected,” and to avoid local extrema over one-dimensional submanifolds of the range, in which case the Morse 2-function is “indefinite.” This is foundational work for the long-range goal of defining smooth invariants from Morse 2-functions using tools analogous to classical Morse homology and Cerf theory. PMID:21518894
Retrieval of Ice Cloud Properties Using Variable Phase Functions
NASA Astrophysics Data System (ADS)
Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny
2009-03-01
An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.
An improved nearly-orthogonal structured mesh generation system with smoothness control functions
USDA-ARS?s Scientific Manuscript database
This paper presents an improved nearly-orthogonal structured mesh generation system with a set of smoothness control functions, which were derived based on the ratio between the Jacobian of the transformation matrix and the Jacobian of the metric tensor. The proposed smoothness control functions are...
Radar data smoothing filter study
NASA Technical Reports Server (NTRS)
White, J. V.
1984-01-01
The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.
Gravity modulates Listing's plane orientation during both pursuit and saccades
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.
Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface
NASA Astrophysics Data System (ADS)
Antolin, J.; Yu, Z.; Prasad, S.
2016-09-01
The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.
Cox Regression Models with Functional Covariates for Survival Data.
Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M
2015-06-01
We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple functional predictors, time varying coefficients, and missing or unequally-spaced data. Methods were inspired by and applied to a study of the association between time to death after hospital discharge and daily measures of disease severity collected in the intensive care unit, among survivors of acute respiratory distress syndrome.
Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.
2004-01-01
We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.
ERIC Educational Resources Information Center
Zheng, Yinggan; Gierl, Mark J.; Cui, Ying
2010-01-01
This study combined the kernel smoothing procedure and a nonparametric differential item functioning statistic--Cochran's Z--to statistically test the difference between the kernel-smoothed item response functions for reference and focal groups. Simulation studies were conducted to investigate the Type I error and power of the proposed…
Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.
ERIC Educational Resources Information Center
Moses, Tim; Liu, Jinghua
2011-01-01
In equating research and practice, equating functions that are smooth are typically assumed to be more accurate than equating functions with irregularities. This assumption presumes that population test score distributions are relatively smooth. In this study, two examples were used to reconsider common beliefs about smoothing and equating. The…
Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.
2016-01-01
Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271
Data preparation for functional data analysis of PM10 in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd
2014-07-01
The use of curves or functional data in the study analysis is increasingly gaining momentum in the various fields of research. The statistical method to analyze such data is known as functional data analysis (FDA). The first step in FDA is to convert the observed data points which are repeatedly recorded over a period of time or space into either a rough (raw) or smooth curve. In the case of the smooth curve, basis functions expansion is one of the methods used for the data conversion. The data can be converted into a smooth curve either by using the regression smoothing or roughness penalty smoothing approach. By using the regression smoothing approach, the degree of curve's smoothness is very dependent on k number of basis functions; meanwhile for the roughness penalty approach, the smoothness is dependent on a roughness coefficient given by parameter λ Based on previous studies, researchers often used the rather time-consuming trial and error or cross validation method to estimate the appropriate number of basis functions. Thus, this paper proposes a statistical procedure to construct functional data or curves for the hourly and daily recorded data. The Bayesian Information Criteria is used to determine the number of basis functions while the Generalized Cross Validation criteria is used to identify the parameter λ The proposed procedure is then applied on a ten year (2001-2010) period of PM10 data from 30 air quality monitoring stations that are located in Peninsular Malaysia. It was found that the number of basis functions required for the construction of the PM10 daily curve in Peninsular Malaysia was in the interval of between 14 and 20 with an average value of 17; the first percentile is 15 and the third percentile is 19. Meanwhile the initial value of the roughness coefficient was in the interval of between 10-5 and 10-7 and the mode was 10-6. An example of the functional descriptive analysis is also shown.
NASA Astrophysics Data System (ADS)
Huang, X.; Hu, K.; Ling, X.; Zhang, Y.; Lu, Z.; Zhou, G.
2017-09-01
This paper introduces a novel global patch matching method that focuses on how to remove fronto-parallel bias and obtain continuous smooth surfaces with assuming that the scenes covered by stereos are piecewise continuous. Firstly, simple linear iterative cluster method (SLIC) is used to segment the base image into a series of patches. Then, a global energy function, which consists of a data term and a smoothness term, is built on the patches. The data term is the second-order Taylor expansion of correlation coefficients, and the smoothness term is built by combing connectivity constraints and the coplanarity constraints are combined to construct the smoothness term. Finally, the global energy function can be built by combining the data term and the smoothness term. We rewrite the global energy function in a quadratic matrix function, and use least square methods to obtain the optimal solution. Experiments on Adirondack stereo and Motorcycle stereo of Middlebury benchmark show that the proposed method can remove fronto-parallel bias effectively, and produce continuous smooth surfaces.
Restoring a smooth function from its noisy integrals
NASA Astrophysics Data System (ADS)
Goulko, Olga; Prokof'ev, Nikolay; Svistunov, Boris
2018-05-01
Numerical (and experimental) data analysis often requires the restoration of a smooth function from a set of sampled integrals over finite bins. We present the bin hierarchy method that efficiently computes the maximally smooth function from the sampled integrals using essentially all the information contained in the data. We perform extensive tests with different classes of functions and levels of data quality, including Monte Carlo data suffering from a severe sign problem and physical data for the Green's function of the Fröhlich polaron.
Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy.
Mizutani, T; Akiho, H; Khan, W I; Murao, H; Ogino, H; Kanayama, K; Nakamura, K; Takayanagi, R
2010-02-01
Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.
Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.
Haick, Jennifer M; Byron, Kenneth L
2016-09-01
Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
Transient Receptor Potential Channels in the Vasculature
Earley, Scott; Brayden, Joseph E.
2015-01-01
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234
METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca
2016-05-10
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less
Intermittent particle distribution in synthetic free-surface turbulent flows.
Ducasse, Lauris; Pumir, Alain
2008-06-01
Tracer particles on the surface of a turbulent flow have a very intermittent distribution. This preferential concentration effect is studied in a two-dimensional synthetic compressible flow, both in the inertial (self-similar) and in the dissipative (smooth) range of scales, as a function of the compressibility C . The second moment of the concentration coarse grained over a scale r , n_{r};{2} , behaves as a power law in both the inertial and the dissipative ranges of scale, with two different exponents. The shapes of the probability distribution functions of the coarse-grained density n_{r} vary as a function of scale r and of compressibility C through the combination C/r;{kappa} (kappa approximately 0.5) , corresponding to the compressibility, coarse grained over a domain of scale r , averaged over Lagrangian trajectories.
Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.
2009-01-01
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810
Functional Additive Mixed Models
Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja
2014-01-01
We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach. PMID:26347592
Functional Additive Mixed Models.
Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja
2015-04-01
We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach.
Robust stability of interval bidirectional associative memory neural network with time delays.
Liao, Xiaofeng; Wong, Kwok-wo
2004-04-01
In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.
Effects of contrast on smooth pursuit eye movements.
Spering, Miriam; Kerzel, Dirk; Braun, Doris I; Hawken, Michael J; Gegenfurtner, Karl R
2005-05-20
It is well known that moving stimuli can appear to move more slowly when contrast is reduced (P. Thompson, 1982). Here we address the question whether changes in stimulus contrast also affect smooth pursuit eye movements. Subjects were asked to smoothly track a moving Gabor patch. Targets varied in velocity (1, 8, and 15 deg/s), spatial frequency (0.1, 1, 4, and 8 c/deg), and contrast, ranging from just below individual thresholds to maximum contrast. Results show that smooth pursuit eye velocity gain rose significantly with increasing contrast. Below a contrast level of two to three times threshold, pursuit gain, acceleration, latency, and positional accuracy were severely impaired. Therefore, the smooth pursuit motor response shows the same kind of slowing at low contrast that was demonstrated in previous studies on perception.
Structural and Functional Bases for Individual Differences in Motor Learning
Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi
2013-01-01
People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562
Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon
2017-04-01
Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have become of interest due to their ability to supplement tissue engineered scaffolds. Their ability to differentiate into cells of vascular lineages with defined phenotypes serves as a potential solution to a major cause of graft failure in which phenotypic shifts in smooth muscle cells lead to over proliferation and occlusion of the graft. Herein, we have differentiated human induced-pluripotent stem cells in a pulsatile flow bioreactor, resulting in vascular smooth muscle tissue with robust elastic fibers and enhanced functionality. This study highlights an effective approach to engineering elastic functional vascular smooth muscle tissue for tissue engineering and regenerative medicine applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fried, Itzhak; Koch, Christof
2014-01-01
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352
Smooth solutions of the Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhozhaev, S I
2014-02-28
We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R{sup 3}. We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles.
Barry Goodwin; Matthew Holt; Jeffrey P. Prestemon
2011-01-01
Price dynamics for North American oriented strand board markets are examined. The role of transactions costs are explored vis-Ã -vis the law of one price. Nonlinearities induced by unobservable transactions costs are modeled by estimating time-varying smooth transition autoregressions (TV-STARs). Results indicate that nonlinearity and structural change are important...
Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.
Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of themore » proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.« less
Enhanced backscattering through a deep random phase screen
NASA Astrophysics Data System (ADS)
Jakeman, E.
1988-10-01
The statistical properties of radiation scattered by a system consisting of a plane mirror placed in the Fresnel region behind a smoothly varying deep random-phase screen with off-axis beam illumination are studied. It is found that two mechanisms cause enhanced scattering around the backward direction, according to the mirror position with respect to the focusing plane of the screen. In all of the plane mirror geometries considered, the scattered field remains a complex Gaussian process with a spatial coherence function identical to that expected for a single screen, and a speckle size smaller than the width of backscatter enhancement.
A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake
NASA Astrophysics Data System (ADS)
Ruppert, Stanley D.; Yomogida, Kiyoshi
1992-09-01
Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.
Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A
2010-07-01
Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
Proportional hazards model with varying coefficients for length-biased data.
Zhang, Feipeng; Chen, Xuerong; Zhou, Yong
2014-01-01
Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.
Interstitial Cells: Regulators of Smooth Muscle Function
Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don
2014-01-01
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007
Gravitational lensing by a smoothly variable three-dimensional mass distribution
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Paczynski, Bohdan
1990-01-01
A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.
LLE Review 98 (January-March 2004)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, V.N.
2004-08-10
This volume of the LLE Review, covering January-March 2004, features ''Performance of 1-THz-Bandwidth, 2-D Smoothing by Spectral Dispersion and Polarization Smoothing of High-Power, Solid-State Laser Beams'', by S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V.A. Smalyuk, S. Skupsky, and J. D. Zuegel (p. 49). Laser-beam smoothing achieved with 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing on the 60-beam, 30-kJ, 351-nm OMEGA laser system is reported. These beam-smoothing techniques are directly applicablemore » to direct-drive ignition target designs for the 192-beam, 1.8-MJ, 351-nm National Ignition Facility. Equivalent-target-plane images for constant-intensity laser pulses of varying duration were used to determine the smoothing. The properties of the phase plates, frequency modulators, and birefringent wedges were simulated and found to be in good agreement with the measurements.« less
Feather roughness reduces flow separation during low Reynolds number glides of swifts.
van Bokhorst, Evelien; de Kat, Roeland; Elsinga, Gerrit E; Lentink, David
2015-10-01
Swifts are aerodynamically sophisticated birds with a small arm and large hand wing that provides them with exquisite control over their glide performance. However, their hand wings have a seemingly unsophisticated surface roughness that is poised to disturb flow. This roughness of about 2% chord length is formed by the valleys and ridges of overlapping primary feathers with thick protruding rachides, which make the wing stiffer. An earlier flow study of laminar-turbulent boundary layer transition over prepared swift wings suggested that swifts can attain laminar flow at a low angle of attack. In contrast, aerodynamic design theory suggests that airfoils must be extremely smooth to attain such laminar flow. In hummingbirds, which have similarly rough wings, flow measurements on a 3D printed model suggest that the flow separates at the leading edge and becomes turbulent well above the rachis bumps in a detached shear layer. The aerodynamic function of wing roughness in small birds is, therefore, not fully understood. Here, we performed particle image velocimetry and force measurements to compare smooth versus rough 3D-printed models of the swift hand wing. The high-resolution boundary layer measurements show that the flow over rough wings is indeed laminar at a low angle of attack and a low Reynolds number, but becomes turbulent at higher values. In contrast, the boundary layer over the smooth wing forms open laminar separation bubbles that extend beyond the trailing edge. The boundary layer dynamics of the smooth surface varies non-linearly as a function of angle of attack and Reynolds number, whereas the rough surface boasts more consistent turbulent boundary layer dynamics. Comparison of the corresponding drag values, lift values and glide ratios suggests, however, that glide performance is equivalent. The increased structural performance, boundary layer robustness and equivalent aerodynamic performance of rough wings might have provided small (proto) birds with an evolutionary window to high glide performance. © 2015. Published by The Company of Biologists Ltd.
Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.
2016-01-01
BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673
Airfoil gust response and the sound produced by airifoil-vortex interaction
NASA Technical Reports Server (NTRS)
Amiet, R. K.
1986-01-01
This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.
Müller, Alexander; Akin-Olugbade, Yemi; Deveci, Serkan; Donohue, John F; Tal, Raanan; Kobylarz, Keith A; Palese, Michael; Mulhall, John P
2008-03-01
Only minimal literature exists on consequences of shock wave therapy (SWT) on erectile function in treatment of Peyronie's disease (PD). This study was undertaken to define SWT impact at varied energy/dose levels at different time points on functional and structural changes in erectile tissue. In 45 rats 2000 shock waves (sw) at 2 BAR were applied to the penis weekly sorted by one, two, and three sessions (high-dose/energy level, HD-1, HD-2, HD-3). Each group was followed for 1, 7, or 28 d before measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Fifteen control animals (C1, C7, C28) underwent anesthesia alone. Another 15 animals were exposed to three SWT sessions applying 1000 sw at 1 BAR and analyzed identically (low-dose/energy level, LD-3-1, -7, -28). Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling assay was used to define the apoptotic index (AI) and Masson's trichrome (MT) staining was prepared to evaluate smooth muscle-to-collagen ratios. ICP/MAP ratios for all C groups displayed a mean of 64%. All SWT groups demonstrated significantly reduced ICP/MAP ratios compared to their corresponding C groups (p<0.05). The LD-3 groups showed a trend toward improved ICP/MAP ratios. LD-3-28 demonstrated significant recovery compared to HD-3-28 (55+/-8% vs. 41+/-10%, p=0.004), but remained reduced compared to C28 (63+/-5%, p=0.03). No statistical differences were seen for MT staining in SWT groups compared to C (p>0.05). AIs for the LD-3 groups were significantly lower compared to the HD-3 groups (p<0.001), but all AIs were significantly increased compared to C groups (p<0.01). Overall, at both energy/dose levels, SWT resulted in a time- and treatment-dependent reduction of ICP/MAP ratios, which might be mediated partly through apoptosis and collagenization of corporal smooth muscle.
Beta-function B-spline smoothing on triangulations
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter
2013-03-01
In this work we investigate a novel family of Ck-smooth rational basis functions on triangulations for fitting, smoothing, and denoising geometric data. The introduced basis function is closely related to a recently introduced general method introduced in utilizing generalized expo-rational B-splines, which provides Ck-smooth convex resolutions of unity on very general disjoint partitions and overlapping covers of multidimensional domains with complex geometry. One of the major advantages of this new triangular construction is its locality with respect to the star-1 neighborhood of the vertex on which the said base is providing Hermite interpolation. This locality of the basis functions can be in turn utilized in adaptive methods, where, for instance a local refinement of the underlying triangular mesh affects only the refined domain, whereas, in other method one needs to investigate what changes are occurring outside of the refined domain. Both the triangular and the general smooth constructions have the potential to become a new versatile tool of Computer Aided Geometric Design (CAGD), Finite and Boundary Element Analysis (FEA/BEA) and Iso-geometric Analysis (IGA).
Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.
2016-01-01
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223
NASA Astrophysics Data System (ADS)
Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan
2016-09-01
Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.
NASA Technical Reports Server (NTRS)
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Neutrophilic infiltration within the airway smooth muscle in patients with COPD
Baraldo, S; Turato, G; Badin, C; Bazzan, E; Beghe, B; Zuin, R; Calabrese, F; Casoni, G; Maestrelli, P; Papi, A; Fabbri, L; Saetta, M
2004-01-01
Background: COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. Methods: To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. Results: Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). Conclusions: Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation. PMID:15047950
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
Nonclassical states of light with a smooth P function
NASA Astrophysics Data System (ADS)
Damanet, François; Kübler, Jonas; Martin, John; Braun, Daniel
2018-02-01
There is a common understanding in quantum optics that nonclassical states of light are states that do not have a positive semidefinite and sufficiently regular Glauber-Sudarshan P function. Almost all known nonclassical states have P functions that are highly irregular, which makes working with them difficult and direct experimental reconstruction impossible. Here we introduce classes of nonclassical states with regular, non-positive-definite P functions. They are constructed by "puncturing" regular smooth positive P functions with negative Dirac-δ peaks or other sufficiently narrow smooth negative functions. We determine the parameter ranges for which such punctures are possible without losing the positivity of the state, the regimes yielding antibunching of light, and the expressions of the Wigner functions for all investigated punctured states. Finally, we propose some possible experimental realizations of such states.
Bayesian functional integral method for inferring continuous data from discrete measurements.
Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul
2012-02-08
Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
Effect of attochirp on attosecond streaking time delay in photoionization of atoms
NASA Astrophysics Data System (ADS)
Goldsmith, C.; Jaroń-Becker, A.; Becker, A.
2018-01-01
We present a theoretical analysis of the effect of the attochirp on the streaking time delay, intrinsic to photoionization of an atom by an attosecond laser pulse at extreme ultraviolet wavelengths superposed by a femtosecond streaking pulse. To this end, we determine the expectation value of the delay in a chirped pulse using a recently developed model formula. Results of our calculations show that the attochirp can be relevant for photoemission from the 3p shell in argon atom at frequencies near the Cooper minimum, while it is negligible if the photoionization cross section as a function of frequency varies smoothly.
An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution
NASA Astrophysics Data System (ADS)
Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan
2013-04-01
The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently, the underlying location density of our model depends on the magnitude. We scale the density with the estimated a-value in order to construct a forecast that specifies the earthquake rate in each longitude-latitude-magnitude bin. The model is intended to be one branch of SHARE's logic tree of rupture forecasts and provides rates of events in the magnitude range of 5 <= m <= 8.5 for the entire region of interest and is suitable for comparison with other long-term models in the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP).
NASA Astrophysics Data System (ADS)
Hasegawa, Manabu; Hiramatsu, Kotaro
2013-10-01
The effectiveness of the Metropolis algorithm (MA) (constant-temperature simulated annealing) in optimization by the method of search-space smoothing (SSS) (potential smoothing) is studied on two types of random traveling salesman problems. The optimization mechanism of this hybrid approach (MASSS) is investigated by analyzing the exploration dynamics observed in the rugged landscape of the cost function (energy surface). The results show that the MA can be successfully utilized as a local search algorithm in the SSS approach. It is also clarified that the optimization characteristics of these two constituent methods are improved in a mutually beneficial manner in the MASSS run. Specifically, the relaxation dynamics generated by employing the MA work effectively even in a smoothed landscape and more advantage is taken of the guiding function proposed in the idea of SSS; this mechanism operates in an adaptive manner in the de-smoothing process and therefore the MASSS method maintains its optimization function over a wider temperature range than the MA.
NASA Astrophysics Data System (ADS)
Song, Chi; Zhang, Xuejun; Zhang, Xin; Hu, Haifei; Zeng, Xuefeng
2017-06-01
A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o
NASA Astrophysics Data System (ADS)
García-Senz, Domingo; Cabezón, Rubén M.; Escartín, José A.; Ebinger, Kevin
2014-10-01
Context. The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. Aims: We propose and check a method to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the sinc function). Methods: The proposed method was checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities, and the collapse of a Sun-like polytrope. Results: The analysis of the hydrodynamical simulations suggests that the scheme devised to equalize the accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.
Winding a Long Coil with a Pre-Programmed Turns Density Variation
1975-05-27
turns den- sity is to follow. A machine having this capability is needed to provide a towed ELF loop antenna with the smoothly tapered sensitivity...Introduction A submarine towed ELF loop antenna vibrates longitudinally and trans- versely during towing. The vibration is driven by the fluctuating surface...in attaining the smoothly varying turns density required for the signal winding of a towed ELF loop antenna . Acknowledgments Thanks are due to John
Charged Particle Distribution near the Shock Front in a Glow Discharge
NASA Astrophysics Data System (ADS)
Baryshnikov, A. S.; Basargin, I. V.; Bezverkhnii, N. O.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.
2018-02-01
The charged particle distribution near the front of a shock wave propagating in the glow discharge plasma has been investigated. It has been found that the ion concentration before the front varies nonmonotonically. Behind the shock front, the charged particle concentration varies smoothly in contrast to the neutral component density.
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Elrod, David; Hale, Keith
1989-01-01
Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals show the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluid entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.
Alternative Attitude Commanding and Control for Precise Spacecraft Landing
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2004-01-01
A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.
De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J
2001-05-11
Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.
Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael
2017-08-22
We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.
Analysis of Two Advanced Smoothing Algorithms.
1985-09-01
59 B. METHODOLOGY . ......... ........... 60 6 C. TESTING AND RESULTS ---- LINEAR UNDERLYING FUNCTION...SMOOTHING ALGORITHMS ...... .................... 94 A. GENERAL ......... ....................... .. 94 B. METHODOLOGY ............................ .95 C...to define succinctly. 59 B. METHODOLOGY There is no established procedure to follow in testing the efficiency and effectiveness of a smoothing
Feedback control policies employed by people using intracortical brain-computer interfaces.
Willett, Francis R; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Saab, Jad; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Simeral, John D; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu
2017-02-01
When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.
Feedback control policies employed by people using intracortical brain-computer interfaces
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Saab, Jad; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Simeral, John D.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.
2017-02-01
Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a ‘feedback control policy’. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users’ feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user’s neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor’s current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.
Michielsen, Koen; Nuyts, Johan; Cockmartin, Lesley; Marshall, Nicholas; Bosmans, Hilde
2016-12-01
In this work, the authors design and validate a model observer that can detect groups of microcalcifications in a four-alternative forced choice experiment and use it to optimize a smoothing prior for detectability of microcalcifications. A channelized Hotelling observer (CHO) with eight Laguerre-Gauss channels was designed to detect groups of five microcalcifications in a background of acrylic spheres by adding the CHO log-likelihood ratios calculated at the expected locations of the five calcifications. This model observer is then applied to optimize the detectability of the microcalcifications as a function of the smoothing prior. The authors examine the quadratic and total variation (TV) priors, and a combination of both. A selection of these reconstructions was then evaluated by human observers to validate the correct working of the model observer. The authors found a clear maximum for the detectability of microcalcification when using the total variation prior with weight β TV = 35. Detectability only varied over a small range for the quadratic and combined quadratic-TV priors when weight β Q of the quadratic prior was changed by two orders of magnitude. Spearman correlation with human observers was good except for the highest value of β for the quadratic and TV priors. Excluding those, the authors found ρ = 0.93 when comparing detection fractions, and ρ = 0.86 for the fitted detection threshold diameter. The authors successfully designed a model observer that was able to predict human performance over a large range of settings of the smoothing prior, except for the highest values of β which were outside the useful range for good image quality. Since detectability only depends weakly on the strength of the combined prior, it is not possible to pick an optimal smoothness based only on this criterion. On the other hand, such choice can now be made based on other criteria without worrying about calcification detectability.
Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.
Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won
2018-07-01
Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6 M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5 M or above elicited a significant relaxation response to 10 -6 M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.
ERIC Educational Resources Information Center
Moses, Tim; Holland, Paul
2009-01-01
This simulation study evaluated the potential of alternative loglinear smoothing strategies for improving equipercentile equating function accuracy. These alternative strategies use cues from the sample data to make automatable and efficient improvements to model fit, either through the use of indicator functions for fitting large residuals or by…
Proximal-distal differences in movement smoothness reflect differences in biomechanics.
Salmond, Layne H; Davidson, Andrew D; Charles, Steven K
2017-03-01
Smoothness is a hallmark of healthy movement. Past research indicates that smoothness may be a side product of a control strategy that minimizes error. However, this is not the only reason for smooth movements. Our musculoskeletal system itself contributes to movement smoothness: the mechanical impedance (inertia, damping, and stiffness) of our limbs and joints resists sudden change, resulting in a natural smoothing effect. How the biomechanics and neural control interact to result in an observed level of smoothness is not clear. The purpose of this study is to 1 ) characterize the smoothness of wrist rotations, 2 ) compare it with the smoothness of planar shoulder-elbow (reaching) movements, and 3 ) determine the cause of observed differences in smoothness. Ten healthy subjects performed wrist and reaching movements involving different targets, directions, and speeds. We found wrist movements to be significantly less smooth than reaching movements and to vary in smoothness with movement direction. To identify the causes underlying these observations, we tested a number of hypotheses involving differences in bandwidth, signal-dependent noise, speed, impedance anisotropy, and movement duration. Our simulations revealed that proximal-distal differences in smoothness reflect proximal-distal differences in biomechanics: the greater impedance of the shoulder-elbow filters neural noise more than the wrist. In contrast, differences in signal-dependent noise and speed were not sufficiently large to recreate the observed differences in smoothness. We also found that the variation in wrist movement smoothness with direction appear to be caused by, or at least correlated with, differences in movement duration, not impedance anisotropy. NEW & NOTEWORTHY This article presents the first thorough characterization of the smoothness of wrist rotations (flexion-extension and radial-ulnar deviation) and comparison with the smoothness of reaching (shoulder-elbow) movements. We found wrist rotations to be significantly less smooth than reaching movements and determined that this difference reflects proximal-distal differences in biomechanics: the greater impedance (inertia, damping, stiffness) of the shoulder-elbow filters noise in the command signal more than the impedance of the wrist. Copyright © 2017 the American Physiological Society.
Smoothly varying in-plane stiffness heterogeneity evaluated under uniaxial tensile stress
J.M. Considine; F. Pierron; K.T. Turner; P. Lava; X. Tang
2017-01-01
Identification of spatially varying stiffness is a challenging, but important, research topic in the mechanics of materials and can provide the necessary information for material suitability, damage, and process control, especially for highâvalue applications. One homogeneous and 3 heterogeneous virtual field method (VFM) formulations were used to create a methodology...
Image Discrimination Models With Stochastic Channel Selection
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.
Transitions of interaction outcomes in a uni-directional consumer-resource system
Wang, Y.; DeAngelis, D.L.
2011-01-01
A uni-directional consumer-resource system of two species is analyzed. Our aim is to understand the mechanisms that determine how the interaction outcomes depend on the context of the interaction; that is, on the model parameters. The dynamic behavior of the model is described and, in particular, it is demonstrated that no periodic orbits exist. Then the parameter (factor) space is shown to be divided into four regions, which correspond to the four forms of interaction outcomes; i.e. mutualism, commensalism, parasitism and amensalism. It is shown that the interaction outcomes of the system transition smoothly among these four forms when the parameters of the system are varied continuously. Varying each parameter individually or varying pairs of parameters can also lead to smooth transitions between the interaction outcomes. The analysis leads to both conditions for which each species achieves its maximal density, and situations in which periodic oscillations of the interaction outcomes emerge. ?? 2011 Elsevier Ltd.
NASA Technical Reports Server (NTRS)
kaul, Upender K.
2008-01-01
A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.
The neural substrates of driving at a safe distance: a functional MRI study.
Uchiyama, Yuji; Ebe, Kazutoshi; Kozato, Akio; Okada, Tomohisa; Sadato, Norihiro
2003-12-11
An important driving skill is the ability to maintain a safe distance from a preceding car. To determine the neural substrates of this skill we performed functional magnetic resonance imaging of simulated driving in 21 subjects. Subjects used a joystick to adjust their own driving speed in order to maintain a constant distance from a preceding car traveling at varying speeds. The task activated multiple brain regions. Activation of the cerebellum may reflect visual feedback during smooth tracking of the preceding car. Co-activation of the basal ganglia, thalamus and premotor cortex is related to movement selection. Activation of a premotor-parietal network is related to visuo-motor co-ordination. Task performance was negatively correlated with anterior cingulate activity, consistent with the role of this region in error detection and response selection.
Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array
NASA Astrophysics Data System (ADS)
Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.
2003-12-01
We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1981-01-01
A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.
NASA Astrophysics Data System (ADS)
Anthony, J. L.; Marone, C. J.
2003-12-01
Previous studies have shown that particle characteristics such as shape, dimension, and roughness affect friction in granular shear zones. Other work shows that humidity plays a key role in frictional healing and rate/state dependence within granular gouge. In order to improve our understanding of grain-scale deformation mechanisms within fault gouge, we performed laboratory experiments using a double-direct-shear testing apparatus. This assembly includes three rigid forcing blocks with two gouge layers sandwiched between rough or smooth surfaces. Roughened surfaces were triangular grooves 0.8 mm deep and 1 mm wavelength. These promote distributed shear throughout the layer undergoing cataclastic deformation. Smooth surfaces were mirror-finished hardened steel and were used to promote and isolate grain boundary sliding. The center block is forced at controlled displacement rate between the two side blocks to create frictional shear. We studied gouge layers 3-7 mm thick, consisting of either quartz rods sheared in 1-D and 2-D configurations and smooth glass beads mixed with varying amounts of rough sand particles. We report on particle diameters that range from 0.050-0.210 mm, and quartz rods 1 mm in diameter and 100 mm long. The experiments are run at room temperature, controlled relative humidity ranging from 5 to 100%, and shear displacement rates from 0.1 to 300 microns per second. Experiments are carried out under a normal stress of 5 MPa, a non-fracture loading regime where sliding friction for smooth spherical particles is measurably lower than for rough angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the mechanism influencing granular friction, to rough sample experiments where shear undergoes a transition from distributed, pervasive shear to progressively localized as a function of increasing strain. For shear within rough surfaces, stick-slip instability occurs in gouge that consists of less than 30% angular grains and begins once the coefficient of friction (shear stress divided by normal stress) reaches a value of 0.35-0.40. Peak friction during stick-slip cycles is 0.40-0.45. Each stick-slip event involves a small amount of quasi-static displacement prior to failure, which we refer to as pre-seismic slip. For unstable sliding regimes, we measure the amount of pre-seismic slip and the magnitude of dynamic stress drop. These parameters vary systematically with sliding velocity, particle characteristics, and bounding roughness. For shear within smooth surfaces, friction is very low (0.15-0.16 for spherical particles) and sliding is stable, without stick-slip instability. As more angular grains are mixed with spherical beads the coefficient of friction increases. This holds true for both the rough and smooth sample experiments. We expand on previous work done by Frye and Marone 2002 (JGR) to study the effect of humidity on 1-D, 2-D, and 3-D gouge layer configurations. Our data show that humidity has a significant effect on frictional strength and stability and that this effect is observed for both smooth surfaces, where grain boundary sliding is the dominant deformation mechanisms, and for shear within rough surfaces where gouge deformation occurs by rolling, dilation, compaction, and grain boundary sliding.
Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.
2015-01-01
Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880
A Comparison of Methods for Nonparametric Estimation of Item Characteristic Curves for Binary Items
ERIC Educational Resources Information Center
Lee, Young-Sun
2007-01-01
This study compares the performance of three nonparametric item characteristic curve (ICC) estimation procedures: isotonic regression, smoothed isotonic regression, and kernel smoothing. Smoothed isotonic regression, employed along with an appropriate kernel function, provides better estimates and also satisfies the assumption of strict…
Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science
2015-06-10
013-0043-1 Charles Chui, Hrushikesh Mhaskar. MRA contextual-recovery extension of smooth functions on manifolds, Applied and Computational Harmonic...753507. International Society for Optics and Photonics, 2010. [5] C. K. Chui and H. N. Mhaskar. MRA contextual-recovery extension of smooth functions on
How good are the Garvey-Kelson predictions of nuclear masses?
NASA Astrophysics Data System (ADS)
Morales, Irving O.; López Vieyra, J. C.; Hirsch, J. G.; Frank, A.
2009-09-01
The Garvey-Kelson relations are used in an iterative process to predict nuclear masses in the neighborhood of nuclei with measured masses. Average errors in the predicted masses for the first three iteration shells are smaller than those obtained with the best nuclear mass models. Their quality is comparable with the Audi-Wapstra extrapolations, offering a simple and reproducible procedure for short range mass predictions. A systematic study of the way the error grows as a function of the iteration and the distance to the known masses region, shows that a correlation exists between the error and the residual neutron-proton interaction, produced mainly by the implicit assumption that V varies smoothly along the nuclear landscape.
The smoothing effect for renewable resources in an Afro-Eurasian power grid
NASA Astrophysics Data System (ADS)
Krutova, Maria; Kies, Alexander; Schyska, Bruno U.; von Bremen, Lueder
2017-07-01
Renewable power systems have to cope with highly variable generation. Increasing the spatial extent of an interconnected power transmission grid smooths the feed-in by exchange of excess energy over long distances and therefore supports renewable power integration. In this work, we investigate and quantify the balancing potential of a supergrid covering Europe, Africa and Asia. We use ten years of historical weather data to model the interplay of renewable generation and consumption and show that a pan-continental Afro-Eurasian supergrid can smooth renewable generation to a large extent and reduce the need for backup energy by around 50 %. In addition, we show that results for different weather years vary by up to approximately 50 %.
Fast smooth second-order sliding mode control for stochastic systems with enumerable coloured noises
NASA Astrophysics Data System (ADS)
Yang, Peng-fei; Fang, Yang-wang; Wu, You-li; Zhang, Dan-xu; Xu, Yang
2018-01-01
A fast smooth second-order sliding mode control is presented for a class of stochastic systems driven by enumerable Ornstein-Uhlenbeck coloured noises with time-varying coefficients. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the control. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Then the prescribed sliding variable dynamic is presented. The sufficient condition guaranteeing its finite-time convergence is given and proved using stochastic Lyapunov-like techniques. The proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are given comparing with smooth second-order sliding mode control to validate the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Gelever, Stephan A.; Lee, Chak S.
2017-12-12
smoothG is a collection of parallel C++ classes/functions that algebraically constructs reduced models of different resolutions from a given high-fidelity graph model. In addition, smoothG also provides efficient linear solvers for the reduced models. Other than pure graph problem, the software finds its application in subsurface flow and power grid simulations in which graph Laplacians are found
A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.
Joy, Ajin; Paul, Joseph Suresh
2018-03-07
Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.
Characterization of primary cilia in human airway smooth muscle cells.
Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi
2009-08-01
Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Naumov, I. A.; Azarov, K. A.; Sagalovitch, S. V.; Reschke, Millard F.; Kozlovskaya, I. B.
2007-01-01
The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).
Milton, Deanna L.; Schneck, Amy N.; Ziech, Dominique A.; Ba, Mariam; Facemyer, Kevin C.; Halayko, Andrew J.; Baker, Jonathan E.; Gerthoffer, William T.; Cremo, Christine R.
2011-01-01
The 10S self-inhibited monomeric conformation of myosin II has been characterized extensively in vitro. Based upon its structural and functional characteristics, it has been proposed to be an assembly-competent myosin pool in equilibrium with filaments in cells. It is known that myosin filaments can assemble and disassemble in nonmuscle cells, and in some smooth muscle cells, but whether or not the disassembled pool contains functional 10S myosin has not been determined. Here we address this question using human airway smooth muscle cells (hASMCs). Using two antibodies against different epitopes on smooth muscle myosin II (SMM), two distinct pools of SMM, diffuse, and stress-fiber–associated, were visualized by immunocytochemical staining. The two SMM pools were functional in that they could be interconverted in two ways: (i) by exposure to 10S- versus filament-promoting buffer conditions, and (ii) by exposure to a peptide that shifts the filament-10S equilibrium toward filaments in vitro by a known mechanism that requires the presence of the 10S conformation. The effect of the peptide was not due to a trivial increase in SMM phosphorylation, and its specificity was demonstrated by use of a scrambled peptide, which had no effect. Based upon these data, we conclude that hASMCs contain a significant pool of functional SMM in the 10S conformation that can assemble into filaments upon changing cellular conditions. This study provides unique direct evidence for the presence of a significant pool of functional myosin in the 10S conformation in cells. PMID:21205888
Modeling the dispersion effects of contractile fibers in smooth muscles
NASA Astrophysics Data System (ADS)
Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.
2010-12-01
Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.
The role of eye movements in depth from motion parallax during infancy
Nawrot, Elizabeth; Nawrot, Mark
2013-01-01
Motion parallax is a motion-based, monocular depth cue that uses an object's relative motion and velocity as a cue to relative depth. In adults, and in monkeys, a smooth pursuit eye movement signal is used to disambiguate the depth-sign provided by these relative motion cues. The current study investigates infants' perception of depth from motion parallax and the development of two oculomotor functions, smooth pursuit and the ocular following response (OFR) eye movements. Infants 8 to 20 weeks of age were presented with three tasks in a single session: depth from motion parallax, smooth pursuit tracking, and OFR to translation. The development of smooth pursuit was significantly related to age, as was sensitivity to motion parallax. OFR eye movements also corresponded to both age and smooth pursuit gain, with groups of infants demonstrating asymmetric function in both types of eye movements. These results suggest that the development of the eye movement system may play a crucial role in the sensitivity to depth from motion parallax in infancy. Moreover, describing the development of these oculomotor functions in relation to depth perception may aid in the understanding of certain visual dysfunctions. PMID:24353309
Assaf, Shireen; Campostrini, Stefano; Di Novi, Cinzia; Xu, Fang; Gotway Crawford, Carol
2017-04-01
To explore the changing disparities in access to health care insurance in the United States using time-varying coefficient models. Secondary data from the Behavioral Risk Factor Surveillance System (BRFSS) from 1993 to 2009 was used. A time-varying coefficient model was constructed using a binary outcome of no enrollment in health insurance plan versus enrolled. The independent variables included age, sex, education, income, work status, race, and number of health conditions. Smooth functions of odds ratios and time were used to produce odds ratio plots. Significant time-varying coefficients were found for all the independent variables with the odds ratio plots showing changing trends except for a constant line for the categories of male, student, and having three health conditions. Some categories showed decreasing disparities, such as the income categories. However, some categories had increasing disparities in health insurance enrollment such as the education and race categories. As the Affordable Care Act is being gradually implemented, studies are needed to provide baseline information about disparities in access to health insurance, in order to gauge any changes in health insurance access. The use of time-varying coefficient models with BRFSS data can be useful in accomplishing this task.
Development of hippocampal subfield volumes from 4 to 22 years.
Krogsrud, Stine K; Tamnes, Christian K; Fjell, Anders M; Amlien, Inge; Grydeland, Håkon; Sulutvedt, Unni; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sølsnes, Anne E; Håberg, Asta K; Skrane, Jon; Walhovd, Kristine B
2014-11-01
The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured global hippocampal volume. We aimed to explore early hippocampal development both globally and regionally within subfields. Using cross-sectional 1.5 T magnetic resonance imaging data from 244 healthy participants aged 4-22 years, we performed automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria, and hippocampal fissure. For validation purposes, seven subjects were scanned at both 1.5 and 3 T, and all subfields except fimbria showed strong correlations across field strengths. Effects of age, left and right hemisphere, sex and their interactions were explored. Nonparametric local smoothing models (smoothing spline) were used to depict age-trajectories. Results suggested nonlinear age functions for most subfields where volume increases until 13-15 years, followed by little age-related changes during adolescence. Further, the results showed greater right than left hippocampal volumes that seemed to be augmenting in older age. Sex differences were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum, and CA1, mainly driven by participants under 13 years. These results provide a detailed characterization of hippocampal subfield development from early childhood. Copyright © 2014 Wiley Periodicals, Inc.
Experimental evidence for the cardioprotective effects of red wine
Das, Samarjit; Santani, Dev D; Dhalla, Naranjan S
2007-01-01
Both epidemiological and experimental studies have revealed that intake of wine, particularly red wine, in moderation protects cardiovascular health; however, the experimental basis for such an action is not fully understood. Because all types of red wine contain varying amounts of alcohol and antioxidants, it is likely that the cardioprotective effect of red wine is due to both these constituents. In view of its direct action on the vascular smooth muscle cells, alcohol may produce coronary vasodilation in addition to attenuating oxidative stress by its action on the central nervous system. The antioxidant components of red wine may provide cardioprotection by their ability to reduce oxidative stress in the heart under different pathological conditions. Mild-to-moderate red wine consumption improves cardiac function in the ischemic myocardium through the protection of endothelial function, the expression of several cardioprotective oxidative stress-inducible proteins, as well as the activation of adenosine receptors and nitrous oxide synthase mechanisms. PMID:18650973
Fetal alcohol spectrum disorders--a case-control study from India.
Nayak, Raghavendra; Murthy, Pratima; Girimaji, Satish; Navaneetham, Jamuna
2012-02-01
Maternal alcohol abuse during pregnancy can lead to fetal neurotoxicity and fetal alcohol spectrum disorder (FASD). To compare the clinical features and neurobehavioral profiles of children exposed to alcohol during pregnancy with controls. Children exposed to alcohol in utero (n = 26) and 27-years age- and sex-matched controls were compared on FAS facial features, minor physical anomalies (MPAs), anthropometric measures, behavioral problems and intellectual functioning. MPAs were more common in cases (p = 0.001). Among FAS facial features, only philtrum smoothness varied significantly between the groups (p = 0.001). Behavioral problems (on Childhood Behavior Check List) were more pronounced (p = 0.001) and intellectual functioning significantly poorer in cases (p = 0.001) compared to controls. Children prenatally exposed to alcohol manifest several neurobehavioral problems compared to controls. Underlying malnutrition may have altered some of the clinical findings.
Experimental evidence for the cardioprotective effects of red wine.
Das, Samarjit; Santani, Dev D; Dhalla, Naranjan S
2007-01-01
Both epidemiological and experimental studies have revealed that intake of wine, particularly red wine, in moderation protects cardiovascular health; however, the experimental basis for such an action is not fully understood. Because all types of red wine contain varying amounts of alcohol and antioxidants, it is likely that the cardioprotective effect of red wine is due to both these constituents. In view of its direct action on the vascular smooth muscle cells, alcohol may produce coronary vasodilation in addition to attenuating oxidative stress by its action on the central nervous system. The antioxidant components of red wine may provide cardioprotection by their ability to reduce oxidative stress in the heart under different pathological conditions. Mild-to-moderate red wine consumption improves cardiac function in the ischemic myocardium through the protection of endothelial function, the expression of several cardioprotective oxidative stress-inducible proteins, as well as the activation of adenosine receptors and nitrous oxide synthase mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C; Adcock, A; Azevedo, S
2010-12-28
Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple datamore » channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.« less
Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data.
Cinquemani, Eugenio; Laroute, Valérie; Cocaign-Bousquet, Muriel; de Jong, Hidde; Ropers, Delphine
2017-07-15
Technological advances in metabolomics have made it possible to monitor the concentration of extracellular metabolites over time. From these data, it is possible to compute the rates of uptake and excretion of the metabolites by a growing cell population, providing precious information on the functioning of intracellular metabolism. The computation of the rate of these exchange reactions, however, is difficult to achieve in practice for a number of reasons, notably noisy measurements, correlations between the concentration profiles of the different extracellular metabolites, and discontinuties in the profiles due to sudden changes in metabolic regime. We present a method for precisely estimating time-varying uptake and excretion rates from time-series measurements of extracellular metabolite concentrations, specifically addressing all of the above issues. The estimation problem is formulated in a regularized Bayesian framework and solved by a combination of extended Kalman filtering and smoothing. The method is shown to improve upon methods based on spline smoothing of the data. Moreover, when applied to two actual datasets, the method recovers known features of overflow metabolism in Escherichia coli and Lactococcus lactis , and provides evidence for acetate uptake by L. lactis after glucose exhaustion. The results raise interesting perspectives for further work on rate estimation from measurements of intracellular metabolites. The Matlab code for the estimation method is available for download at https://team.inria.fr/ibis/rate-estimation-software/ , together with the datasets. eugenio.cinquemani@inria.fr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Exponentially accurate approximations to piece-wise smooth periodic functions
NASA Technical Reports Server (NTRS)
Greer, James; Banerjee, Saheb
1995-01-01
A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.
NASA Astrophysics Data System (ADS)
Moschetti, M. P.; Mueller, C. S.; Boyd, O. S.; Petersen, M. D.
2013-12-01
In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.
Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.
2014-01-01
In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood values from all rate models to rank the smoothing methods. We find that adaptively smoothed seismicity models yield better likelihood values than the fixed smoothing models. Holding all other (source and ground motion) models constant, we calculate seismic hazard curves for all points across Alaska on a 0.1 degree grid, using the adaptively smoothed and fixed smoothed seismicity models separately. Because adaptively smoothed models concentrate seismicity near the earthquake epicenters where seismicity rates are high, the corresponding hazard values are higher, locally, but reduced with distance from observed seismicity, relative to the hazard from fixed-bandwidth models. We suggest that adaptively smoothed seismicity models be considered for implementation in the update to the ASHMs because of their improved likelihood estimates relative to fixed smoothing methods; however, concomitant increases in seismic hazard will cause significant changes in regions of high seismicity, such as near the subduction zone, northeast of Kotzebue, and along the NNE trending zone of seismicity in the Alaskan interior.
Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error
Zhang, Yan; Shen, Jun
2013-01-01
Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436
Smooth muscle sphincteroplasty in colostomy.
Kostov, Daniel V; Temelkov, Temelko D; Dragnev, Nedyalko A; Kobakov, Georgi L; Ivanov, Krasimir D
2004-04-01
The present work elaborated on Schmidt's idea of an effective smooth muscle sphincteroplasty. The aim of the study was to analyze the effects on the patients with a lower quadrant colostomy constructed after abdominoperineal extirpation of a modified smooth muscle sphincteroplasty combined with colon irrigations. Seventy-two rectal cancer patients (39 men and 33 women, median age, 54.5 years) with smooth muscle sphincteroplasty and 20 controls with conventional colostomy using colon irrigations (11 men and 9 women, median age, 63.2 years) were examined. A modified smooth muscle wrap of the colostomy with a free graft of a 4-cm-long colon segment without mucosa was applied. In this precolostomy segment a high intraluminal pressure was achieved. The functional capacity and anatomic integrity of the transplanted smooth muscle graft were examined manometrically, electromyographically, and histomorphologically. The functional activity of the colostomy was assessed by periodic recording of the number of "spontaneous" and "directed" defecations.RESULTS. In the patients with smooth muscle sphincteroplasty, the basal intraluminal pressure of the precolostomy segment two years after operation measured 29.7 mmHg. After dilatation of the transplant, these pressures reached up to 43 mmHg ( P < 0.001). The weekly "spontaneous" stools were 3 to 5 times less frequent than in the controls ( P < 0.001). The modified smooth muscle sphincteroplasty offers operative-technical opportunities for increasing intraluminal pressure in the precolostomy colon segment. Its combination with colonic irrigations facilitates control of the evacuatory rhythm and "spontaneous" stools in colostomy patients, thus improving their quality of life.
Discrete wavelet transform: a tool in smoothing kinematic data.
Ismail, A R; Asfour, S S
1999-03-01
Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.
Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study.
Fällmar, David; Lilja, Johan; Velickaite, Vilma; Danfors, Torsten; Lubberink, Mark; Ahlgren, André; van Osch, Matthias J P; Kilander, Lena; Larsson, Elna-Marie
2016-05-01
Functional imaging is becoming increasingly important for the detection of neurodegenerative disorders. Perfusion MRI with arterial spin labeling (ASL) has been reported to provide promising diagnostic possibilities but is not yet widely used in routine clinical work. The aim of this study was to compare, in a clinical setting, the visual assessment of subtracted ASL CBF maps with and without additional smoothing, to FDG-PET data. Ten patients with a clinical diagnosis of dementia and 11 age-matched cognitively healthy controls were examined with pseudo-continuous ASL (pCASL) and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Three diagnostic physicians visually assessed the pCASL maps after subtraction only, and after postprocessing using Gaussian smoothing and GLM-based beta estimate functions. The assessment scores were compared to FDG PET values. Furthermore, the ability to discriminate patients from healthy elderly controls was assessed. Smoothing improved the correlation between visually assessed regional ASL perfusion scores and the FDG PET SUV-r values from the corresponding regions. However, subtracted pCASL maps discriminated patients from healthy controls better than smoothed maps. Smoothing increased the number of false-positive patient identifications. Application of beta estimate functions had only a marginal effect. Spatial smoothing of ASL images increased false positive results in the discrimination of hypoperfusion conditions from healthy elderly. It also decreased interreader agreement. However, regional characterization and subjective perception of image quality was improved. Copyright © 2015 by the American Society of Neuroimaging.
Mode detuning in systems of weakly coupled oscillators
NASA Astrophysics Data System (ADS)
Spencer, Ross L.; Robertson, Richard D.
2001-11-01
A system of weakly magnetically coupled oscillating blades is studied experimentally, computationally, and theoretically. It is found that when the uncoupled natural frequencies of the blades are nearly equal, the normal modes produced by the coupling are almost impossible to find experimentally if the random variation level in the system parameters is on the order of (or larger than) the relative differences between mode frequencies. But if the uncoupled natural frequencies are made to vary (detuned) in a smooth way such that the total relative spread in natural frequency exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled frequencies of the system are parabolically distributed, the modes are found to be shaped like Hermite functions.
USDA-ARS?s Scientific Manuscript database
The current study investigated the mechanism of immune regulation of IL-25 and the contribution of IL-25 to nematode infection-induced alterations in intestinal smooth muscle and epithelial cell function. Mice were infected with an enteric nematode or injected with IL-25 or IL-13. In vitro smooth m...
The Dynamic Actin Cytoskeleton in Smooth Muscle.
Tang, Dale D
2018-01-01
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion
Hamsici, Onur C.; Gotardo, Paulo F.U.; Martinez, Aleix M.
2013-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.
Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M
2012-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function.
An algorithm for surface smoothing with rational splines
NASA Technical Reports Server (NTRS)
Schiess, James R.
1987-01-01
Discussed is an algorithm for smoothing surfaces with spline functions containing tension parameters. The bivariate spline functions used are tensor products of univariate rational-spline functions. A distinct tension parameter corresponds to each rectangular strip defined by a pair of consecutive spline knots along either axis. Equations are derived for writing the bivariate rational spline in terms of functions and derivatives at the knots. Estimates of these values are obtained via weighted least squares subject to continuity constraints at the knots. The algorithm is illustrated on a set of terrain elevation data.
Curvilinear grids for WENO methods in astrophysical simulations
NASA Astrophysics Data System (ADS)
Grimm-Strele, H.; Kupka, F.; Muthsam, H. J.
2014-03-01
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.
Caramia, Carlotta; Bernabucci, Ivan; D'Anna, Carmen; De Marchis, Cristiano; Schmid, Maurizio
2017-01-01
The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.
Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI
Varma, Gopal; Scheidegger, Rachel; Alsop, David C
2015-01-01
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. PMID:26661226
Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.
Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C
2016-03-01
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.
Bernabucci, Ivan; D'Anna, Carmen; De Marchis, Cristiano; Schmid, Maurizio
2017-01-01
The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking–in some specific conditions–might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use. PMID:29023456
Use of hyperbolic partial differential equations to generate body fitted coordinates
NASA Technical Reports Server (NTRS)
Steger, J. L.; Sorenson, R. L.
1980-01-01
The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.
Accurate step-hold tracking of smoothly varying periodic and aperiodic probability.
Ricci, Matthew; Gallistel, Randy
2017-07-01
Subjects observing many samples from a Bernoulli distribution are able to perceive an estimate of the generating parameter. A question of fundamental importance is how the current percept-what we think the probability now is-depends on the sequence of observed samples. Answers to this question are strongly constrained by the manner in which the current percept changes in response to changes in the hidden parameter. Subjects do not update their percept trial-by-trial when the hidden probability undergoes unpredictable and unsignaled step changes; instead, they update it only intermittently in a step-hold pattern. It could be that the step-hold pattern is not essential to the perception of probability and is only an artifact of step changes in the hidden parameter. However, we now report that the step-hold pattern obtains even when the parameter varies slowly and smoothly. It obtains even when the smooth variation is periodic (sinusoidal) and perceived as such. We elaborate on a previously published theory that accounts for: (i) the quantitative properties of the step-hold update pattern; (ii) subjects' quick and accurate reporting of changes; (iii) subjects' second thoughts about previously reported changes; (iv) subjects' detection of higher-order structure in patterns of change. We also call attention to the challenges these results pose for trial-by-trial updating theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeonhee; Kang, Moses; Muljadi, Eduard
This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less
A deterministic global optimization using smooth diagonal auxiliary functions
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.
2015-04-01
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.
Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, Christopher M.
2012-08-13
How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less
Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B.; Sawamura, Kenta; Nakayama, Shinsuke
2013-01-01
Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity. PMID:24124480
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.
1987-01-01
The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.
Boosting structured additive quantile regression for longitudinal childhood obesity data.
Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael
2013-07-25
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.
Anticipatory Smooth Eye Movements in Autism Spectrum Disorder
Aitkin, Cordelia D.; Santos, Elio M.; Kowler, Eileen
2013-01-01
Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations. PMID:24376667
Anticipatory smooth eye movements in autism spectrum disorder.
Aitkin, Cordelia D; Santos, Elio M; Kowler, Eileen
2013-01-01
Smooth pursuit eye movements are important for vision because they maintain the line of sight on targets that move smoothly within the visual field. Smooth pursuit is driven by neural representations of motion, including a surprisingly strong influence of high-level signals representing expected motion. We studied anticipatory smooth eye movements (defined as smooth eye movements in the direction of expected future motion) produced by salient visual cues in a group of high-functioning observers with Autism Spectrum Disorder (ASD), a condition that has been associated with difficulties in either generating predictions, or translating predictions into effective motor commands. Eye movements were recorded while participants pursued the motion of a disc that moved within an outline drawing of an inverted Y-shaped tube. The cue to the motion path was a visual barrier that blocked the untraveled branch (right or left) of the tube. ASD participants showed strong anticipatory smooth eye movements whose velocity was the same as that of a group of neurotypical participants. Anticipatory smooth eye movements appeared on the very first cued trial, indicating that trial-by-trial learning was not responsible for the responses. These results are significant because they show that anticipatory capacities are intact in high-functioning ASD in cases where the cue to the motion path is highly salient and unambiguous. Once the ability to generate anticipatory pursuit is demonstrated, the study of the anticipatory responses with a variety of types of cues provides a window into the perceptual or cognitive processes that underlie the interpretation of events in natural environments or social situations.
Energy functions for regularization algorithms
NASA Technical Reports Server (NTRS)
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
ERIC Educational Resources Information Center
Ferrando, Pere J.
2004-01-01
This study used kernel-smoothing procedures to estimate the item characteristic functions (ICFs) of a set of continuous personality items. The nonparametric ICFs were compared with the ICFs estimated (a) by the linear model and (b) by Samejima's continuous-response model. The study was based on a conditioned approach and used an error-in-variables…
Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.
2013-01-01
Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516
Generalised smooth-muscle disease with defective muscarinic-receptor function.
Bannister, R; Hoyes, A D
1981-03-28
A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.
Bruno, Oscar P.; Turc, Catalin; Venakides, Stephanos
2016-01-01
This work, part I in a two-part series, presents: (i) a simple and highly efficient algorithm for evaluation of quasi-periodic Green functions, as well as (ii) an associated boundary-integral equation method for the numerical solution of problems of scattering of waves by doubly periodic arrays of scatterers in three-dimensional space. Except for certain ‘Wood frequencies’ at which the quasi-periodic Green function ceases to exist, the proposed approach, which is based on smooth windowing functions, gives rise to tapered lattice sums which converge superalgebraically fast to the Green function—that is, faster than any power of the number of terms used. This is in sharp contrast to the extremely slow convergence exhibited by the lattice sums in the absence of smooth windowing. (The Wood-frequency problem is treated in part II.) This paper establishes rigorously the superalgebraic convergence of the windowed lattice sums. A variety of numerical results demonstrate the practical efficiency of the proposed approach. PMID:27493573
Development of Drag Reducing Polymer of FDR-SPC
NASA Astrophysics Data System (ADS)
Lee, Inwon; Park, Hyun; Chun, Ho Hwan
2015-11-01
In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.
Bi flux-dependent MBE growth of GaSbBi alloys
Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.; ...
2015-03-05
The incorporation of Bi in GaSb 1-xBi x alloys grown by molecular beam epitaxy is investigated as a function of Bi flux at fixed growth temperature (275 °C) and growth rate (1 μm h⁻¹). The Bi content is found to vary proportionally with Bi flux with Bi contents, as measured by Rutherford backscattering, in the range 0 < x ≤ 4.5%. The GaSbBi samples grown at the lowest Bi fluxes have smooth surfaces free of metallic droplets. The higher Bi flux samples have surface Bi droplets. The room temperature band gap of the GaSbBi epitaxial layers determined from optical absorptionmore » decreases linearly with increasing Bi content with a reduction of ~32 meV/%Bi.« less
NASA Astrophysics Data System (ADS)
Sugio, Tetsuya; Yamamoto, Masayoshi; Funabiki, Shigeyuki
The use of an SMES (Superconducting Magnetic Energy Storage) for smoothing power fluctuations in a railway substation has been discussed. This paper proposes a smoothing control method based on fuzzy reasoning for reducing the SMES capacity at substations along high-speed railways. The proposed smoothing control method comprises three countermeasures for reduction of the SMES capacity. The first countermeasure involves modification of rule 1 for smoothing out the fluctuating electric power to its average value. The other countermeasures involve the modification of the central value of the stored energy control in the SMES and revision of the membership function in rule 2 for reduction of the SMES capacity. The SMES capacity in the proposed smoothing control method is reduced by 49.5% when compared to that in the nonrevised control method. It is confirmed by computer simulations that the proposed control method is suitable for smoothing out power fluctuations in substations along high-speed railways and for reducing the SMES capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Hongzhu; Rao, N.S.V.; Protopopescu, V.
Regression or function classes of Euclidean type with compact support and certain smoothness properties are shown to be PAC learnable by the Nadaraya-Watson estimator based on complete orthonormal systems. While requiring more smoothness properties than typical PAC formulations, this estimator is computationally efficient, easy to implement, and known to perform well in a number of practical applications. The sample sizes necessary for PAC learning of regressions or functions under sup norm cost are derived for a general orthonormal system. The result covers the widely used estimators based on Haar wavelets, trignometric functions, and Daubechies wavelets.
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
Seo, G.; DeAngelis, D.L.
2011-01-01
The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.
Nonequilibrium flows with smooth particle applied mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, Oyeon
1995-07-01
Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separatelymore » controlled. The gradient algorithm, based on differentiating the smooth particle expression for (uρ) and (Tρ), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.« less
Dynamic full-scalability conversion in scalable video coding
NASA Astrophysics Data System (ADS)
Lee, Dong Su; Bae, Tae Meon; Thang, Truong Cong; Ro, Yong Man
2007-02-01
For outstanding coding efficiency with scalability functions, SVC (Scalable Video Coding) is being standardized. SVC can support spatial, temporal and SNR scalability and these scalabilities are useful to provide a smooth video streaming service even in a time varying network such as a mobile environment. But current SVC is insufficient to support dynamic video conversion with scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion methods for QoS adaptive video streaming in SVC. To accomplish full scalability dynamic conversion, we develop corresponding bitstream extraction, encoding and decoding schemes. At the encoder, we insert the IDR NAL periodically to solve the problems of spatial scalability conversion. At the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. Real time extraction is achieved by using this information. Finally, we develop the decoder so that it can manage the changing scalability. Experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.
Smoothing of cost function leads to faster convergence of neural network learning
NASA Astrophysics Data System (ADS)
Xu, Li-Qun; Hall, Trevor J.
1994-03-01
One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
The estimation of branching curves in the presence of subject-specific random effects.
Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng
2014-12-20
Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.
Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates
2016-01-01
The benefits of synthetic fibrillar dry adhesives for temporary and reversible attachment to hard objects with smooth surfaces have been successfully demonstrated in previous studies. However, surface roughness induces a dramatic reduction in pull-off stresses and necessarily requires revised design concepts. Toward this aim, we introduce cylindrical two-phase single pillars, which are composed of a mechanically stiff stalk and a soft tip layer. Adhesion to smooth and rough substrates is shown to exceed that of conventional pillar structures. The adhesion characteristics can be tuned by varying the thickness of the soft tip layer, the ratio of the Young’s moduli and the curvature of the interface between the two phases. For rough substrates, adhesion values similar to those obtained on smooth substrates were achieved. Our concept of composite pillars overcomes current practical limitations caused by surface roughness and opens up fields of application where roughness is omnipresent. PMID:27997118
Towards the therapeutic use of vascular smooth muscle progenitor cells.
Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I
2012-07-15
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.
Movement quality of conventional prostheses and the DEKA Arm during everyday tasks
Cowley, Jeffrey; Resnik, Linda; Wilken, Jason; Walters, Lisa Smurr; Gates, Deanna
2017-01-01
Background Conventional prosthetic devices fail to restore the function and characteristic movement quality of the upper limb. The DEKA Arm is a new, advanced prosthesis featuring a compound, powered wrist and multiple grip configurations. Objectives The purpose of this study was to determine if the DEKA Arm improved the movement quality of upper limb prosthesis users compared to conventional prostheses. Study design Case series. Methods Three people with transradial amputation completed tasks of daily life with their conventional prosthesis and with the DEKA Arm. A total of 10 healthy controls completed the same tasks. The trajectory of the wrist joint center was analyzed to determine how different prostheses affected movement duration, speed, smoothness, and curvature compared to patients’ own intact limbs and controls. Results Movement quality decreased with the DEKA Arm for two participants, and increased for the third. Prosthesis users made slower, less smooth, more curved movements with the prosthetic limb compared to the intact limb and controls, particularly when grasping and manipulating objects. Conclusion The effects of one month of training with the DEKA Arm on movement quality varied with participants’ skill and experience with conventional prostheses. Future studies should examine changes in movement quality after long-term use of advanced prostheses. PMID:26932980
Sripathi, Vangipuram Canchi; Kumar, Ramarathnam Krishna; Balakrishnan, Komarakshi R
2004-03-01
This study aims to find the fundamental differences in the mechanism of opening and closing of a normal aortic valve and a valve with a stiff root, using a dynamic finite element model. A dynamic, finite element model with time varying pressure was used in this study. Shell elements with linear elastic properties for the leaflet and root were used. Two different cases were analyzed: (1) normal leaflets inside a compliant root, and (2) normal leaflets inside a stiff root. A compliant aortic root contributes substantially to the smooth and symmetrical leaflet opening with minimal gradients. In contrast, the leaflet opening inside a stiff root is delayed, asymmetric, and wrinkled. However, this wrinkling is not associated with increased leaflet stresses. In compliant roots, the effective valve orifice area can substantially increase because of increased root pressure and transvalvular gradients. In stiff roots this effect is strikingly absent. A compliant aortic root contributes substantially to smooth and symmetrical leaflet opening with minimal gradients. The compliance also contributes much to the ability of the normal aortic valve to increase its effective valve orifice in response to physiologic demands of exercise. This effect is strikingly absent in stiff roots.
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
The representation of spacetime through steep time functions
NASA Astrophysics Data System (ADS)
Minguzzi, Ettore
2018-02-01
In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes.
Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U
2007-09-01
Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.
Single image super-resolution based on approximated Heaviside functions and iterative refinement
Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian
2018-01-01
One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298
Functional Data Analysis for Dynamical System Identification of Behavioral Processes
Trail, Jessica B.; Collins, Linda M.; Rivera, Daniel E.; Li, Runze; Piper, Megan E.; Baker, Timothy B.
2014-01-01
Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time, but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate two innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention. PMID:24079929
Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís
2018-01-01
A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
A FRACTAL-BASED STOCHASTIC INTERPOLATION SCHEME IN SUBSURFACE HYDROLOGY
The need for a realistic and rational method for interpolating sparse data sets is widespread. Real porosity and hydraulic conductivity data do not vary smoothly over space, so an interpolation scheme that preserves irregularity is desirable. Such a scheme based on the properties...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Bazin, C.; Wohlfeld, K.
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Zia, Khalid Mahmood; Tabassum, Shazia; Barkaat-ul-Hasin, Syed; Zuber, Mohammad; Jamil, Tahir; Jamal, Muhammad Asghar
2011-04-01
A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener. Copyright © 2011 Elsevier B.V. All rights reserved.
Extension of a Kolmogorov Atmospheric Turbulence Model for Time-Based Simulation Implementation
NASA Technical Reports Server (NTRS)
McMinn, John D.
1997-01-01
The development of any super/hypersonic aircraft requires the interaction of a wide variety of technical disciplines to maximize vehicle performance. For flight and engine control system design and development on this class of vehicle, realistic mathematical simulation models of atmospheric turbulence, including winds and the varying thermodynamic properties of the atmosphere, are needed. A model which has been tentatively selected by a government/industry group of flight and engine/inlet controls representatives working on the High Speed Civil Transport is one based on the Kolmogorov spectrum function. This report compares the Dryden and Kolmogorov turbulence forms, and describes enhancements that add functionality to the selected Kolmogorov model. These added features are: an altitude variation of the eddy dissipation rate based on Dryden data, the mapping of the eddy dissipation rate database onto a regular latitude and longitude grid, a method to account for flight at large vehicle attitude angles, and a procedure for transitioning smoothly across turbulence segments.
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.
2018-01-01
In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.
ASYMPTOTICS FOR CHANGE-POINT MODELS UNDER VARYING DEGREES OF MIS-SPECIFICATION
SONG, RUI; BANERJEE, MOULINATH; KOSOROK, MICHAEL R.
2015-01-01
Change-point models are widely used by statisticians to model drastic changes in the pattern of observed data. Least squares/maximum likelihood based estimation of change-points leads to curious asymptotic phenomena. When the change–point model is correctly specified, such estimates generally converge at a fast rate (n) and are asymptotically described by minimizers of a jump process. Under complete mis-specification by a smooth curve, i.e. when a change–point model is fitted to data described by a smooth curve, the rate of convergence slows down to n1/3 and the limit distribution changes to that of the minimizer of a continuous Gaussian process. In this paper we provide a bridge between these two extreme scenarios by studying the limit behavior of change–point estimates under varying degrees of model mis-specification by smooth curves, which can be viewed as local alternatives. We find that the limiting regime depends on how quickly the alternatives approach a change–point model. We unravel a family of ‘intermediate’ limits that can transition, at least qualitatively, to the limits in the two extreme scenarios. The theoretical results are illustrated via a set of carefully designed simulations. We also demonstrate how inference for the change-point parameter can be performed in absence of knowledge of the underlying scenario by resorting to subsampling techniques that involve estimation of the convergence rate. PMID:26681814
Hackstadt, T; Peacock, M G; Hitchcock, P J; Cole, R L
1985-01-01
We isolated lipopolysaccharides (LPSs) from phase variants of Coxiella burnetii Nine Mile and compared the isolated LPS and C. burnetii cells by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The LPSs were found to be the predominant component which varied structurally and antigenically between virulent phase I and avirulent phase II. A comparison of techniques historically used to extract the phase I antigenic component revealed that the aqueous phase of phenol-water, trichloroacetic acid, and dimethyl sulfoxide extractions of phase I C. burnettii cells all contained phase I LPS, although the efficiency and specificity of extraction varied. Our studies provide additional evidence that phase variation in C. burnetii is analogous to the smooth-to-rough LPS variation of gram-negative enteric bacteria, with phase I LPS being equivalent to smooth LPS and phase II being equivalent to rough LPS. In addition, we identified a variant with a third LPS chemotype with appears to have a structural complexity intermediate to phase I and II LPSs. All three C. burnetii LPS contain a 2-keto-3-deoxyoctulosonic acid-like substance, heptose, and gel Limulus amoebocyte lysates in subnanogram amounts. The C. burnetii LPSs were nontoxic to chicken embryos at doses of over 80 micrograms per embryo, in contrast to Salmonella typhimurium smooth- and rough-type LPSs, which were toxic in nanogram amounts. Images PMID:3988339
Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.
2015-01-01
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735
A-type potassium currents in smooth muscle.
Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M
2003-03-01
A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
On Asymptotic Behaviour and W 2, p Regularity of Potentials in Optimal Transportation
NASA Astrophysics Data System (ADS)
Liu, Jiakun; Trudinger, Neil S.; Wang, Xu-Jia
2015-03-01
In this paper we study local properties of cost and potential functions in optimal transportation. We prove that in a proper normalization process, the cost function is uniformly smooth and converges locally smoothly to a quadratic cost x · y, while the potential function converges to a quadratic function. As applications we obtain the interior W 2, p estimates and sharp C 1, α estimates for the potentials, which satisfy a Monge-Ampère type equation. The W 2, p estimate was previously proved by Caffarelli for the quadratic transport cost and the associated standard Monge-Ampère equation.
The use of functional data analysis to study variability in childrens speech: Further data
NASA Astrophysics Data System (ADS)
Koenig, Laura L.; Lucero, Jorge C.
2002-05-01
Much previous research has reported increased token-to-token variability in children relative to adults, but the sources and implications of this variability remain matters of debate. Recently, functional data analysis has been used as a tool to gain greater insight into the nature of variability in children's and adults' speech data. In FDA, signals are time-normalized using a smooth function of time. The magnitude of the time-warping function provides an index of phasing (temporal) variability, and a separate index of amplitude variability is calculated from the time-normalized signal. Here, oral airflow data are analyzed from 5-year-olds, 10-year-olds, and adult women producing laryngeal and oral fricatives (/h, s, z/). The preliminary FDA results show that children generally have higher temporal and amplitude indices than adults, suggesting greater variability both in gestural timing and magnitude. However, individual patterns are evident in the relative magnitude of the two indices, and in which consonants show the highest values. The time-varying patterns of flow variability over time in /s/ are also explored as a method of inferring relative variability among laryngeal and oral gestures. [Work supported by NIH and CNPq, Brazil.
Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.
2014-01-01
The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539
A detail-preserved and luminance-consistent multi-exposure image fusion algorithm
NASA Astrophysics Data System (ADS)
Wang, Guanquan; Zhou, Yue
2018-04-01
When irradiance across a scene varies greatly, we can hardly get an image of the scene without over- or underexposure area, because of the constraints of cameras. Multi-exposure image fusion (MEF) is an effective method to deal with this problem by fusing multi-exposure images of a static scene. A novel MEF method is described in this paper. In the proposed algorithm, coarser-scale luminance consistency is preserved by contribution adjustment using the luminance information between blocks; detail-preserved smoothing filter can stitch blocks smoothly without losing details. Experiment results show that the proposed method performs well in preserving luminance consistency and details.
Investigation on filter method for smoothing spiral phase plate
NASA Astrophysics Data System (ADS)
Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian
2018-03-01
Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.
Measurements of drag and lift on smooth balls in flight
NASA Astrophysics Data System (ADS)
Cross, Rod; Lindsey, Crawford
2017-07-01
Measurements are presented on the drag and lift coefficients for three relatively smooth balls launched in air and tracked with two cameras separated horizontally by 6.4 m. The ball spin was varied in order to investigate whether the Magnus force would increase or decrease when the ball spin was increased. For one ball, the Magnus force increased. For another ball, the Magnus force decreased almost to zero after reaching a maximum. For the third ball, the Magnus force was negative at low ball spins and positive at high ball spins. For one of the balls, the ball spin increased with time as it travelled through the air.
SDM - A geodetic inversion code incorporating with layered crust structure and curved fault geometry
NASA Astrophysics Data System (ADS)
Wang, Rongjiang; Diao, Faqi; Hoechner, Andreas
2013-04-01
Currently, inversion of geodetic data for earthquake fault ruptures is most based on a uniform half-space earth model because of its closed-form Green's functions. However, the layered structure of the crust can significantly affect the inversion results. The other effect, which is often neglected, is related to the curved fault geometry. Especially, fault planes of most mega thrust earthquakes vary their dip angle with depth from a few to several tens of degrees. Also the strike directions of many large earthquakes are variable. For simplicity, such curved fault geometry is usually approximated to several connected rectangular segments, leading to an artificial loss of the slip resolution and data fit. In this presentation, we introduce a free FORTRAN code incorporating with the layered crust structure and curved fault geometry in a user-friendly way. The name SDM stands for Steepest Descent Method, an iterative algorithm used for the constrained least-squares optimization. The new code can be used for joint inversion of different datasets, which may include systematic offsets, as most geodetic data are obtained from relative measurements. These offsets are treated as unknowns to be determined simultaneously with the slip unknowns. In addition, a-priori and physical constraints are considered. The a-priori constraint includes the upper limit of the slip amplitude and the variation range of the slip direction (rake angle) defined by the user. The physical constraint is needed to obtain a smooth slip model, which is realized through a smoothing term to be minimized with the misfit to data. In difference to most previous inversion codes, the smoothing can be optionally applied to slip or stress-drop. The code works with an input file, a well-documented example of which is provided with the source code. Application examples are demonstrated.
Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport
NASA Astrophysics Data System (ADS)
Moulton, M. R.; Elgar, S.; Raubenheimer, B.
2012-12-01
Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.
Fujio, N; Gossard, F; Bayard, F; Tremblay, J
1994-06-01
Two types of natriuretic peptide receptors (NPR-A and NPR-B) are membrane guanylate cyclases whose relative expression varies in different tissues. Because natriuretic peptides have been shown to inhibit aortic smooth muscle proliferation, we investigated the regulation of NPR-A and NPR-B in these cells under different proliferative conditions. NPR subtype mRNA levels were measured by our newly developed quantitative reverse transcription-polymerase chain reaction assay using mutated NPR-A and NPR-B cRNA as internal standards. The functional impact of their expression was determined by atrial natriuretic peptide (ANP)- and C-type natriuretic peptide (CNP)-induced stimulation of cyclic GMP production. In the intact aorta, NPR-B mRNA levels were found to be 10-fold higher than those of NPR-A. This dominance was further amplified (1000-fold) in long-term cultures (10 to 15 passages) of aortic smooth muscle cells (ASMC). Higher cyclic GMP production with CNP than with ANP was observed in cultured ASMC from Wistar-Kyoto (WKY) rats. Similar stimulation by the two agonists was noted in spontaneously hypertensive rat (SHR) cells, paralleled by a 10-fold increase in NPR-A mRNA levels and ANP stimulation of cyclic GMP in hypertensive cells. The present study also evaluated NPR-A and NPR-B mRNA control by transforming growth factor-beta 1 (TGF-beta 1), an important regulator of cell proliferation that is overexpressed in SHR ASMC. TGF-beta 1 decreased both NPR-A and NPR-B mRNA levels with a predominant effect in SHR cells at high cell density.(ABSTRACT TRUNCATED AT 250 WORDS)
Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J
2018-05-10
The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates airway smooth muscle contraction by mediating activation of the serine-threonine kinase, Pak, to promote actin polymerization. Pak catalyzes paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signaling module to paxillin, which activates the GEF activity βPIX towards cdc42. Cdc42 is required for the activation of Neuronal Wiskott-Aldrich Syndrome protein (N-WASp), which transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
Drews, Ulrich; Renz, Matthias; Busch, Christian; Reisenauer, Christl
2012-11-01
In a previous study we observed impaired smooth muscle in the uterosacral ligament (USL) of patients with pelvic organ prolapse. The aims of the study were to describe the method of the novel microperfusion system and to determine normal function and pharmacology of smooth muscle in the USL. Samples from the USL were obtained during hysterectomy for benign reasons. Small stretches of connective tissue were mounted in a perfusion chamber under the stereomicroscope. Isotonic contractions of smooth muscle were monitored by digital time-lapse video and quantified by image processing. Constant perfusion with carbachol elicited tonic and pulse stimulation with carbachol and oxytocin rhythmic contractions of smooth muscle in the ground reticulum. Under constant perfusion with relaxin the tonic contraction after carbachol was abolished. With the novel microperfusion system, isotonic contractions of smooth muscle in the USL can be recorded and quantified in the tissue microenvironment on the microscopic level. The USL smooth muscle is cholinergic, stimulated by oxytocin and modulated by relaxin. Copyright © 2012 Wiley Periodicals, Inc.
Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.
Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda
2015-12-01
The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. © 2015 Wiley Periodicals, Inc.
STOL ride control feasibility study
NASA Technical Reports Server (NTRS)
Gordon, C. K.; Dodson, R. O.
1973-01-01
The feasibility of developing a ride-smoothing control system for a 20-passenger turboprop STOL transport was assessed. Five different ride-control system configurations with varying degrees of complexity, performance, and cost were investigated. Results indicate that a satisfactory ride-control system can be practically implemented on the aircraft with minimum flight performance degradation.
Chunky and Smooth Images of Change
ERIC Educational Resources Information Center
Castillo-Garsow, Carlos; Johnson, Heather Lynn; Moore, Kevin C.
2013-01-01
Characterizing how quantities change (or vary) in tandem has been an important historical focus in mathematics that extends into the current teaching of mathematics. Thus, how students conceptualize quantities that change in tandem becomes critical to their mathematical development. In this paper, we propose two images of change: chunky and…
Two-dimensional potential flow past a smooth wall with partly constant curvature
NASA Technical Reports Server (NTRS)
Koppenfels, Werner Von
1941-01-01
The speed of a two-dimensional flow potential flow past a smooth wall, which evinces a finite curvature jump at a certain point and approximates to two arcs in the surrounding area, has a vertical tangent of inflection in the critical point as a function of the arc length of the boundary curve. This report looks at a general theorem of the local character of the conformal function at the critical point as well as the case of the finite curvature jump.
Functional connectivity analysis in EEG source space: The choice of method
Knyazeva, Maria G.
2017-01-01
Functional connectivity (FC) is among the most informative features derived from EEG. However, the most straightforward sensor-space analysis of FC is unreliable owing to volume conductance effects. An alternative—source-space analysis of FC—is optimal for high- and mid-density EEG (hdEEG, mdEEG); however, it is questionable for widely used low-density EEG (ldEEG) because of inadequate surface sampling. Here, using simulations, we investigate the performance of the two source FC methods, the inverse-based source FC (ISFC) and the cortical partial coherence (CPC). To examine the effects of localization errors of the inverse method on the FC estimation, we simulated an oscillatory source with varying locations and SNRs. To compare the FC estimations by the two methods, we simulated two synchronized sources with varying between-source distance and SNR. The simulations were implemented for hdEEG, mdEEG, and ldEEG. We showed that the performance of both methods deteriorates for deep sources owing to their inaccurate localization and smoothing. The accuracy of both methods improves with the increasing between-source distance. The best ISFC performance was achieved using hd/mdEEG, while the best CPC performance was observed with ldEEG. In conclusion, with hdEEG, ISFC outperforms CPC and therefore should be the preferred method. In the studies based on ldEEG, the CPC is a method of choice. PMID:28727750
Time-varying higher order spectra
NASA Astrophysics Data System (ADS)
Boashash, Boualem; O'Shea, Peter
1991-12-01
A general solution for the problem of time-frequency signal representation of nonlinear FM signals is provided, based on a generalization of the Wigner-Ville distribution. The Wigner- Ville distribution (WVD) is a second order time-frequency representation. That is, it is able to give ideal energy concentration for quadratic phase signals and its ensemble average is a second order time-varying spectrum. The same holds for Cohen's class of time-frequency distributions, which are smoothed versions of the WVD. The WVD may be extended so as to achieve ideal energy concentration for higher order phase laws, and such that the expectation is a time-varying higher order spectrum. The usefulness of these generalized Wigner-Ville distributions (GWVD) is twofold. Firstly, because they achieve ideal energy concentration for polynomial phase signals, they may be used for optimal instantaneous frequency estimation. Second, they are useful for discriminating between nonstationary processes of differing higher order moments. In the same way that the WVD is generalized, we generalize Cohen's class of TFDs by defining a class of generalized time-frequency distributions (GTFDs) obtained by a two dimensional smoothing of the GWVD. Another results derived from this approach is a method based on higher order spectra which allows the separation of cross-terms and auto- terms in the WVD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jassal, K; Sarkar, B; Ganesh, T
Purpose: The study investigates the effect of fluence smoothing parameter on VMAT plans for ten head-neck cancer patients using Monaco5.00.04. Methods: VMAT plans were created using Monaco5.00.04 planning system for 10 head-neck patients. Four plans were generated for each patient using available smoothing parameters i.e. high, medium, low and off. The number of monitor units required to deliver 1 cGy was defined as a modulation degree; and was taken as a measure of plan complexity. Routinely used plan quality parameters Conformity index (CI) and Homogeneity index (HI) were used in the study. As a protocol our center, practices “medium” smoothingmore » for clinical implementation. Plans with medium smoothing were opted as reference plans due to the clinical acceptance and dosimetric verifications made on these plans. Plans were generated by varying the smoothing parameter and re-optimization was done. The PTV was evaluated for D98%, D95%, D50%, D1% and prescription isodose volume (PIV). For critical organs; spine and parotids the parameters recorded were D1cc and Dmean respectively. Results: The cohort had the median prescription as 6000 cGy in the range of 6600 cGy - 4500 cGy. The modulation degree was observed to increase up to 6% from reference to the most complex plan. High smoothing had about 11% increase in segments which marginally (0.5 to 1%) increased the homogeneity index while conformity index remains constant. For spine the maximum D1cc was observed in medium smoothing as 4639.8 cGy, this plan was clinically accepted and dosimetrically verified. Similarly for parotids, the Dmean was 2011.9 cGy and 1817.05 cGy. Conclusion: The sensitivity of plan quality in terms of smoothing options (high, medium, low and off) available in Monaco 5.00.04 was resulted in minimal difference in terms of target coverage, conformity index and homogeneity index. Similarly changing smoothing did not result in any enhanced advantage in sparing of critical organs.« less
Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)
2002-01-01
We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.
Biomimetic and synthetic esophageal tissue engineering.
Jensen, Todd; Blanchette, Alex; Vadasz, Stephanie; Dave, Apeksha; Canfarotta, Michael; Sayej, Wael N; Finck, Christine
2015-07-01
A tissue-engineered esophagus offers an alternative for the treatment of pediatric patients suffering from severe esophageal malformations, caustic injury, and cancer. Additionally, adult patients suffering from carcinoma or trauma would benefit. Donor rat esophageal tissue was physically and enzymatically digested to isolate epithelial and smooth muscle cells, which were cultured in epithelial cell medium or smooth muscle cell medium and characterized by immunofluorescence. Isolated cells were also seeded onto electrospun synthetic PLGA and PCL/PLGA scaffolds in a physiologic hollow organ bioreactor. After 2 weeks of in vitro culture, tissue-engineered constructs were orthotopically transplanted. Isolated cells were shown to give rise to epithelial, smooth muscle, and glial cell types. After 14 days in culture, scaffolds supported epithelial, smooth muscle and glial cell phenotypes. Transplanted constructs integrated into the host's native tissue and recipients of the engineered tissue demonstrated normal feeding habits. Characterization after 14 days of implantation revealed that all three cellular phenotypes were present in varying degrees in seeded and unseeded scaffolds. We demonstrate that isolated cells from native esophagus can be cultured and seeded onto electrospun scaffolds to create esophageal constructs. These constructs have potential translatable application for tissue engineering of human esophageal tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures
NASA Technical Reports Server (NTRS)
Hinson, W. F.; Goslee, J. W.
1980-01-01
Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.
Tachykinin receptor expression and function in human esophageal smooth muscle.
Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M
2006-08-01
Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.
Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan
2013-01-01
Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.
Biochemical Characterization and Cellular Effects of CADASIL Mutants of NOTCH3
Meng, He; Zhang, Xiaojie; Yu, Genggeng; Lee, Soo Jung; Chen, Y. Eugene; Prudovsky, Igor; Wang, Michael M.
2012-01-01
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells. PMID:23028706
Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D
2013-11-01
The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.
Earthquake source parameters determined by the SAFOD Pilot Hole seismic array
Imanishi, K.; Ellsworth, W.L.; Prejean, S.G.
2004-01-01
We estimate the source parameters of #3 microearthquakes by jointly analyzing seismograms recorded by the 32-level, 3-component seismic array installed in the SAFOD Pilot Hole. We applied an inversion procedure to estimate spectral parameters for the omega-square model (spectral level and corner frequency) and Q to displacement amplitude spectra. Because we expect spectral parameters and Q to vary slowly with depth in the well, we impose a smoothness constraint on those parameters as a function of depth using a linear first-differenfee operator. This method correctly resolves corner frequency and Q, which leads to a more accurate estimation of source parameters than can be obtained from single sensors. The stress drop of one example of the SAFOD target repeating earthquake falls in the range of typical tectonic earthquakes. Copyright 2004 by the American Geophysical Union.
Davies, Kelvin P; Tar, Moses; Rougeot, Catherine; Melman, Arnold
2007-02-01
To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 microg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 microm phenylephrine. Intracorporal injection of 100 microg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55-65 min the ICP/BP ratio increased to approximately 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 microm phenylephrine, 1 microm CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 microg/mL) compared with carrier alone. These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Bennun, Leonardo
2017-07-01
A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE) and other X-ray fluorescence spectroscopic methods, etc. This algorithm, when properly applied, does not distort the form nor the intensity of the signal, so it is well suited for all kind of spectroscopic techniques. This method is extremely effective at reducing high-frequency noise in the signal much more efficient than a single rectangular smooth of the same width. As all of smoothing techniques, the proposed method improves the precision of the results, but in this case we found also a systematic improvement on the accuracy of the results. We still have to evaluate the improvement on the quality of the results when this method is applied over real experimental results. We expect better characterization of the net area quantification of the peaks, and smaller Detection and Quantification Limits. We have applied this method to signals that obey Poisson statistics, but with the same ideas and criteria, it could be applied to time series. In a general case, when this algorithm is applied over experimental results, also it would be required that the sought characteristic functions, required for this weighted smoothing method, should be obtained from a system with strong stability. If the sought signals are not perfectly clean, this method should be carefully applied
Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells
Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H
2006-01-01
Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553
Bhetwal, Bhupal P.; An, Changlong; Baker, Salah A.; Lyon, Kristin L.
2013-01-01
Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis. PMID:23576331
Mitochondrial motility and vascular smooth muscle proliferation.
Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G
2012-12-01
Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic target against vascular disease.
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah
2011-12-01
SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.
Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik
2017-05-10
Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI*
Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili
2012-01-01
In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and temporal information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR) model. PMID:24533041
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI
Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain
2018-01-01
Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.
Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain
2018-01-01
Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.
New aspects of vascular remodelling: the involvement of all vascular cell types.
McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J
2005-07-01
Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.
Brilliant Blue FCF as an Alternative Dye for Saphenous Vein Graft Marking Effect on Conduit Function
Voskresensky, Igor V.; Wise, Eric S.; Hocking, Kyle M.; Li, Fan Dong; Osgood, Michael J.; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce
2014-01-01
IMPORTANCE Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. OBJECTIVES To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. DESIGN, SETTING, AND PARTICIPANTS Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. MAIN OUTCOMES AND MEASURES Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. RESULTS Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 105N/m2 vs 0.057 [0.016] × 105 N/m2; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], −17.5% [2.1%] for unmanipulated HSVs vs −27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2′(3′)-O-(4-benzoyl)benzoyl-adenosine-5′-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). CONCLUSIONS AND RELEVANCE Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia. PMID:25251505
Voskresensky, Igor V; Wise, Eric S; Hocking, Kyle M; Li, Fan Dong; Osgood, Michael J; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce
2014-11-01
Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 10⁵ N/m² vs 0.057 [0.016] × 10⁵ N/m²; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], -17.5% [2.1%] for unmanipulated HSVs vs -27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2'(3')-O-(4-benzoyl)benzoyl-adenosine-5'-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia.
Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.
ERIC Educational Resources Information Center
Mandell, Marvin B.; Bretschneider, Stuart I.
1984-01-01
The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)
Smooth Optical Self-similar Emission of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil
2017-08-01
We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.
ERIC Educational Resources Information Center
Moses, Tim; Holland, Paul W.
2010-01-01
In this study, eight statistical strategies were evaluated for selecting the parameterizations of loglinear models for smoothing the bivariate test score distributions used in nonequivalent groups with anchor test (NEAT) equating. Four of the strategies were based on significance tests of chi-square statistics (Likelihood Ratio, Pearson,…
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
Johansson, Agot; Holmgren, Susanne
2003-04-01
Changes in intracellular Ca(2+) concentration control many essential cellular functions like the contraction of smooth muscle cells. The aim of this study was to investigate if the tachykinin substance P (SP) engages external Ca(2+)-sources, internal Ca(2+)-sources, or both in the contraction of the gastrointestinal smooth muscle of rainbow trout (Oncorhynchus mykiss) and the African clawed frog (Xenopus laevis). Strip preparations made of either longitudinal smooth muscle of proximal intestine or circular smooth muscle of cardiac stomach were mounted in organ baths and the tension was recorded via force transducers. Ca(2+)-free Ringer's solution containing the Ca(2+) chelating agent EGTA (2mM) abolished all spontaneous contractions. Exposure to SP in Ca(2+)-free solution decreased the response. Preparations were also treated with the Ca(2+)-ATPase inhibitor thapsigargin (10 microM) during 30 min. Thapsigargin reduced the effect of SP on intestinal longitudinal smooth muscle in rainbow trout and on stomach circular smooth muscle in the African clawed frog and to a less extent in the intestinal longitudinal smooth muscle. The results show that external Ca(2+) is of great importance, but is not the only source of Ca(2+) recruitment in SP-activation of gastrointestinal smooth muscle in rainbow trout and the African clawed frog.
NASA Technical Reports Server (NTRS)
Bierman, G. J.
1975-01-01
Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.
NASA Technical Reports Server (NTRS)
Schiess, James R.; Kerr, Patricia A.; Smith, Olivia C.
1988-01-01
Smooth curves drawn among plotted data easily. Rational-Spline Approximation with Automatic Tension Adjustment algorithm leads to flexible, smooth representation of experimental data. "Tension" denotes mathematical analog of mechanical tension in spline or other mechanical curve-fitting tool, and "spline" as denotes mathematical generalization of tool. Program differs from usual spline under tension, allows user to specify different values of tension between adjacent pairs of knots rather than constant tension over entire range of data. Subroutines use automatic adjustment scheme that varies tension parameter for each interval until maximum deviation of spline from line joining knots less than or equal to amount specified by user. Procedure frees user from drudgery of adjusting individual tension parameters while still giving control over local behavior of spline.
NASA Astrophysics Data System (ADS)
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.
2012-05-01
Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.
Smooth interface effects on the confinement properties of GaSb/Al xGa 1- xSb quantum wells
NASA Astrophysics Data System (ADS)
Adib, Artur B.; de Sousa, Jeanlex S.; Farias, Gil A.; Freire, Valder N.
2000-10-01
A theoretical investigation on the confinement properties of GaSb/Al xGa 1- xSb single quantum wells (QWs) with smooth interfaces is performed. Error function ( erf)-like interfacial aluminum molar fraction variations in the QWs, from which it is possible to obtain the carriers effective masses and confinement potential profiles, are assumed. It is shown that the existence of smooth interfaces blue shifts considerably the confined carriers and exciton energies, an effect which is stronger in thin QWs.
NASA Astrophysics Data System (ADS)
Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.
2016-04-01
Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.
Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.
2007-01-01
Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105
How Cristiano Ronaldo performs his knuckleball?
NASA Astrophysics Data System (ADS)
Cohen, Caroline; Darbois Texier, Baptiste; Quere, David; Clanet, Christophe
2012-11-01
A soccer ball kicked at very low spin can exhibit a zigzag trajectory. Along its straight path, the ball deviates laterally from about 0.2 m, that is to say one ball diameter. One zig zag happens as the ball travelled about 15 m. As the deviation direction seems unpredictable, this effect is highly annoying for goalkeepers. That why Cristiano Ronaldo and many soccer players are looking for this phenomenon. Those trajectories called knuckleballs are also observed on volleyball and baseball. We study experimentally indoor knuckleballs for different balls varying from soccer balls to smooth spheres. We show that knuckle effect doesn't derive from ball deformations at foot impact or ball seams. Actually, aerodynamic lift forces on a smooth sphere are fluctuating and are responsible for knuckleballs. From this study, we deduce side force intensity exerted on smooth spheres and sport balls for typical game Reynolds number (Re ~104 -106). Finally we discuss required conditions to observe a knuckleball on the sport field.
NASA Astrophysics Data System (ADS)
Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.
2013-10-01
Plants emit significant amounts of monoterpenes into the Earth's atmosphere where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror images forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR. The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.
Functional data analysis for dynamical system identification of behavioral processes.
Trail, Jessica B; Collins, Linda M; Rivera, Daniel E; Li, Runze; Piper, Megan E; Baker, Timothy B
2014-06-01
Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate 2 innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
The Highly Adaptive Lasso Estimator
Benkeser, David; van der Laan, Mark
2017-01-01
Estimation of a regression functions is a common goal of statistical learning. We propose a novel nonparametric regression estimator that, in contrast to many existing methods, does not rely on local smoothness assumptions nor is it constructed using local smoothing techniques. Instead, our estimator respects global smoothness constraints by virtue of falling in a class of right-hand continuous functions with left-hand limits that have variation norm bounded by a constant. Using empirical process theory, we establish a fast minimal rate of convergence of our proposed estimator and illustrate how such an estimator can be constructed using standard software. In simulations, we show that the finite-sample performance of our estimator is competitive with other popular machine learning techniques across a variety of data generating mechanisms. We also illustrate competitive performance in real data examples using several publicly available data sets. PMID:29094111
Lynch, Miranda L.; Huang, Li-Shan; Cox, Christopher; Strain, J.J.; Myers, Gary J.; Bonham, Maxine P.; Shamlaye, Conrad F.; Stokes-Riner, Abbie; Wallace, Julie M.W.; Duffy, Emeir M.; Clarkson, Thomas W.; Davidson, Philip W.
2010-01-01
Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children’s development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children’s neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a case of multiple exposures to nutrients and to MeHg. The results encourage more emphasis on a holistic view of the risks and benefits of fish consumption as it relates to infant development. PMID:20961536
Lynch, Miranda L; Huang, Li-Shan; Cox, Christopher; Strain, J J; Myers, Gary J; Bonham, Maxine P; Shamlaye, Conrad F; Stokes-Riner, Abbie; Wallace, Julie M W; Duffy, Emeir M; Clarkson, Thomas W; Davidson, Philip W
2011-01-01
Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a case of multiple exposures to nutrients and to MeHg. The results encourage more emphasis on a holistic view of the risks and benefits of fish consumption as it relates to infant development. Copyright © 2010 Elsevier Inc. All rights reserved.
Estimating Mixture of Gaussian Processes by Kernel Smoothing
Huang, Mian; Li, Runze; Wang, Hansheng; Yao, Weixin
2014-01-01
When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from EM algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset. PMID:24976675
The Secondary Markets of Higher Education: A Canadian Context
ERIC Educational Resources Information Center
Litwin, Jeffrey M.
2009-01-01
Viewed through a market paradigm, universities can appear as the aggregation of numerous and varied markets. While universities' primary markets focus on teaching and research, they are active in many other markets, most of which support and contribute to their smooth, effective and efficient operation. Using financial and real estate markets as…
Jiang, Shenglin; Huang, Chi; Gu, Honggang; Liu, Shiyuan; Zhu, Shuai; Li, Ming-Yu; Yao, Lingmin; Wu, Yunyi; Zhang, Guangzu
2018-01-01
Ferroelectric thin films have been utilized in a wide range of electronic and optical applications, in which their morphologies and properties can be inherently tuned by a qualitative control during growth. In this work, we demonstrate the evolution of the Pb0.865La0.09(Zr0.65Ti0.35)O3 (PLZT) thin films on MgO (200) with high uniformity and optimized optical property via the controls of the deposition temperatures and oxygen pressures. The perovskite phase can only be obtained at the deposition temperature above 700 °C and oxygen pressure over 50 Pa due to the improved crystallinity. Meanwhile, the surface morphologies gradually become smooth and compact owing to spontaneously increased nucleation sites with the elevated temperatures, and the crystallization of PLZT thin films also sensitively respond to the oxygen vacancies with the variation of oxygen pressures. Correspondingly, the refractive indices gradually develop with variations of the deposition temperatures and oxygen pressures resulted from the various slight loss, and the extinction coefficient for each sample is similarly near to zero due to the relatively smooth morphology. The resulting PLZT thin films exhibit the ferroelectricity, and the dielectric constant sensitively varies as a function of electric filed, which can be potentially applied in the electronic and optical applications. PMID:29596398
Simonsen, Daniel; Popovic, Mirjana B; Spaich, Erika G; Andersen, Ole Kæseler
2017-11-01
The present paper describes the design and test of a low-cost Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during the execution of an upper limb exercise. Eleven sub-acute stroke patients with varying degrees of upper limb function were recruited. Each subject participated in a control session (repeated twice) and a feedback session (repeated twice). In each session, the subjects were presented with a rectangular pattern displayed on a vertical mounted monitor embedded in the table in front of the patient. The subjects were asked to move a marker inside the rectangular pattern by using their most affected hand. During the feedback session, the thickness of the rectangular pattern was changed according to the performance of the subject, and the color of the marker changed according to its position, thereby guiding the subject's movements. In the control session, the thickness of the rectangular pattern and the color of the marker did not change. The results showed that the movement similarity and smoothness was higher in the feedback session than in the control session while the duration of the movement was longer. The present study showed that adaptive visual feedback delivered by use of the Kinect sensor can increase the similarity and smoothness of upper limb movement in stroke patients.
West Antarctic Balance Fluxes: Impact of Smoothing, Algorithm and Topography.
NASA Astrophysics Data System (ADS)
Le Brocq, A.; Payne, A. J.; Siegert, M. J.; Bamber, J. L.
2004-12-01
Grid-based calculations of balance flux and velocity have been widely used to understand the large-scale dynamics of ice masses and as indicators of their state of balance. This research investigates a number of issues relating to their calculation for the West Antarctic Ice Sheet (see below for further details): 1) different topography smoothing techniques; 2) different grid based flow-apportioning algorithms; 3) the source of the flow direction, whether from smoothed topography, or smoothed gravitational driving stress; 4) different flux routing techniques and 5) the impact of different topographic datasets. The different algorithms described below lead to significant differences in both ice stream margins and values of fluxes within them. This encourages caution in the use of grid-based balance flux/velocity distributions and values, especially when considering the state of balance of individual ice streams. 1) Most previous calculations have used the same numerical scheme (Budd and Warner, 1996) applied to a smoothed topography in order to incorporate the longitudinal stresses that smooth ice flow. There are two options to consider when smoothing the topography, the size of the averaging filter and the shape of the averaging function. However, this is not a physically-based approach to incorporating smoothed ice flow and also introduces significant flow artefacts when using a variable weighting function. 2) Different algorithms to apportion flow are investigated; using 4 or 8 neighbours, and apportioning flow to all down-slope cells or only 2 (based on derived flow direction). 3) A theoretically more acceptable approach of incorporating smoothed ice flow is to use the smoothed gravitational driving stress in x and y components to derive a flow direction. The flux can then be apportioned using the flow direction approach used above. 4) The original scheme (Budd and Warner, 1996) uses an elevation sort technique to calculate the balance flux contribution from all cells to each individual cell. However, elevation sort is only successful when ice cannot flow uphill. Other possible techniques include using a recursive call for each neighbour or using a sparse matrix solution. 5) Two digital elevation models are used as input data, which have significant differences in coastal and mountainous areas and therefore lead to different calculations. Of particular interest is the difference in the Rutford Ice Stream/Carlson Inlet and Kamb Ice Stream (Ice Stream C) fluxes.
NASA Astrophysics Data System (ADS)
Chu, Huaqiang; Liu, Fengshan; Consalvi, Jean-Louis
2014-08-01
The relationship between the spectral line based weighted-sum-of-gray-gases (SLW) model and the full-spectrum k-distribution (FSK) model in isothermal and homogeneous media is investigated in this paper. The SLW transfer equation can be derived from the FSK transfer equation expressed in the k-distribution function without approximation. It confirms that the SLW model is equivalent to the FSK model in the k-distribution function form. The numerical implementation of the SLW relies on a somewhat arbitrary discretization of the absorption cross section whereas the FSK model finds the spectrally integrated intensity by integration over the smoothly varying cumulative-k distribution function using a Gaussian quadrature scheme. The latter is therefore in general more efficient as a fewer number of gray gases is required to achieve a prescribed accuracy. Sample numerical calculations were conducted to demonstrate the different efficiency of these two methods. The FSK model is found more accurate than the SLW model in radiation transfer in H2O; however, the SLW model is more accurate in media containing CO2 as the only radiating gas due to its explicit treatment of ‘clear gas.’
Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans.
Vurro, Milena; Crowell, Anne Marie; Pezaris, John S
2014-01-01
The psychophysics of reading with artificial sight has received increasing attention as visual prostheses are becoming a real possibility to restore useful function to the blind through the coarse, pseudo-pixelized vision they generate. Studies to date have focused on simulating retinal and cortical prostheses; here we extend that work to report on thalamic designs. This study examined the reading performance of normally sighted human subjects using a simulation of three thalamic visual prostheses that varied in phosphene count, to help understand the level of functional ability afforded by thalamic designs in a task of daily living. Reading accuracy, reading speed, and reading acuity of 20 subjects were measured as a function of letter size, using a task based on the MNREAD chart. Results showed that fluid reading was feasible with appropriate combinations of letter size and phosphene count, and performance degraded smoothly as font size was decreased, with an approximate doubling of phosphene count resulting in an increase of 0.2 logMAR in acuity. Results here were consistent with previous results from our laboratory. Results were also consistent with those from the literature, despite using naive subjects who were not trained on the simulator, in contrast to other reports.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Convergence Rates for Multivariate Smoothing Spline Functions.
1982-10-01
GAI (,T) g (T)dT - g In order to show convergence of the series and obtain bounds on the terms, we need to estimate £ Now (1 + Ay v) AyV ( g ,#V...Cox* Technical Summary Report #2437 October 1982 ABSTRACT Given data z i - g (ti ) + ci, 1 4 i 4 n, where g is the unknown function, the ti are unknown...d-dimensional variables in a domain fl, and the ei are i.i.d. random errors, the smoothing spline estimate g n is defined to be the
Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael
2016-05-01
Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.
Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis
NASA Technical Reports Server (NTRS)
Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher
1996-01-01
We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.
Treatments for achalasia in 2017: how to choose among them.
Kahrilas, Peter J; Pandolfino, John E
2017-07-01
To review recent advances in achalasia diagnostics and therapeutics. The cardinal feature of achalasia, impaired lower esophageal sphincter (LES) relaxation, can occur in association with varied patterns of esophageal contractility. The Chicago Classification distinguishes among these as follows: without contractility (type I), with panesophageal pressurization (type II), with premature (spastic) distal esophageal contractions (type III), or even with preserved peristalsis [esophagogastric junction (EGJ) outlet obstruction]. Physiological testing also reveals achalasia-like syndromes that also benefit from achalasia therapies. Coincident with this has been the development of peroral endoscopic myotomy (POEM), an endoscopic technique for performing an esophageal myotomy. Hence, the option now exists to either selectively ablate the LES (pneumatic dilation, laparoscopic Heller myotomy, or POEM) or to ablate the sphincter and create a myotomy along some or the entire adjacent smooth muscle esophagus (POEM). Each achalasia syndrome has unique treatment considerations; type II achalasia responds well to all therapies, whereas type III responds best to POEM. Emerging data support the concept that optimal management of achalasia is phenotype-specific, guided by high-resolution manometry, and, in some instance, functional luminal imaging probe studies. This opinion article reviews the varied characteristic and treatment considerations of achalasia syndromes as currently understood.
Tissue Mechanics and Its Relationship to Athletic Injury Prevention.
ERIC Educational Resources Information Center
Alexander, Marion J. L.
Three types of dense fibrous connective tissue are described: articular cartilage; tendon; and ligament; and the characteristics of each are related to its function. Articular cartilage is the smooth covering over the surface of bone at joints, and is comprised of up to 80 percent water. This smooth covering serves to decrease the friction between…
Random function theory revisited - Exact solutions versus the first order smoothing conjecture
NASA Technical Reports Server (NTRS)
Lerche, I.; Parker, E. N.
1975-01-01
We remark again that the mathematical conjecture known as first order smoothing or the quasi-linear approximation does not give the correct dependence on correlation length (time) in many cases, although it gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is unreliable.
Buckner, C D; Klopfenstein, T J; Rolfe, K M; Griffin, W A; Lamothe, M J; Watson, A K; MacDonald, J C; Schacht, W H; Schroeder, P
2013-06-01
Four experiments were conducted to evaluate RUP content and digestibility for smooth bromegrass, subirrigated meadow, upland native range, and warm-season grasses. Samples were collected from esophageally cannulated cows or ruminally cannulated steers. Forages were ruminally incubated in in situ bags for durations of time based on 75% of total mean retention time, which was based on IVDMD and rate of passage calculations. One-half of the bags were duodenally incubated and excreted in the feces, and NDIN was analyzed on all bags for RUP calculations. Crude protein was numerically greater early in the growing cycle for grasses compared with later as grasses matured (P ≤ 0.32). The RUP was 13.3%, 13.3%, and 19.7% of CP for smooth bromegrass, subirrigated meadow, and upland native range, respectively. These values tended to be lower early in the growth cycle and increased (linear P ≤ 0.13) as forages matured for warm-season grasses and subirrigated meadows. Because both CP and RUP content change throughout the growing season, expressing RUP as a percentage of DM gives more consistent averages compared with RUP as a percentage of CP. Coefficient of variation values for RUP as a percentage of DM averaged 0.21 over all 4 experiments compared with 0.26 for RUP as a percentage of CP. Average RUP as a percentage of DM was 2.03%, 1.53%, and 1.94% for smooth bromegrass, subirrigated meadow, and upland native range, respectively. Total tract indigestible protein (TTIDP) linearly increased with maturity for subirrigated meadow samples (P < 0.01). A quadratic response (P ≤ 0.06) for TTIDP was observed in smooth bromegrass and warm-season grass samples. Digestibility of RUP varied considerably, ranging from 25% to 60%. Subirrigated meadow, native range, and smooth bromegrass samples tended to have linear decreases (P ≤ 0.11) in RUP digestibility throughout the growing season. The amount of digested RUP was fairly consistent across experiments and averages for smooth bromegrass, subirrigated meadow, and upland native range were 0.92%, 0.64%, and 0.49% of DM, respectively. Warm-season grasses in Exp. 2 had greater RUP (4.31% of DM) and amount of RUP digested (2.26% of DM), possibly because of cattle selecting for leadplant that contains more CP than the grasses. Forages can vary in CP, RUP, TTIDP, and RUP digestibility depending on the forage type, year, and time within year, but RUP digestibility is likely less than what previous sources have reported.
Davies, Kelvin P.; Tar, Moses; Rougeot, Catherine; Melman, Arnold
2007-01-01
OBJECTIVE To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. MATERIALS AND METHODS Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 μg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 μM phenylephrine. RESULTS Intracorporal injection of 100 μg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55–65 min the ICP/BP ratio increased to ≈ 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 μM phenylephrine, 1 μM CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 μg/mL) compared with carrier alone. CONCLUSION These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue. PMID:17026587
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
An approach for spherical harmonic analysis of non-smooth data
NASA Astrophysics Data System (ADS)
Wang, Hansheng; Wu, Patrick; Wang, Zhiyong
2006-12-01
A method is proposed to evaluate the spherical harmonic coefficients of a global or regional, non-smooth, observable dataset sampled on an equiangular grid. The method is based on an integration strategy using new recursion relations. Because a bilinear function is used to interpolate points within the grid cells, this method is suitable for non-smooth data; the slope of the data may be piecewise continuous, with extreme changes at the boundaries. In order to validate the method, the coefficients of an axisymmetric model are computed, and compared with the derived analytical expressions. Numerical results show that this method is indeed reasonable for non-smooth models, and that the maximum degree for spherical harmonic analysis should be empirically determined by several factors including the model resolution and the degree of non-smoothness in the dataset, and it can be several times larger than the total number of latitudinal grid points. It is also shown that this method is appropriate for the approximate analysis of a smooth dataset. Moreover, this paper provides the program flowchart and an internet address where the FORTRAN code with program specifications are made available.
Airway structure and function in Eisenmenger's syndrome.
McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L
1998-10-01
The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.
Multidecadal climate variability of global lands and oceans
McCabe, G.J.; Palecki, M.A.
2006-01-01
Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.
Tanović, Adnan; Fernández, Ester; Jiménez, Marcel
2006-01-01
Aim To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. Methods We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10−8-10−4 mol/L, substance P (SP) 10−9-10−5 mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. Results After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Conclusions Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms. PMID:16625700
Tanović, Adnan; Fernández, Ester; Jiménez, Marcel
2006-04-01
To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10(-8)-10(-4) mol/L, substance P (SP) 10(-9)-10(-5) mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms.
Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.
Stålhand, J; Klarbring, A; Holzapfel, G A
2008-01-01
Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin
Lu, Hailong; Fagnant, Patricia M.; Bookwalter, Carol S.; Joel, Peteranne; Trybus, Kathleen M.
2015-01-01
Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD. PMID:26153420
Accounting for epistatic interactions improves the functional analysis of protein structures.
Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier
2013-11-01
The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.
Accounting for epistatic interactions improves the functional analysis of protein structures
Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier
2013-01-01
Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383
Dynamical influence processes on networks: general theory and applications to social contagion.
Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan
2013-08-01
We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.
Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage.
Rich, K A; Kerr, J B; de Kretser, D M
1979-02-01
To study the effects of seminiferous tubule damage on Leydig cell function and morphology, rats were treated by fetal irradiation (to induce Sertoli cell-only syndrome, SCO), 3 months administration of hydroxyurea (HU), or chronic feeding of a vitamin A-deficient diet (VAD). Leydig cell function was assessed by the measurement of serum LH and testosterone and the response of serum testosterone to hCG stimulation, while morphology was studied by electron microscopy after perfusion fixation. Serum LH was significantly elevated in each experimental group, while basal serum testosterone was significantly lower only in SCO rats. In all treatment groups, the serum testosterone response to hCG was significantly decreased when measureed as the area under the response curve. Despite a decreased response to hCG, the Leydig cells were larger than normal and showed striking increases in quantities of smooth endoplasmic reticulum, mitochondria and Golgi complex. Leydig cell dysfunction has been demonstrated in animals with varying degrees of seminiferous tubule damage, but paradoxically the cytological features of the Leydig cells were indicative of hypertrophy.
Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model
Kung, Y. F.; Bazin, C.; Wohlfeld, K.; ...
2017-11-02
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Weighted Bergman Kernels and Quantization}
NASA Astrophysics Data System (ADS)
Engliš, Miroslav
Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion
Optimal spatial filtering and transfer function for SAR ocean wave spectra
NASA Technical Reports Server (NTRS)
Beal, R. C.; Tilley, D. G.
1981-01-01
The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.
Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.
2013-01-01
Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176
Gallos, George; Remy, Kenneth E; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W
2013-11-01
Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.
Apparatus and method for increasing the bandwidth of a laser beam
Chaffee, Paul H.
1991-01-01
A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
The computation of Laplacian smoothing splines with examples
NASA Technical Reports Server (NTRS)
Wendelberger, J. G.
1982-01-01
Laplacian smoothing splines (LSS) are presented as generalizations of graduation, cubic and thin plate splines. The method of generalized cross validation (GCV) to choose the smoothing parameter is described. The GCV is used in the algorithm for the computation of LSS's. An outline of a computer program which implements this algorithm is presented along with a description of the use of the program. Examples in one, two and three dimensions demonstrate how to obtain estimates of function values with confidence intervals and estimates of first and second derivatives. Probability plots are used as a diagnostic tool to check for model inadequacy.
Relating Lexicographic Smoothness and Directed Subdifferentiability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Kamil A.
2016-06-03
Lexicographic derivatives developed by Nesterov and directed subdifferentials developed by Baier, Farkhi, and Roshchina are both essentially nonconvex generalized derivatives for nonsmooth nonconvex functions and satisfy strict calculus rules and mean-value theorems. This article aims to clarify the relationship between the two generalized derivatives. In particular, for scalar-valued functions that are locally Lipschitz continuous, lexicographic smoothness and directed subdifferentiability are shown to be equivalent, along with the necessary optimality conditions corresponding to each. For such functions, the visualization of the directed subdifferential-the Rubinov subdifferential-is shown to include the lexicographic subdifferential, and is also shown to be included in its closedmore » convex hull. As a result, various implications of these results are discussed.« less
Seasonal extreme value statistics for precipitation in Germany
NASA Astrophysics Data System (ADS)
Fischer, Madlen; Rust, Henning W.; Ulbrich, Uwe
2013-04-01
Extreme precipitation has a strong influence on environment, society and economy. It leads to large damage due to floods, mudslides, increased erosion or hail. While standard annual return levels are important for hydrological structures, seasonaly resolved return levels provide additional information for risk managment, e.g., for the agricultural sector. For 1208 stations in Germany, we calculate monthly resolved return levels. Instead of estimating parameters separately for every month in the year, we use a non-stationary approach and benefit from smoothly varying return levels throughout the year. This natural approach is more suitable to characterise seasonal variability of extreme precipitation and leads to more accurate return level estimates. Harmonic functions of different orders are used to describe the seasonal variation of GEV parameters and crossvalidation is used to determine a suitable model forall stations. Finally particularly vulnerable regions and associated month are investigated in more detail.
Cosmic Reionization On Computers III. The Clumping Factor
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2015-09-09
We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
Analysis of spectra using correlation functions
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Norton, Robert H.
1988-01-01
A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.
NASA Astrophysics Data System (ADS)
Park, Dubok; Han, David K.; Ko, Hanseok
2017-05-01
Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
Regularization of the big bang singularity with random perturbations
NASA Astrophysics Data System (ADS)
Belbruno, Edward; Xue, BingKan
2018-03-01
We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.
Cosmic Reionization On Computers III. The Clumping Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less
COSMIC REIONIZATION ON COMPUTERS. III. THE CLUMPING FACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A.; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu, E-mail: gnedin@fnal.gov
We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less
An improved local radial point interpolation method for transient heat conduction analysis
NASA Astrophysics Data System (ADS)
Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang
2013-06-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
The quasi-optimality criterion in the linear functional strategy
NASA Astrophysics Data System (ADS)
Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey
2018-07-01
The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.
Engineered microtopographies and surface chemistries direct cell attachment and function
NASA Astrophysics Data System (ADS)
Magin, Chelsea Marie
Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry and topography to successfully direct cell attachment and function.
Task-based statistical image reconstruction for high-quality cone-beam CT
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-11-01
Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A
2014-01-01
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
ERIC Educational Resources Information Center
Puhan, Gautam; Moses, Tim P.; Yu, Lei; Dorans, Neil J.
2007-01-01
The purpose of the current study was to examine whether log-linear smoothing of observed score distributions in small samples results in more accurate differential item functioning (DIF) estimates under the simultaneous item bias test (SIBTEST) framework. Data from a teacher certification test were analyzed using White candidates in the reference…
Investigation of the Specht density estimator
NASA Technical Reports Server (NTRS)
Speed, F. M.; Rydl, L. M.
1971-01-01
The feasibility of using the Specht density estimator function on the IBM 360/44 computer is investigated. Factors such as storage, speed, amount of calculations, size of the smoothing parameter and sample size have an effect on the results. The reliability of the Specht estimator for normal and uniform distributions and the effects of the smoothing parameter and sample size are investigated.
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
Runoff potentiality of a watershed through SCS and functional data analysis technique.
Adham, M I; Shirazi, S M; Othman, F; Rahman, S; Yusop, Z; Ismail, Z
2014-01-01
Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.
Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique
Adham, M. I.; Shirazi, S. M.; Othman, F.; Rahman, S.; Yusop, Z.; Ismail, Z.
2014-01-01
Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling. PMID:25152911
NASA Astrophysics Data System (ADS)
Prato, Marco; Bonettini, Silvia; Loris, Ignace; Porta, Federica; Rebegoldi, Simone
2016-10-01
The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.
Trajectory control of an articulated robot with a parallel drive arm based on splines under tension
NASA Astrophysics Data System (ADS)
Yi, Seung-Jong
Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.
Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue.
Brighton, Paul J; Wise, Alan; Dass, Narinder B; Willars, Gary B
2008-04-01
Neuromedin U (NmU) is a neuropeptide showing high levels of structural conservation across different species. Since its discovery in 1985, NmU has been implicated in numerous physiological roles, including smooth muscle contraction, energy homeostasis, stress, intestinal ion transport, pronociception, and circadian rhythm. Two G-protein-coupled receptors have been identified for NmU and cloned from humans, rats, and mice. Recombinantly expressed NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins, and NmU binds essentially irreversibly, preventing signaling to repetitive applications of NmU. However, it is unclear whether these properties reflect those of endogenously expressed NmU receptors or how these properties influence the functional consequences of NmU receptor signaling. Here, we have explored the signaling by rat NmU receptors expressed endogenously in cultured rat colonic smooth muscle cells and explore the functional consequence of this signaling by investigating the NmU-mediated contraction of ex vivo rat colonic smooth muscle preparations. We demonstrate that endogenous rat NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins. Furthermore, we show complex patterns of Ca(2+) signaling, including oscillations, and provide evidence of essentially irreversible binding of NmU to smooth muscle cells. Challenge of either circular or longitudinal rat isolated colonic smooth muscle preparations with NmU resulted in robust contractions. Stimulation was direct, and paradoxically, repetitive applications of NmU mediated repetitive contractions with no evidence of desensitization, highlighting a major discrepancy in the behavior of NmU in single cells and in intact tissues. The reason for this discrepancy is presently unknown.
Kim, Kyoungtae; Keller, Thomas C S
2002-01-07
Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.
NASA Astrophysics Data System (ADS)
García, Isaac A.; Llibre, Jaume; Maza, Susanna
2018-06-01
In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.
Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Ando, Tomotaka; Naito, Yoshiro; Masuyama, Tohru; Hirotani, Shinichi
2017-04-06
Although adaptive servo-ventilation (ASV) therapy has beneficial effects on chronic heart failure (CHF), a relatively large number of CHF patients cannot undergo ASV therapy due to general discomfort from the mask and/or positive airway pressure. The present study aimed to clarify baseline patient characteristics which are associated with the smooth introduction of ASV treatment in stable CHF inpatients.Thirty-two consecutive heart failure (HF) inpatients were enrolled (left ventricular ejection fraction (LVEF) < 45%, estimated glomerular filtration rate (eGFR) > 10 mL/minute/1.73m 2 , and apnea-hypopnea index < 30/hour). After the patients were clinically stabilized on optimal therapy, they underwent portable polysomnography and echocardiography, and then received ASV therapy. The patients were divided into two groups: a smooth introduction group (n = 18) and non-smooth introduction group (n = 14). Smooth introduction of ASV treatment was defined as ASV usage for 4 hours and more on the first night. Univariate analysis showed that the smooth introduction group differed significantly from the non-smooth introduction group in age, hemoglobin level, eGFR, HF origin, LVEF, right ventricular (RV) diastolic dimension (RVDd), RV dp/dt, and RV fractional shortening. Multivariate analyses revealed that RVDd, eGFR, and LVEF were independently associated with smooth introduction. In addition, RVDd and eGFR seemed to be better diagnostic parameters for longer usage for ASV therapy according to the analysis of receiver operating characteristics curves.RV enlargement, eGFR, and LVEF are associated with the smooth introduction of ASV therapy in CHF inpatients.
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M
2013-09-01
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach Copyright © 2013 Wiley Periodicals, Inc.
Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)
NASA Astrophysics Data System (ADS)
Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya
2017-08-01
Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.
Discontinuous gradient differential equations and trajectories in the calculus of variations
NASA Astrophysics Data System (ADS)
Bogaevskii, I. A.
2006-12-01
The concept of gradient of smooth functions is generalized for their sums with concave functions. An existence, uniqueness, and continuous dependence theorem for increasing time is formulated and proved for solutions of an ordinary differential equation the right-hand side of which is the gradient of the sum of a concave and a smooth function. With the use of this result a physically natural motion of particles, well defined even at discontinuities of the velocity field, is constructed in the variational problem of the minimal mechanical action in a space of arbitrary dimension. For such a motion of particles in the plane all typical cases of the birth and the interaction of point clusters of positive mass are described.
A new smooth-k space filter approach to calculate halo abundances
NASA Astrophysics Data System (ADS)
Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia
2018-04-01
We propose a new filter, a smooth-k space filter, to use in the Press-Schechter approach to model the dark matter halo mass function which overcomes shortcomings of other filters. We test this against the mass function measured in N-body simulations. We find that the commonly used sharp-k filter fails to reproduce the behaviour of the halo mass function at low masses measured from simulations of models with a sharp truncation in the linear power spectrum. We show that the predictions with our new filter agree with the simulation results over a wider range of halo masses for both damped and undamped power spectra than is the case with the sharp-k and real-space top-hat filters.
NASA Astrophysics Data System (ADS)
Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.
2014-03-01
Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.
Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Emerson, Preston; Crockett, Julie; Maynes, Daniel
2017-11-01
Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).
Defining window-boundaries for genomic analyses using smoothing spline techniques
Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; ...
2015-04-17
High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less
A Scheme to Smooth Aggregated Traffic from Sensors with Periodic Reports
Oh, Sungmin; Jang, Ju Wook
2017-01-01
The possibility of smoothing aggregated traffic from sensors with varying reporting periods and frame sizes to be carried on an access link is investigated. A straightforward optimization would take O(pn) time, whereas our heuristic scheme takes O(np) time where n, p denote the number of sensors and size of periods, respectively. Our heuristic scheme performs local optimization sensor by sensor, starting with the smallest to largest periods. This is based on an observation that sensors with large offsets have more choices in offsets to avoid traffic peaks than the sensors with smaller periods. A MATLAB simulation shows that our scheme excels the known scheme by M. Grenier et al. in a similar situation (aggregating periodic traffic in a controller area network) for almost all possible permutations. The performance of our scheme is very close to the straightforward optimization, which compares all possible permutations. We expect that our scheme would greatly contribute in smoothing the traffic from an ever-increasing number of IoT sensors to the gateway, reducing the burden on the access link to the Internet. PMID:28273831
Smooth seaward-dipping horizons - An important factor in sea-floor stability?
McGregor, B.A.
1981-01-01
Mass movement has influenced in varying degrees the morphology of the United States east coast continental margin seaward of the Baltimore Canyon trough as revealed by detailed geophysical studies using high-resolution 3.5-kHz, and seismic reflection data. Each of three areas studied is along the slope within a distance of 225 km, and is seaward of a nonglaciated shelf but near major land drainage systems. Thick sequences of material believed to be Pleistocene were deposited on the slope in all three areas. Sediment failure in the form of large block movement involving block thicknesses of more than 100 m, however, has taken place in only two of the areas. A factor common to the two areas where failure took place, but absent in the area where no failure took place, is smooth seaward-dipping sub-bottom horizons. Whatever the triggering mechanism, a smooth slip surface that has a seward slope may contribute to mass movement by reducing the internal friction. This may be one of several factors that should be considered in assessing slope stability. ?? 1981.
A Scheme to Smooth Aggregated Traffic from Sensors with Periodic Reports.
Oh, Sungmin; Jang, Ju Wook
2017-03-03
The possibility of smoothing aggregated traffic from sensors with varying reporting periods and frame sizes to be carried on an access link is investigated. A straightforward optimization would take O(pn) time, whereas our heuristic scheme takes O(np) time where n, p denote the number of sensors and size of periods, respectively. Our heuristic scheme performs local optimization sensor by sensor, starting with the smallest to largest periods. This is based on an observation that sensors with large offsets have more choices in offsets to avoid traffic peaks than the sensors with smaller periods. A MATLAB simulation shows that our scheme excels the known scheme by M. Grenier et al. in a similar situation (aggregating periodic traffic in a controller area network) for almost all possible permutations. The performance of our scheme is very close to the straightforward optimization, which compares all possible permutations. We expect that our scheme would greatly contribute in smoothing the traffic from an ever-increasing number of IoT sensors to the gateway, reducing the burden on the access link to the Internet.
NASA Astrophysics Data System (ADS)
Li, Li; Li, YanYan; Yan, Xukai
2018-05-01
We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.
Weak variations of Lipschitz graphs and stability of phase boundaries
NASA Astrophysics Data System (ADS)
Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev
2011-03-01
In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.
Introduction to multigrid methods
NASA Technical Reports Server (NTRS)
Wesseling, P.
1995-01-01
These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.
Amplitude, Latency, and Peak Velocity in Accommodation and Disaccommodation Dynamics
Papadatou, Eleni; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2017-01-01
The aim of this work was to ascertain whether there are differences in amplitude, latency, and peak velocity of accommodation and disaccommodation responses when different analysis strategies are used to compute them, such as fitting different functions to the responses or for smoothing them prior to computing the parameters. Accommodation and disaccommodation responses from four subjects to pulse changes in demand were recorded by means of aberrometry. Three different strategies were followed to analyze such responses: fitting an exponential function to the experimental data; fitting a Boltzmann sigmoid function to the data; and smoothing the data. Amplitude, latency, and peak velocity of the responses were extracted. Significant differences were found between the peak velocity in accommodation computed by fitting an exponential function and smoothing the experimental data (mean difference 2.36 D/s). Regarding disaccommodation, significant differences were found between latency and peak velocity, calculated with the two same strategies (mean difference of 0.15 s and −3.56 D/s, resp.). The strategy used to analyze accommodation and disaccommodation responses seems to affect the parameters that describe accommodation and disaccommodation dynamics. These results highlight the importance of choosing the most adequate analysis strategy in each individual to obtain the parameters that characterize accommodation and disaccommodation dynamics. PMID:29226128
Effect of chronic low-dose tadalafil on penile cavernous tissues in diabetic rats.
Mostafa, Mohamed E; Senbel, Amira M; Mostafa, Taymour
2013-06-01
To assess the effect of chronic low-dose administration of tadalafil (Td) on penile cavernous tissue in induced diabetic rats. The study investigaged 48 adult male albino rats, comprising a control group, sham controls, streptozotocin-induced diabetic rats, and induced diabetic rats that received Td low-dose daily (0.09 mg/200 g weight) for 2 months. The rats were euthanized 1 day after the last dose. Cavernous tissues were subjected to histologic, immunohistochemical, morphometric studies, and measurement of intracavernosal pressure and mean arterial pressure in anesthetized rats. Diabetic rats demonstrated dilated cavernous spaces, smooth muscles with heterochromatic nuclei, degenerated mitochondria, vacuolated cytoplasm, and negative smooth muscle immunoreactivity. Nerve fibers demonstrated a thick myelin sheath and intra-axonal edema, where blood capillaries exhibited thick basement membrane. Diabetic rats on Td showed improved cavernous organization with significant morphometric increases in the area percentage of smooth muscles and elastic tissue and a significant decrease of fibrous tissue. The Td-treated group showed enhanced erectile function (intracavernosal pressure/mean arterial pressure) at 0.3, 0.5, 1, 3, and 5 Hz compared with diabetic group values at the respective frequencies (P <.05) that approached control values. Chronic low-dose administration of Td in diabetic rats is associated with substantial improvement of the structure of penile cavernous tissue, with increased smooth muscles and elastic tissue, decreased fibrous tissue, and functional enhancement of the erectile function. This raises the idea that the change in penile architecture with Td treatment improves erectile function beyond its half-life and its direct pharmacologic action on phosphodiesterase type 5. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives
Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner
2011-01-01
Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...
DOT National Transportation Integrated Search
1998-01-01
To achieve the full integration of varied traffic management, : emergency services and transit systems in the sprawling Valley of the Sun metropolitan area, no small amount of coordination is required. : In the interest of smoothing vehicle traffic t...
Trajectory-based modeling of fluid transport in a medium with smoothly varying heterogeneity
Vasco, D. W.; Pride, Steven R.; Commer, Michael
2016-03-04
Using an asymptotic methodology, valid in the presence of smoothly varying heterogeneity and prescribed boundaries, we derive a trajectory-based solution for tracer transport. The analysis produces a Hamilton-Jacobi partial differential equation for the phase of the propagating tracer front. The trajectories follow from the characteristic equations that are equivalent to the Hamilton-Jacobi equation. The paths are determined by the fluid velocity field, the total porosity, and the dispersion tensor. Due to their dependence upon the local hydrodynamic dispersion, they differ from conventional streamlines. This difference is borne out in numerical calculations for both uniform and dipole flow fields. In anmore » application to the computational X-ray imaging of a saline tracer test, we illustrate that the trajectories may serve as the basis for a form of tracer tomography. In particular, we use the onset time of a change in attenuation for each volume element of the X-ray image as a measure of the arrival time of the saline tracer. In conclusion, the arrival times are used to image the spatial variation of the effective hydraulic conductivity within the laboratory sample.« less
NASA Astrophysics Data System (ADS)
Wang, Zhi; Qing, Quan; Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong; Hu, Jin-Lian; Qin, Ting-Wu
2016-12-01
The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.
Stereoscopic shape discrimination is well preserved across changes in object size.
Norman, J Farley; Swindle, Jessica M; Jennings, L RaShae; Mullins, Elizabeth M; Beers, Amanda M
2009-06-01
A single experiment evaluated human observers' ability to discriminate the shape of solid objects that varied in size and orientation in depth. The object shapes were defined by binocular disparity, Lambertian shading, and texture. The object surfaces were smoothly curved and had naturalistic shapes, resembling those of water-smoothed granite rocks. On any given trial, two objects were presented that were either the same or different in terms of shape. When the "same" objects were presented, they differed in their orientation in depth by 25 degrees , 45 degrees , or 65 degrees . The observers were required to judge whether any given pair of objects was the "same" or "different" in terms of shape. The size of the objects was also varied by amounts up to +/-40% relative to the standard size. The observers' shape discrimination performance was strongly affected by the magnitude of the orientation changes in depth - thus, their performance was viewpoint dependent. In contrast, the observers' shape discrimination abilities were only slightly affected by changes in the overall size of the objects. It appears that human observers can recognize the three-dimensional shape of objects in a manner that is relatively independent of size.
Using satellite radiotelemetry data to delineate and manage wildlife populations
Amstrup, Steven C.; McDonald, T.L.; Durner, George M.
2004-01-01
The greatest promise of radiotelemetry always has been a better understanding of animal movements. Telemetry has helped us know when animals are active, how active they are, how far and how fast they move, the geographic areas they occupy, and whether individuals vary in these traits. Unfortunately, the inability to estimate the error in animals utilization distributions (UDs), has prevented probabilistic linkage of movements data, which are always retrospective, with future management actions. We used the example of the harvested population of polar bears (Ursus maritimus) in the Southern Beaufort Sea to illustrate a method that provides that linkage. We employed a 2-dimensional Gaussian kernel density estimator to smooth and scale frequencies of polar bear radio locations within cells of a grid overlying our study area. True 2-dimensional smoothing allowed us to create accurate descriptions of the UDs of individuals and groups of bears. We used a new method of clustering, based upon the relative use collared bears made of each cell in our grid, to assign individual animals to populations. We applied the fast Fourier transform to make bootstrapped estimates of the error in UDs computationally feasible. Clustering and kernel smoothing identified 3 populations of polar bears in the region between Wrangel Island, Russia, and Banks Island, Canada. The relative probability of occurrence of animals from each population varied significantly among grid cells distributed across the study area. We displayed occurrence probabilities as contour maps wherein each contour line corresponded with a change in relative probability. Only at the edges of our study area and in some offshore regions were bootstrapped estimates of error in occurrence probabilities too high to allow prediction. Error estimates, which also were displayed as contours, allowed us to show that occurrence probabilities did not vary by season. Near Barrow, Alaska, 50% of bears observed are predicted to be from the Chukchi Sea population and 50% from the Southern Beaufort Sea population. At Tuktoyaktuk, Northwest Territories, Canada, 50% are from the Southern Beaufort Sea and 50% from the Northern Beaufort Sea population. The methods described here will aid managers of all wildlife that can be studied by telemetry to allocate harvests and other human perturbations to the appropriate populations, make risk assessments, and predict impacts of human activities. They will aid researchers by providing the refined descriptions of study populations that are necessary for population estimation and other investigative tasks. Arctic, Beaufort Sea, boundaries, clustering, Fourier transform, kernel, management, polar bears, population delineation, radiotelemetry, satellite, smoothing, Ursus maritimus
NASA Astrophysics Data System (ADS)
Fares, A.; Safeeq, M.; Fares, S.
2011-12-01
Information on partitioning of gross rainfall in non-native trees in Hawaiian forests is limited. In this study, measurements of gross rainfall (PG), throughfall (TF), and stemflow (SF) were made at three locations in the upper Mākaha valley watershed to perform canopy water balance and parameterize Gash analytical model. The three selected locations are dominated by Strawberry guava (Psidium cattleianum), Christmas berry (Schinus terebinthifolius), Java plum (Syzygium cumini), and Coffee (Coffea Arabica) trees. Mean TF expressed as percentage of PG was the lowest (43.32%) under Strawberry guava and the highest (56.47%) under a mixture of Christmas berry, Strawberry guava, and Java plum. However, measured SF was the highest (33.9%) for Strawberry guava and lowest (3.6%) under the mixture of Christmas berry, Strawberry guava, and Java plum. The highest SF under Strawberry guava can be attributed to its smooth bark and steep branching and could have been the reason behind lowest TF. The mean observed interception losses varied between 23% under Strawberry guava and 45% for the site dominated by Coffee. Estimated mean free TF coefficients varied from 0.34 to 0.44, while the mean canopy storage capacity varied from 0.89 to 1.94 mm. The mean SF partitioning coefficient ranged from 0.05 to 0.37. The estimated canopy storage and trunk storage (P't) varied from 4.6 to 5.7 mm and 1.47 to 3.72 mm, respectively. Trees with nearly vertical branches and smooth bark (i.e. Strawberry Guava) resulted in smaller value of trunk storage. The analytical Gash's model for rainfall interception was successfully applied and its simulated results agreed reasonably well with observed data.
The volitional inhibition of anticipatory ocular pursuit using a stop signal.
Jarrett, Christian Beresford; Barnes, Graham R
2003-10-01
Unlike limb movements, smooth pursuit eye movements cannot normally be performed in the absence of a target. However, when subjects have a high expectancy of an imminent target appearance, the situation changes, and anticipatory smooth pursuit (ASP) tends to precede target onset by several hundred milliseconds. The velocity of this ASP is scaled predictively according to expected target velocity. And when an upcoming target is unexpectedly altered, or fails to appear, ASP continues regardless for approximately 150-200 ms before modification by visual feedback begins [J. Neurophysiol., 84 (2000) 2340]. These and other observations led to the earlier suggestion that ASP might be ballistic, being pre-programmed from start to finish. Two experiments with different timing parameters were therefore performed to test this hypothesis using a version of Logan's [Psychol. Rev., 91 (1984) 295] stop signal task. The aim was to test whether ASP could be stopped at will, and if so, whether the time taken to stop varied as a function of the time since ASP onset. Results showed that in response to a stop signal, ASP can be inhibited at any point in its trajectory, and for the majority of subjects in experiment 1, and all the subjects in experiment 2, with a latency that does not change significantly with target speed or time since ASP onset. These results provide the first demonstration that anticipatory movements can be stopped volitionally in response to a stop signal. Possible cognitive and neurophysiological mechanisms underlying this process are discussed.
Traction in smooth muscle cells varies with cell spreading
NASA Technical Reports Server (NTRS)
Tolic-Norrelykke, Iva Marija; Wang, Ning
2005-01-01
Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.
Morales, Pablo E; Torres, Gloria; Sotomayor-Flores, Cristian; Peña-Oyarzún, Daniel; Rivera-Mejías, Pablo; Paredes, Felipe; Chiong, Mario
2014-03-28
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haoyu S.; Zhang, Wenjing; Verma, Pragya
2015-01-01
The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange–correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newlymore » extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.« less
A Smoothing Technique for the Multifractal Analysis of a Medium Voltage Feeders Electric Current
NASA Astrophysics Data System (ADS)
de Santis, Enrico; Sadeghian, Alireza; Rizzi, Antonello
2017-12-01
The current paper presents a data-driven detrending technique allowing to smooth complex sinusoidal trends from a real-world electric load time series before applying the Detrended Multifractal Fluctuation Analysis (MFDFA). The algorithm we call Smoothed Sort and Cut Fourier Detrending (SSC-FD) is based on a suitable smoothing of high power periodicities operating directly in the Fourier spectrum through a polynomial fitting technique of the DFT. The main aim consists of disambiguating the characteristic slow varying periodicities, that can impair the MFDFA analysis, from the residual signal in order to study its correlation properties. The algorithm performances are evaluated on a simple benchmark test consisting of a persistent series where the Hurst exponent is known, with superimposed ten sinusoidal harmonics. Moreover, the behavior of the algorithm parameters is assessed computing the MFDFA on the well-known sunspot data, whose correlation characteristics are reported in literature. In both cases, the SSC-FD method eliminates the apparent crossover induced by the synthetic and natural periodicities. Results are compared with some existing detrending methods within the MFDFA paradigm. Finally, a study of the multifractal characteristics of the electric load time series detrendended by the SSC-FD algorithm is provided, showing a strong persistent behavior and an appreciable amplitude of the multifractal spectrum that allows to conclude that the series at hand has multifractal characteristics.
Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.
Hasler, A H; Washabau, R J
1997-01-01
We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.
Aging may negatively impact movement smoothness during stair negotiation.
Dixon, P C; Stirling, L; Xu, X; Chang, C C; Dennerlein, J T; Schiffman, J M
2018-05-26
Stairs represent a barrier to safe locomotion for some older adults, potentially leading to the adoption of a cautious gait strategy that may lack fluidity. This strategy may be characterized as unsmooth; however, stair negotiation smoothness has yet to be quantified. The aims of this study were to assess age- and task-related differences in head and body center of mass (COM) acceleration patterns and smoothness during stair negotiation and to determine if smoothness was associated with the timed "Up and Go" (TUG) test of functional movement. Motion data from nineteen older and twenty young adults performing stair ascent, stair descent, and overground straight walking trials were analyzed and used to compute smoothness based on the log-normalized dimensionless jerk (LDJ) and the velocity spectral arc length (SPARC) metrics. The associations between TUG and smoothness measures were evaluated using Pearson's correlation coefficient (r). Stair tasks increased head and body COM acceleration pattern differences across groups, compared to walking (p < 0.05). LDJ smoothness for the head and body COM decreased in older adults during stair descent, compared to young adults (p ≤ 0.015) and worsened with increasing TUG for all tasks (-0.60 ≤ r ≤ -0.43). SPARC smoothness of the head and body COM increased in older adults, regardless of task (p < 0.001), while correlations showed improved SPARC smoothness with increasing TUG for some tasks (0.33 ≤ r ≤ 0.40). The LDJ outperforms SPARC in identifying age-related stair negotiation adaptations and is associated with performance on a clinical test of gait. Copyright © 2018 Elsevier B.V. All rights reserved.
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S
2014-08-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.
Properties of field functionals and characterization of local functionals
NASA Astrophysics Data System (ADS)
Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia
2018-02-01
Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.
Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation
NASA Astrophysics Data System (ADS)
Dwivedi, Shekhar
2009-02-01
Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.
A piecewise smooth model of evolutionary game for residential mobility and segregation
NASA Astrophysics Data System (ADS)
Radi, D.; Gardini, L.
2018-05-01
The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.
Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.
Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A
2015-09-01
Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.
Fast global image smoothing based on weighted least squares.
Min, Dongbo; Choi, Sunghwan; Lu, Jiangbo; Ham, Bumsub; Sohn, Kwanghoon; Do, Minh N
2014-12-01
This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.
MURC deficiency in smooth muscle attenuates pulmonary hypertension.
Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi
2016-08-22
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.
MURC deficiency in smooth muscle attenuates pulmonary hypertension
Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi
2016-01-01
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070
Rigidity controllable polishing tool based on magnetorheological effect
NASA Astrophysics Data System (ADS)
Wang, Jia; Wan, Yongjian; Shi, Chunyan
2012-10-01
A stable and predictable material removal function (MRF) plays a crucial role in computer controlled optical surfacing (CCOS). For physical contact polishing case, the stability of MRF depends on intimate contact between polishing interface and workpiece. Rigid laps maintain this function in polishing spherical surfaces, whose curvature has no variation with the position on the surface. Such rigid laps provide smoothing effect for mid-spatial frequency errors, but can't be used in aspherical surfaces for they will destroy the surface figure. Flexible tools such as magnetorheological fluid or air bonnet conform to the surface [1]. They lack rigidity and provide little natural smoothing effect. We present a rigidity controllable polishing tool that uses a kind of magnetorheological elastomers (MRE) medium [2]. It provides the ability of both conforming to the aspheric surface and maintaining natural smoothing effect. What's more, its rigidity can be controlled by the magnetic field. This paper will present the design, analysis, and stiffness variation mechanism model of such polishing tool [3].
Compressive Sensing via Nonlocal Smoothed Rank Function
Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683
Improvement of Anal Function by Adipose-Derived Stem Cell Sheets.
Inoue, Yusuke; Fujita, Fumihiko; Yamaguchi, Izumi; Kinoe, Hiroko; Kawahara, Daisuke; Sakai, Yusuke; Kuroki, Tamotsu; Eguchi, Susumu
2018-01-01
One of the most troublesome complications of anal preserving surgery is anal sphincter dysfunction. The aim of this study was to evaluate functional recovery after implantation of adipose-derived stem cell (ADSC) sheets, novel biotechnology, for an anal sphincter resection animal model. Eighteen female Sprague-Dawley rats underwent removal of the nearest half of the internal and external anal sphincter muscle. Nine rats received transplantation with ADSC sheets to the resected area while the remaining rats received no transplantation. The rats were evaluated for the anal function by measuring their resting pressure before surgery and on postoperative days 1, 7, 14, 28, and 56. In addition, the rats were examined for the presence of smooth muscle and also to determine its origin. The improvement of the anal pressure was significantly greater in the ADSC sheet transplantation group compared with the control group. Histologically, at the vicinity of the remaining smooth muscle, reproduction of smooth muscle was detected. Using in fluorescence in situ hybridization, the cells were shown to be from the recipient. Regenerative therapy using ADSC sheet has the potential to recover anal sphincter dysfunction due to anorectal surgery. © 2017 S. Karger AG, Basel.
On approximation and energy estimates for delta 6-convex functions.
Saleem, Muhammad Shoaib; Pečarić, Josip; Rehman, Nasir; Khan, Muhammad Wahab; Zahoor, Muhammad Sajid
2018-01-01
The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted [Formula: see text]-norm.
NASA Astrophysics Data System (ADS)
Liang, Feng; Wang, Dechang
In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.
Jia, Zi-Jun; Song, Yong-Duan
2017-06-01
This paper presents a new approach to construct neural adaptive control for uncertain nonaffine systems. By integrating locally weighted learning with barrier Lyapunov function (BLF), a novel control design method is presented to systematically address the two critical issues in neural network (NN) control field: one is how to fulfill the compact set precondition for NN approximation, and the other is how to use varying rather than a fixed NN structure to improve the functionality of NN control. A BLF is exploited to ensure the NN inputs to remain bounded during the entire system operation. To account for system nonlinearities, a neuron self-growing strategy is proposed to guide the process for adding new neurons to the system, resulting in a self-adjustable NN structure for better learning capabilities. It is shown that the number of neurons needed to accomplish the control task is finite, and better performance can be obtained with less number of neurons as compared with traditional methods. The salient feature of the proposed method also lies in the continuity of the control action everywhere. Furthermore, the resulting control action is smooth almost everywhere except for a few time instants at which new neurons are added. Numerical example illustrates the effectiveness of the proposed approach.
Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.
Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L
2001-09-01
We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.
NASA Astrophysics Data System (ADS)
Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew
2017-08-01
Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.
Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.
Horkay, F; Tasaki, I; Basser, P J
2000-01-01
The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.
LPV control for the full region operation of a wind turbine integrated with synchronous generator.
Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.
Spatio-temporal Granger causality: a new framework
Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng
2015-01-01
That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924
Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.
Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian
2016-02-06
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.
LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator
Grigoriadis, Karolos M.; Nyanteh, Yaw D.
2015-01-01
Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036
NASA Astrophysics Data System (ADS)
Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.
2018-04-01
The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
Trends in stratospheric ozone profiles using functional mixed models
NASA Astrophysics Data System (ADS)
Park, A.; Guillas, S.; Petropavlovskikh, I.
2013-11-01
This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.
Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin
2014-05-01
Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.
Smooth Sensor Motion Planning for Robotic Cyber Physical Social Sensing (CPSS)
Tang, Hong; Li, Liangzhi; Xiao, Nanfeng
2017-01-01
Although many researchers have begun to study the area of Cyber Physical Social Sensing (CPSS), few are focused on robotic sensors. We successfully utilize robots in CPSS, and propose a sensor trajectory planning method in this paper. Trajectory planning is a fundamental problem in mobile robotics. However, traditional methods are not suited for robotic sensors, because of their low efficiency, instability, and non-smooth-generated paths. This paper adopts an optimizing function to generate several intermediate points and regress these discrete points to a quintic polynomial which can output a smooth trajectory for the robotic sensor. Simulations demonstrate that our approach is robust and efficient, and can be well applied in the CPSS field. PMID:28218649
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Uckert, Stefan; Stief, Christian G; Lietz, Burckhard; Burmester, Martin; Jonas, Udo; Machtens, Stefan A
2002-09-01
Results from basic research implicate a role for bioactive peptides in controlling the mammalian lower urinary tract. Although various peptides are assumed to be involved in the potentiaton or inhibition of cholinergic or purinergic activity in the urinary bladder, there is still much controversy regarding the mode of action and functional significance of such peptides in detrusor smooth muscle. Thus, we evaluated the functional effects of atrial natriuretic peptide (ANP), calcitonin gene related peptide (CGRP), endothelin 1 (ET-1), substance P (SP) and vasoactive intestinal polypeptide (VIP) on isolated strip preparations of human detrusor smooth muscle and determined the presence of those peptides in the human detrusor by means of immunohistochemistry. The effects of peptides on isometric tension of isolated detrusor strip preparations and on tissue levels of cyclic nucleotides cAMP and cGMP were compared to those of adenylyl cyclase activator forskolin (F), nitric oxide donor Na(+)-nitroprusside (SNP) and non-specific phosphodiesterase (PDE) inhibitor papaverine (P). The effects of the compounds on isometric tension of isolated human detrusor smooth muscle were examined using the organ bath technique. To determine time- and dose-dependent effects on cyclic nucleotide levels, bladder strips were exposed to increasing doses of F, SNP, P, ANP, CGRP and VIP, then rapidly frozen in liquid nitrogen and homogenised in the frozen state. cAMP and cGMP were extracted and assayed using specific radioimmunoassays. The presence of peptides was investigated by light microscopy using the Avidin-Biotin-Complex (ABC) method. F, P and VIP most effectively reversed the carbachol-induced tension of isolated human detrusor strips. Relaxing effects of ANP, CGRP and SNP were negligible. In contrast, ET-1 and SP elicited dose-dependent contractions of the tissue. The relaxing effects of F, P and VIP were accompanied by an increase in cAMP and cGMP levels, respectively. Light microscopy revealed positive immunostaining for CGRP, ET 1, VIP and SP in sections of the detrusor muscle coat. Our results suggest a possible importance of ET 1, SP and VIP in regulating detrusor smooth muscle contraction and relaxation. Even if a peptide is not synthesised, stored or released in a smooth muscle tissue and is, therefore, unable to reach its target cells under physiologic conditions, a functional effect on the tissue might be mediated by peptide-binding to specific cell surface receptors.
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young
2017-03-14
Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.
Total decay and transition rates from LQCD
NASA Astrophysics Data System (ADS)
Hansen, Maxwell T.; Meyer, Harvey B.; Robaina, Daniel
2018-03-01
We present a new technique for extracting total transition rates into final states with any number of hadrons from lattice QCD. The method involves constructing a finite-volume Euclidean four-point function whose corresponding infinite-volume spectral function gives access to the decay and transition rates into all allowed final states. The inverse problem of calculating the spectral function is solved via the Backus-Gilbert method, which automatically includes a smoothing procedure. This smoothing is in fact required so that an infinite-volume limit of the spectral function exists. Using a numerical toy example we find that reasonable precision can be achieved with realistic lattice data. In addition, we discuss possible extensions of our approach and, as an example application, prospects for applying the formalism to study the onset of deep-inelastic scattering. More details are given in the published version of this work, Ref. [1].
Kuzubova, N A; Fedin, A N; Lebedeva, E S; Platonova, I S
2014-09-01
In the model of chronic obstructive pulmonary disease, produced in rats by 60-day exposure to nitrogen dioxide, the effect of different options of combination therapy (corticosteroids, anticholinergics, adrenergic agonists) on the functional state of the bronchi was studied. The contractile activity of strips of the bronchi caused by nerve or smooth muscle stimulation was evaluated. Corticosteroid monotherapy resulted in deterioration of the functional state of the bronchial wall neuromuscular apparatus due to corticosteroid resistance, evolving under the influence of long-term exposure to nitrogen dioxide. Application of M-anticholinergic tiotropium had a beneficial effect on the functional state of the bronchi smooth muscles, leading to the full restoration of the bronchial wall contractile activity and removal the morphological manifestations of inflammatory lung tissue remodeling. Most effective in terms of impact on the functional state of the bronchial wall neuromuscular apparatus was corticosteroid therapy combined with M-cholinolytik or beta2-adrenoagonist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Miranda L., E-mail: Miranda_Lynch@urmc.rochester.edu; Huang, Li-Shan; Cox, Christopher
Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. Thismore » cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a case of multiple exposures to nutrients and to MeHg. The results encourage more emphasis on a holistic view of the risks and benefits of fish consumption as it relates to infant development. - Research highlights: {yields}Varying coefficient models are tools for examining interactions in exposure settings Associations between MeHg and fish nutrients and developmental outcomes were examined. {yields} Interactions between MeHg exposure and fish-derived nutrients were modeled using VC. {yields} Models show beneficial association of DHA with outcomes were reduced as MeHg increases. {yields} VC models show other measured nutrients unmodulated by increasing MeHg exposure.« less
She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B
2016-01-01
Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1
Jayewickreme, Chenura D.; Shivdasani, Ramesh A.
2015-01-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579
McIntire, Ramsey H.; Sifers, Travis; Platt, J. Sue; Ganacias, Karen G.; Langat, Daudi K.; Hunt, Joan S.
2008-01-01
Human placentas are sources of cytokines, hormones and other substances that program receptive cells. One of these substances is HLA-G, which influences the functioning of both leukocytes and endothelial cells. In this study we investigated the possibility that these and/or other types of cells in extraembryonic fetal tissues might respond to HLA-G by interacting with one or another of the leukocyte immunoglobulin-like receptors (LILR). LILRB1 is expressed by most leukocytes and LILRB2 is expressed primarily by monocytes, macrophages and dendritic cells. Analysis of term placentas by immunohistochemistry and Real Time PCR demonstrated that LILRB1 and LILRB2 protein and specific messages are produced in the mesenchyme of term villous placenta but are differently localized. LILRB1 was abundant in stromal cells and LILRB2 was prominent perivascularly. Neither receptor was identified in trophoblast. Further investigation using double label immunofluorescence indicated that placental vascular smooth muscle but not endothelia exhibit LILRB2. Term umbilical cord exhibited the same LILRB2 patterns as term placenta. Samples obtained by laser capture dissection of vascular smooth muscle in umbilical cords demonstrated LILRB2 mRNA, and double labeling immunofluorescence showed that cord vascular smooth muscle but not endothelium exhibited LILRB2 protein. The presence of LILRB1 in placental stromal cells and LILRB2 in vascular smooth muscle strongly suggest that HLA-G has novel functions in these tissues that could include regulation of placental immunity as well as development and function of the extraembryonic vasculature. PMID:18538388
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.
Jayewickreme, Chenura D; Shivdasani, Ramesh A
2015-09-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.
How the type of input function affects the dynamic response of conducting polymer actuators
NASA Astrophysics Data System (ADS)
Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua
2014-10-01
There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.
Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D
2013-01-01
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426
NASA Astrophysics Data System (ADS)
Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan
2013-12-01
We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.
Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo
2011-01-01
Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit–vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion–direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit. PMID:22174706
Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.
Canver, C C; Cooler, S D; Saban, R
1997-09-01
The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The acute capsaicin exposure of human ITA revealed that primary afferent neurons containing neuropeptides innervate human ITAs. There is a real potential for perivascular afferent neurons and sensory peptides to influence the ITA smooth muscle function.
Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L
2015-01-01
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.
Baddoura, Ritta; Venture, Gentiane
2014-01-01
During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.
Baddoura, Ritta; Venture, Gentiane
2014-01-01
During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions. PMID:24688466
A comparison of regional flood frequency analysis approaches in a simulation framework
NASA Astrophysics Data System (ADS)
Ganora, D.; Laio, F.
2016-07-01
Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.
NASA Astrophysics Data System (ADS)
Torgoev, Almaz; Havenith, Hans-Balder
2016-07-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
Applications of functional data analysis: A systematic review.
Ullah, Shahid; Finch, Caroline F
2013-03-19
Functional data analysis (FDA) is increasingly being used to better analyze, model and predict time series data. Key aspects of FDA include the choice of smoothing technique, data reduction, adjustment for clustering, functional linear modeling and forecasting methods. A systematic review using 11 electronic databases was conducted to identify FDA application studies published in the peer-review literature during 1995-2010. Papers reporting methodological considerations only were excluded, as were non-English articles. In total, 84 FDA application articles were identified; 75.0% of the reviewed articles have been published since 2005. Application of FDA has appeared in a large number of publications across various fields of sciences; the majority is related to biomedicine applications (21.4%). Overall, 72 studies (85.7%) provided information about the type of smoothing techniques used, with B-spline smoothing (29.8%) being the most popular. Functional principal component analysis (FPCA) for extracting information from functional data was reported in 51 (60.7%) studies. One-quarter (25.0%) of the published studies used functional linear models to describe relationships between explanatory and outcome variables and only 8.3% used FDA for forecasting time series data. Despite its clear benefits for analyzing time series data, full appreciation of the key features and value of FDA have been limited to date, though the applications show its relevance to many public health and biomedical problems. Wider application of FDA to all studies involving correlated measurements should allow better modeling of, and predictions from, such data in the future especially as FDA makes no a priori age and time effects assumptions.
Applications of functional data analysis: A systematic review
2013-01-01
Background Functional data analysis (FDA) is increasingly being used to better analyze, model and predict time series data. Key aspects of FDA include the choice of smoothing technique, data reduction, adjustment for clustering, functional linear modeling and forecasting methods. Methods A systematic review using 11 electronic databases was conducted to identify FDA application studies published in the peer-review literature during 1995–2010. Papers reporting methodological considerations only were excluded, as were non-English articles. Results In total, 84 FDA application articles were identified; 75.0% of the reviewed articles have been published since 2005. Application of FDA has appeared in a large number of publications across various fields of sciences; the majority is related to biomedicine applications (21.4%). Overall, 72 studies (85.7%) provided information about the type of smoothing techniques used, with B-spline smoothing (29.8%) being the most popular. Functional principal component analysis (FPCA) for extracting information from functional data was reported in 51 (60.7%) studies. One-quarter (25.0%) of the published studies used functional linear models to describe relationships between explanatory and outcome variables and only 8.3% used FDA for forecasting time series data. Conclusions Despite its clear benefits for analyzing time series data, full appreciation of the key features and value of FDA have been limited to date, though the applications show its relevance to many public health and biomedical problems. Wider application of FDA to all studies involving correlated measurements should allow better modeling of, and predictions from, such data in the future especially as FDA makes no a priori age and time effects assumptions. PMID:23510439
Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...
2016-12-30
In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less
Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe
2009-02-01
Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.
Zheng, Yun-Min; Wang, Qing-Song; Liu, Qing-Hua; Rathore, Rakesh; Yadav, Vishal; Wang, Yong-Xiao
2008-01-01
Hypoxia causes heterogeneous contractile responses in resistance and conduit pulmonary as well as systemic (mesenteric) artery smooth muscle cells (RPASMCs, CPASMCs and MASMCs), but the underlying mechanisms are largely unknown. In this study, we aimed to investigate whether the gene expression and functional activity of ryanodine receptors (RyRs) would be different in these 3 cell types. RyR mRNA expression, Ca(2+) sparks and [Ca(2+)](i) were measured by real-time quantitative RT-PCR, laser scanning confocal microscopy and wide-field fluorescence microscopy, respectively. All 3 RyR subtype (RyR1, RyR2 and RyR3) mRNAs are expressed in RPASMCs, CPASMCs and MASMCs, but their expression levels are different. Spontaneous Ca(2+) sparks (functional events of RyRs) show distinct frequency, amplitude, duration, size and kinetics in these 3 cell types. Similarly, activation of RyRs by caffeine, 4-chloro-m-cresol or high K(+) induces differential Ca(2+) release. Moreover, hypoxia-induced increase in [Ca(2+)](i) is largest in MASMCs relative to CPSAMCs and smallest in RPASMCs. This study provides comprehensive evidence that RyRs are heterogeneous in gene expression and functional activity in RPASMCs, CPASMCs and MASMCs, which may contribute to the diversity of excitation-contraction coupling and hypoxic Ca(2+) responses in different vascular smooth muscle cells. Copyright 2008 S. Karger AG, Basel.
Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774
Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej
2008-05-01
Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.
Poisson-type inequalities for growth properties of positive superharmonic functions.
Luan, Kuan; Vieira, John
2017-01-01
In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.
Gu, Wenduo; Hong, Xuechong; Le Bras, Alexandra; Nowak, Witold N; Issa Bhaloo, Shirin; Deng, Jiacheng; Xie, Yao; Hu, Yanhua; Ruan, Xiong Z; Xu, Qingbo
2018-05-25
Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts. © 2018 Gu et al.
High-Frequency Normal Mode Propagation in Aluminum Cylinders
Lee, Myung W.; Waite, William F.
2009-01-01
Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.
Wind farm density and harvested power in very large wind farms: A low-order model
NASA Astrophysics Data System (ADS)
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
Cosmic web type dependence of halo clustering
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.
2018-01-01
We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.
Phosphodiesterases regulate airway smooth muscle function in health and disease.
Krymskaya, Vera P; Panettieri, Reynold A
2007-01-01
On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.
Survey of shock-wave structures of smooth-particle granular flows.
Padgett, D A; Mazzoleni, A P; Faw, S D
2015-12-01
We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.
Local, smooth, and consistent Jacobi set simplification
Bhatia, Harsh; Wang, Bei; Norgard, Gregory; ...
2014-10-31
The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less
[Advance in study of vascular endothelial cell and smooth muscle cell co-culture system].
Li, Yujie; Yang, Qing; Weng, Xiaogang; Chen, Ying; Ruan, Congxiao; Li, Dan; Zhu, Xiaoxing
2012-02-01
The interactions between endothelial cells (EC) and smooth muscle cells (SMC) contribute to vascular physiological functions and also cause the occurrence and development of different kinds of diseases. Currently, EC-SMC co-culture model is the best way to study the interactions between the two kinds of cells. This article summarizes existing EC-SMC co-culture models and their effects on the structure and functions of the two kinds of cells. Microscopically speaking, it provides a basis for in-depth studies on their interactions as well as a reference for the establishment of in vitro EC-SMC co-culture system that is closer to organic physiology or pathology state.
Notch3 is required for arterial identity and maturation of vascular smooth muscle cells
Domenga, Valérie; Fardoux, Peggy; Lacombe, Pierre; Monet, Marie; Maciazek, Jacqueline; Krebs, Luke T.; Klonjkowski, Bernard; Berrou, Eliane; Mericskay, Matthias; Li, Zhen; Tournier-Lasserve, Elisabeth; Gridley, Thomas; Joutel, Anne
2004-01-01
Formation of a fully functional artery proceeds through a multistep process. Here we show that Notch3 is required to generate functional arteries in mice by regulating arterial differentiation and maturation of vascular smooth muscle cells (vSMC). In adult Notch3–/– mice distal arteries exhibit structural defects and arterial myogenic responses are defective. The postnatal maturation stage of vSMC is deficient in Notch3–/– mice. We further show that Notch3 is required for arterial specification of vSMC but not of endothelial cells. Our data reveal Notch3 to be the first cell-autonomous regulator of arterial differentiation and maturation of vSMC. PMID:15545631
Marciano-Melchor, Magdalena; Navarro-Morales, Esperanza; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Suárez-Xique, Román
2012-06-01
The aim of this paper is to obtain expressions for the k-function, the wavefront train, and the caustic associated with the light rays refracted by an arbitrary smooth surface after being emitted by a point light source located at an arbitrary position in a three-dimensional homogeneous optical medium. The general results are applied to a parabolic refracting surface. For this case, we find that when the point light source is off the optical axis, the caustic locally has singularities of the hyperbolic umbilic type, while the refracted wavefront, at the caustic region, locally has singularities of the cusp ridge and swallowtail types.
Abdel-Latif, A A
1996-02-01
Nonvascular smooth muscle, such as the iris sphincter, receives double reciprocal innervation: stimulation of the parasympathetic nervous system (cholinergic muscarinic), which functions through the polyphosphoinositide (PPI) signaling pathway, contracts it, while activation of the sympathetic nervous system (beta-adrenergic), which functions through the cAMP system, relaxes it. Interactions between the two second messenger systems are important in regulation of smooth muscle tone and represent an important focal point for pharmacological manipulation. Here, I have summarized the experimental evidence in support of the hypothesis that the cross talk between cAMP and the PPI cascade could constitute a biochemical correlate for this functional antagonism. Recent studies suggest that cAMP inhibition is on Ca2+ mobilization rather than myosin light chain phosphorylation. Thus, cAMP-elevating agents, which inhibit agonist-induced PPI hydrolysis, are effective relaxants. Furthermore, inositol 1,4,5-trisphosphate (IP3) appears to be involved in both Ca2+ release from the sarcoplasmic reticulum and in Ca2+ influx through the plasma membrane, and since a reduction in intracellular Ca2+ ([Ca2+]i) is the underlying mechanism for cAMP-mediated relaxation, an important target for cAMP inhibition would be either to inhibit IP3 production or to stimulate IP3 inactivation. In the iris sphincter and other nonvascular smooth muscle there is reasonable experimental evidence that shows that cAMP inhibits phospholipase C activation and stimulates IP3 3-kinase activity, both of which can result in: [i) reduction in IP3 concentrations and (ii) reduction in IP3-dependent Ca2+ mobilization, which may lead to muscle relaxation. In addition to IP3-induced Ca2+ mobilization, changes in [Ca2+]i are the result of the interplay of many processes which may also serve as potential sites for cAMP inhibition. A great deal of progress has been made on the cross talk between cAMP and the PPI signaling cascade in the past decade, and there will be more on the regulation of the second messenger systems and their involvement in smooth muscle tone in the coming years. Clearly, an understanding of the physiological and pathophysiological regulation of smooth muscle tone is central to the development of novel therapeutic agents for the treatment of diseases such as asthma and glaucoma, where cAMP-elevating drugs are currently employed.
Increasing the Complexity of the Illumination May Reduce Gloss Constancy
Wendt, Gunnar; Faul, Franz
2017-01-01
We examined in which way gradual changes in the geometric structure of the illumination affect the perceived glossiness of a surface. The test stimuli were computer-generated three-dimensional scenes with a single test object that was illuminated by three point light sources, whose relative positions in space were systematically varied. In the first experiment, the subjects were asked to adjust the microscale smoothness of a match object illuminated by a single light source such that it has the same perceived glossiness as the test stimulus. We found that small changes in the structure of the light field can induce dramatic changes in perceived glossiness and that this effect is modulated by the microscale smoothness of the test object. The results of a second experiment indicate that the degree of overlap of nearby highlights plays a major role in this effect: Whenever the degree of overlap in a group of highlights is so large that they perceptually merge into a single highlight, the glossiness of the surface is systematically underestimated. In addition, we examined the predictability of the smoothness settings by a linear model that is based on a set of four different global image statistics. PMID:29250308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Alert Response to Motion Onset in the Retina
Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo
2013-01-01
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Active field control (AFC) -electro-acoustic enhancement system using acoustical feedback control
NASA Astrophysics Data System (ADS)
Miyazaki, Hideo; Watanabe, Takayuki; Kishinaga, Shinji; Kawakami, Fukushi
2003-10-01
AFC is an electro-acoustic enhancement system using FIR filters to optimize auditory impressions, such as liveness, loudness, and spaciousness. This system has been under development at Yamaha Corporation for more than 15 years and has been installed in approximately 50 venues in Japan to date. AFC utilizes feedback control techniques for recreation of reverberation from the physical reverberation of the room. In order to prevent coloration problems caused by a closed loop condition, two types of time-varying control techniques are implemented in the AFC system to ensure smooth loop gain and a sufficient margin in frequency characteristics to prevent instability. Those are: (a) EMR (electric microphone rotator) -smoothing frequency responses between microphones and speakers by changing the combinations of inputs and outputs periodically; (b) fluctuating-FIR -smoothing frequency responses of FIR filters and preventing coloration problems caused by fixed FIR filters, by moving each FIR tap periodically on time axis with a different phase and time period. In this paper, these techniques are summarized. A block diagram of AFC using new equipment named AFC1, which has been developed at Yamaha Corporation and released recently in the US, is also presented.
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.
Influence of smooth temperature variation on hotspot ignition
NASA Astrophysics Data System (ADS)
Reinbacher, Fynn; Regele, Jonathan David
2018-01-01
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.
Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.
2014-01-01
The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Wei, E-mail: zhoux123@umn.edu
2013-06-15
We consider the value function of a stochastic optimal control of degenerate diffusion processes in a domain D. We study the smoothness of the value function, under the assumption of the non-degeneracy of the diffusion term along the normal to the boundary and an interior condition weaker than the non-degeneracy of the diffusion term. When the diffusion term, drift term, discount factor, running payoff and terminal payoff are all in the class of C{sup 1,1}( D-bar ) , the value function turns out to be the unique solution in the class of C{sub loc}{sup 1,1}(D) Intersection C{sup 0,1}( D-bar )more » to the associated degenerate Bellman equation with Dirichlet boundary data. Our approach is probabilistic.« less
Separated Component-Based Restoration of Speckled SAR Images
2014-01-01
One of the simplest approaches for speckle noise reduction is known as multi-look processing. It involves non-coherently summing the independent...image is assumed to be piecewise smooth [21], [22], [23]. It has been shown that TV regular- ization often yields images with the stair -casing effect...as a function f , is to be decomposed into a sum of two components f = u+ v, where u represents the cartoon or geometric (i.e. piecewise smooth
Global solutions to the equation of thermoelasticity with fading memory
NASA Astrophysics Data System (ADS)
Okada, Mari; Kawashima, Shuichi
2017-07-01
We consider the initial-history value problem for the one-dimensional equation of thermoelasticity with fading memory. It is proved that if the data are smooth and small, then a unique smooth solution exists globally in time and converges to the constant equilibrium state as time goes to infinity. Our proof is based on a technical energy method which makes use of the strict convexity of the entropy function and the properties of strongly positive definite kernels.
Genetics Home Reference: dopa-responsive dystonia
... neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth ... production of a tyrosine hydroxylase enzyme with reduced function, which leads to a decrease in dopamine production. A reduction in the amount of dopamine ...
Balancing aggregation and smoothing errors in inverse models
Turner, A. J.; Jacob, D. J.
2015-06-30
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Balancing aggregation and smoothing errors in inverse models
NASA Astrophysics Data System (ADS)
Turner, A. J.; Jacob, D. J.
2015-01-01
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.
Balancing aggregation and smoothing errors in inverse models
NASA Astrophysics Data System (ADS)
Turner, A. J.; Jacob, D. J.
2015-06-01
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.
Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.
2017-01-01
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654
The co-seismic slip distribution of the Landers earthquake
Freymueller, J.; King, N.E.; Segall, P.
1994-01-01
We derived a model for the co-seismic slip distribution on the faults which ruptured during the Landers earthquake sequence of 28 June 1992. The model is based on the inversion of surface geodetic measurements, primarily vector displacements measured using the Global Positioning System (GPS). The inversion procedure assumes that the slip distribution is to some extent smooth and purely right-lateral strike slip. For a given fault geometry, a family of solutions of varying smoothness can be generated.We choose the optimal model from this family based on cross-validation, which measures the predictive power of the data, and the trade-off of misfit and roughness. Solutions which give roughly equal weight to misfit and smoothness are preferred and have certain features in common: (1) there are two main patches of slip, on the Johnson Valley fault, and on the Homestead Valley, Emerson, and Camp Rock faults; (2) virtually all slip is in the upper 10 to 12 km; and (3) the model reproduces the general features of the geologically measured surface displacements, without prior constraints on the surface slip. In all models, regardless of smoothing, very little slip is required on the fault that represents the Big Bear event, and the total moment of the Landers event is 9 · 1019 N-m. The nearly simultaneous rupture of multiple distinct faults suggests that much of the crust in this region must have been close to failure prior to the earthquake.
Sağsöz, H; Akbalik, M E; Saruhan, B G; Ketani, M A
2011-08-01
The localization and distribution of estrogen receptors (ERα) and progesterone receptors (PR-B) in the cervix and vagina of sexually mature bovines during the follicular and luteal phases of the sexual cycle were studied using immunohistochemistry. The estrous cycle stage of 23 Holstein bovines was assessed by gross and histological appearance of ovaries and blood steroid hormone values. Tissue samples from cervix and vagina were fixed in 10% formaldehyde for routine histological processing. Nuclear staining for ERα and PR-B was observed in the epithelial cells of the surface epithelium, stromal cells and smooth muscle cells. Generally, in the cervix, ERα immunoreactivity was more intense in the epithelial and smooth muscle cells during the follicular phase and in the epithelial cells during the luteal phase (p < 0.05). PR-B immunoreactivity was more intense in the epithelial and smooth muscle cells than in the superficial and deep stromal cells during the follicular and luteal phases (p < 0.05). In the vagina, ERα and PR-B immunoreactivities were more intense in the epithelial cells than in the connective tissue cells and smooth muscle cells during the follicular and luteal phases (p < 0.05). These results indicated that the frequency and intensity of ERα and PR-B immunoreactivity in the cervix and vagina of bovines varied according to the cervical and vaginal cell types and the phases of the sexual cycle.
NASA Astrophysics Data System (ADS)
Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo
2018-05-01
Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less
Absolute Effective Area of the Chandra High-Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.
2000-01-01
The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.
NASA Astrophysics Data System (ADS)
Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo
2015-11-01
Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.
Penna, Andrea; Elviri, Lisa; Careri, Maria; Mangia, Alessandro; Predieri, Giovanni
2011-05-01
Sol-gel-based materials were synthesized, characterized and finally tested as solid supports for desorption electrospray ionization-mass spectrometry (DESI-MS) analysis of a mixture of compounds of different polarity. Films with thickness in the 2-4 μm range were obtained by a dip-coating process using tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) as sol-gel precursors. Three types of surface with different hydrophobic character were obtained by varying the TEOS/OTES ratio in the sol-gel mixture. Each coating was characterized by atomic force microscopy investigations, gaining insight into homogeneity, smoothness and thickness of the obtained films. To study hydrophobicity of each surface, surface free energy measurements were performed. Different DESI-MS responses were observed when different solvent mixture deposition procedures and solvent spray compositions were investigated. Results were finally compared to those obtained by using commercial polytetrafluoroethylene-coated slides. It was found that surface free energy plays an important role in the desorption/ionization process as a function of the polarity of analytes.
Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements
NASA Technical Reports Server (NTRS)
Boynton, W. V.
1975-01-01
The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.
Shared motion signals for human perceptual decisions and oculomotor actions
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Krauzlis, Richard J.
2003-01-01
A fundamental question in primate neurobiology is to understand to what extent motor behaviors are driven by shared neural signals that also support conscious perception or by independent subconscious neural signals dedicated to motor control. Although it has clearly been established that cortical areas involved in processing visual motion support both perception and smooth pursuit eye movements, it remains unknown whether the same or different sets of neurons within these structures perform these two functions. Examination of the trial-by-trial variation in human perceptual and pursuit responses during a simultaneous psychophysical and oculomotor task reveals that the direction signals for pursuit and perception are not only similar on average but also co-vary on a trial-by-trial basis, even when performance is at or near chance and the decisions are determined largely by neural noise. We conclude that the neural signal encoding the direction of target motion that drives steady-state pursuit and supports concurrent perceptual judgments emanates from a shared ensemble of cortical neurons.
Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6
Falcon, M.I.; Gomez, C.M.; Chen, E.E.; Shereen, A.; Solodkin, A.
2016-01-01
Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies. PMID:26209844
In utero and postnatal exposure to arsenic alters pulmonary structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721
2009-02-15
In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less
Occultation detection of a Neptunian ring-like arc
NASA Technical Reports Server (NTRS)
Hubbard, W. B.; Brahic, A.; Sicardy, B.; Roques, F.; Elicer, L.-R.; Vilas, F.
1986-01-01
The apparent closest approach of the star SAO186001 to Neptune was observed photoelectrically on July 22, 1984 at Cerro Tololo Inter-American Observatory. A 32-percent signal drop, lasting about 1.2 s, was probably caused by a partially transparent arc of material at a distance of 67,000 km from Neptune. Neptune's arc(s) do not vary smoothly with azimuth, unlike the rings of other Jovian planets.
European Scientific Notes. Volume 37, Number 1.
1983-01-31
instantoneous sea-state condition can be tions vary widely in their realism , with computed from a special data base coded some producing dynamic color pictures...between the variables of accuracy, approach channels, the alignment of practicality, realism , and expense. jetties, and the establishment of Because the...tidal current variables The system certainly seems to be valid, have been played into some of the and the smooth dynamics, realism , and simulator runs
Surface emissivity and temperature retrieval for a hyperspectral sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borel, C.C.
1998-12-01
With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less
Belhadj, Safia; Derridj, Arezki; Aigouy, Thierry; Gers, Charles; Gauquelin, Thierry; Mevy, Jean-Philippe
2007-10-01
A comparative analysis was undertaken to conduct a micromorphological study of Pistacia atlantica leaves by comparing different populations grown under different climatic conditions. Leaf epidermis of eight wild populations was investigated under scanning electron microscope. Micromorphological characteristics (epidermis ornament, stomata type, waxes as well as trichomes) of the adaxial and abaxial leaf surfaces were examined. The epidermis ornament varied among populations and leaf surface, the abaxial leaf surface is reticulate with a striate surface. Messaad site shows a smooth uneven surface. The adaxial leaf surface is smooth but several ornamentations can be seen. The leaflet is amphistomatic; the stomata appeared to be slightly sunken. A variety of stomatal types were recorded; actinocytic and anomocytic types are the most frequent. The indumentum consisted of glandular and nonglandular trichomes. Unicellular glandular trichomes are recorded for P. atlantica leaves in this study. Their density is higher in Oued safene site, located at the highest altitude in comparison with the other populations. The wax occurred in all the sites and its pattern varied according to the populations studied, particularly between Berriane and Messaad. The morphological variability exhibited by the eight populations of P. atlantica may be interpreted as relevant to the ecological plasticity and the physiological mechanisms involved are discussed in this report.
A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.
Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin
2013-08-01
It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.
Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle
Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.
2013-01-01
Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906
Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P
2008-08-01
Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.
Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo
2014-07-01
Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.
Balkanci, Zeynep Dicle; Pehlivanoğlu, Bilge; Bayrak, Sibel; Karabulut, Ismail; Karaismailoğlu, Serkan; Erdem, Ayşen
2012-11-01
To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.
NASA Astrophysics Data System (ADS)
Lehmann, Daniel; Zahn, Dietrich R. T.
2009-04-01
A comparison of the electrical characteristics of organic field-effect transistors (OFETs) based on derivatives of the electron-conductor perylene tetracarboxylic diimide (PTCDI) in top-contact configuration is presented. The derivatives used are N,N'-dimethyl-3,4,9,10-perylene-tetracarboxylic-diimide (DiMe-PTCDI), N,N'-diphenyl-3,4,9,10-perylene-tetracarboxylic-diimide (DiPhenyl-PTCDI), N,N'-dimethoxyethyl-3,4,9,10-perylene-tetracarboxylic-diimide (DiMethoxyethyl-PTCDI), N,N'-di(3-pentyl)-3,4,9,10-perylene-tetracarboxylic-diimide (Di3Pentyl-PTCDI), and N,N'-diheptyl-3,4,9,10-perylene-tetracarboxylic-diimide (DiHeptyl-PTCDI). Current/voltage measurements were first performed in situ and later ex situ. Additionally, the effect of annealing and bias stress was probed in situ. A strong influence of the different side groups on the order of magnitude of the electron mobility is revealed, ranging from 4×10-6 cm2/V s for DiMethoxyethyl-PTCDI to 5×10-2 cm2/V s for DiHeptyl-PTCDI. While none of the devices was stable in air after exposition to air, only the DiMe-PTCDI one resumed its functionality after restoring vacuum conditions. The dielectric functions of the derivatives was derived, additionally revealing optical isotropy for all films and varying surface roughness. While DiHeptyl-PTCDI and Di3Pentyl-PTCDI, yielding also the highest electron mobilities, form smooth layers with negligible surface roughness, strong island formation was be observed for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, yielding low mobilities. This island growth was also confirmed by atomic force microscopy measurements. Ageing of the samples for several months under ambient conditions leads to increased roughness for the very rough samples. Layers with smooth surface, on the other hand, showed no significant change in the dielectric behavior of the sample.
Wavelet-based group and phase velocity measurements: Method
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Wang, W. W.; Hung, S. H.
2016-12-01
Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a conventional narrow bandpass method.
Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posch, H.A.; Hoover, W.G.; Kum, O.
1995-08-01
We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less
Grohmann, Constanze; Henze, Miriam Judith; Nørgaard, Thomas; Gorb, Stanislav N
2015-06-22
Insects have developed different structures to adhere to surfaces. Most common are smooth and hairy attachment pads, while nubby pads have also been described for representatives of Mantophasmatodea, Phasmida and Plecoptera. Here we report on the unusual combination of nubby and smooth tarsal attachment structures in the !nara cricket Acanthoproctus diadematus. Their three proximal tarsal pads (euplantulae) have a nubby surface, whereas the most distal euplantula is rather smooth with a hexagonal ground pattern resembling that described for the great green bush-cricket Tettigonia viridissima. This is, to our knowledge, the first report on nubby euplantulae in Orthoptera and the co-occurrence of nubby and smooth euplantulae on a single tarsus in a polyneopteran species. When adhering upside down to a horizontal glass plate, A. diadematus attaches its nubby euplantulae less often, compared to situations in which the animal is hanging upright or head down on a vertical plate. We discuss possible reasons for this kind of clinging behaviour, such as morphological constrains, the different role of normal and shear forces in attachment enhancement of the nubby and smooth pads, ease of the detachment process, and adaptations to walking on cylindrical substrates.
Grohmann, Constanze; Henze, Miriam Judith; Nørgaard, Thomas; Gorb, Stanislav N.
2015-01-01
Insects have developed different structures to adhere to surfaces. Most common are smooth and hairy attachment pads, while nubby pads have also been described for representatives of Mantophasmatodea, Phasmida and Plecoptera. Here we report on the unusual combination of nubby and smooth tarsal attachment structures in the !nara cricket Acanthoproctus diadematus. Their three proximal tarsal pads (euplantulae) have a nubby surface, whereas the most distal euplantula is rather smooth with a hexagonal ground pattern resembling that described for the great green bush-cricket Tettigonia viridissima. This is, to our knowledge, the first report on nubby euplantulae in Orthoptera and the co-occurrence of nubby and smooth euplantulae on a single tarsus in a polyneopteran species. When adhering upside down to a horizontal glass plate, A. diadematus attaches its nubby euplantulae less often, compared to situations in which the animal is hanging upright or head down on a vertical plate. We discuss possible reasons for this kind of clinging behaviour, such as morphological constrains, the different role of normal and shear forces in attachment enhancement of the nubby and smooth pads, ease of the detachment process, and adaptations to walking on cylindrical substrates. PMID:26213740
Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows
NASA Astrophysics Data System (ADS)
Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki
2017-06-01
Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.
NASA Astrophysics Data System (ADS)
Davis, J. K.; Vincent, G. P.; Hildreth, M.; Kightlinger, L.; Carlson, C.; Wimberly, M. C.
2017-12-01
South Dakota has the highest annual incidence of human cases of West Nile virus (WNV) in all US states, and human cases can vary wildly among years; predicting WNV risk in advance is a necessary exercise if public health officials are to respond efficiently and effectively to risk. Case counts are associated with environmental factors that affect mosquitoes, avian hosts, and the virus itself. They are also correlated with entomological risk indices obtained by trapping and testing mosquitoes. However, neither weather nor insect data alone provide a sufficient basis to make timely and accurate predictions, and combining them into models of human disease is not necessarily straightforward. Here we present lessons learned in three years of making real-time forecasts of this threat to public health. Various methods of integrating data from NASA's North American Land Data Assimilation System (NLDAS) with mosquito surveillance data were explored in a model comparison framework. We found that a model of human disease summarizing weather data (by polynomial distributed lags with seasonally-varying coefficients) and mosquito data (by a mixed-effects model that smooths out these sparse and highly-variable data) made accurate predictions of risk, and was generalizable enough to be recommended in similar applications. A model based on lagged effects of temperature and humidity provided the most accurate predictions. We also found that model accuracy was improved by allowing coefficients to vary smoothly throughout the season, giving different weights to different predictor variables during different parts of the season.
Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano
2016-01-01
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320
Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N
2012-01-01
Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012
A supervoxel-based segmentation method for prostate MR images
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, LiZhi; Fei, Baowei
2015-03-01
Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A threedimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%+/-3.2%. The segmentation method can be used not only for the prostate but also for other organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp
Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less
Biomimetics of human movement: functional or aesthetic?
Harris, Christopher M
2009-09-01
How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy drivers (motor neurons) would permit plasticity to adapt the control of a prosthetic limb towards human-like movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret
2011-07-08
Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC),more » little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.« less
Catastrophe theory: What it is—Why it exists—How it works
NASA Astrophysics Data System (ADS)
Gilmore, Robert
1996-06-01
Push on something. It will move. Push a little bit harder and it will move a little bit more. But occasionally a little extra push will produce an extra large response. Such extra responses are called ``catastrophes.'' This kind of behavior is summarized by the phrase ``... the straw that broke the camel's back.'' Situations in which a gradually increasing force leads to a gradually increasing response, followed by a sudden catastrophic jump to a qualitatively different state, are all too common. They are seen, for example, in the collapse of a bridge, dam, or building; the loss of stability of an aircraft or ship; phase transitions in fluids or solids; ignition of a laser; sudden changes in the earth's climate. In each of the instances above, and very many others besides, it is possible to see a smooth response and a discontinuous response to a smoothly changing force. It might seem that ``Every smooth response is the same, each discontinuous response is discontinuous in its own fashion.'' In fact, every smooth process is conveniently described by a linear response function or tensor. However, it is not true that every discontinuity is different. Discontinuities are described by mathematical functions called catastrophe functions. Only a relatively small number of such functions exist. These have been extensively studied. They can be constructed for any physical system. The simplest of these have been studied extensively. The result is that only a handful of different types of discontinuities are typically encountered, and each of these exhibits a characteristic set of properties. A parallel realization that a relatively small number of features characterizes the complex behavior exhibited by nonlinear dynamical systems (sets of ordinary differential equations) has catalyzed the rapid growth of interest in such systems in the last two decades. In the following sections we describe catastrophe theory. In particular, we describe what it is, why it exists, and how it works.
Functional mixed effects spectral analysis
KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG
2011-01-01
SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437
McCuaig, Sarah; Martin, James G
2013-04-01
Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds
NASA Astrophysics Data System (ADS)
Lupo, Umberto
2018-04-01
The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.
Volk, Kenneth A.; Roghair, Robert D.; Jung, Felicia; Scholz, Thomas D.; Lamb, Fred S.
2010-01-01
Exposure of the early-gestation ovine fetus to exogenous glucocorticoids induces changes in postnatal cardiovascular physiology. We sought to characterize coronary artery vascular function in this model by elucidating the contribution of nitric oxide and reactive oxygen species to altered coronary vascular reactivity and examining the proliferative potential of coronary artery vascular smooth muscle cells. Dexamethasone (dex, 0.28 mg·kg−1·day−1 for 48 h) was administered to pregnant ewes at 27–28-day gestation (term 145 days). Coronary arteries were isolated from 1- to 2-wk-old dex-exposed offspring and aged-matched controls. Compared with controls, coronary arteries from dex-exposed lambs demonstrated enhanced vasoconstriction to endothelin-1 and ACh that was abolished by endothelial removal or preincubation with the nitric oxide synthase inhibitor l-NNA, membrane-permeable superoxide dismutase + catalase, or apamin + charybdotoxin, but not indomethacin. The rate of coronary vascular smooth muscle cell (VSMC) proliferation was also significantly greater in dex-exposed lambs. Protein levels of the proliferating cell nuclear antigen were increased and α-smooth muscle actin decreased in dex-exposed coronary VSMC, consistent with a proliferative state. Finally, expression of the NADPH oxidase Nox 4, but not Nox 1, mRNA was also decreased in coronary VSMC from dex-exposed lambs. These findings suggest an important interaction exists between early-gestation glucocorticoid exposure and reactive oxygen species that is associated with alterations in endothelial function and coronary VSMC proliferation. These changes in coronary physiology are consistent with those associated with the development of atherosclerosis and may provide an important link between an adverse intrauterine environment and increased risk for coronary artery disease. PMID:20335378
Dupuis, Morgan; Lévy, Arlette; Mhaouty-Kodja, Sakina
2004-04-30
Gh alpha protein, which exhibits both transglutaminase and GTPase activities, represents a new class of GTP-binding proteins. In the present study, we characterized Gh alpha in rat uterine smooth muscle (myometrium) and followed its expression during pregnancy by reverse transcription-PCR and Western blot. We also measured transglutaminase and GTP binding functions and used a smooth muscle cell line to evaluate the role of Gh alpha in cell proliferation. The results show that pregnancy is associated with an up-regulation of Gh alpha expression at both the mRNA and protein level. Gh alpha induced during pregnancy is preferentially localized to the plasma membrane. This was found associated with an increased ability of plasma membrane preparations to catalyze Ca(2+)-dependent incorporation of [(3)H]putrescine into casein in vitro. In the cytosol, significant changes in the level of immunodetected Gh alpha and transglutaminase activity were seen only at term. Activation of alpha1-adrenergic receptors (alpha1-AR) enhanced photoaffinity labeling of plasma membrane Gh alpha. Moreover, the level of alpha1-AR-coupled Gh alpha increased progressively with pregnancy, which parallels the active period of myometrial cell proliferation. Overexpression of wild type Gh alpha in smooth muscle cell line DDT1-MF2 increased alpha1-AR-induced [(3)H]thymidine incorporation. A similar response was obtained in cells expressing the transglutaminase inactive mutant (C277S) of Gh alpha. Together, these findings underscore the role of Gh alpha as signal transducer of alpha1-AR-induced smooth muscle cell proliferation. In this context, pregnant rat myometrium provides an interesting physiological model to study the mechanisms underlying the regulation of the GTPase function of Gh alpha
A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Dong; Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; Duke, Robert E.
2015-07-28
A new method to account for long range electrostatic contributions is proposed and implemented for quantum mechanics/molecular mechanics long range electrostatic correction (QM/MM-LREC) calculations. This method involves the use of the minimum image convention under periodic boundary conditions and a new smoothing function for energies and forces at the cutoff boundary for the Coulomb interactions. Compared to conventional QM/MM calculations without long-range electrostatic corrections, the new method effectively includes effects on the MM environment in the primary image from its replicas in the neighborhood. QM/MM-LREC offers three useful features including the avoidance of calculations in reciprocal space (k-space), with themore » concomitant avoidance of having to reproduce (analytically or approximately) the QM charge density in k-space, and the straightforward availability of analytical Hessians. The new method is tested and compared with results from smooth particle mesh Ewald (PME) for three systems including a box of neat water, a double proton transfer reaction, and the geometry optimization of the critical point structures for the rate limiting step of the DNA dealkylase AlkB. As with other smoothing or shifting functions, relatively large cutoffs are necessary to achieve comparable accuracy with PME. For the double-proton transfer reaction, the use of a 22 Å cutoff shows a close reaction energy profile and geometries of stationary structures with QM/MM-LREC compared to conventional QM/MM with no truncation. Geometry optimization of stationary structures for the hydrogen abstraction step by AlkB shows some differences between QM/MM-LREC and the conventional QM/MM. These differences underscore the necessity of the inclusion of the long-range electrostatic contribution.« less
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros
2014-01-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913
The statistical mechanics of relativistic orbits around a massive black hole
NASA Astrophysics Data System (ADS)
Bar-Or, Ben; Alexander, Tal
2014-12-01
Stars around a massive black hole (MBH) move on nearly fixed Keplerian orbits, in a centrally-dominated potential. The random fluctuations of the discrete stellar background cause small potential perturbations, which accelerate the evolution of orbital angular momentum by resonant relaxation. This drives many phenomena near MBHs, such as extreme mass-ratio gravitational wave inspirals, the warping of accretion disks, and the formation of exotic stellar populations. We present here a formal statistical mechanics framework to analyze such systems, where the background potential is described as a correlated Gaussian noise. We derive the leading order, phase-averaged 3D stochastic Hamiltonian equations of motion, for evolving the orbital elements of a test star, and obtain the effective Fokker-Planck equation for a general correlated Gaussian noise, for evolving the stellar distribution function. We show that the evolution of angular momentum depends critically on the temporal smoothness of the background potential fluctuations. Smooth noise has a maximal variability frequency {{ν }max }. We show that in the presence of such noise, the evolution of the normalized angular momentum j=\\sqrt{1-{{e}2}} of a relativistic test star, undergoing Schwarzschild (in-plane) general relativistic precession with frequency {{ν }GR}/{{j}2}, is exponentially suppressed for j\\lt {{j}b}, where {{ν }GR}/jb2˜ {{ν }max }, due to the adiabatic invariance of the precession against the slowly varying random background torques. This results in an effective Schwarzschild precession-induced barrier in angular momentum. When jb is large enough, this barrier can have significant dynamical implications for processes near the MBH.
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
NASA Astrophysics Data System (ADS)
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
The biophysics of asthmatic airway smooth muscle.
Stephens, Newman L; Li, Weilong; Jiang, He; Unruh, H; Ma, Xuefei
2003-09-16
It is clear that significant advances have been made in the understanding of the physiology, biochemistry and molecular biology of airway smooth muscle (ASM) contraction and how the knowledge obtained from these approaches may be used to elucidate the pathogenesis of asthma. Not to belittle other theories of smooth muscle contraction extant in the field, perhaps the most outstanding development has been the formulation of plasticity theory. This may radically alter our understanding of smooth muscle contraction. Its message is that while shortening velocity and capacity are linear functions of length, active force is length independent. These changes are explained by the ability of thick filament protein to depolymerize at short lengths and to increase numbers of contractile units in series at lengths greater than optimal length or L(ref). Other advances are represented by the report that the major part of ASM shortening is complete within the initial first 20% of contraction time, that the nature and history of loading determine the extent of shortening and that these findings can be explained by the finding that the crossbridges are cycling four times faster than in the remaining time. Another unexpected finding is that late in the course of isotonic relaxation the muscle undergoes spontaneous activation which delays relaxation and smoothes it out; speculatively this could minimize turbulence of airflow. On the applied front evidence now shows the shortening ability of bronchial smooth muscle of human subjects of asthma is significantly increased. Measurements also indicate that increased smooth muscle myosin light chain kinase content, via increased actomyosin ATPase activity could be responsible for the changes in contractility.
Essays in applied macroeconomics: Asymmetric price adjustment, exchange rate and treatment effect
NASA Astrophysics Data System (ADS)
Gu, Jingping
This dissertation consists of three essays. Chapter II examines the possible asymmetric response of gasoline prices to crude oil price changes using an error correction model with GARCH errors. Recent papers have looked at this issue. Some of these papers estimate a form of error correction model, but none of them accounts for autoregressive heteroskedasticity in estimation and testing for asymmetry and none of them takes the response of crude oil price into consideration. We find that time-varying volatility of gasoline price disturbances is an important feature of the data, and when we allow for asymmetric GARCH errors and investigate the system wide impulse response function, we find evidence of asymmetric adjustment to crude oil price changes in weekly retail gasoline prices. Chapter III discusses the relationship between fiscal deficit and exchange rate. Economic theory predicts that fiscal deficits can significantly affect real exchange rate movements, but existing empirical evidence reports only a weak impact of fiscal deficits on exchange rates. Based on US dollar-based real exchange rates in G5 countries and a flexible varying coefficient model, we show that the previously documented weak relationship between fiscal deficits and exchange rates may be the result of additive specifications, and that the relationship is stronger if we allow fiscal deficits to impact real exchange rates non-additively as well as nonlinearly. We find that the speed of exchange rate adjustment toward equilibrium depends on the state of the fiscal deficit; a fiscal contraction in the US can lead to less persistence in the deviation of exchange rates from fundamentals, and faster mean reversion to the equilibrium. Chapter IV proposes a kernel method to deal with the nonparametric regression model with only discrete covariates as regressors. This new approach is based on recently developed least squares cross-validation kernel smoothing method. It can not only automatically smooth the irrelevant variables out of the nonparametric regression model, but also avoid the problem of loss of efficiency related to the traditional nonparametric frequency-based method and the problem of misspecification based on parametric model.
Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA
2006-03-07
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2006-12-15
In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.
APC: A New Code for Atmospheric Polarization Computations
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2014-01-01
A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.
2013-02-06
high order and smoothness. Consequently, the use of IGA for col- location suggests itself, since spline functions such as NURBS or T-splines can be...for the development of higher-order accurate time integration schemes due to the convergence of the high modes in the eigenspectrum [46] as well as...flows [19, 20, 49–52]. Due to their maximum smoothness, B-splines exhibit a high resolution power, which allows the representation of a broad range